AN EXACT RESULT FOR HYPERGRAPHS AND UPPER BOUNDS FOR THE TURÁN DENSITY OF K_{r+1}^r *

LINYUAN LU[†] AND YI ZHAO[‡]

Abstract. We first answer a question of de Caen [Extremal Problems for Finite Sets, János Bolyai Math. Soc., Budapest, 1994, pp. 187–197]: given $r \ge 3$, if G is an r-uniform hypergraph on n vertices such that every r + 1 vertices span 1 or r + 1 edges, then $G = K_n^r$ or K_{n-1}^r , assuming that n > (p-1)r, where p is the smallest prime factor of r-1. We then show that the Turán density $\pi(K_{r+1}^r) \leq 1 - 1/r - (1 - 1/r^{p-1})(r-1)^2/(2r^p(\binom{r+p}{p-1} + \binom{r+1}{2})))$, for all even $r \geq 4$, improving a well-known bound $1 - \frac{1}{r}$ of de Caen [Ars Combin., 16 (1983), pp. 5–10] and Sidorenko [Vestnik Moskov. Univ. Ser. I Mat. Mekh., 76 (1982), pp. 3–6].

Key words. Turán density, extremal problem, hypergraph

AMS subject classifications. 05D05, 05C65

DOI. 10.1137/070710615

1. Introduction. Given a positive integer n and an r-uniform hypergraph H(or r-graph, for short), the Turán number ex(n, H) is the maximum number of edges in an r-graph on n vertices that does not contain H as a subgraph (called H-free). It is easy to see that $f(n,H) = \exp(n,H)/\binom{n}{r}$ is a decreasing function of n [10]. The limit $\pi(H) = \lim_{n \to \infty} f(n, H)$, which always exists, is called the Turán density of H. Let K_k^r denote the complete r-graph on k vertices. Turán determined $ex(n, K_k^2)$ which implies that $\pi(K_k^2) = 1 - \frac{1}{k-1}$ for all $k \ge 3$. However, no Turán density $\pi(K_k^r)$ is known for any $k > r \ge 3$. The most well-known case, k = 4 and r = 3, is a conjecture of Turán [19], claiming that $\pi(K_4^3) = 5/9$. Erdős [5] offered prizes of \$500 for determining any $\pi(K_k^r)$ with $k > r \ge 3$ and \$1000 for answering it for all k and r. The best (general) known upper bound is due to de Caen [1],

(1)
$$\pi(K_k^r) \le 1 - \frac{1}{\binom{k-1}{r-1}},$$

and the special case

(2)
$$\pi(K_{r+1}^r) \le 1 - \frac{1}{r}$$

was also given by Sidorenko [14]. For the lower bound, Sidorenko [17] showed that $\pi(K_{r+1}^r) \ge 1 - \frac{\ln r}{2r}(1 + o(1))$ for large r. See survey papers of de Caen [2] and Sidorenko [16] for other bounds.

For odd $r \geq 3$, Chung and Lu [4] improved (2) to

(3)
$$\pi(K_{r+1}^r) \le 1 - \frac{5r + 12 - \sqrt{9r^2 + 24r}}{2r(r+3)} = 1 - \frac{1}{r} - \frac{1}{r(r+3)} + O\left(\frac{1}{r^3}\right).$$

When r = 3, this gives the best known upper bound $\frac{3+\sqrt{17}}{12} \approx 0.5936$ for $\pi(K_4^3)$.

http://www.siam.org/journals/sidma/23-3/71061.html

^{*}Received by the editors December 11, 2007; accepted for publication (in revised form) June 4, 2009; published electronically August 26, 2009.

[†]Department of Mathematics, University of South Carolina, Columbia, SC 29208 (lu@math.sc. edu). The research of this author was supported in part by NSF grant DMS-0701111.

[‡]Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303 (yzhao6@gsu.edu). The research of this author was supported in part by NSA grants H98230-06-1-0140 and H98230-07-1-0019. 1324

1325

However, it seems more difficult to improve (2) for even $r \ge 4$. For odd r, the edge density $f(n, K_{r+1}^r)$ of extremal hypergraphs decreases quickly for small n; for example, $f(r+2, K_{r+1}^r) < f(r+1, K_{r+1}^r)$. It is no longer the case for even $r \ge 4$. It is easy to see that

$$f(8, K_5^4) = f(7, K_5^4) = f(6, K_5^4) = f(5, K_5^4) = \frac{4}{5}.$$

Let G_8^4 be the 4-graph on $[8] = \{1, 2, \dots, 8\}$ with nonedges

 $\{1,2,3,4\}, \{1,2,5,6\}, \{1,2,7,8\}, \{1,3,5,7\}, \{1,3,6,8\}, \{1,4,5,8\}, \{1,4,6,7\}, \\ \{2,3,5,8\}, \{2,3,6,7\}, \{2,4,5,7\}, \{2,4,6,8\}, \{3,4,5,6\}, \{3,4,7,8\}, \{5,6,7,8\}.$

It is easy to check that G_8^4 is K_5^4 -free with $\frac{4}{5}\binom{8}{4}$ edges, and every 5 vertices on [8] contain exactly 4 edges and one nonedge.

While studying Turán numbers, De Caen [2] asked the following question¹: Describe all r-graphs such that every r+1 vertices span 1 or r+1 edges. Equivalently, we consider an r-graph G, which is the complement of the r-graph in de Caen's question:

(4) every
$$r + 1$$
 vertices contain 0 or r edges of G .

When r = 2, it is easy to see that G must be a complete bipartite graph (with arbitrary partition sizes). In fact, to prove that G is bipartite, one may consider a shortest odd cycle or apply Lemma 4 in section 3.

We now answer the question of de Caen for $r \geq 3$. Fix an *n*-vertex set *V*. The empty *r*-graph is the one with no edge; a complete star is an *r*-graph whose edge set consists of all *r*-sets containing some fixed vertex. Clearly the empty graph and complete stars satisfy (4). Theorem 1 below shows that they are the only *r*-graphs satisfying (4) when |V| is not very small. Accordingly their complements, K_n^r and K_{n-1}^r , are only *r*-graphs satisfying de Caen's condition.

THEOREM 1. Let $r \ge 3$ and p be the smallest prime factor of r-1. Suppose that G is an r-graph on n vertices satisfying (4). If n > r(p-1), then G is either the empty graph or a complete star.

Our proof uses the upper bound for $ex(n, K_{r+1}^r)$ corresponding to (2). Our construction G_8^4 suggests that a lower bound for n is necessary. A similar problem was solved by Frankl and Füredi [7], who described all 3-graphs such that every 4 vertices contain 0 or 2 edges (the general case when every r + 1 vertices span 0 or 2 edges is still open).

Let K_4^{3-} denote the unique 3-graph with 4 vertices and 3 edges. It is not hard to prove that $ex(n, K_4^{3-}) \leq \frac{1}{3}$ (e.g., [1]). Mubayi [13] used the result of Frankl and Füredi [7] and supersaturation to obtain that $ex(n, K_4^{3-}) < \frac{1}{3} - 10^{-6}$. Talbot [18] recently improved the bound to $\frac{1}{3} - \frac{1}{280}$ by considering related *chromatic Turán* problems. Motivated by these works, we apply Lemma 4, the key step in the proof of Theorem 1, to slightly improve (2) for all $r \geq 3$. (We can also improve (2) by Theorem 1 and supersaturation though the result turns out to be weaker than Theorem 2. See the last section for details.)

THEOREM 2. For $r \geq 3$, let p be the smallest prime factor of r-1.

$$\pi(K_{r+1}^r) \leq \begin{cases} 1 - \frac{1}{r} - \frac{8}{9r^2} + O\left(\frac{1}{r^3}\right), & p = 2, \\ 1 - \frac{1}{r} - \left(1 - \frac{1}{r^{p-1}}\right) \frac{(r-1)^2}{2r^p\left(\binom{r+p}{p-1} + \binom{r+1}{2}\right)}, & p \ge 3. \end{cases}$$

¹He noted that the r = 2, 3 cases are easy.

When r is odd (thus p = 2), Theorem 2 is slightly weaker than (3). For even r, Theorem 2 gives a new upper bound for $\pi(K_{r+1}^r)$. For example, when r = 6k + 4(thus p = 3), it gives

$$\pi(K_{r+1}^r) \le 1 - \frac{1}{r} - \frac{1}{2r^3} + O\left(\frac{1}{r^4}\right).$$

The rest of the paper is organized as follows. After recalling the proof of (2) in section 2, we prove Theorem 1 in section 3 and Theorem 2 in section 4. In the last section we give some concluding remarks.

2. Preliminaries. In this section we recall the proof of (2), $\pi(K_{r+1}^r) \leq 1 - \frac{1}{r}$, which indicates the source of our improvement. Let G be a K_{r+1}^r -free r-graph. For $0 \leq i \leq r$, let Δ_i denote the family of (r+1)-sets that contain exactly i edges of G and $\delta_i = |\Delta_i|$.

LEMMA 3. For all $n \geq r$,

(5)
$$ex(n, K_{r+1}^r) \le \left(1 - \frac{1}{r} + \frac{1}{r(n-r+1)}\right) \binom{n}{r}.$$

Moreover, if every K_{r+1}^r -free r-graph G on n vertices satisfies $\sum_{i=1}^{r-1} \delta_i \ge y\binom{n}{r+1}$, then $x = \pi(K_{r+1}^r)$ satisfies

(6)
$$x^2 - x\left(1 - \frac{1}{r}\right) + \frac{(r-1)y}{r(r+1)} \le 0.$$

Proof. Let G be a K_{r+1}^r -free r-graph G on n vertices and e edges. For an (r-1)-set $S \subset V(G)$, let $d_S = |\{v : S \cup \{v\} \in E(G)\}|$ be the degree of S. We have

(7)
$$\sum_{S} d_{S} = er,$$

(8)
$$\sum_{S} \binom{d_S}{2} = \sum_{i=1}^{r} \binom{i}{2} \delta_i,$$

(9)
$$\sum_{i=1}^{r} i\delta_i = e(n-r).$$

We derive that

$$\sum_{S} d_{S}^{2} = 2 \sum_{S} {\binom{d_{S}}{2}} + \sum_{S} d_{S}$$
$$= 2 \sum_{i=1}^{r} {\binom{i}{2}} \delta_{i} + er \quad \text{using (7) and (8)}$$
$$= \sum_{i} i^{2} \delta_{i} - \sum_{i} i \delta_{i} + er$$
$$= \sum_{i} i^{2} \delta_{i} - e(n - 2r) \text{ using (9)}$$
$$\leq r \sum_{i=1}^{r} i \delta_{i} - e(n - 2r)$$
$$= re(n - r) - e(n - 2r).$$

Using the Cauchy–Schwarz inequality

$$\frac{(er)^2}{\binom{n}{r-1}} = \frac{(\sum_S d_S)^2}{\binom{n}{r-1}} \le \sum_S d_S^2$$

and (7), we conclude that

$$\frac{(er)^2}{\binom{n}{r-1}} \le re(n-r) - e(n-2r)$$
$$\frac{e}{\binom{n}{r}} \le \left(1 - \frac{1}{r}\right) + \frac{1}{r(n-r+1)}$$

with equality holds if all d_S are the same and $\sum_{i=1}^{r-1} \delta_i = 0$. This proves (5). When $\sum_{i=1}^{r-1} \delta_i \ge y \binom{n}{r+1}$, we can refine the estimate of $\sum d_S^2$ as

(10)

$$\sum_{S} d_{S}^{2} = \sum_{i=1}^{r} i^{2} \delta_{i} - e(n-2r)$$

$$= r \sum_{i=1}^{r} i \delta_{i} - \sum_{i=1}^{r-1} i(r-i) \delta_{i} - e(n-2r)$$

$$\leq r \sum_{i=1}^{r} i \delta_{i} - (r-1) \sum_{i=1}^{r-1} \delta_{i} - e(n-2r)$$

$$\leq r e(n-r) - (r-1) y \binom{n}{r+1} - e(n-2r).$$

Consequently $\frac{(er)^2}{\binom{n}{r-1}} \leq re(n-r) - (r-1)y\binom{n}{r+1} - e(n-2r)$, and (6) follows by letting $e = x\binom{n}{r}.$

3. Proof of Theorem 1. In this section we prove Theorem 1. We need some notations. Let G = (V, E) be an r-graph and T be an (r-1)-subset of V. The neighborhood N_T is the set of $x \in V$ such that $\{x\} \cup T \in E$; and let $\overline{N_T} = V - T - N_T$. We define the degree $d_T = |N_T|$ and the nondegree $\bar{d}_T = |\overline{N}_T|$. The following lemma provides information on the structures of all r-graphs satisfying (4) for $r \geq 2$.

LEMMA 4. Let G be an r-graph with $r \geq 2$ such that every r+1 vertices contain 0 or r edges. The following are true for every (r-1)-vertex set T.

- 1. $T \cup \overline{N}_T$ contains no edge of G.
- 2. For every vertex $x \in N_T$ and every (r-1)-subset $D \subseteq T \cup \overline{N}_T$, $\{x\} \cup D$ is an edge of G.
- 3. If $r \geq 3$, then either $d_T < 2$ or $\bar{d}_T .$

Proof. To prove Part 1, we need to show that for $i = 1, \ldots, r$, every *i*-subset of \overline{N}_T and every (r-i)-subset of T together form a nonedge. We prove this claim by induction on *i*. The definition of \overline{N}_T justifies the claim for i = 1. Suppose the claim holds for some $i \geq 1$. Consider $A \subseteq \overline{N}_T$ and $B \subseteq T$ with |A| = i + 1 and |B| = r - i - 1. Pick an (r - i)-set C such that $B \subset C \subseteq T$. We know that the r+1 set $A \cup C$ contains either 0 or r edges, and by induction hypothesis, none of the $i+1(\geq 2)$ i-subsets of A together with C form an edge. Therefore $A \cup C$ contains no edge; in particular, $A \cup B$ is not an edge.

To prove Part 2, we need to show that for $i = 0, \ldots, r-1$, every *i*-subset of $\overline{N_T}$, every (r-1-i)-subset of T, and x together form an edge. We again apply induction on *i*. The fact that $x \in N_T$ justifies the i = 0 case. Suppose that $A \subseteq \overline{N_T}$ and $B \subseteq T$ with |A| = i + 1 and |B| = r - i - 2 for some $i \ge 0$. Pick a set C such that $B \subset C \subseteq T$ with |C| = r - i - 1. We know that the (r + 1)-set $A \cup C \cup \{x\}$ contains either 0 or redges. The induction hypothesis says that all the *i*-subsets of A form edges together with $C \cup \{x\}$. On the other hand, we know from Part 1 that $A \cup C$ is not an edge. Therefore $A \cup C$ is the unique nonedge in $A \cup C \cup \{x\}$, which implies that $A \cup B \cup \{x\}$ is an edge.

To prove Part 3, we assume instead that some (r-1)-set T satisfies $d_T \ge 2$ and $\bar{d}_T \ge p-1$. Let x, y be two vertices in N_T , and S be an (r+p-2)-subset of $T \cup \overline{N_T}$. By Part 2, every (r-1)-subset of S together with x or y form an edge. This forces that every (r-1)-subset of S together with x, y contains precisely r edges. Define an auxiliary (r-2)-graph H on S in which an (r-2)-subset R of S is an edge if and only if $R \cup \{x, y\}$ is a non-edge of G (here we need $r \ge 3$). For $n \ge k > t$, we call a t-graph on n vertices an [n, k, t]-system if every k vertices contain exactly one edge. Hence H is an [r+p-2, r-1, r-2]-system. The number of edges of H, $\binom{r+p-2}{r-1}/p$ is therefore an integer. This implies that p divides $\binom{r+p-2}{r-1} = \binom{r+p-2}{p-1}$, or p! divides $(r+p-2)\cdots r$. Recall that p divides r-1 or $r \equiv 1 \mod p$. We thus obtain a contradiction because $(r+p-2)\cdots r \equiv (p-1)! \neq 0 \mod p$.

Proof of Theorem 1. Recall that $r \geq 3$. By Lemma 4, Part 3, every (r-1)-subset $T \subset V(G)$ satisfies $d_T \leq 1$ or $\bar{d}_T \leq p-2$. We claim that if n > (p-1)r, then there always exists an (r-1)-vertex set T_0 with $d_{T_0} \leq 1$. In fact, suppose that $\bar{d}_T \leq p-2$ for all T. Then the number of nonedges is at most

$$\frac{\binom{n}{r-1}(p-2)}{r} = \frac{p-2}{n-r+1}\binom{n}{r} < \left(\frac{1}{r} - \frac{1}{r(n-r+1)}\right)\binom{n}{r}$$

because n > (p-1)r. In other words, G contains more than $(1 - \frac{1}{r} + \frac{1}{r(n-r+1)})\binom{n}{r}$ edges. By Lemma 3, there exists an (r+1)-set which contains r+1 edges, contradicting (4).

Let $U = T_0 \cup \overline{N}_{T_0}$. Then $|U| \ge n - 1$. Lemma 4, Part 1 says that U contains no edges of G. If |U| = n, G is the empty graph. Otherwise, |U| = n - 1. Let $\{x\} = V(G) - U$. Lemma 4, Part 2 implies that G is the complete star with center x. \square

4. Proof of Theorem 2. Suppose that G = (V, E) is a K_{r+1}^r -free r-graph. We call an (r+1)-set $S \subseteq V$ bad if S contains i edges of G for some $1 \leq i \leq r-1$. Let \mathcal{B} be the family of all bad sets. Let \mathcal{Q} consist of all (r+p)-subsets $Q \subseteq V$ such that some (r-1)-subset S of Q has exactly two neighbors in Q (i.e., $|N_S \cap Q| = 2$). Then in every induced subhypergraph $G[Q], Q \in \mathcal{Q}$, we have $d_S = 2$ and $\overline{d}_S = p-1$. Lemma 4, Part 3 thus implies that every $Q \in \mathcal{Q}$ contains some $B \in \mathcal{B}$. For an arbitrary (r+p)-set $Q \subseteq V$, we define f(Q) as the number of (r-1)-sets $S \subset Q$ such that $|N_S \cap Q| = 2$, and w(Q) as the number of bad sets in Q. Then $w(Q) \geq 1$ for all $Q \in \mathcal{Q}$. Let $R(G) = \max_{Q \in \mathcal{Q}} f(Q)/w(Q)$. The heart of the proof of Theorem 2 is the lemma below.

LEMMA 5. For $r \geq 3$, let p be the smallest prime factor of r-1 and

(11)
$$R \ge \max\{r-1, R(G) : G \text{ is a } K_{r+1}^r \text{-free } r\text{-graph}\}.$$

Then the Turán density $x = \pi(K_{r+1}^r)$ satisfies

(12)
$$x + \frac{r-1}{2R}x(1-x)^{p-1} \le 1 - \frac{1}{r}.$$

The proof of Lemma 3 used the Cauchy–Schwarz inequality, or the convexity of x^2 . In order to prove Lemma 5, we instead use the convexity of $f(x) = x^2 + cx^2(1-x)^{p-1}$ with $0 < c \le 1/2$. Since $f(x) > x^2$, this convexity helps us to get a tighter bound for $\pi(K_{r+1}^r)$.

PROPOSITION 6. Let c, p be constants satisfying $0 \le c \le 1/2$ and $p \ge 2$. Then the function $f(x) = x^2 + cx^2(1-x)^{p-1}$ is convex on [0,1].

Proof. First let p = 2. From $f(x) = x^2 + cx^2(1-x)$, we derive that f''(x) = 2 + 2c - 6cx. Since $1 - 3x \ge -2$ and $0 \le c \le 1/2$, we have $f''(x) \ge 0$ on [0, 1].

Now assume that $p \geq 3$. We have

$$f'(x) = 2x + 2cx(1-x)^{p-1} - c(p-1)x^2(1-x)^{p-2}$$

and

ç

$$f''(x) = 2 + 2c(1-x)^{p-1} - 4c(p-1)x(1-x)^{p-2} + c(p-1)(p-2)x^2(1-x)^{p-3}$$

$$\geq 2 + 2c(1-x)^{p-1} - 4c(p-1)x(1-x)^{p-2}$$

$$= 2 + 2cg(x),$$

where $g(x) = (1-x)^{p-1} - 2(p-1)x(1-x)^{p-2} = (1-x)^{p-2}(1-(2p-1)x)$. It is not hard to see that $g(x) \ge -2(\frac{2p-4}{2p-1})^{p-2} > -2$ on [0,1]. Thus $f''(x) > 2 + 2c(-2) \ge 0$ and consequently f(x) is convex on [0,1].

Proof of Lemma 5. Let G = G(n) be a K_{r+1}^r -free r-graph on n vertices with $x(n)\binom{n}{r} = \exp(n, K_{r+1}^r)$ edges. The fact that $w(Q) \ge 1$ for all $Q \in \mathcal{Q}$ and the definition of R give

$$\sum_{|S|=r-1} {\binom{d_S}{2}} {\binom{\bar{d}_S}{p-1}} = \sum_{S} \sum_{Q \supset S: |Q|=r+p, |N_S \cap Q|=2} 1 = \sum_{S,Q} \sum_{B \in \mathcal{B}: B \subset Q} \frac{1}{w(Q)}$$
$$= \sum_{B \in \mathcal{B}} \sum_{Q \in \mathcal{Q}: B \subset Q} \frac{f(Q)}{w(Q)} \le R|\mathcal{B}| {\binom{n-r+1}{p-1}}.$$

We thus obtain a bound for the number of bad sets:

(13)
$$|\mathcal{B}| = y \binom{n}{r+1} \ge \frac{\sum_{S} \binom{d_S}{2} \binom{d_S}{p-1}}{\binom{n-r+1}{p-1}R}$$

We define a function $f(x) = x^2 + cx^2(1-x)^{p-1}$ with $c = \frac{r-1}{2R}$. The definition of R forces $c \leq \frac{1}{2}$. By Proposition 6, f(x) is convex on [0, 1]. For every (r-1)-set S, let $x_S = \frac{d_S}{n-r+1}$. The convexity of f gives

$$f\left(\frac{\sum_{S} x_{S}}{\binom{n}{r-1}}\right) \leq \frac{\sum_{S} f(x_{S})}{\binom{n}{r-1}}.$$

Since $\frac{\sum_{S} x_{S}}{\binom{n}{r-1}} = \frac{\sum_{S} d_{S}}{(n-r+1)\binom{n}{r-1}} = \frac{e}{\binom{n}{r}} = x(n)$, we have $f\left(\frac{\sum_{S} x_{S}}{\binom{n}{r-1}}\right) = f(x(n))$

On the other hand,

$$\frac{\sum_{S} f(x_S)}{\binom{n}{r-1}} = \frac{\sum_{S} (x_S^2 + cx_S^2 (1-x_S)^{p-1})}{\binom{n}{r-1}} = \frac{\sum_{S} d_S^2}{(n-r+1)^2 \binom{n}{r-1}} + c \frac{\sum_{S} d_S^2 \bar{d}_S^{p-1}}{(n-r+1)^{p+1} \binom{n}{r-1}}.$$

Using (10),

$$\frac{\sum_{S} d_{S}^{2}}{(n-r+1)^{2} \binom{n}{r-1}} \leq \frac{re(n-r) - (r-1)y\binom{n}{r+1} - e(n-2r)}{(n-r+1)^{2} \binom{n}{r-1}} = \frac{re(n-r) - e(n-2r)}{(n-r+1)^{2} \binom{n}{r-1}} - \frac{r-1}{(r+1)r}y + O\left(\frac{1}{n}\right).$$

Since $d_S, \bar{d}_S \leq n$ for all S, we have $\sum_S d_S^2 \bar{d}_S^{p-1} = O(n^{p+r-1}) + \sum_S 2(p-1)! {\binom{d_S}{2}} {\frac{\bar{d}_S}{p-1}}$ and

$$c \frac{\sum_{S} d_{S}^{2} \bar{d}_{S}^{p-1}}{(n-r+1)^{p+1} \binom{n}{r-1}} = \frac{O(n^{p+r-1}) + \sum_{S} 2c(p-1)! \binom{d_{S}}{2} \binom{\bar{d}_{S}}{p-1}}{(n-r+1)^{p+1} \binom{n}{r-1}}$$
$$\leq 2c(p-1)! \frac{R\binom{n-r+1}{p-1} y\binom{n}{r+1}}{(n-r+1)^{p+1} \binom{n}{r-1}} + O\left(\frac{1}{n}\right)$$
$$= 2c \frac{R}{(r+1)r} y + O\left(\frac{1}{n}\right)$$
$$= \frac{r-1}{(r+1)r} y + O\left(\frac{1}{n}\right).$$

Putting these together, we have

$$f(x(n)) \le \frac{\sum_{S} f(x_{S})}{\binom{n}{r-1}} \le \frac{re(n-r) - e(n-2r)}{(n-r+1)^{2}\binom{n}{r-1}} + O\left(\frac{1}{n}\right)$$
$$= \left(1 - \frac{1}{r}\right)x(n) + O\left(\frac{1}{n}\right).$$

The claim (12) follows by letting $n \to \infty$ and substituting $f(x) = x^2 + \frac{r-1}{2R}x^2$ $(1-x)^{p-1}$.

Trivially we can choose $R = \binom{r+p}{r-1}$ —applying it in (12) already yields a better bound for $\pi(K_{r+1}^r)$ than (2). The following technical lemma refines our bound for R. LEMMA 7. For any K_{r+1}^r -free r-graph G with at least r + p vertices,

$$R(G) \le \begin{cases} \left(\frac{3r+2}{4}\right)^2, & p = 2, \\ \binom{r+1}{2} + \binom{r+p}{p-1}, & p \ge 3. \end{cases}$$

Proof. Fix $Q \in \mathcal{Q}$. Let q = r + p = |Q|. We consider a p-graph H on Q whose edges are the complements of edges of G, namely,

$$E(H) = \{Q - e : e \in E(G), e \subset Q\}$$

Therefore a (p-1)-subset $S \subset Q$ has degree i in H if and only if the (r+1)-set $Q \setminus S$ contains exactly i edges of G. Let W be the family of (p-1)-sets with degree i (in H)

1330

for some $1 \leq i \leq r-1$ (their complementary sets in Q are bad sets for G), and F be the set of (p+1)-sets containing exactly two edges of H (their complementary sets in Q have degree 2 in G[Q]). Following the definition of w(Q) and f(Q) in the beginning of the section, we have |W| = w(Q) and |F| = f(Q). Note that the degree of any (p-1)-set in H is at most r since G is K_{r+1}^r -free. We also know that $|W| = w(Q) \geq 1$ since Q contains at least one bad set. From now on we consider H as our underlying hypergraph (instead of G). Our goal is to obtain upper bounds for |F|/|W|.

The p = 2 case. Partition the vertex set Q into $W = \{x : 1 \le d_{\{x\}} \le r-1\}$, $U = \{x : d_{\{x\}} = r\}$, and $Z = \{x : d_{\{x\}} = 0\}$. Since each vertex in U misses at most one vertex of Q, nonedges inside U form a matching M. Let $U_1 = U - V(M)$ consist of vertices in U not covered by M. The family F consists of all triples T = abc such that $ab, ac \in E(H)$ and $bc \notin E(H)$. Clearly $T \subset W \cup U$ for all $T \in F$.

We partition $F = F_0 \cup F_1 \cup F_2$ such that F_0 consists of all $T \in F$ with $|T \cap W| \ge 2$, F_1 consists of those T = abc with $b, c \in U$, and F_2 consists of those abc with exactly one of b, c in W. We have $|F_0| \le {|W| \choose 2}(q-2)$, and $|F_1| \le |M|(q-2)$. Since $|M| \le (q - |U_1| - |W|)/2$ and $|W| \ge 1$,

(14)

$$|F_0| + |F_1| \le {\binom{|W|}{2}}(q-2) + \frac{1}{2}(q-|U_1|-|W|)(q-2)$$

$$\le \frac{1}{2}|W|(q-2)\left(\frac{1}{2}(|W|-1) + (q-|U_1|-|W|)\right)$$

$$= \frac{1}{2}|W|(q-2)\left(q-|U_1|-1\right).$$

To estimate F_2 , let us consider a vertex $x \in W$. By definition of M, x is adjacent to all the vertices in V(M). If x has t nonneighbors in U, then $t \leq |U_1|$ and the number of triples of F_2 containing x is at most

$$t(|U| - t) \le \begin{cases} |U_1|(|U| - |U_1|) & \text{if } |U_1| \le |U|/2, \\ |U|^2/4 & \text{otherwise.} \end{cases}$$

First assume that $|U_1| \leq |U|/2$. Since $|U| \leq q - 1$, we have

$$|F_2| \le |W| |U_1| (|U| - |U_1|) \le |W| |U_1| (p - 1 - |U_1|).$$

Together with (14) and using $|W| \ge 1$, we derive that

$$|F| \le |W| \left(\frac{1}{2}(q-2)(q-|U_1|-1) + |U_1|(q-1-|U_1|)\right)$$

$$\le |W| \left(\frac{3q}{4} - 1\right)^2,$$

where equality holds when $|U_1| = q/4$. In contrast, when $|U_1| > |U|/2$, we have

$$\begin{split} |F| &\leq |W| \left(\frac{1}{2} (q-2)(q-|U_1|-1) + \frac{1}{4} |U|^2 \right) \\ &\leq |W| \left(\frac{1}{2} (q-2)(q-\frac{1}{2} |U|-1) + \frac{1}{4} |U|^2 \right) \\ &\leq \frac{1}{4} |W|(q-1)(2q-3), \end{split}$$

where equality holds when |U| = q - 1 and $|U_1| = |U|/2$. It is easy to check that $(\frac{3q}{4} - 1)^2 \ge \frac{1}{4}(q - 1)(2q - 3)$ for any q. We therefore conclude that $|F|/|W| \le (\frac{3q}{4} - 1)^2 = (\frac{3r+2}{4})^2$.

The $p \ge 3$ case. Partition F into $F_1 = \{S \in F : S \supset T \text{ for some } T \in W\}$ and $F_2 = F - F_1$. Clearly $|F_1| \le |W| \binom{q-p+1}{2}$. We prove below that $|F_2| \le \sqrt{|W|} \binom{q}{p-1}$.

Fix a (p + 1)-set $S \in F_2$. By the definition of F_2 , all (p - 1)-subsets of S have either degree 0 or degree r in H (equivalently, nondegree 1), and S contains exactly two edges (p-sets) of H. We denote these two edges by $T \cup \{x\}$ and $T \cup \{y\}$, where $T \subset S$ is a (p - 1)-set. We have two observations.

OBSERVATION 1. For any $a \in T$, the (p-1)-set $T \cup \{x\} - \{a\}$ must have degree r since $T \cup \{x\} \in E(H)$ and $S - \{a\} \notin E(H)$. This implies that $T \cup \{x, u\} - \{a\} \in E(H)$ for any vertex $u \notin S$.

OBSERVATION 2. For two distinct vertices $a, b \in T$, the (p-1)-set $S - \{a, b\}$ must have degree 0 since two p-sets $S - \{a\}, S - \{b\}$ are not edges. Note that we need $|T| \ge 2$ or $p \ge 3$ here.

We define a function $g: F_2 \to {Q \choose p-1}$ such that g(S) = T. If g is a one-to-one function, then $|F_2| \leq {q \choose p-1} \leq \sqrt{|W|} {q \choose p-1}$. Otherwise, let T be a (p-1)-set with the maximum size of $g^{-1}(T) = \{S \in F_2 : g(S) = T\}$. Let M consist of all 2-sets S - T such that $S \in g^{-1}(T)$. Then $|M| = |g^{-1}(T)| \geq 2$.

We first claim that M is a matching; namely, any two pairs in M are disjoint. Suppose instead $xy, xz \in M$. For any $a \in T$, the (p-1)-set $\{x\} \cup T - \{a\}$ is contained in two nonedges $\{x, y\} \cup T - \{a\}$ and $\{x, z\} \cup T - \{a\}$, contradicting Observation 1. We next claim that $\{x, y\} \cup T - \{a, b\} \in W$ for two pairs $P, Q \in M$, any vertices $x \in P, y \in Q$, and any two vertices $a, b \in T$. In fact, Observation 2 says that $T_P = P \cup T - \{a, b\}$ has degree 0, and consequently $\{y\} \cup T_P$ is a nonedge. Similarly $\{x\} \cup T_Q$ is also a nonedge with $T_Q = Q \cup T - \{a, b\}$. On the other hand, we know that $\{x, y\} \cup T - \{a\}$ is an edge from Observation 1. Hence $\{x, y\} \cup T - \{a, b\}$ has degree at least 1 and nondegree at least 2, and thus it belongs to W. This implies that $|W| \ge 2^2 {|M| \choose 2} {|P-1 \choose 2} \ge |M|^2$ (since $|M| \ge 2$). We thus conclude that $\sum_{T \in R_2} |g^{-1}(T)| \le \sqrt{|W|} {|Q-1| \choose 2}$.

Consequently $|F| \leq |W| {q-p+1 \choose 2} + \sqrt{|W|} {q \choose p-1}$ and $|F|/|W| \leq {q-p+1 \choose 2} + {q \choose p-1}$.

Proof of Theorem 2. Let R be the upper bound for R(G) in Lemma 7:

$$R = \begin{cases} \left(\frac{3r+2}{4}\right)^2, & p = 2, \\ \left(\frac{r+1}{2}\right) + \binom{r+p}{p-1}, & p \ge 3. \end{cases}$$

It is easy to check that $R \ge r-1$ and consequently $c = \frac{r-1}{2R} \le \frac{1}{2}$. Let the Turán density $x = \pi(n, K_{r+1}^r) = 1 - \frac{1}{r} - \varepsilon$. The inequality (12) from Lemma 5 gives

$$\varepsilon \ge c\left(1-\frac{1}{r}-\varepsilon\right)\left(\frac{1}{r}+\varepsilon\right)^{p-1} > c\left(1-\frac{1}{r}-\varepsilon\right)\left(\frac{1}{r}\right)^{p-1}$$

which implies that

$$\varepsilon > \left(1 - \frac{1}{r}\right) \frac{c}{c + r^{p-1}}$$
$$> \left(1 - \frac{1}{r}\right) \frac{c}{r^{p-1}} \left(1 - \frac{c}{r^{p-1}}\right).$$

We now apply the definition of R to $c = \frac{r-1}{2R}$. When p = 2, this gives $\varepsilon > \frac{8}{9r^2} + O(1/r^3)$. When $p \ge 3$, we have

$$\varepsilon > \left(1 - \frac{1}{r}\right) \frac{r - 1}{2r^{p-1} \left(\binom{r+p}{p-1} + \binom{r+1}{2}\right)} \left(1 - \frac{c}{r^{p-1}}\right)$$
$$> \frac{(r-1)^2}{2r^p \left(\binom{r+p}{p-1} + \binom{r+1}{2}\right)} \left(1 - \frac{1}{r^{p-1}}\right). \quad \Box$$

5. Concluding remarks.

• Following the approach of Mubayi [13], we can improve (2) by Theorem 1 and supersaturation as follows. By Theorem 1, every K_{r+1}^r -free *r*-graph on (p-1)r+1 vertices either contains a bad set or has at most $\binom{(p-1)r}{r-1}$ edges. In fact, from a simple removing argument and the structure of the *r*-graphs that satisfy (4), we can show that every K_{r+1}^r -free *r*-graph on $n_0 = (p-1)(r+1)$ vertices either contains p-1 bad sets or has at most $\binom{n_0-1}{r-1}$ edges. By averaging arguments and (5), every K_{r+1}^r -free *r*-graph with $n \ge n_0$ vertices and $x\binom{n}{r}$ edges contains at least

$$\frac{x - \frac{r}{n_0}}{1 - \frac{1}{r} + \frac{1}{r(n_0 - r + 1)} - \frac{r}{n_0}} \frac{p - 1}{\binom{n_0}{r+1}} \binom{n}{r+1}$$

bad sets—this technique is usually called *supersaturation* [6]. By (6) in Lemma 3, as $r \to \infty$,

$$\pi(K_{r+1}^r) \le 1 - \frac{1}{r} - (1 + o(1)) \frac{p - 2}{\binom{(p-1)(r+1)}{r+1} r(p-1)},$$

which is weaker than Theorem 2. This suggests that (13) gives a better estimate on the number of bad sets than the one from supersaturation.

- The bound n > r(p-1) in Theorem 1 is tight for odd r and r = 4, but we do not know if it is tight for any even number r > 4. The bound for R in Lemma 7 is near tight for p = 2 and tight up to a constant factor for p = 3, but we do not know if it is tight for p > 3.
- Let us consider K_5^4 . The following bounds are due to Giraud [8, 9].

(15)
$$\frac{11}{16} \le \pi(K_5^4) \le \frac{3}{4}$$

Sidorenko showed [14] that $\pi(K_5^4) \leq 0.74912$ and conjectured [16] that the lower bound above gives the correct value. Applying (12) with R = 13 (the proof of R = 13 is not very hard but not simple either), we derive that $\pi(K_5^4) \leq 0.74439$. Markström [12] recently obtained a much better bound $\pi(K_5^4) \leq 0.73655$ by determining $\exp(n, K_5^4)$ for $n \leq 16$ and applying the simple bound $\pi(K_5^4) \leq \exp(n, K_5^4)/\binom{n}{4}$ (ex (n, K_5^4) was only known [3] for $n \leq 10$ before).

• For any r-graph F with f edges, Sidorenko [15] used an analytic approach to obtain

(16)
$$\pi(F) \le 1 - \frac{1}{f-1}$$

When $F = K_{r+1}^r$, f = r + 1, and this gives (2). An *r*-graph is called a forest if there is an ordering of its edges E_1, \ldots, E_t such that for every $i = 2, \ldots, t$, there exists $j_i < i$ such that $(E_i \cap \bigcup_{\ell=1}^{i-1} E_\ell) \subseteq E_{j_i}$. Keevash [11] found that the method of Sidorenko actually implies that $\pi = \pi(F)$ satisfies

(17)
$$\pi^{t-1} + (f-t)(\pi-1) \le 0,$$

where t is the size of a largest forest contained in F. When t = 2, (17) reduces to (16); when t > 2, (17) improves (16). In our case (17) does not improve the 1 - 1/r bound for $\pi(K_{r+1}^r)$ because the largest forest in K_{r+1}^r has only two edges.

Acknowledgments. The authors thank the referees for their comments that improved the presentation.

REFERENCES

- D. DE CAEN, Extension of a theorem of Moon and Moser on complete subgraphs, Ars Combin., 16 (1983), pp. 5–10.
- [2] D. DE CAEN, The current status of Turán's problem on hypergraphs, in Extremal Problems for Finite Sets (Visegrád, 1991), Bolyai Soc. Math. Stud., 3, János Bolyai Math. Soc., Budapest, 1994, pp. 187–197.
- [3] D. DE CAEN, D. L. KREHER, S. P. RADZISZOWSKI, AND W. H. MILLS, On the coverings t-sets with t + 1-sets: C(9,5,4) and C(10,6,5), Discrete Math., 92 (1991), pp. 65–77.
- [4] F. CHUNG AND L. LU, An upper bound for the Turán number t₃(n, 4), J. Combin. Theory Ser. A, 87 (1999), pp. 381–389.
- [5] P. ERDŐS, On the combinatorial problems which I would like to see solved, Combinatorica, 1 (1981), pp. 25–42.
- [6] P. ERDŐS AND M. SIMONOVITS, Supersaturated graphs and hypergraphs, Combinatorica, 3 (1983), pp. 181–192.
- [7] P. FRANKL AND Z. FÜREDI, An exact result for 3-graphs, Discrete Math., 50 (1984), pp. 323– 328.
- [8] G. GIRAUD, Majoration du nombre de Ramsey ternaire-bicolore en (4, 4), C. R. Acad. Sci. Paris Sér. A-B, 269 (1969), pp. A620–A622.
- [9] G. GIRAUD, Remarques sur deux problèmes extrémaux, Discrete Math., 84 (1990), pp. 319–321.
 [10] G. KATONA, T. NEMETZ, AND M. SIMONOVITS, On a problem of Turán in the theory of graphs,
- Mat. Lapok, 15 (1964), pp. 228–238.
 [11] P. KEEVASH, The Turán problem for hypergraphs on fixed size, Electron. J. Combin., 12 (2005), Note 11, pp. 1–6.
- [12] K. MARKSTRÖM, Extremal graphs and bounds for the Turan density of the 4-uniform K₅, Discrete Math., 309 (2009), pp. 5231–5234.
- [13] D. MUBAYI, On hypergraphs with every four points spanning at most two triples, Electron. J. Combin., 10 (2003), Note 10, pp. 1–4.
- [14] A. SIDORENKO, The method of quadratic forms in a combinatorial problem of Turán, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 76 (1982), pp. 3–6 (in Russian).
- [15] A. SIDORENKO, An analytic approach to extremal problems for graphs and hypergraphs, in Extremal Problems for Finite Sets (Visegrád, 1991), Bolyai Soc. Math. Stud., 3, János Bolyai Math. Soc., Budapest, 1994, pp. 423–455.
- [16] A. SIDORENKO, What we know and what we do not know about Turán numbers, Graphs Combin., 11 (1995), pp. 179–199.
- [17] A. SIDORENKO, Upper bounds for Turán numbers, J. Combin. Theory Ser. A, 77 (1997), pp. 134– 147.
- [18] J. TALBOT, Chromatic Turán problems and a new upper bound for the Turán density of K⁻₄, European J. Combin., 28 (2007), pp. 2125–2142.
- [19] P. TURÁN, On an extremal problem in graph theory, Mat. Fiz. Lapok, 48 (1941), pp. 436-452.

1334