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ABSTRACT: A conjecture of Komlós states that for every graph H, there is a constant K such that
if G is any n-vertex graph of minimum degree at least (1 � (1/�cr(H)))n, where �cr(H) denotes
the critical chromatic number of H, then G contains an H-matching that covers all but at most K
vertices of G. In this paper we prove that the conjecture holds for all sufficiently large values of n.
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1. INTRODUCTION

All graphs considered in this paper are finite, undirected, and simple. If H is a graph on
h vertices and G is a graph on n vertices, an H-matching of G (or a tiling of G with H)
is a subgraph of G consisting of vertex-disjoint copies of H. In tiling problems the
objective is to find many vertex disjoint copies of H in G, or even a complete tiling (or
H-factor) of G with n/h copies of H. Perhaps, one of the earliest tiling results in
extremal graph theory is Dirac’s theorem on Hamilton paths [5] that solves the edge-factor
problem. The case of triangle-factors is due to Corrádi and Hajnal [4], and finally the
celebrated result of Hajnal and Szemerédi settles the Kr-factor problem for all r:
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Theorem 1.1 (Hajnal-Szemerédi 1970 [7]). Let G be a graph on n vertices with
minimum degree

��G� � �1 �
1

r�n;

then G has a Kr-factor.

During the 1990’s Alon and Yuster extended the Hajnal-Szemerédi theorem in various
ways:

Theorem 1.2 (Alon-Yuster 1992 [2]). For every � � 0 and for every integer h there
exists an n0 � n0 (�, h) such that for every graph H on h vertices with chromatic number
�(H), any graph G with n � n0 vertices and minimum degree

��G� � �1 �
1

��H��n, (1.1)

contains at least (1 � �)n/h vertex disjoint copies of H.

Theorem 1.3 (Alon-Yuster 1996 [3]). For every � � 0 and for every integer h there
exists an n0 � n0(�, h) such that for every graph H on h vertices and for every n � n0,
any graph G with n vertices and minimum degree

��G� � �1 �
1

��H�
� ��n (1.2)

has an H-factor.

They conjectured that the error terms �n in Theorems 1.2 and 1.3 could be relaxed to
a constant. In [2] they also remarked that this is essentially best possible. These conjec-
tures have been recently proven by Komlós, Sárközy, and Szemerédi:

Theorem 1.4 (Komlós, Sárközy, and Szemerédi 1995 [11]). For every graph H there
is a constant K such that if G is an n-graph satisfying

��Gn� � �1 �
1

��H��n, (1.3)

then it has an H-matching that covers all but at most K vertices.

Theorem 1.5 (Komlós, Sárközy, and Szemerédi 1995 [11]). Given the conditions of
Theorem 1.4, if

��G� � �1 �
1

��H��n � K, (1.4)
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then G has an H-factor.

Let us use the notation

TT�n, H� � min�t : ��G� � t implies that n-graph G has an H-factor�

� 1 � maxG���G� : G is an n-graph G has an H-factor�

and define TT(n, H, M) to be the smallest integer t such that an n-graph with minimum
degree �(G) � t, then there is an H-matching covering at least M vertices in G.

The the sharpness of Theorem 1.4 and 1.5 would suggest that the limit of TT(n, H)/n
is 1 � 1/�(H); hence like for Turán-type theorems, the relevant quantity for tiling
problems would also be the chromatic number �(H). While this is true for some graphs
H, it is false for many others: In [8], Komlós presented a much improved form of Theorem
1.4 (but not Theorem 1.5), and found that, for any graph H, the critical quantity for tiling
problems is not the chromatic but the so-called critical chromatic number �cr(H).

For an r-chromatic graph H on h vertices, we write u � u(H) for the smallest possible
color-class size in any r-coloring of H. The critical chromatic number of H is �cr(H) �
(r � 1)h/(h � u). It is easy to see that �(H) � 1 � �cr(H) � �(H), and �cr(H) �
�(H) � r if and only if every r-coloring of H has equal color-class sizes.

Theorem 1.6 (Komlós 2000 [8]-lower bound). Let H have parameters � � �(H) and
�cr � �cr(H). Then, for all 0 � M � n,

TT�n, H, M� � M�1 �
1

�cr
� � �n � M��1 �

1

� � 1� . (1.5)

In particular, TT(n, H) � (1 �
1

�cr
)n.

He also proved a matching upper bound:

Theorem 1.7 (Komlós [8]-upper bound). For every graph H and � � 0 there is a
threshold n0 � n0(H, �) such that if n � n0 and an n-graph G satisfies the degree condition

��G� � �1 �
1

�cr�H��n, (1.6)

then G contains an H-matching that covers all but at most �n vertices.

He also posed the following conjecture:

Conjecture 1 [Komlós [8]]. For every graph H there exists a constant K � K(H) such
that if G is an n-graph satisfying (1.6), then G contains an H-matching that covers all but
at most K vertices. This is best possible for every H (by Theorem 1.6). Hence,
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�1 �
1

�cr�H��n � K � TT�n, H, n � K� � �1 �
1

�cr�H��n.
■

It should be noted that when �cr(H) � �(H), even if we replace �cr(H) by �cr(H) 	

C in (1.6), for any constant C � 1
�cr�H�

� 1
��H�

, we still cannot get an H-factor in G. For

example, in [3] Alon and Yuster showed that there exists a graph G with �V(G)� � hn and
�(G) � hn/ 2 that does not contain an Ka,b-factor for a � b and a 	 b � h.

In [13] we proved the correctness of this conjecture when H is a 3-chromatic graph, for
sufficiently large values of n. In this paper we will generalize our result to arbitrary fixed
graphs H:

Theorem 1.8. For any k-chromatic graph H on h vertices with smallest color-class of
order u, there exists an n0 such that, for all n � n0, if G is any n vertex graph with

��G� � �1 �
1

�cr�H��n, (1.7)

then G contains an H-matching that covers all but at most 5�k � 2��h � u�2

u�k � 1�
vertices of G.

In our proof we will use the concept of bottle-graphs. A bottle-graph of chromatic
number r is a complete r-partite graph with color-class sizes (u, w, w, . . . , w), where
u � 	w for some 	 � 1. Clearly, the critical chromatic number of this graph is r � 1 	

	. The vector ( 	
r � 1 � 	

, 1
r � 1 � 	

, . . . , 1
r � 1 � 	

) is called the color-vector of the bottle-graph.
The parameters u and w will be referred to as the neck and the width of the bottle-graph,
respectively.

Given an r-chromatic graph H of order h with smallest color-class size u � u(H), we
say that a graph � � �(H) is the bottle-graph of H if � is the smallest bottle-graph that
contains an H-factor, with the color-vector 
� � (s, t, . . . , t), where s � u/h and t �
(1 � s)/(r � 1). Observe that, �cr(�) � �cr(H) � (r � 1)/(1 � s). Moreover, let {u,
u1, u2, . . . , ur�1} denote the color-class sizes in an r-coloring of H, we can always
construct a bottle-graph using (r � 1) vertex disjoint copies of H, with the ith copy of
H having u, ui, ui	1, . . . , ur�1, u1, . . . , ui�1 vertices in color class 1, 2, . . . , r of
bottle-graph. Hence, the order of �(H) is at most (r � 1)h. Therefore, it is sufficient to
prove Theorem 1.8 when H is a bottle-graph.

Theorem 1.9 (Main Theorem). For every bottle-graph H with chromatic number k,
neck u, and width w, there exists an n0 such that for all n � n0 if G is any n vertex graph
with

��G� �
	 � k � 2

	 � k � 1
n � �1 �

1

k � 1
� ��n, (1.8)

where 	 � u
w and � � 	

(k�1)(k�1		) , then G contains an H-matching that covers all but at

most 5k
�k � 1�2�

w vertices.
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2. NOTATIONS

V(G) and E(G) denote the vertex-set and the edge-set of the graph G, and we write
v(G) � �V(G)� (order of G) and e(G) � �E(G)� (size of G). Gn denotes n-graphs. N(v,
X) is the set of neighbors of v � V in the set X � V. We use N(v) to denote N(v, V).
Hence �N(v, X)� � deg(v, X) � degG(v, X) is the degree of v in set X, and deg(v) �
deg(v, V). In a directed graph D, we use Nout(v) to denote {u � V(D) � (v, u) � E(D)}
(the out neighborhood of v), and degout(v) � �Nout(v)�. �(G) stands for the minimum,
and 
(G) for the maximum degree in G. �i(G) denotes the size of a maximum set of
vertex disjoint i-stars (stars with i leaves) in G. In particular, �1(G) � �(G) is the size
of a maximum matching in G. We write �(G) and �cr(G) for the chromatic number and
critical chromatic number of G, respectively. For an r-chromatic graph H of order h, we
write u � u(H) for the smallest possible color-class size in any r-coloring of H. When
A and B are disjoint subsets of V(G), we use deg( A, B) to denote the number of edges
in E(G) with one endpoint in A and the other in B. A bipartite graph G with color classes
A and B and edge set E will be denoted by G � ( A, B, E), with E � A � B. K(n1,
n2, . . . , nr) is the complete r-partite graph with color classes of sizes n1, n2, . . . , nr.
The density between disjoint sets X and Y is defined as

d�X, Y� �
deg�X, Y�

�X��Y�
.

In the proof of the Main Theorem, Szemerédi’s Regularity Lemma [14] plays a pivotal
role. We will need the following definition to state the regularity lemma:

Definition [Regularity Condition]. Let � � 0. A pair (A, B) of disjoint vertex-sets in G
is �-regular if for every X � A and Y � B, satisfying

�X� 
 ��A�, �Y� 
 ��B�,

we have

�d�X, Y� � d�A, B�� � �.

This definition implies that regular pairs are highly uniform bipartite graphs; namely, the
density of any reasonably large subgraph is almost the same as the density of a regular
pair. We will use the following form of the Regularity Lemma:

Lemma 2.1 (Regularity Lemma-Degree Form). For every � � 0 there is an M � M(�)
such that if G � (V, E) is any graph and d � [0, 1] is any real number, then there is a
partition of the vertex set V into � 	 1 clusters V0, V1, . . . , V�, and there is a subgraph
G� of G with the following properties:

• � � M,
• �V0� � ��V�,
• all clusters Vi, i � 1, are of the same size L � ��V�,
• degG�(v) � degG(v) � (d 	 �)�V� for all v � V,
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• G��Vi
� A (Vi is an independent set in G�), for all i,

• all pairs (Vi, Vj), 1 � i � j � �, are �-regular, each with density either 0
or greater than d, in G�.

A stronger one-sided property of regular pairs is super regularity:

Definition [Super-Regularity condition]. Given a graph G and two disjoint subsets of
its vertices A and B, the pair (A, B) is (�, d)-super-regular, if it is �-regular and

deg�a� 
 d�B� � a � A, deg�b� 
 d�A� � b � B.

We also use the Blow-up Lemma (see [9, 10]):

Lemma 2.2. Given a graph R of order r and positive parameters � and 
, there exists
an � � �(�, 
, r) � 0 such that the following holds. Let n1, n2, . . . , nr be arbitrary positive
integers, and let us replace the vertices v1, v2, . . . , vr of R with pairwise disjoint sets V1,
V2, . . . , Vr of sizes n1, n2, . . . , nr (blowing up). We construct two graphs on the same
vertex-set V � �i Vi. The first graph Rb is obtained by replacing each edge {vi, vj} of R
with the complete bipartite graph between the corresponding vertex-sets Vi and Vj. A
sparser G is constructed by replacing each edge {vi, vj} of R arbitrarily with some (�,
�)-super-regular pair between Vi and Vj. If a graph H with 
(H) � 
 is embeddable into
Rb, then it is already embeddable into G.

3. NUMBER OF LEFT-OVER VERTICES

In Theorem 1.8 the number of left-over vertices, K(H), is a constant that only depends on
the graph H. A conjecture of El-Zahar [6] (recently proved by Abbasi [1] for large n)
states that K(H) � 0 when H is a union of cycles. But the following example shows that
this is not always the case. In fact, K(H) in Theorem 1.9 is only far from the number of
leftovers in the following tight example by a constant factor.

Let G be a on n vertices with V(G) � A0 � A1 � . . . � Ak�2, where �A0� � ( 1
k � 1

	 (k � 2)�)n and �Aj� � ( 1
k � 1 � �)k for all j � 1, with deg( Ai, Aj) � �Ai� �Aj�, for 0 �

i � j � k � 2, i.e., G is complete between sets A0, A1, . . . , Ak�2. Moreover, assume
each Aj for j � 1 forms an independent set, while A0 consists of s connected components

with s� �A0�
2�k � 1��n � 2w � 2 . Each of the components in A0 is a complete bipartite graph

{(Li, Ri)}, with �Li� � �Ri� � (k � 1)�n 	 w � 1 for i � {1, . . . , s � 1}. Without
loss of generality, we will assume w 	 u divides 2�n. It is easy to see that the graph G
satisfies the degree condition in (1.8).

Let � denote an H-matching of G. For every copy of H in �, two of its color classes
must come from some component (Li, Ri) in A0, and the other (k � 2) color classes will
reside in A1, . . . , Ak�2. Let us first assume that in each copy of H, the u-vertex color
class comes from A0, i.e., the restriction of � on A0 is a union of K(w, u) graphs. There
must be at least 2w � 2 vertices left uncovered in each (Li, Ri) of A0, for 1 � i � s �
1. In fact, let t � 2�n

w	u ; then we can find 2t copies of K(w, u) in each (L, R) component
by placing t copies of w-sets and u-sets in each side (thus 2w � 2 vertices will be left
uncovered). Assume to the contrary that 2t 	 1 copies of K(w, u) could be placed in an
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(L, R) component of A0, i.e., either L or R contains (t 	 i) w-sets and (t � i 	 1) u-sets,
for i � 1. But this is impossible, because

�t � i�w � �t � i � 1�u � tw � tu � i�w � u� � u � t�w � u� � w 
 2�n � w � 1.

Finally, our assumption that all copies of H have u-sets in A0 is necessary for achieving
the maximum number of copies of H in �. In fact, embedding K(w, w) in (Li, Ri) of A0

can only result in less than 2t copies of H in {Li, Ri, A1, . . . , Ak�2}. Therefore, in any
H-matching of G, there will be at least 2w � 2 uncovered vertices for each (Li, Ri) �
A0, 1 � i � s � 1, which leaves a total of at least (s � 1)(2w � 2) vertices uncovered
in A0. Since an H-matching of G contains at most (�A0� � (s � 1)(2w � 2))/(w 	 u)
copies of H, the number of uncovered vertices is at least

�s � 1��2w � 2�
h

w � u
� � �A0�

2�k � 1��n� h�2w � 2�

w � u
�

w

�k � 1��
.

4. OUTLINE OF THE PROOF

In our proof we will assume u � w (that is, �cr � r), since otherwise Theorem 1.4 has
already covered the case. Throughout the paper, we will also assume that n is sufficiently
large and will use the following main parameters:

� � d � � � min�	, 1 � 	�. (4.1)

We will start by applying Lemma 2.1 to G, with � and d as in (4.1), and will get a partition
of V(G) into clusters V0, V1, . . . , V�. We assume that L � �Vi�, for i � 1, is divisible
by a few integers that will be determined later in the proof; otherwise we can move a
constant number of vertices from each Vi, for i � 1, to V0 to satisfy this condition. We
define the following reduced graph Gr:

The vertices of Gr are the clusters Vi for i � 1, and we have an edge between two
clusters if they form an �-regular pair in G� with density exceeding d. Since in G�,
�(G�) � (1 � 1

k�1 	 �)n � (d 	 �)n, it is easy to see that

��Gr� � �1 �
1

k � 1
� � � 2d��. (4.2)

There is a one-to-one correspondence between every vertex c in Gr and a cluster of
vertices in G. We will use Vc to denote those G vertices that correspond to a vertex c in
Gr. Similar to a complete r-partite graph K(n1, n2, . . . , nr), an �-regular k-clique ��(n1,
n2, . . . , nr) is an r-partite graph with color-class sizes n1, . . . , nr, such that every pair
of color-classes form an �-regular pair. For 0 � a � 1, ��,r

a (t) denotes an �-regular
r-clique with ni � t for all 1 � i � r � 1, and nr � at. In particular, ��,r

1 (t) will be
called balanced �-regular r-clique, while ��,r

a (t) is referred to as unbalanced when a �
1. The parameters �, k, or t may be omitted if they are clear from the context.

In Sections 5 and 6, we will show that, except for an extreme case, the vertices in G

can be tiled by copies of �k

	� (L1) for 	� satisfying 	 � 	� � 1, and L1 � CL with 0 �
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C � 1. Given one such H-matching, the vertices of V0 will be inserted into some clusters
of appropriate �-regular k-cliques such that after we remove copies of H containing new
vertices, the remaining parts of the cliques still contain almost perfect H-matchings. We
further use the connections among different �-regular k-cliques to reduce the total number
of uncovered vertices to a constant depending only on H.

In the extremal case (Section 7), we will show that V(G) can be partitioned to two sets
A and B, where A is the union of several almost-independent vertex sets {U1, . . . , Ut}
with �Ui� � n

(k�1)		 , while there are two possible cases for B:

(1) B can be partitioned into almost-independent vertex sets {Ut	1, . . . , Uk} with
�Ui� � n

(k�1)		 for i � k, and �Uk� � 	n
k�1		 , or

(2) B can be almost tiled by copies of K(w, . . . , w, u).

We then show that in either case, all but a constant number of vertices can be covered by
an H-matching.

5. THE MAXIMAL CLIQUE COVER OF THE REDUCED GRAPH

Given a graph �, a k-clique-cover (or -decomposition) � � {�k, �k�1, . . . , �1} is a
collection of disjoint cliques, in which �i corresponds to a family of cliques of order i, for
1 � i � k, and V(�) � �i�1

k V(�i). A k-clique-cover � � {�k, �k�1, . . . , �1} is
maximal if, for any other k-clique-cover �� � {��k, ��k�1, . . . , ��1}, suppose ���i� �
��i� for some 1 � i � k; then there is a i � j � k such that ��j� � ���j�. We will use
Ki to denote a clique of order i (in family �i) in any maximal clique-decomposition.

Consider a maximal clique-cover � � {�k, �k�1, . . . , �1} of �. Let Ki, Kj, Kk

denote cliques in �i, �j, �k, respectively, for 1 � i � j � k. We will use the following
notation to represent the connectivity among these cliques:

● Well-connected (or Ki Kj), if deg(v, Kj) � j � 1, @v � Ki

● Over-connected (or Ki � Kj), if deg(Ki, Kj) � i( j � 1) and Ki / Kj.
● Under-connected (or Ki � Kj), if deg(Ki, Kj) � i( j � 1).

The following proposition is a direct consequence of � being maximal:

Proposition 5.1.

1. For i � j � k, deg(Ki, Kj) � i( j � 1). In other words, there is no Ki and Kj

such that Ki � Kj, since, otherwise, there exists a v0 � Ki such that deg(v0,
Kj) � j and {v0} � Kj forms a ( j 	 1)-clique, contradicting that � is
maximal. In particular, if deg(Ki, Kj) � i( j � 1), then Ki Kj.

2. If Ki � Kk, then there exists a v0 � Ki, with deg(v0, Kk) � k. Moreover, for any
other clique Kj, deg(Kj, Kk) � k( j � 1). In other words, any k-clique that
is over-connected to some Ki will be under-connected to all other cliques
of order smaller than k and at least i. Assume to the contrary deg(Kj, Kk) �
k( j � 1); then there exists at least one vertex v1 � Kk with deg(v1, Kj) �
j. As a result {v1} � Kj will form a ( j 	 1)-clique, while {v0} � Kk�{v1}
forms a k-clique, that is a contradiction.
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Consequently, for every Kk and any arbitrary set of k cliques K1
i , K2

i , . . . ,
Kk

i � �i we must have

deg� �
l�1

k

Kl
i, Kk� � ik�k � 1�.

Indeed, if none of Kl
i, 1 � l � k satisfies deg(Kl

i, Kk) � i(k � 1), we can
derive the conclusion immediately. When one of the i-cliques, say K1

i , is
over-connected to Kk, it will follow that

deg� �
l�2

k

Kl
i, Kk� � k�i � 1��k � 1�.

Together

deg� �
l�1

t

Kl
i, Kk� � ki � k�i � 1��k � 1� � ik�k � 1�.

3. Combining Items 1 and 2, if Kj � �j and two cliques Ki, K� i � �i satisfy

deg�Ki, Kj� � deg�K� i, Kj� � i� j � 1�,

we will have Ki Kj, and K� i Kj. Moreover, we can write Kj � Ai(Kj) �
Bi(Kj) such that, for all v � Ai(Kj), deg(v, Ki) � deg(v, K� i) � i � 1.
Moreover, for all u � Bi(Kj) we will have deg(u, Ki) � deg(u, K� i) � i,
�Ai(Kj)� � i, and �Bi(Kj)� � j � i. Finally, let

Si
j � �Kj � �j : deg�Ki, Kj� � deg�K� i, Kj� � i� j � 1��

and

Ai
j � �Ai�K

j� : Kj � Si
j�.

�( Ai
j) is an i-partite subgraph with �Si

j� vertices in each color-class.
Moreover, �( Ai

i � Ai
i	1 � . . . � Ai

k) is an i-partite graph with ¥j�i
k �Si

j�
vertices in each color-class. ■

Let us assume v(�) � � and �i denote the normalized size of the set �i, i.e., �i �
��i�
�

,

for i � 1. Then

k�k � �k � 1��k�1 � · · · � �1 � 1. (5.1)

Let i0 � min{1 � i � k : ��i� � k}. We further assume that i0 � k and �i � 0 for
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i � i0. The following proposition presents a lower-bound on �k when � satisfies the
degree condition of the reduced graph in (4.2):

Proposition 5.2. If �(�) � (1 � 1
k�1 	 � � 2d)�, then

�k � �
i�2

k�i0

�i � 1��k�i � �k � 1�� � 2�k � 1�d. (5.2)

Proof. Pick any k cliques K1, K2, . . . , Kk � �i0
; using Items 1 and 2 of Proposition

5.1, we will obtain

deg� �
l�1

k

Kl, �j� � ki0�j � 1��j�, � i0 � j � k � 1,

deg� �
l�1

k

Kl, �k� � ki0�k � 1��k�,

and, using the minimum degree condition in (4.2), we have

ki0�1 �
1

k � 1
� � � 2d�� � deg� �

l�1

k

Kl, ��
� ki0�k � 1��k� � ki0�k � 2��k�1� � · · · � ki0�i0 � 1��i0�,

or

1 �
1

k � 1
� � � 2d � �k � 1��k � �k � 2��k�1 � · · · � �i0 � 1��i0. (5.3)

In fact, the right side of (5.3) can be rewritten as

� 1

k � 1
�

k � 2

k � 1
k��k �

k � 2

k � 1
�k � 1��k�1 � �k � 2

k � 1
�k � 2� �

1

k � 1��k�2 � · · ·

� �k � 2

k � 1
i0 �

k � 1 � i0

k � 1 ��i0

�
1

k � 1
�k �

k � 2

k � 1
�k�k � �k � 1��k�1 � · · · � i0�i0� �

1

k � 1
��k�2 � 2�k�3

� · · · � �k � 1 � i0��i0�

�
1

k � 1
�k �

k � 2

k � 1
�

1

k � 1
�
i�2

k�i0

�k�i�i � 1�.

PROOF OF A TILING CONJECTURE OF KOMLÓS 189



That is,

�k � 1��k � · · · � �i0 � 1��i0 �
1

k � 1
��k � k � 2 � �

i�2

k�i0

�k�i�i � 1��. (5.4)

If we replace (5.4) in (5.3), then (5.2) will follow. ■

Consequently, we can let

�k � �
i�2

k�i0

�i � 1��k�i � �k � 1�� � s, (5.5)

where s � �2(k � 1)d.
Next, consider a clique K � �k�i, for some i � {1, . . . , k � i0} that is not

over-connected to any of the k-cliques. Let �(K) denote the set of all k-cliques that are
well-connected to K, and let �i be the minimum value of ��(K)�/� among all such K’s in
�k�i, then we have:

Proposition 5.3.

�i � �k � 1�� �
i � 1

k � 1
s � �

2�j�i

�j � 1��k�j � �i � 1� �
j�i

�k�j � 2�k � i�d. (5.6)

Proof. Let m � �{Kk � �k : deg(K, Kk) � (k � 1)(k � i)}�/�. We have

�k � i��1 �
1

k � 1
� � � 2d� �

deg�K, Gr�

�
� �k � 1��k � i��k � m

� �k � 2��k � i��k�1 � · · · � �k � i � 1��k � i��k�i � �
j�i

�k � i � 1��k � j��k�j

� �k � i���k � 1��k � · · · � �k � i � 1��k�i � �
j�i

�k � j � 1��k�j�
� �

j�i

�j � i��k�j � m.

Using (5.4) and (5.5), we have

m � s
k � i

k � 1
� �

j�i

�j � i��k�j � 2kd,
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and (5.6) will follow. ■

For example,

�1 � �k � 1�� � 2kd,

�2 � �k � 1�� �
s

k � 1
� �

j�2

�k�j � 2kd.

Now let us find a maximal clique-decomposition � � {�k, �k�1, . . . , �1} of the
reduced graph Gr and define i0 as the index of first clique family in � of size at least k.
We can assume that i0 � k; otherwise, we simply remove all the vertices of G included
in �1, . . . , �k�1 to the exceptional set V0 such that � becomes a ��,k

1 (L)-covering of
Gr and �V0� � O(�n). The same reason allows us assume that that �i � 0, for all i �
i0 [otherwise we can move all the vertices of G included in the clusters of these (small)
cliques to V0]. Thus, we can apply Proposition 5.2 to Gr and then obtain (5.5). For
simplicity of notations we will assume i0 � 1 from now on. We divide the proof into two
cases, the general case, when s � mu and the extremal case, when s � �. The proof of
extremal case will be presented in Section 7.

6. THE GENERAL CASE

At present we have found a maximal clique-cover � � {�k, �k�1, . . . , �1} of the
reduced graph Gr. Correspondingly, this clique-cover in Gr defines a collection of disjoint
�-regular cliques, a cluster-clique-cover � � {�k, �k�1, . . . , �1} in G
. We will use
�i to denote an �-regular i-clique. All the terminologies we used in Section 5 apply to this
cluster-clique-cover as well. Recall that the assumption in the general case is that s � �,
where s � �k � (k � 1)� � ¥i�2

k�1 �k�i(i � 1).

6.1. The Decomposition Lemma

We define

	� � 	 �
	�1 � 	�

k2 �. (6.1)

Without loss of generality, we assume that � � 1/N for some integer N. Recall that 	 �
u/w. Thus 	� is a rational number, we set 	� � p/q, where p, q are two integers with no
common factors. It is easy to see that p � q � w2k2N � w2k2/�.

For some 1 � i � k � 1, we consider an �-regular (k � i)-clique � � �k�i, with
corresponding K � �k�i. An �-regular k-clique �k is good for � if its corresponding
clique Kk � �k is well-connected or over-connected to K; otherwise, �k is bad for �.
The �-regular clique � is called typical if for a constant ct � k�1		�

1�	� , �{Kk � �k : K
� Kk}� � ct. Otherwise, we will refer to � as an atypical one. To state the decomposition

algorithm for G
 we will use the following observation:
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Proposition 6.1. Let Vi and Vj, 1 � i � j � �, denote two clusters in G
 that correspond
to two endpoints of an edge e in the reduced graph Gr. Let us partition the clusters Vi and
Vj into s and t subclusters {Vi

1, . . . , Vi
s}, and {Vj

1, . . . , Vj
t} respectively, such that the size

of the smallest subclusters is cL for some � � c � 1. Then the pairs (Vi
p, Vj

q) for 1 � p �
s and 1 � q � t, are ��-regular pairs with �� � min(�

2 , �
c). In particular, if s � t, then (Vi

t,
Vj

t), 1 � t � s are s disjoint ��-regular pairs.

When each cluster in an �-regular clique � is evenly partitioned into s parts, we obtain
p new ��-regular cliques consisting of smaller clusters. This procedure will be referred to
as s-partition of �-regular cliques. Although � has changed to �� in new regular pairs, for
simplicity of the notation, we always use � as the parameter. Naturally, we call a new
clique good (or bad) if it is derived from a good (or bad) larger clique �.

Since L has been chosen in a way that it can be divided by particular values, we assume
that there is no roundoff in any division in the following algorithm.

Decomposition Algorithm of G
:

1. (q � p)-partition all cliques in �k and denote the new clique family by ��k.
We use L� to denote the size of the resulting subclusters, i.e., L� � L

q�p . Because

q � w2k2/�, L� � 1
w2k2 �L.

2. For i � 1, . . . , k � 1 convert each typical cliques in �k�i to unbalanced (�-regular)
k-cliques.
For each typical (k � i)-clique � � �k�i, we arbitrarily pick a (new) well-
connected k-clique �k � ��k. Following the notation in Item 3 of Proposition 5.1,
there are i clusters in B(�k) and k � i clusters in A(�k). It is easy to see that a
special �-regular k-clique

��it, . . . , it,

i
,
�i � 1 � 	��t, . . . , �i � 1 � 	��t�

k � i

is the union of i copies of ��,k
	� (t) (with different �). We divide each cluster in

B(�k) into two parts: the large parts containing i�1		�
i L� vertices and the small

ones containing 1�	�
i L� vertices. All these large subclusters are combined with

clusters in A(�k) to form a �k
	�(L�

i ), while all the small subclusters are associated
with clusters of � to make a copy of �k

	�( 1�	�
i�1		�

L�
i ). Clearly when we repeat this

procedure to i�1		�) L
(1�	�) L� well-connected k-cliques in ��k, we eliminate � and obtain

copies of �k
	� (L�

i ) and �k
	�( 1�	�

i�1		�
L�
i ).

3. For i � 1, . . . , k � 1, convert atypical cliques in �k�i to unbalanced (�-regular)
k-cliques.
We will follow the same procedure as in Step 2. The only difference is that, when
eliminating an atypical � � �k�i, its over-connected k-cliques, instead of well-
connected cliques, will be used. Since any k-clique �k over-connected to � has
more than i clusters adjacent to all the clusters of �, we can arbitrarily choose i of
them to make B(�k) and the rest will be A(�k).
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4. Partition the remaining k-cliques in ��k and all (different-size) unbalanced �-regular
k-cliques to �k

	�(L1)’s.
Here L1 � clL, where the constant cl is a multiple of �.

Next, we will prove the correctness of the above algorithm:
In Step 3, by Item 2 of Proposition 5.1, any k-clique that is over-connected to � does

not participate in the converting operation of any other (typical or atypical) clique. While
each � � �k�i needs (i�1		�) L

(1�	�) L� good k-cliques in ��k, the total number of over-connected
k-cliques is at least

ct

L

L�
�

k � 1 � 	�

1 � 	�

L

L�
�

�i � 1 � 	��L

�1 � 	��L�
, for i � k.

During Step 2, we considered all typical cliques in �k�1, . . . , �1 sequentially. For a
typical clique � � �k�i, we can ignore the existence of its over-connected k-cliques in
our computation, because ct � �. Thus �i� in Proposition 5.3 gives a lower bound on the
number of well-connected k-cliques (in �k). Thus in the new k-clique family ��k there are
at least �i�L/L� well-connected k-cliques for �. We need to show that this quantity is not
smaller than

�
l�1

i �l � 1 � 	��L

�1 � 	��L�
�k�l�.

Equivalently, we need to show

�i � �
l�1

i l � 1 � 	�

1 � 	�
�k�l 
 0. (6.2)

Let us first compute

Ii � �i � �
l�1

i l � 1 � 	

1 � 	
�k�l.

For example, we rewrite

I1 � �k � 1�� �
	

1 � 	
�k�1,

as

I1 � �k � 1�� �
	

1 � 	

1

k � 1 �1 � k�k � �
j�2

�k � j��k�j�
� �k � 1�� �

	

1 � 	

1

k � 1
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� �1 � k��k � 1�� � s � �
j�2

�j � 1��k�j� � �
j�2

�k � j��k�j�
� �k � 1�� �

	

1 � 	 � 1

k � 1
� k� �

k

k � 1
s � �

j�2

j�k�j� .

Since

�k � 1�� �
	

1 � 	

1

k � 1
�

	

k � 1 � 	
�

	

�1 � 	��k � 1�
� �

	

1 � 	
k�,

we have

I1 �
k

k � 1

	

1 � 	
s �

	

1 � 	
�
j�2

j�k�j. (6.3)

Similarly,

I2 � �k � 1�� �
s

k � 1
� �

j�2

�k�j �
	

1 � 	
�k�1 �

1 � 	

1 � 	
�k�2

�
s

k � 1
�

k

k � 1

	

1 � 	
s � �

j�3

�k�j �
	

1 � 	
�
j�3

j�k�j.

In general,

Ii � � i � 1

k � 1
�

k	

�k � 1��1 � 	�� s � �
j�i

� i � 1 �
	

1 � 	
j��k�j 
 �1, (6.4)

where �1 � k	
(1�	)(k�1) �. To make (6.2) hold, we want the following inequality to be true

for every 1 � i � k:

�1 � �
l�1

i

�k�l� l � 1 � 	�

1 � 	�
�

l � 1 � 	

1 � 	 � .

It is sufficient to show

l � 1 � 	�

1 � 	�
�

l � 1 � 	

1 � 	
� �1, for every l � �1, 2, . . . , k � 1�. (6.5)

But this holds because of the definition of 	�.
The following lemma summarizes the correctness of the Decomposition Algorithm:
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Lemma 6.2 (Decomposition Lemma). If the reduced graph Gr satisfies �k � ¥i�2
k�1 (i �

1)�k�i 	 (k � 1)� 	 �, G
 can be decomposed into disjoint copies of �k
	� (L1), for some

	� � 	 	 c	�, and L1 � c�L. ■

6.2. Handling of Exceptional Vertices

The proof for the general case of the Main Theorem is immediate from the following
lemma:

Lemma 6.3. Assume � � � � � � 1 and the n-vertex graph G satisfies the degree
condition in (1.8), containing a set V0 of exceptional vertices, with �V0� � �n. If the
subgraph G
 � G�V0 has an ��,k

	� (L1)-factor with 	� � 	 	 � for sufficiently large values

of L1, then G contains an H-matching that covers all but at most 5k
�k � 1�2�

w vertices.

Before stating the proof of Lemma 6.3 some notation is in order. We use R to denote
the �	�(L1)-cover of G
, and � represents an element of the cover, i.e., an unbalanced
�-regular k-clique ��,k

	� (L1). We refer to � as a clique if there is no confusion. Among the
color classes of � we let Uk denote the smallest cluster, i.e., the one containing 	�L1

vertices.
The proof of Lemma 6.3 consists of two phases. We will start by removing �V0� copies

of H from G such that each copy of H contains exactly one vertex from V0. We will also
make sure none of the cluster-cliques loses many vertices in this process. Next, we will
establish two directed graphs (one on clusters and another on cliques), and use them to
control the number of uncovered vertices of the H-matching to meet the constant bound
suggested in Lemma 6.3.

Phase I: We will use the following corollary of Key Lemma [12]:

Lemma 6.4. Let � � {V1, . . . , Vk} be an �-regular k-clique in G
. Assume Wi � Vi, and
�Wi� � d�L, i � 1, . . . , k, for some d� � �. Let �0 � {W1, . . . , Wk}. Then Kk(h) � �0.
In particular, H � �0, and we can put its small color-class in any Wi.

For a vertex v � V0 and a cluster C � Gr, we will write v � C if deg(v, C) � d�C�.
The procedure of Phase I is as follows: Consider the vertices in V0 in any order. For

each v � V0, we pick an element � � {U1, U2, . . . , Uk} of the cover for which

v � Ui for all but at most one of the clusters Ui � �U1, . . . , Uk�. (6.6)

We will create a copy of H using the vertex v and � as follows:

● If v � Ui for any i � k we will remove a copy of H consisting of vertex v, (u �
1) vertices of Uk, and w vertices from each Ui, i � k.

● If ?j � k such that v � Ui for any i � j, we will remove u vertices from Uk, w
vertices from each Ui for i � j, and (w � 1) vertices from Uj to form a copy of H
containing v.

During this procedure in order to prevent a cluster from losing too many of its vertices,
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we stop considering an element of R if it has been selected �1L1 times, for �1 � ��. The
key point in this algorithm is whether there always exists an available element of R
satisfying (6.6). We claim:

Proposition 6.5. For any vertex in V0, regardless of the order that it will be processed,
there are at least 	

2 proportion of elements of R satisfying (6.6).

Due to the restriction that no clique can be selected by more than �1L1 vertices, the
proportion of the off-limit elements of R should be at most:

�n

��L1

n

�k � 1 � 	��L1

� ��k.

Clearly, if Proposition 6.5 holds, since 	/ 2 � ��k, the procedure of Phase I can be
carried out.

Proof of Proposition 6.5. Let v be the (t 	 1)st vertex of V0 considered in the above
procedure. We assume that, for the first t exceptional vertices, we have removed t
(disjoint) copies of H each containing one exceptional vertex and h � 1 vertices from
some elements of R. Let G
 denote the (induced) subgraph of G on the remaining vertices.
Observe that �V(G
)� � n � �n � t(h � 1). Let m denote the fraction of elements in
R satisfying (6.6). We have

�1 �
1

k � 1
� ��n � �n � �h � 1�t � degG�v, V�G
��

� ��1 � m�
k � 2 � 	�d � d

�k � 1� � 	�
� m��n � �n � �h � 1�t�,

or

1 �
1

k � 1
� � � �h � 1 �

1 � 	� � 	�d � d

�k � 1� � 	�
�

1 � 	� � 	�d � d

�k � 1� � 	�
m,

which implies

1 � 	� � 	�d � d

�k � 1� � 	�
�

1

k � 1 � 	
� �h �

1 � 	� � 	�d � d

�k � 1� � 	�
m.

Therefore,

m 

1

1 � 	� � 	�d � d
�	 � 2d � �kh� 


	

2
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holds since we chose 	
3 � kh�. ■

After V0 becomes empty, we would like all regular pairs inside �-regular cliques to
satisfy the superregularity condition. Consider one such element � on clusters {U1, . . . ,
Uk}. We will move a vertex v from cluster Ui in � to V0, if there exists j � i with deg(v,
Uj) � (d � �)�Uj�. The �-regularity of the cluster-pairs guarantees that there are at most
(k � 1)��Ui� such vertices in each cluster. Using a procedure similar to Phase I, we handle
the new [at most k(k � 1)�n] exceptional vertices. Consequently, all cluster-pairs in the
remaining graph will satisfy (�, d

2) superregularity.

Phase II: Let R� denote the resulting clique-cover at the end of Phase I. Since some
clusters have lost vertices during Phase I, the sizes of resulting clusters vary. Because
�	�(L1) � �	(L2) � �1(L0), where L2 � 1�	�

1�	 L1, L0 � 	��	
1�	 L1, and 	� � 	 � �

� �1, each element �� of R� at least contains an balanced �-regular k-clique �k
1�L0

2
�. Thus

�� contains an H-matching, in which u-vertex classes can be taken from any cluster of
element ��.

As a result, we argue that by appropriately placing u-vertex classes in the H-matching
of ��, w � u vertices can be moved among the clusters of ��. In fact, when we want to
move w � u vertices from U1 to U2 in ��, we simply switch the color classes for one
copy of H such that the u-vertex class which was supposed to come from U1 will come
from U2. This will result in a loss of (w � u) vertices from U1 while U2 will gain (w �
u) vertices. This observation will helps us to obtain the following result that will be proven
later:

Proposition 6.6. Each element of R� has a H-matching that covers all but at most (k �
1)(2w � u) 	 w vertices.

If we directly apply Proposition 6.6 to all the elements of R�, we will get an
H-matching of G
 that leaves at most ((k � 1)(2w � u) 	 w)�R� vertices uncovered.
Since �R� � O(�) and � is not larger than the constant M(�) (from the Regularity
Lemma), this already confirms the correctness of Conjecture 1.

To show that the number of left-over vertices is a constant independent of �, we will
use the connections among the clusters of G
 in different elements of R, as well as the
connections of elements of R. We define two directed graphs as follows:

● Directed graph � on the clusters of G
 with a directed edge U 3 U1 in E(�),
whenever U1 � � � {U1, U2, . . . , Uk} and (U, Ui) � E(Gr), for all i � 1.

● Directed graph �* on the cliques, whose vertices are elements of R and a directed

edge from �1 to �2 whenever @U � �1, U� � �2, U¡
�

U�.

Since in Phase I the cluster-sizes in G
 had insignificant changes, the adjacency of clusters
in Gr, and consequently the graphs �, �* are the same with respect to both R and R�.

In a directed graph D the source set of v is defined as �(v) � {u � V(D) : ? a
directed path from u to v}. It is easy to see that ��(u)� � ��(v)�, if u � Nout(v). A set
	(D) � V(D) will be called a sink set if V(D) � �v�	(D) �(v). We will show that in
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graphs � and �* there are sink sets 	(�) and 	(�*) of orders at most k
�k � 1�2�

and 2
k(k�1)� .

Now, we are ready to state the algorithm of Phase II:

1. For each cluster, we first compute the number of remaining vertices (called extra
vertices, denoted by K(C) for each cluster C) under the largest H-matching
described in Proposition 6.6 (instead of actually performing the tiling). We will then
separate the extra vertices in each cluster to two categories: (I) groups of (w �
u)-vertices, denoted by extra1(�) (no matter which cluster the (w � u) vertices
come from); (II) less than (w � u) vertices, denoted by extra2(C).

2. For each cluster C with �extra2(C)� � 0 and C � 	(�), we “move” these
extra2(C) vertices to the sink set 	(�) as follows:
Let x � �extra2(C)�. We find a directed (cluster) path C, C1, . . . , Ct, with Ct

belonging to the sink. For i � 1, . . . , t, let �i denote the clique that contains Ci.
Depending on whether Ci is a large or a small cluster, we will take either w, or v
vertices from Ci, when finding a copy of H inside �i. Denote this number by ci. For
i � 1, . . . , t, x copies of H are removed by x vertices from Ci�1 and (h � 1) x
vertices from �i (in particular (ci � 1) x vertices from Ci). As a result, �extra2(C)�
becomes zero and �extra2(Ct)� will increase by x. Note that a single cluster can be
included in many paths to the sink set. Since the total number of extra vertices is a
constant (much smaller than dL1), the superregularity of the cluster pairs will not
be affected.

3. Using a similar procedure we will “move” the extra vertices extra1(��) form each
element �� (not in 	(�*)) to the cliques in 	(�*). For example, assume that {��,
��1, . . . , ��t} is a directed path. Then, there exist U � � and U1 � �1, such that
directed edge (U, U1) belongs to E(�). Since a (w � u)-vertex group can be
moved arbitrarily from one cluster to another inside ��, we can gather all �ex-
tra1(��)� vertices in U and then “move” them to U1 � ��1, etc.

4. Apply the Blow-up Lemma to the remainder of each element of R to get an
H-matching. Adding these copies of H to ones removed in previous two steps and
Phase I, we finally get the desired H-matching of the original graph G.

Let us compute the number of uncovered vertices in this algorithm. The total number of
extra vertices of category (II) is at most

�w � u��	���� � �w � u�
k

�k � 1�2�
,

and the total number of extra vertices of category (I) can be bounded by

��k � 1��2w � u� � w��	��*�� � ��k � 1��2w � u� � w�
2

k�k � 1��
�

4w

�k � 1��
.

Therefore, the total number of left-over vertices is at most

�w � u�
k

�k � 1�2�
�

4w

�k � 1��
�

5k

�k � 1�2�
w.
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as mentioned in Lemma 6.3.
Let us now verify Proposition 6.6.

Proof of Proposition 6.6. Consider the element �� in R�. Since all cluster-pairs in ��
satisfy superregularity, we can apply the Blow-up Lemma to ��. We pick the H-matching
of �� (which leaves a1, a2, . . . , ak vertices uncovered from clusters U1, U2, . . . , Uk,
respectively) satisfying the following two conditions:

● It is one of the best H-matchings, i.e., ¥ ai is the minimum over all H-matchings of
��.

● It is the most balanced, i.e., ¥ �ai � w� is the smallest among the best matchings.

Assume that ai0
� min ai. Naturally, ai0

� w; otherwise a copy of H could be found in
the leftover of ��, and for some i � i0 we have ai � 2w � u; otherwise we can move
(w � u) vertices from Ui to Ui0

to get a smaller value for ¥ �ai � w�. Therefore, ¥ ai �
w 	 (k � 1)(2w � u). ■

To verify that both � and �* have small sink sets we need the following general
lemma:

Lemma 6.7. In a directed graph D, with �(D) � minv�D degout(v), there is a sink set
	 of size at most �V(D)�

�(D)	1 .

Proof. Let x1 be a vertex in which ��( x1)� � maxv�V(D) ��(v)�. Since Nout( x1) �
�( x1) (otherwise, some out-neighbor of x1 produces a larger source set), we have
��( x1)� � � 	 1. Let D� � D��( x1), then, for every vertex v � D�, the set Nout(v)
in D� is the same as � Nout(v) in D, since, if v� � Nout(v) in D and v� � �( x1), v
should also be in �( x1). Now, let x2 be a vertex with the largest source set in D�.
Similarly to x1, we have �( x2) � � 	 1 in D�. The above procedure can be repeated
at most �V(D�)

�	1 times, and the proof will follow. ■

The remaining questions are to compute �(�) and �(�*). We have

Proposition 6.8. For any U � V(�), degout(U) �
4�
3 �V(�)�.

Proof. Since these connections are not influenced by the insertion of exceptional
vertices, we assume that the size of clusters are still L1 or 	�L1.

In fact, for every U � V(�), let m1, m2, and m3 denote the fraction of elements �
� R with clusters {U1, U2, . . . , Uk} for which (U, Ui) � E(Gr) for all i � k, (U,
Ui) � E(Gr) for all i � j with j � k, and (U, Ui) � E(Gr) for all i, respectively. By
degree condition in Gr, we have

1 �
1

k � 1
� � � 2d �

k � 2

k � 1 � 	�
�

1

k � 1 � 	�
m1

�
	�

k � 1 � 	�
m2 �

1 � 	�

k � 1 � 	�
m3

�
k � 2

k � 1 � 	�
�

1

k � 1 � 	�
m1 �

1

k � 1 � 	�
m2 �

2

k � 1 � 	�
m3,
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or

1 �
1

k � 1
� � �

k � 2

k � 1 � 	
�

1

k � 1 � 	
�m1 � m2 � 2m3�

� �1 �
1

k � 1
� �k � 2��� � � 1

k � 1
� �� �m1 � m2 � 2m3�,

that is,

�k � 1�� � � 1

k � 1
� �� �m1 � m2 � 2m3�.

Therefore, in �,

degout�U� � �m1 � m2 � km3��R�

�
�k � 1��

1
k � 1 � �

�V����
k



�k � 1�2�

k
�V����. ■

Using an argument similar to Proposition 6.8, we can show

���*� �
k�k � 1��

2
�V��*��,

which concludes the proof of Lemma 6.3. ■

7. THE EXTREMAL CASES

Recall that � � {�k, . . . , �1} denotes the maximum clique-cover of Gr. In this section
we will assume

s � �k � �k � 1�� � �
i�2

k�1

�k�i�i � 1� � �. (7.1)

Substituting

�k � �k � 1�� � �
i�2

k�1

�k�i�i � 1� � s
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in (5.1), we will have

�k � 1��k � �k � 1�� � �
i�2

k�1

�k�i�i � 1� � s � �k � 1��k�1 � �
i�2

k�1

�k�i�k � i� � 1,

which implies

�k � �k�1 � · · · � �1 �
1

k � 1
� � �

s

k � 1
�

1

k � 1
� � �

�

k � 1
. (7.2)

Also from (5.1), we can get

�k � 1�k� � ks � �k � 1� �
j�1

i�k�i � 1,

Define

�i � �
j�i

�k � j��j, for i � k,

we thus know,

�k�1 �
1

k � 1
� k� �

k

k � 1
s �

1 � 	

k � 1 � 	
�

k

k � 1
s � 	0,

where we define 	0 � 1�	
k�1		 � k

k�1 �.
Let C � �k	0/�. Since �k�1 � 	0 � Ck�, there is an integer t, 1 � t � k � 1, such

that �t � Cj0� and �t�1 � Cj0�1� for some j0 � k. Set �� � k(Cj0�1� 	 2�), and ��
� Cj0�.

We first move all the vertices of G in �j, j � t, to V0. The size of the resulting
exceptional set (still denoted by V0) is less than

�n � �
j�t

j�jn � �n � k �
j�t

�jn � �n � k�t�1n � kCj0�1�n � ��n.

Following the proof of Proposition 5.2, it is not hard to show that the number of
k-cliques that are over-connected to some smaller clique is at most 2t�. Since the size of
�t is not small, most t-cliques are not over-connected to any k-clique. Let us fix two such
t-cliques K1, K2. Let �k�j

0 � {K � �k�j : deg({K1, K2}, K) � 2t(k � j � 1)} and
mj � ��k�j

0 �/� for j � 0, 1, . . . , k � t. Using similar computations as in Proposition
5.3, we obtain

m0 � m1 � · · · � mk�t �
2t

k � 1
s � 4dt �

��

k
.
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Recall that in Item 3 of Proposition 5.1, we divide each clique Kj ( j � t) which is well
connected to K1, K2 into sets At(Kj) and Bt(Kj), where At(Kj) consists of the clusters
which are adjacent to all but one of K1 (or K2), Bt(Kj) are those which are adjacent to all
of K1 (or K2). When combining At(K) for all clusters K � �t

0 � . . . � �k
0, we obtain

a cluster set A of size t(�k 	 . . . 	 �t � m0 � . . . � mk�t)�. Using (7.2), we have �A�
� t( 1

k�1 � � � 2k
k�1 �)�. On one hand, A is covered by a family of t-cliques and on the

other hand, by Item 3 of Proposition 5.1, A is made up of t � k � 1 independent set
U1, . . . , Ut, with �Uj� � ( 1

k�1 � � � ��
k�1)�. The degree condition on Gr, (4.2), requires

deg�c, Gr�Ui� � �Gr�Ui� �
��

k � 1
�, � c � Ui (7.3)

i.e., elements of Ui are almost adjacent to all the clusters outside Ui. Depending on the
value of t, we will consider two separate cases:

7.1. Extremal Case (I): t � k � 1

Let Uk � V(Gr)�{U1, . . . , Uk�1}, and let Ui, 1 � i � k, refer to the underlying vertex
sets in G. We will move all exceptional vertices (set V0) to Uk. Then remove a vertex v
� Uk to Ui, i � k if deg(v, Ui) � �1�Ui�, where �� � �1 � 1. Let us still denote the
resulting sets by U1, . . . , Uk. In the ideal case �Ui� � ( 1

k�1 � �)n for all i � k and �Uk�
� (k � 1)�n. Because of the superregularity between every pair in {U1, . . . , Uk}, we
can use the Blow-up Lemma to find the desired H-factor in G.

If �Ui� � ( 1
k�1 � �) n, for all i � k, we can create some copies of H whose w-classes

are located at Uk. Then an argument similar to Proposition 6.6 shows that all but 2kw
vertices of G will be covered by an H-matching. Consequently, we can assume that �U1�
� ( 1

k�1 � �)n, also �Ui� � ( 1
k�1 � �) n, for 1 � i � k, �Uk� � (k � 1)�n (the other

cases are similar).
From U1 we will move a vertex v for which deg(v, U1) � �1�U1� to other classes Ui

with fewer vertices, without hurting the superregularity. Let U1, . . . , Uk still denote the
resulting sets. After this step, either we can achieve the ideal case, or for all v � U1,
deg(v, U1) � �1�U1�. Let us assume that the latter is the case, and let x � �U1� � ( 1

k�1
� �)n, we will use the following fact:

Proposition 7.1.

�i�G� � ���G� � i � 1�
n

2�i � 1�
�G�
.

To see this, take a maximal set of i-stars, let m denote its size, and let E be the number
of edges between the stars and the remaining vertices of G; we have the following chain
of inequalities which in turn implies the claim:

�n � m�i � 1�����G� � �i � 1�� � E � m�i � 1�
�G�.

Proposition 7.1 implies that we can find x vertex disjoint w-stars in U1 and after moving
their centers to other Ui with fewer vertices, we immediately remove x copies of H. The
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remaining sets U1, . . . , Uk and C have size ratio (1, . . . , 1, 	) and also satisfy the
superregularity condition. Applying the Blow-up Lemma will complete the proof.

7.2. Extremal Case (II): t < k � 1

Let B � V(Gr)�A. We use VB to represent corresponding vertices of G in the clusters of
B and V0. VA denotes those in the clusters of A. Let H0 be the (k � t)-partite bottle graph
with width w and neck u. Our goal is to find an almost perfect H0-matching of VB such
that each copy of H0 has a big neighborhood (defined as common neighbors of the vertices
in H0) in VA. Thus we can apply Hall’s marriage theorem to match each copy of H0 with
a copy of Kt(w) from VA. This will create the desired H-matching of G that leaves only
a constant number of vertices uncovered.

Finding the H0-matching of VB is almost the same as the procedure of the nonextremal
case: We will first tile VB with ��,k�t

	� (L1), unbalanced �-regular (k � t)-cliques. Then
we will move the vertices of V0 to VB. The only difference is that we have to take special
care of the vertices in VB whose degrees in VA are small.

Let us get into some details about the tiling of VB with �(k�t)
	� (L1): We can take

advantage of the existing clique-cover. By definition, B � {B0, B1, B2, . . . , Bk�t},
where Bj�t � �Kj��j��j

0 Bt(Kj) for t � j � k and B0 � �k
0 � . . . � �t

0, denotes all
j-cliques ( j � t) which did not participate in the creation of A. We will repeat the
algorithm from Section 4: As before, we use � to represent the cluster clique, i.e., the
subgraph of G corresponding to a clique K of the reduced graph. Similarly, �i denotes the
family of cluster cliques corresponding to Bi for i � 0, . . . , k � t. Our goal is to convert
every cluster clique � � �1, �2, . . . , �k�t�1 to a copy of �(k�t)

	� (L1). The remaining
graphs in �(k�t) and �0 will naturally be divided into copies of �(k�t)

	� . To explain why
this algorithm is feasible, we will re-use the calculations in Section 4. It is easy to see that
if K� � Bj�t, K
 � Bk�t, for t � j � k, came from Kj � �j, and Kk � �k, respectively,
and Kj Kk, then K� K
. Thus, for any K � Bi�t, the number of well-connected
(k � t)-cliques is at least �(Ki) � �i, if K was generated from Ki. In the key expressions
(6.3) and (6.4), despite the fact that s is not bigger than �, we use @i � t, �i � ¥j�i

j�k�j � Cj0� � ��; then �� plays the same role as �. That is, the right side of (6.5) was
replaced by 	

1�	 ��. Thus, 	� � 	 � c1�� and, eventually, we will find a �k�t
	� (L1)-

factor of VB.
Before inserting V0 to VB, we will remove (at most 2���VB�) vertices from VB to Ui if

deg�v, Ui� � 
1�Ui�, (7.4)

with (�� � 
1 � ��). We might move extra vertices from �k�t
	� (L1) to V0 in order to

maintain the ratio of cluster sizes as (1, . . . , 1, 	�). If any cluster lost more than one half
of its vertices due to (7.4), all the vertices in this clique will be removed to V0. It is easy
to see that the resulting exceptional set V0 satisfies �V0� � 2��n/	�.

To finish the proof of the extremal cases, we separate cases according to sizes of Ui:

(a) The Ideal Case: �Ui� � ( 1
k�1 � �)n, for i � 1, . . . , t.

Since the density between all Ui pairs is almost 1, we will first apply the Blow-up
Lemma to U1 � . . . � Ut, and get a Kt(w)-factor. Note that the neighborhood of any
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copy of Kt(w) in VB is almost the entirely VB because of (7.3). Define a subset Vbad of
VB, where @v � Vbad,

deg�v, A� � �1 � 
2��A�, (7.5)

with �� � 
2 � 
1. It is easy to see that �Vbad� � 2��

2

n � 
2n.
We assume that after inserting V0 to VB, we obtain a H0-matching such that each copy

of H0 contains at most one vertex of Vbad. This assumption leads to an easy matching
between H0 copies from VB and Kt(w) from VA: We can first use the greedy algorithm to
match those H0’s that contain vertices from Vbad, then use Hall’s marriage theorem to
handle the rest of the vertices. The number of uncovered vertices by the H-matching of
G will be proportional to the number of the leftovers by the H0-matching over VB.

To force each copy of Hk�t to contain at most one Vbad vertex, we will move all Vbad

vertices (and some extra to maintain the size ratio of clusters in those cliques) to V0. Since

2 � �, we can still insert vertices in the new V0 back to VB.

(b) The Defected Cases: If �Ui1
� � ( 1

k�1 � �)n for some 1 � i1 � t, instead of Kt(w)
we will find copies of Ht from VA whose u-vertex class comes from Ui1

. To match them,
we need to find the same number of Kk�t(w)’s from VB. This is possible because 	� �
	 � c1�� � ��.

When �Ui1
� � ( 1

k�1 � �)n for some i1, we will find �Ui1
� � ( 1

k�1 � �)n copies of
w-star in A and then move their centers to other Ui’s or VB, which has less vertices (than
the ideal case). The rest is exactly the same as in the Ideal Case. ■

This finally concludes the proof of the extremal case and also the Main Theorem.
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