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Abstract. Let 2 ≤ q ≤ min{p, t − 1} be fixed and n → ∞. Suppose that F is a p-uniform
hypergraph on n vertices that contains no complete q-uniform hypergraph on t vertices as a
trace. We determine the asymptotic maximum size of F in many cases. For example, when
q = 2 and p ∈ {t, t+1}, the maximum is ( n

t−1 )
t−1 +o(nt−1), and when p = t = 3, it is � (n−1)2

4 �
for all n ≥ 3. Our proofs use the Kruskal-Katona theorem, an extension of the sunflower
lemma due to Füredi, and recent results on hypergraph Turán numbers.
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1. Introduction

Let [n] = {1, 2, . . . , n}. Given a setX, 2X denotes the family of all subsets ofX, and(
X
q

) = {A ⊆ X : |A| = q}. A hypergraph H on X is a family of subsets of X; these
subsets are called edges of H andX is the vertex set of H. If all edges of H have size
p, then H is a p-uniform hypergraph (p-graph for short).

Let G be a hypergraph on X and S ⊆ X. We define the trace of G on S as

G|S := {E ∩ S : E ∈ G}.
Note that we omit multiplicity when defining GS .

If there exists a set S such that G|S contains a copy of F as a subhypergraph,
we say that G contains F as a trace, or F is a trace of G. In this case we write
G → F , otherwise G �→ F . Let Lp(n, F ) (L(n, F )) denote the maximum number
of edges in a p-uniform (not necessarily uniform) hypergraph on [n] not contain-
ing F as a trace. Extremal problems on traces started from determining L(n, 2[t ]).
Sauer [16], Perles-Shelah [17], and Vapnik-Chervonenkis [19] independently found
that L(n, 2[t ]) = (

n
0

)+· · ·+ (
n
t−1

)
. For the uniform case, Frankl and Pach [6] showed

that Lp(n, 2[t ]) ≤ (
n
t−1

)
for t ≤ p ≤ n (see [14] for small improvement). Many
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intersecting problems and applications on traces can be found in the survey of
Füredi and Pach [9].

In this paper we consider the problem of forbidding a level of the lattice 2[t ] as a
trace. More precisely, given integersp, t, nwith max{p, t} ≤ n, we study the value of
Lp(n,

([t ]
q

)
) for 1 ≤ q ≤ t−1 (the q = 0 and q = t cases are trivial). Frankl and Pach

[6] studied the q = 1 case and obtained that ex(p + t − 1,
( [t ]
t−1

)
) ≤ Lp(n,

([t ]
1

)
) ≤

(
p+t−1
t−1

)
, where ex is the classical Turán number. Balogh, Keevash and Sudakov [1]

investigated the trace problem of forbidding more than one non-trivial level of 2[t ].
Trivially Lp(n,

([t ]
q

)
) = (

n
p

)
when p < q. Therefore throughout the paper we

assume that

2 ≤ q ≤ t − 1 and q ≤ p, (1)

and whenever we use asymptotic notation, we assume that only n → ∞. Note
that the p = q case is exactly the Turán problem. The reason why we only con-
sider uniform trace numbers is that Füredi and Quinn [10] showed that L(n,

([t ]
q

)
) =

L(n, 2[t ]) for every 0 ≤ q ≤ t , in other words, forbidding a level of the lattice 2[t ]

is equivalent to forbidding the whole lattice in the non-uniform case. Following
graph theory language, the forbidden configuration

([t ]
q

)
is a complete q-graph on t

vertices, so we denote it by Kq
t , and write Kt = K2

t .
Our first result, which is little more than an observation, determines the order

of magnitude of Lp(n,Kq
t ).

Proposition 1. Lp(n,Kq
t ) = Θ(nmin{p,t−1}).

A trace problem for uniform hypergraphs is in fact a Turán problem. Given a
family F of r-graphs, the Turán number ex(n,F) of F is the maximum number of
edges in an r-graph on n vertices containing no F ∈ F (see e.g., Füredi [8] for a
survey). When F = {F }, we write ex(n, F ) instead of ex(n, {F }). If we denote K3
by {12, 23, 31}, then L3(n,K3) = ex(n, {F1, F2, F3}), where F1 = {124, 234, 134},
F2 = {124, 234, 135}, and F3 = {124, 235, 136}. In general, for any q-graph F and
q ≤ p, we haveLp(n, F ) = ex(n,Hp(F )), where Hp(F ) is the family of allp-graphs
H with |F | edges such that H → F .

Definition 1. Let Hp
q,t be the member of Hp(K

q
t ) with the maximum number of

vertices. In other words,Hp
q,t is the p-graph obtained fromK

q
t by enlarging each of

its
(
t
q

)
edges with a (different) set of p − q new vertices. Trivially Hp

p,t = K
p
t .

Since forbidding a family of hypergraphs (as a subgraph) is not easier than
forbidding any member of the family,

Lp(n,K
q
t ) = ex(n,Hp(K

q
t )) ≤ ex(n,Hp

q,t ). (2)

Our second result, which is also not hard to prove, shows that the inequality in (2)
is asymptotically an equality when p < t .
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Proposition 2. Let p < t . Then Lp(n,Kq
t ) = ex(n,Hp

q,t )+ o(np).

Our main result reducesLp(n,Kq
t )when p ≥ t to Turán numbers in many cases.

Theorem 1. Fix 2 ≤ q < t ≤ p. Suppose that q ∈ {t−2, t−1} or p ∈ {t, t+1}. Then

Lp(n,K
q
t ) = Lt−1(n,K

q
t )+ o(nt−1) = ex(n,H t−1

q,t )+ o(nt−1). (3)

This suggests that determining Lp(n,Kq
t ) could be as difficult as a hypergraph

Turán problem. For example, (3) implies that L4(n,K3
4 ) = ex(n,K3

4 ) + o(n3), and
determining ex(n,K3

4 ) is a well-known open problem of Turán [18]. Together with
Mantel’s Theorem on ex(n,K3) [12], Theorem 1 gives

Lp(n,K3) = ex(n,K3)+ o(n2) =
(n

2

)2 + o(n2). (4)

Determining ex(n,Hp
q,t ) in general seems hopeless. However, the q = 2 case was

recently solved by the first author [13] and Pikhurko [15]. Given 2 ≤ p ≤ �, a
p-graph is �-partite if its vertices can be partitioned into � classes, such that every
edge has at most one vertex from each class. An �-partite p-graph is called complete
if it contains all allowable edges. We denote by T p� (n) the complete �-partitep-graph
(a generalized Turán graph) on n vertices with no two class sizes differ more than
one. Let p < t . Clearly T p

t−1(n) contains no Hp

2,t as a subgraph and

∣∣T p� (n)
∣∣ =

∑

S∈([�]
p )

∏

i∈S

⌊
n+ i − 1

�

⌋
=

(
�

p

) (n
�

)p + o(np).

The first author [13] showed that ex(n,Hp

2,t ) = |T p
t−1(n)| + o(np) as n → ∞. Pik-

hurko [15] improved this to ex(n,Hp

2,t ) = |T p
t−1(n)| for sufficiently large n. Applying

(2), we thus have Lp(n,Kt ) ≤ |T p
t−1(n)| for sufficiently large n. On the other hand,

it is easy to see that T p
t−1(n) contains no Kq

t for any q ≥ 2 as a trace. In fact, every
t-vertex set S of T p

t−1(n) must contain two vertices a, b from the same vertex class,
but no edge of T p

t−1(n) contains both a and b. Thus for q ≥ 2, every q-subset of
S containing a and b is absent from T

p

t−1(n)|S . Consequently T p
t−1(n) �→ K

q
t , in

particular, Lp(n,Kt ) ≥ |T p
t−1(n)|. Putting the upper and lower bounds together, for

2 ≤ p < t and sufficiently large n,

Lp(n,Kt ) = |T p
t−1(n)| = ex(n,Hp

2,t ). (5)

By combining (5) with Theorem 1, we obtain the following result.

Corollary 1. Suppose that t = 4 or p ∈ {t, t + 1}. Then

Lp(n,Kt ) = |T t−1
t−1 (n)| + o(nt−1) =

(
n

t − 1

)t−1

+ o(nt−1). (6)
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We conjecture the values of Lp(n,Kq
t ) as follows.

Conjecture 1. Fix p, q, t, n with 2 ≤ q < min{t, p}. For n > n0,

Lp(n,K
q
t ) =

{
ex(n,Hp

q,t ) if p < t,

Lt−1(n− p + t − 1,Kq
t ) = ex(n− p + t − 1, H t−1

q,t ) if p ≥ t .

The equation (5) confirms the conjecture for the case of q = 2,p < t , and sufficiently
large n. As further evidence of Conjecture 1, we prove its smallest non-trivial case:
(p, q, t) = (3, 2, 3). Note that this sharpens the p = 3 case of (4).

Theorem 2. Let n ≥ 3. Then

L3(n,K3) = ex(n− 1,K3) =
⌊
(n− 1)2

4

⌋

.

2. Preliminary Results

In this section we prove Proposition 1, Proposition 2 and the supersaturation prop-
erty for trace problems.

We first observe that Lp(n,Kq
t ) is close to a monotone function of n.

Proposition 3. Lp(n,Kq
t ) ≥ Lp−i (n− i, K

q
t ) for 1 ≤ i ≤ p − q.

Proof. Suppose that G ⊆ ([n−i]
p−i

)
satisfies G �→ K

q
t . We extend G to a p-graph G′

by adding a set C of i new vertices and replacing each E ∈ G by E ∪ C. We claim
that G′ �→ K

q
t . Consider a t-set S of vertices. If S contains a vertex x ∈ C, then

all edges of G′ contain x, and consequently all q-subsets of E\{x} are absent from
G′|E . Otherwise E ∩ C = ∅, and we have G′|E = G|E �→ K

q
t . �

Proof of Proposition 1. We need to show that Lp(n,Kq
t ) = Θ(nmin{p,t−1}). When

p ≥ t , Frankl and Pach [6] showed that Lp(n,Kq
t ) ≤ (

n
t−1

)
. When p < t , trivially

Lp(n,K
q
t ) ≤ (

n
p

)
. We now consider lower bounds. When p ≤ t−1, Since T p

t−1(n) �→
K
q
t (for q ≥ 2), we have Lp(n,Kq

t ) ≥ |T p
t−1(n)| = Ω(np). Now let p ≥ t . Since

T t−1
t−1 (n−p+ t − 1) �→ K

q
t and |T t−1

t−1 (n−p+ t − 1)| = Ω(nt−1), we have Lt−1(n−
p + t − 1,Kq

t ) = Ω(nt−1). Proposition 3 thus implies that Lp(n,Kq
t ) ≥ Lt−1(n −

p + t − 1,Kq
t ) = Ω(nt−1). �

Definition 2. Let F be a p-graph (p ≥ 2) on [�] and �m = 〈m1, . . . , m�〉 be a vector
of positive integers. The blow-up F( �m) of F is obtained by replacing each vertex i
by a vertex class Vi of size mi , and each edge {i1, . . . , ip} by the family of all p-sets
{w1, . . . , wp}, where wj ∈ Vij . We simply write F(m) if all mi = m.
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A phenomenon discovered by Brown, Erdős and Simonovits [5], usually called
supersaturation, implies that ex(n, F ( �m)) = ex(n, F ) + o(nr) for every r-graph F
and its blow-up F( �m). To prove Proposition 2, we need a lemma from [13], which
is a simple consequence of supersaturation.

Lemma 1 (Lemma 4 in [13]). Let m,p be positive integers with p ≥ 2, and let F be a
finite family of p-graphs. If H is a p-graph satisfying H ⊆ F(m) for all F ∈ F , then
ex(n,H) ≤ ex(n,F)+ o(np). �

Proof of Proposition 2. Herep< t and we must show thatLp(n,Kq
t )= ex(n,Hp

q,t )+
o(np). Because of (2), we only need to show that Lp(n,Kq

t ) ≥ ex(n,Hp
q,t ) + o(np)

when n → ∞. For each F ∈ Hp(K
q
t )), it is easy to see thatHp

q,t ⊆ F(
(
t
q

)
). Lemma 1

implies that

ex(n,Hp
q,t ) ≤ ex(n,Hp(K

q
t ))+ o(np) = Lp(n,K

q
t )+ o(np). (7)

�

Next we prove the supersaturation phenomenon for trace problems.

Lemma 2. Lp(n,Kq
t (m)) ≤ Lp(n,K

q
t ) + o(np). In particular, when p < t ,

Lp(n,K
q
t (m)) = (1 + o(1))Lp(n,Kq

t ).

Proof. The second assertion follows from the first by realizing that Lp(n,Kq
t ) =

Θ(np) for p < t from Proposition 1. To prove the first claim, recall that Hp(K
q
t (m))

is the family of p-graphs whose |Kq
t (m)| edges containKq

t (m) as a trace, andHp
q,t is

obtained fromK
q
t by enlarging each of its

(
t
q

)
edges with a different set of p−q new

vertices. Let H̃ = H
p
q,t ( �m), where mi = m for all the vertices vi in the original Kq

t ,
andmi = 1 for the other vertices. It is easy to see that H̃ is a member of Hp(K

q
t (m)).

We thus have

Lp(n,K
q
t (m)) = ex(n,Hp(K

q
t (m)))

≤ ex(n, H̃ )

≤ ex(n,Hp
q,t )+ o(np)

≤ Lp(n,K
q
t )+ o(np),

where the first inequality holds because H̃ ∈ Hp(K
q
t (m)), the second inequality

holds because of supersaturation for the Turán problems, and the last one holds
because of (7). �

3. Proof of Theorem 1

Throughout this section we will assume that p ≥ t . Our goal is to prove that if
q ∈ {t − 2, t − 1} or p ∈ {t, t + 1}, then

Lp(n,K
q
t ) = Lt−1(n,K

q
t )+ o(nt−1).
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In fact, the second equality of (3) in Theorem 1, Lt−1(n,K
q
t ) = ex(n,H t−1

q,t ) +
o(nt−1), follows from Proposition 2 (note that the second condition in (1) still holds
because t − 1 ≥ q). Furthermore, we claim that

Lp(n,K
q
t ) ≥ Lt−1(n,K

q
t )+ o(nt−1). (8)

To see this, first observe that Proposition 3 implies thatLp(n,Kq
t ) ≥ Lt−1(n−p+t−

1,Kq
t ). Proposition 2 further gives thatLp(n,Kq

t ) ≥ ex(n−p+t−1, H t−1
q,t )+o(nt−1).

Now we recall a fact on the Turán number, which immediately follows from the exis-
tence of limn→∞ ex(n,F)/(n

p

)
. Given a family F of r-graphs and an integer c > 0,

ex(n,F)− ex(n− c,F) = o(nr). (9)

Therefore Lp(n,Kq
t ) ≥ ex(n,H t−1

q,t ) + o(nt−1) and (8) follows after applying
Proposition 2 again.

Therefore the main task is to verify

Lp(n,K
q
t ) ≤ Lt−1(n,K

q
t )+ o(nt−1). (10)

for q ∈ {t − 2, t − 1} or p ∈ {t, t + 1}. The q = t − 1 case (Section 3.1) is the easiest:
its main idea is to find a one-to-one function from a p-graph G with G �→ K

q
t to a

(t − 1)-graph G′ such that G′ �⊇ Kt−1
t . The remaining cases are harder: we present

two lemmas in Section 3.2, and complete the proofs in Section 3.3. The main tools
include the Erdős-Ko-Rado theorem, the Kruskal-Katona theorem and a lemma
on sunflowers due to Füredi.

3.1. q = t − 1

Let G be a hypergraph and S be a subset of its vertex set. The degree of S in G,
degG(S), or deg(S) if the underlying hypergraph is clear from the context, is the num-
ber of edges in G containing S (frequently called codegree when |S| ≥ 2). Given a
p-graphG, if every edgeE ∈ G contains at least onep′-subsetE′ with degG(E

′) = 1,
then φ(E) = E′ defines a one-to-one function from G to G′ = {E′ : E ∈ G} (if
more than one p′-subsets are of degree 1, then arbitrarily pick one of them to be
φ(E)).

Proposition 4. Let G be a p-graph such that G �→ K
q
t . If there exists a function

φ mapping every edge E ∈ G to a q-set E′ ⊂ E such that degG(E
′) = 1, then

φ(G) = {φ(E) : E ∈ G} contains no Kq
t as a subgraph.

Proof. Suppose instead, that G′ contains a subgraph G′
1 on a t-set T such that

G1 ∼= K
q
t . Clearly φ is one-to-one. Let φ−1 be the inverse function. We claim that

each edge E ∈ G with φ(E) ∈ G′
1 satisfies that E ∩ T = φ(E) and therefore

G|T ⊇ K
q
t , contradicting the assumption that G �→ K

q
t . In fact, if E ∩ T ⊃ φ(E),

then E ∩ T contains another q-set Q ∈ G′
1. Clearly E �= φ−1(Q) because φ is a

function. The fact that both E and φ−1(Q) contain Q implies that degG(Q) ≥ 2, a
contradiction. �
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The following lemma is the key observation for proving the q = t − 1 case of
(10).

Lemma 3. Let 2 ≤ t ≤ p. Suppose that S is a p-set andH is a family of proper subsets
of S. If every (t − 1)-subset of S is contained in some member ofH , thenH → Kt−1

t .

Proof. We do induction on p for fixed t ≥ 2. The base case p = t is trivial, since
every (t − 1)-subset of S is a member of H , or

(
S
p−1

) ⊆ H . For the induction step,

let p > t and consider two cases. If
(
S
p−1

) ⊆ H , then for a fixed t-set T ⊂ S, we have

H |T ⊇ (
T
t−1

)
because each (t−1)-subset T ′ of T is contained in T ′ ∪ (S\T ), which is

a member of H . Otherwise
(
S
p−1

) �⊆ H , and there exists an (p − 1)-set S′ �∈ H . It is
easy to see that H |S′ satisfies the assumption of the lemma with p− 1 instead of p.
We then apply the induction hypothesis to S′ andH |S′ obtaining thatH |S′ → Kt−1

t

and consequently H → Kt−1
t . �

Proof of (10) for q = t − 1. Let G be an n-vertex p-graph not having Kt−1
t as a

trace. Each edge E ∈ G must contain a (t − 1)-subset E′ with degG(E
′) = 1,

otherwise we apply Lemma 3 with S = E and H = G|E − {E} to conclude that
G → Kt−1

t . We thus define φ(E) = E′ and φ is a one-to-one function from G

to
( [n]
t−1

)
. By Proposition 4, the resulting (t − 1)-graph G′ contains no Kt−1

t as a

subgraph, thus |G| = |G′| ≤ ex(n,Kt−1
t ) = Lt−1(n,Kt−1

t ). �

3.2. Two Lemmas

Fix G ⊆ ([n]
p

)
with |G| ≥ 2. The following partition of G will be needed in our

proofs. Define a function f : G → [p] such that for E ∈ G,

f (E) = min{|D| : D ⊆ E, deg(D) = 1 and ∀S ⊂ D, deg(S) ≥ 2}.
(Throughout this subsection deg = degG.) Since deg(E) = 1 and deg(∅) = |G| ≥ 2,
there always exists a subset D ⊂ E such that deg(D) = 1 but deg(S) ≥ 2 for all
S ⊂ D. Hence f is well defined. For 1 ≤ i ≤ p, let Gi = {E ∈ G : f (E) = i}.
Clearly, Gp +Gp−1 + · · · +G1 is a partition of G.

Furthermore, for k ≤ p, let ∂kG denote the shadow of G at level k, namely,
∂kG = {D : |D| = k,D ⊆ E for some E ∈ G}. In particular, ∂G = ∂p−1G. Let

Gi = {D ∈ ∂iG : deg(D) = 1 and ∀S ⊂ D, deg(S) ≥ 2}.
If we map each D ∈ Gi to the unique E ∈ G such that D ⊆ E, then we obtain an
onto function from Gi to Gi . Hence |Gi | ≤ |Gi | for 1 ≤ i ≤ p. We are ready to
state two lemmas, which are the key ingredients in our proofs.

Lemma 4. Let t ≤ k ≤ p and G ⊆ ([n]
p

)
. If G �→ K

q
t , then |∂t (Gk)| = O(nt−2).

Lemma 5. Let t ≤ i ≤ k ≤ p andG ⊆ ([n]
p

)
. IfG �→ Kt−2

t , then |∂i(Gk)| = O(nt−2).
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In order to prove Lemma 4. We need the following lemma on sunflowers, which
is an easy corollary of a result of Füredi [7] and the Erdős-Ko-Rado Theorem [4].
A sunflower (or �-system) with k petals and a core Y is a collection of distinct sets
S1, . . . , Sk such that Si ∩ Sj = Y for all i �= j .

Lemma 6. Given k and r, there exists C = C(k, r) such that every F ⊆ ([n]
k

)
with

|F | ≥ Cnk−i contains an r-petal sunflower with a core of size less than i.

Proof. Füredi [7] extended the well-known Sunflower Lemma of Erdős and Rado [3]
as follows: given k and r, there exists c = c(k, r) such that every F ⊆ ([n]

k

)
contains

a subfamily F ′ such that |F ′| > c|F | and for all distinct E1, E2 ∈ F ′, F ′ contains
an r-petal sunflower with core E1 ∩ E2. (The original statement in [7] is actually
stronger.) Let C = 1/c. We apply this result to F ⊆ ([n]

k

)
with |F | ≥ nk−i/c. Since

|F ′| ≥ nk−i >
(
n−i
k−i

)
, by the Erdős-Ko-Rado Theorem [4], F ′ contains E1, E2 such

that |E1 ∩E2| < i. Then F ′ contains an r-petal sunflower with core E1 ∩E2 of size
less than i. �

Fix i ∈ [p]. We say that a hypergraph H ⊆ ∂iG satisfies the property (�) if

for all D ∈ H and x ∈ D, there exists E ∈ G s.t. D\{x} ⊂ E, x �∈ E.
We claim that ∂iGk satisfies (�) for all t ≤ i ≤ k. First we show that Gk satisfies
(�). Pick D ∈ Gk and x ∈ D. Since D ∈ Gk, there exists a unique E1 ∈ G such that
D ⊆ E1. Since deg(D\{x}) ≥ 2, there exists E ∈ G, E �= E1 such that D\{x} ⊂ E.
In addition, x �∈ E, otherwise D ⊆ E, contradicting deg(D) = 1. We next observe
that if H satisfies (�), then ∂H also satisfies (�). In fact, let S ∈ ∂H and x ∈ S.
Suppose that S ⊂ D ∈ H . Then there exists E ∈ G such that D\{x} ⊂ E, x �∈ E, in
particular, S\{x} ⊂ E.

Given a function φ : A → B and y ∈ B, let φ−1(y) = {x ∈ A : φ(x) = y}.
Proof of Lemma 4. Let H = ∂t (Gk). Since G �→ K

q
t , each D ∈ H contains at least

one q-element subsetQ such thatQ �∈ GD. We denote such aQ byψ(D) (arbitrarily
pick one if more than one set can be chosen). In order to show that |H | = O(nt−2),
it suffices to show that for each set Q ∈ ([n]

q

)
, we have |ψ−1(Q)| = O(nt−2−q).

Define a (t − q)-graph F = {D −Q : D ∈ ψ−1(Q)}. Suppose to the contrary, that
|ψ−1(Q)| = |F | > Cnt−q−2 for the constantC = C(t−q, p− t+3) from Lemma 6.
By Lemma 6, F contains a sunflower S1, . . . , Sp−t+3 with core Y of size at most 1.
For all i, let Di = Si ∪Q ∈ H .
Case 1. Y = ∅. Since D1 ∈ ∂t (Gk), there exists E ∈ G such that D1 ⊂ E. At most
|E\D1| = p− t petals have non-empty intersection withE\D1. Since the total num-
ber of petals is greater than p− t + 1, there exists j �= 1 such that Sj ∩ (E\D1) = ∅,
or Dj ∩ E = Q, a contradiction.
Case 2. Y = {x}. Since H satisfies (�), there exists E ∈ G such that D1\{x} ⊂ E

and x �∈ E. At most |E\(D1\{x})| = p − t + 1 petals have non-empty intersection
with E\(D1\{x}). Since the total number of petals is p− t + 3, there exists j, j �= 1
such that Sj ∩ (E\(D1\{x})) = ∅. Since x �∈ E but x ∈ Dj , we have Dj ∩ E = Q, a
contradiction. �
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Proof of Lemma 5. We do induction on i ≥ t . The base case i = t holds because
of Lemma 4. Let H = ∂iGk. For each D ∈ H , arbitrarily pick one of its t-subsets
S. Since G �→ Kt−2

t , S contains a (t − 2)-subset Q such that Q �∈ G|S . Suppose
S\Q = {x, y}. Let ψ(D) = D − {y} and φ(D) = (ψ(D),Q, x). We claim that
|ψ−1(D − {y})| ≤ (

i−1
t−1

)
(t − 1)(p − i + 2). By the pigeonhole principle, it suffices

to show that |φ−1(D − {y},Q, x))| ≤ p − i + 2 (for a fixed D − {y}, there are(
i−1
t−1

)
(t − 1) ways of choosing a (t − 2)-set Q and an element x �∈ Q). Suppose

instead, that there existD1, . . . , Dp−i+3 ∈ H forming a sunflower with coreD−{y}
and petals {yj }, 1 ≤ j ≤ p − i + 3 such that Q �∈ G|Sj for Sj = Q ∪ {x, yj }. Since
H satisfies (�), there exists E ∈ G such that D1\{x} ⊂ E and x �∈ E. At most
|E\(D1\{x})| = p − i + 1 petals have non-empty intersection with E\(D1\{x}).
Since the total number of petals is p − t + 3, there exists j �= 1 such that yj �∈ E.
Since x �∈ E but x ∈ Dj , we have Sj ∩ E = Q, a contradiction.

We thus have |H | ≤ C|ψ(H)|, where C = (
i−1
t−1

)
(t − 1)(p− i+ 2). Since ψ(H) ⊆

∂i−1Gk, the induction hypothesis gives |ψ(H)| ≤ |∂i−1Gk| = O(nt−2). Conse-
quently |H | = O(nt−2). �

3.3. Proofs for p ∈ {t, t + 1} and q = t − 2

We need a proposition, which can be considered as an extension of Proposition 4.

Proposition 5. Let q ≤ p′ ≤ p, andm = (
t
q

)
(p− q)+ 1. Suppose thatG is a p-graph

on [n] and φ is a function from G to
([n]
p′

)
such that φ(E) ⊆ E for each E ∈ G. If

G �→ K
q
t , then φ(G) �→ K

q
t (m).

Proof. Suppose instead, that φ(G) → K
q
t (m). Then there are disjoint vertex sets

X1, X2, . . . , Xt of sizem such that the following holds. Let Q be the family of q-sets
having non-empty intersection with exactly q of X1, X2, . . . , Xt . For each Q ∈ Q,
there exists E ∈ G such that Q ⊆ φ(E) ⊆ E. Denote such E by EQ. We say that
a set Q ∈ Q is bad if there exists j such that Q ∩ Xj = ∅ and (EQ\Q) ∩ Xj �= ∅.
Given a bad Q ∈ Q, a t-tuple x1, . . . , xt with xi ∈ Xi is called bad because of
Q if {x1, . . . , xt } contains Q and at least one vertex from EQ\Q. A t-tuple from
X1 × · · · × Xt is called bad if it is bad because of some Q. For fixed bad Q ∈ Q,
the number of bad t-tuples because of Q is at most (p − q)mt−q−1 (first select a
vertex from EQ\Q and then decide the remaining t − q − 1 coordinates). The total
number of bad t-tuples is thus at most

(
t
q

)
mq(p− q)mt−q−1. Whenm >

(
t
q

)
(p− q),

we have
(
t
q

)
mq(p − q)mt−q−1 < mt , or the number of bad t-tuples is less than the

total number of t-tuples in X1 × · · · ×Xt . Hence there always exists a good t-tuple
T and consequently G|T ⊇ K

q
t , a contradiction. �

Proof of (10) for p = t . Given G ⊆ ([n]
t

)
such that G �→ K

q
t , we partition G into

Gt + · · · +G1 as in the beginning of Section 3.2. By Lemma 4, |Gt | = O(nt−2) and
consequently |Gt | ≤ |Gt | = O(nt−2). Trivially |Gi | ≤ |Gi | = O(nt−2) for i ≤ t − 2.
It remains to show that |Gt−1| ≤ Lt−1(n,K

q
t )+o(nt−1). In fact, for eachE ∈ Gt−1,

we defineφ(E) = DwhereD is one of the (t−1)-subsets ofE satisfying deg(D) = 1.
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Proposition 5 implies that φ(G) �→ K
q
t (m) for m = (

t
q

)
(p − q)+ 1. So

|G| = |φ(G)| ≤ Lt−1(n,K
q
t (m)) ≤ Lt−1(n,K

q
t )+ o(nt−1),

where the last inequality follows from Lemma 2.

Proof of (10) for p = t + 1. We need Lovász’s version [11] of the Kruskal-Katona
Theorem: let H be a (t + 1)-graph with |H | = (

x
t+1

)
for some real number x. Then

∂H ≥ (
x
t

)
. This implies that if |∂H | = O(nk), then |H | = O(n

k(t+1)
t ). To see this,

suppose that |∂H | ≤ Cnk for some C > 0. Since
(
x
t

)t ≤ (
x
t

) ≤ |∂H | ≤ Cnk, we have
x
t

≤ C
1
t n

k
t and

|H | =
(

x

t + 1

)
=

(
x

t

)
x − t

t + 1
≤ CnkC

1
t n

k
t = O(n

k(t+1)
t ).

Now given G ⊆ ( [n]
t+1

)
such that G �→ K

q
t , we partition G into Gt+1 + Gt + · · · +

G1. The proof of the p = t case shows
∑t
i=1 |Gi | ≤ Lt−1(n,K

q
t ) + o(nt−1). It

suffices to show that |Gt+1| = o(nt−1), or |Gt+1| = o(nt−1). Lemma 4 guaran-
tees that ∂t (Gt+1) = O(nt−2) and consequently, by the result of Lovász, |Gt+1| =
O(n

(t−2)(t+1)
t ) = o(nt−1).

Proof of (10) for q = t − 2. Given G ⊆ ([n]
p

)
such that G �→ Kt−2

t , we partition
G into Gp + · · · + Gt + Gt−1 + · · · + G1. The proof of the p = t case shows∑t
i=1 |Gi | ≤ Lt−1(n,K

q
t )+ o(nt−1). For t < k ≤ p, we apply Lemma 5 with i = k

and obtain that |Gk| ≤ |Gk| ≤ ∂k(Gk) = O(nt−2), thus completing the proof. �

4. An Exact Result

In order to prove Theorem 2, we need the following lemma, which can be proved by
following the original proof of Mantel’s Theorem [12]. We use + instead of ∪ for a
disjoint union. In a graphG, given a vertex setA and a vertex x,N(x,A) denotes the
neighborhood of x inA, and d(x,A) = |N(x,A)|, in particular d(x) = d(x, V (G)).
For disjoint vertex setsX and Y , we denote by e(X, Y ) the number of edges between
X and Y . For simplicity we write ab instead of {a, b}.

Lemma 7. Let G = (V ,E) be a triangle-free graph such that

for every ab ∈ E, there exists c ∈ V, such that ac �∈ E and bc �∈ E. (�)

Then |E| ≤
⌊
(n−1)2

4

⌋
+ 1 with equality only when G has the following structure:

V (G) = A + B + {z}, there exist a ∈ A and a non-empty set Bz ⊆ B such that
E(G) = A× B − {ab : b ∈ Bz} + {zb : b ∈ Bz} + {az}.
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Proof. Let xy be an edge. Since G is triangle-free, we have N(x) ∩N(y) = ∅. With
(�), we further derive that d(x)+ d(y) ≤ n− 1.

If d(x)+ d(y) ≤ n− 2 for every edge xy in G, then following Mantel’s proof of
his theorem, we have

4|E|2
n

=
(∑

x∈V d(x)
)2

n
≤

∑

x∈V
(d(x))2 =

∑

xy∈E
(d(x)+ d(y)) ≤ (n− 2)|E|,

|E| ≤ n(n− 2)
4

<
(n− 1)2

4
<

⌊
(n− 1)2

4

⌋

+ 1.

Otherwise assume that d(x)+ d(y) = n− 1 for some e = {x, y}. Let A = N(y)

and B = N(x). We know that A ∩ B = ∅ and A ∪ B = V − {z} for some vertex z.
Let d1 = d(z,A) and d2 = d(z, B).

Case 1. d1 = 0, or d2 = 0.

Say, d1 = 0. For each b ∈ N(z, B), there exists a ∈ A such that ab �∈ E, since
otherwise edge xb does not satisfy (�). This implies that

|E| = e(A,B)+ d(z, B) ≤ |A||B| ≤
⌊
(n− 1)2

4

⌋

.

Case 2. d1, d2 > 0.

In this case d1d2 −d1 −d2 + 1 = (d1 − 1)(d2 − 1) ≥ 0 with equality if and only if
at least one of d1, d2 is 1. Since G is triangle-free, there is no edge between N(z,A)
and N(z, B). Thus e(A,B) ≤ |A||B| − d1d2 and

|E| = e(A,B)+ d(z,A)+ d(z, B) ≤ |A||B| − d1d2 + d1 + d2 ≤
⌊
(n− 1)2

4

⌋

+ 1,

where equality holds only when G has the desired structure. �

Proof of Theorem 2. To show that L3(n,K3) ≥
⌊
(n−1)2

4

⌋
, we enlarge each edge of

K� n−1
2 �,� n−1

2 � with the same new vertex.

To prove the upper bound, we consider a 3-graph H on [n] such that H �→ K3.
The proof of the q = t−1 case of Theorem 1 implies that each triple T ∈ H contains
a pair φ(T ) with degH (φ(T )) = 1. We thus obtain a graph G on [n] with edge set
E = {φ(T ) : T ∈ H }. Clearly |E| = |H |, and G satisfies (�) because

if φ({a, b, c}) = ab, then ac �∈ E and bc �∈ E. (11)

Next we claim thatG �= G∗, whereG∗ is a graph causing the equality in Lemma 7.
Suppose, to the contrary, that G = G∗. Let us consider edges za and zb for any
b ∈ Bz. By (11), φ−1(za) = {z, a, x} for some x ∈ A\{a}, and φ−1(zb) = {z, b, y} for
some y ∈ B\Bz. Since a is the unique vertex which is non-adjacent to both x and
b, we have φ−1(xb) = {a, b, x}. The trace of {z, a, x}, {z, b, y}, {a, b, x} on {z, a, b}
is a K3, contradicting H �→ K3.

Finally we apply Lemma 7 and obtain that |H | = |E| ≤
⌊
(n−1)2

4

⌋
. �
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5. Concluding Remarks and Open Problems

A less ambitious goal than proving Conjecture 1 is to verify (3), or equivalently
(10), for p ≥ t + 2 and q ≤ t − 3. This will reduce the trace problem to determining
ex(n,H t−1

q,t ), which is only known for q = 2. To obtain the asymptotic value of
Lp(n,K

q
t ) in other cases, one should try to verify (6) for p ≥ t + 2 and t ≥ 5; the

smallest open case is to prove that

L7(n,K5) = |T 4
4 (n)| + o(n4) =

(n
4

)4 + o(n4).

Following the ideas in Sections 3.2 and 3.3, in order to extend Theorem 1 for all
p ≥ t , one needs to show that Gk = o(nt−1) for t ≤ k ≤ p. When p ≥ t + 2,
this does not follow from Lemma 4 and the Kruskal-Katona theorem. The proof
of Lemma 5 relies on the assumption q = t − 2, and does not seem to generalize to
other values of q.

A general uniform trace problem is to determineLp(n, F ) for arbitraryp andF .
Because of the close connection between trace problems and Turán problems, as seen
in Proposition 2 and Theorem 1, it is very hard to determine Lp(n, F ) in general.
Let us consider L3(n, F ) when F is a graph. Fix t = χ(F ). When t ≥ 4, we have

L3(n, F ) = |T 3
t−1(n)| + o(n3) =

(
t − 1

3

) (
n

t − 1

)3

+ o(n3).

In fact, the lower bound forL3(n, F ) follows fromT 3
t−1(n) �→ F , whereT 3

t−1(n) is the
generalized Turán graph defined in the introduction. The reason for T 3

t−1(n) �→ F is
that when embedding F into a (t−1)-partite graph, some partition set must contain
both ends of an edge of F . The upper bound follows from (5) and Lemma 2. The
same arguments actually show thatLp(n, F ) = |T p

t−1(n)|+o(nt−1) for every F with
t = χ(F ) > p.

Problem 1. Determine the order of magnitude ofL3(n, F ) for everyF withχ(F )≤ 3.

This seems no easier than determining the order of magnitude of the Turán numbers
for bipartite graphs. We can derive an upper bound for L3(n, F ) as follows. A result

of Erdős [2] implies that ex(n,K3
3 (m)) = O(n

3− 1
m2 ). For a 3-graph H , it is clear

that K3
3 (m) ⊆ H implies that H → K3(m − 1). For each F with χ(F ) ≤ 3, there

exists m such that F ⊆ K3(m). Hence L3(n, F ) ≤ L3(n,K3(m)) ≤ ex(n,K3
3 (m +

1)) = O(n3−c), where c = 1/(m+ 1)2. However, we do not have a matching lower
bound. For example, we only know L3(n,K3(2)) = Ω(n5/2), in contrast to the
upper bound O(n26/9) derived by above arguments (or O(n11/4) by some extra
ideas). This lower bound was given by Pikhurko (personal communication) follow-
ing from the 3-partite 3-graph with partition sets A,B,C of size n, and the edge set
{e ∪ v : v ∈ C, e ∈ G}, where G is a maximum C4-free bipartite graph on (A,B)
with Ω(n3/2) edges.
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