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Abstract

Given two graphs G and H , an H -matching of G (or a tiling of G with H) is a subgraph
of G consisting of vertex-disjoint copies of H . For an r-chromatic graph H on h vertices, we
write u = u(H) for the smallest possible color-class size in any r-coloring of H . The critical
chromatic number of H is the number �cr(H)= (r− 1)h=(h− u). A conjecture of Koml#os states
that for every graph H , there is a constant K such that if G is any n-vertex graph of minimum
degree at least (1− (1=�cr(H)))n, then G contains an H -matching that covers all but at most K
vertices of G. In this paper we prove that the conjecture holds for all su<ciently large values
of n when H is a 3-chromatic graph.
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1. Introduction

All graphs considered in this paper are Anite, undirected and simple. If H is a
graph on h vertices and G is a graph on n vertices, the objective of tiling problems
in extremal graph theory is to And many vertex disjoint copies of H in G, or even
a complete tiling (called H -factor) of G with �n=h� copies of H . One of the earliest
tiling results is Dirac’s theorem on Hamilton paths [5] that solves the 1-factor problem.
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The case of triangle-factors is due to Corr#adi and Hajnal [4], and the celebrated result
of Hajnal and Szemer#edi settles the Kr-factor problem for all r:

Theorem 1 (Hajnal and Szemer#edi [7]). Let G be a graph on n vertices with minimum
degree

�(G)¿
(
1− 1

r

)
n;

then G has a Kr-factor.

During the 1990s, Alon and Yuster extended the Hajnal–Szemer#edi theorem in var-
ious ways:

Theorem 2 (Alon and Yuster [2]). For every �¿ 0 and for every integer h, there ex-
ists an n0 =n0(�; h) such that for every graph H on h vertices with chromatic number
�(H), any graph G with n¿n0 vertices and with minimum degree

�(G)¿
(
1− 1

�(H)

)
n (1)

contains at least (1− �)n=h vertex disjoint copies of H.

Theorem 3 (Alon and Yuster [3]). For every �¿ 0 and for every integer h there ex-
ists an n0 = n0(�; h) such that for every graph H on h vertices and for every n¿n0,
any graph G with n vertices and minimum degree

�(G)¿
(
1− 1

�(H)
+ �

)
n (2)

has an H-factor.

They conjectured that two error terms in above theorems (�n=h in Theorem 2 and
�n in Theorem 3) could be relaxed to a constant. In [2] they also remarked that this
is essentially best possible. These conjectures have been recently proven by Koml#os et
al. [10]:

Theorem 4 (Koml#os et al. [10]). For every graph H there is a constant K such that
if G is an n-graph satisfying

�(G)¿
(
1− 1

�(H)

)
n; (3)

then it has an H-matching that covers all but at most K vertices.

Theorem 5 (Koml#os et al. [10]). Given the conditions of Theorem 4, if

�(G)¿
(
1− 1

�(H)

)
n+ K; (4)

then G has an H-factor.
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Let us use the notation

TT (n; H) = min {t : �(G)¿ t implies that n-graph G has an H -factor}
and deAne TT (n; H;M) to be the smallest integer t such that if G is an n-graph with
minimum degree �(G)¿ t, then there is an H -matching covering at least M vertices
in G. Then the sharpness of Theorem 2 and Theorem 3 would suggest that the limit
of TT (n; H)=n is 1 − 1=�(H); hence, just as in Tur#an-type Theorems, the relevant
quantity for tiling problems would also be the chromatic number �(H). While this is
true for some graphs H , it is false for many others: in [8], Koml#os presented a much
improved form of Theorem 2, and found that for any graph H , the crucial quantity for
tiling problems is not the chromatic number �(H), but the so-called critical chromatic
number �cr(H). For an r-chromatic graph H on h vertices, we write u = u(H) for
the smallest possible color-class size in any r-coloring of H . The critical chromatic
number of H is the number �cr(H) = (r − 1)h=(h − u). It is easy to see that �(H) −
1¡�cr(H)6 �(H), and �cr(H) = �(H) = r if and only if every r-coloring of H has
equal color-class sizes.

Theorem 6 (Koml#os [8, lower bound]). Let H be a graph with parameters �= �(H)
and �cr = �cr(H). Then, for all 0¡M6 n,

TT (n; H;M)¿M
(
1− 1

�cr

)
+ (n−M)

(
1− 1

� − 1

)
: (5)

In particular, TT (n; H)¿ (1− 1=�cr)n.

He also proved a matching upper bound:

Theorem 7 (Koml#os [8, upper bound]). For every graph H and �¿ 0 there is a thresh-
old n0 = n0(H; �) such that if n¿ n0 and G is a graph with n vertices and minimum
degree

�(G)¿
(
1− 1

�cr(H)

)
n; (6)

then G contains an H-matching that covers all but at most �n vertices.

He also posed the following conjecture:

Conjecture 8 (Koml#os [8]). For every graph H , there is a constant K = K(H) such
that if G is an n-graph satisfying (6), then G contains an H -matching that covers all
but at most K vertices.
This is best possible for every H (by Theorem 5). Hence,(

1− 1
�cr(H)

)
n− K6TT (n; H; n− K)6

(
1− 1

�cr(H)

)
n:

In this paper we will show that the conjecture holds for all su<ciently large values of
n when H is a 3-chromatic graph.
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Theorem 9. For any 3-chromatic graph H on h vertices with u = u(H), there exists
an n0 such that for all n¿ n0, if G is any n vertex graph with

�(G)¿
(
1− 1

�cr(H)

)
n; (7)

then G contains an H-matching that covers all but at most 6h(h−u)=u vertices of G.

In the proof we will use the concept of bottle-graphs. A bottle-graph of chromatic
number r is a complete r-partite graph with color-class size vector (u; w; w; : : : ; w),
where u=�w for some �6 1. Clearly, the critical chromatic number of this graph is r−
1+�. The vector (�=(r−1+�); 1=(r−1+�); : : : ; 1=(r−1+�)) is called the color-vector of
the bottle-graph. The parameters u and w are the neck and the width of the bottle-graph,
respectively. Given an r-chromatic graph H of order h with u = u(H), we say that
a graph B = B(H) is the bottle-graph of H if B is the smallest bottle-graph with
color-vector �=(s; t; : : : ; t) which contains an H -factor, where s=u=h, and t=(1−s)=(r−
1). Note, �cr(B)=�cr(H)=1=t=(r−1)=(1−s). We can always construct a bottle-graph
using r − 1 vertex disjoint copies of H : given color-class sizes u; u1; u2; : : : ; ur−1 in a
coloring of H , the ith copy of H places its u; ui; ui+1; : : : ; ur−1; u1; : : : ; ui−1 vertices into
color classes 1; 2; : : : ; r of the bottle-graph, respectively. Thus the order of B(H) is at
most (r − 1)h. Therefore, it is su<cient to prove Theorem 9 for bottle-graphs:

Theorem 10 (Main theorem). For a graph H = K(u; w; w), there exists an n0 such
that for all n¿ n0, if G is any graph on n vertices with minimum degree

�(G)¿
�+ 1
�+ 2

n=
(
1
2
+ �

)
n; (8)

where �= u=w and �= �=2(�+2), then G contains an H-matching that covers all but
at most 3=�w vertices.

2. Notations and tools

V (G) and E(G) denote the vertex-set and the edge-set of the graph G, and we
write v(G) = |V (G)| (order of G) and e(G) = |E(G)| (size of G). N (v; X ) is the set
of neighbors of v∈V in the set X ⊂ V . We use N (v) to denote N (v; V ). Hence,
|N (v; X )| = deg(v; X ) = degG(v; X ) is the degree of v in X , and deg(v) = deg(v; V ).
In a directed graph D, we use Nout(v) to denote {u∈V (D)| (v; u)∈E(D)} (the out
neighborhood of v), and degout(v)=|Nout(v)|. �(G) stands for the minimum degree, and
 (G) stands for the maximum degree in G. !i(G) denotes the size of a maximum set
of vertex disjoint i-stars (stars with i leaves) in G. We write �(G) and �cr(G) for the
chromatic number and critical chromatic number of G, respectively. For an r-chromatic
graph H of order h, we write u = u(H) for the smallest possible color-class size in
any r-coloring of H . When A and B are disjoint subsets of V (G), we use deg(A; B)
to denote the number of edges in E(G) with one endpoint in A and the other in B.
A bipartite graph G with color classes A and B and edge set E will be denoted by
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G = (A; B; E). K(n1; n2; : : : ; nr) is the complete r-partite graph with color class sizes
n1; n2; : : : ; nr . The density between disjoint sets X and Y is deAned as:

d(X; Y ) =
deg(X; Y )
|X ‖Y | :

In the proof of the Main Theorem, Szemer#edi’s Regularity Lemma [13] plays a pivotal
role. We will need the following deAnition to state the regularity lemma:

De"nition 11 (Regularity condition). Assume �¿ 0. A pair (A; B) of disjoint vertex-sets
in G forms an �-regular pair if for every X ⊂ A and Y ⊂ B satisfying

|X |¿�|A|; |Y |¿�|B|;
we have

|d(X; Y )− d(A; B)|¡�:

This deAnition implies that regular pairs are highly uniform bipartite graphs; namely
the density of any reasonably large subgraph is almost the same as the density of a
regular pair. We will use the following form of the Regularity Lemma:

Lemma 12 (Degree form). For every �¿ 0 there is an M = M (�) such that if G =
(V; E) is any graph and d∈ [0; 1] is any real number, then there is a partition of the
vertex set V into ‘ + 1 clusters V0; V1; : : : ; V‘, and there is a subgraph G′ of G with
the following properties:

• ‘6M ,
• |V0|6 �|V |,
• all clusters Vi, i¿ 1, are of the same size L6 ��|V |�,
• degG′(v)¿ degG(v)− (d+ �)|V | for all v∈V ,
• G′|Vi = ∅ (Vi is an independent set in G′), for all i,
• all pairs (Vi; Vj), 16 i¡ j6 ‘, are �-regular, each with density either 0 or greater
than d, in G′.

A stronger one-sided property of regular pairs is super-regularity:

De"nition 13 (Super-regularity condition). Given a graph G and two disjoint subsets
of its vertices A and B, the pair (A; B) is (�; d)-super-regular if it is �-regular and

deg(a)¿d|B| ∀a∈A; deg(b)¿d|A| ∀b∈B:

We also use the Blow-up Lemma (see [9,11]):

Lemma 14. Given a graph R of order r and positive parameters � and  , there exists
an �=�(�;  ; r)¿ 0 such that the following holds. Let n1; n2; : : : ; nr be arbitrary positive
integers, and let us replace the vertices v1; v2; : : : ; vr of R with pairwise disjoint sets
V1; V2; : : : ; Vr of sizes n1; n2; : : : ; nr (blowing up). We construct two graphs on the same
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vertex-set V =
⋃
i Vi. The @rst graph Rb is obtained by replacing each edge {vi; vj}

of R with the complete bipartite graph between the corresponding vertex-sets Vi and
Vj. A sparser G is constructed by replacing each edge {vi; vj} of R arbitrarily with
some (�; �)-super-regular pair between Vi and Vj. If a graph H with  (H)6 is
embeddable into Rb, then it is already embeddable into G.

3. Number of left-over vertices

In Conjecture 8, K is a constant that depends only on H . El-Zahar’s conjecture [6]
proved recently by Abbasi [1], states that K(Cl) = 0. But in general K may not be
zero. The following example justiAes the need for the leftover vertices, i.e., for some
graph H with �cr(H)¡�(H), there exists a constant K ¿ 0 such that TT (n; H; n −
K)¿ (1−1=�cr(H))n. It also suggests that the number of leftover vertices in Theorem
10 is correct, up to a constant factor.
Let G be an n-graph satisfying:

(1) V (G) = A ∪ B, where |A|= (12 − �)n and |B|= (12 + �)n,
(2) E(G) is complete between A and B,
(3) A is an independent set, B contains s=�|B|=(4�n+2w−2)� connected components,

each of which is a complete bipartite graph (Li; Ri).
(4) |Li|= |Ri|= 2�n+ w − 1 for 16 i6 s− 1.

It is easy to see that G satisAes the degree condition in (8). Our H is again
K(u; w; w). Without loss of generality, we assume w + u divides 2�n.
Let H denote an H -matching of G. For every copy of H in H, two of its color

classes have to come from an (L; R) component of B, and the third color class should
be in A. Let us assume that every copy of H in H has one of its w-vertex classes
(called w-class) in A, i.e., restriction of H on B is a union of K(w; u) graphs. Then
there are at least 2w − 2 vertices left uncovered in each component (Li; Ri) of B, for
i=1; : : : ; s−1. In fact, if we let t=2�n=(w+u), then we can And 2t copies of K(w; u)
in each (L; R) component by placing t copies of w- and u-classes in each side (thus
2w − 2 vertices will be left uncovered). Assume to the contrary that 2t + 1 copies of
K(w; u) could be placed in an (L; R) component of B, say, L contains t + i w-sets and
t − i + 1 u-sets with i¿ 1. But this is impossible, because

(t + i)w + (t − i + 1)u= tw + tu+ i(w − u) + u¿ t(w + u) + w¿ 2�n+ w − 1:

Finally, our assumption that all copies of H have one of their w-sets in A is necessary
for achieving the maximum number of copies of H in H. In fact, embedding K(w; w)
in the (L; R) of B will generate less than 2t copies of H in (L; R; A). Therefore, in any
H -matching of G, there will be at least 2w−2 uncovered vertices for each component
(Li; Ri)∈B, 16 i6 s−1, leaving a total of at least (s−1)(2w−2) vertices uncovered
in B. Consequently, there will be at least (s−1)(2w−2)|A|=|B| vertices left uncovered
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in A. Together, the number of uncovered vertices in any H -matching of G is at least

(s− 1)(2w − 2)
n
|B| =

⌈ |B|
4�n+ 2w − 2

⌉
n
|B| (2w − 2) ≈ w

2�
:

4. Proof of the main theorem

4.1. Outline of the proof

In the test graph H=K(u; w; w), we assume u¡w (that is, �cr¡�), since otherwise
an almost-complete tiling follows from Theorem 4, which gives even a better constant.
Throughout the paper, we assume that n is su<ciently large and will use the following
main parameters:

��d�.�/�1− �: (9)

For simplicity, we do not compute the actual dependencies among these parameters.
We Arst apply Lemma 12 to G, with � and d as in (9), to get a partition of V (G)

into clusters V0; V1; : : : ; V‘. Without loss of generality, we assume that L, the size of
Vi, 16 i6 ‘, is divisible by 2u(w − u)(w + u)(2w + u), because otherwise we could
move a constant number of vertices from each Vi to V0 to achieve this condition. We
let G′′ ⊂ G′ be the induced graph on V (G′) \ V0 and deAne the reduced graph R as
follows:
The vertices of R are the clusters Vi; 16 i6 ‘, and there exists an edge between

two vertices of R if the corresponding clusters form an �-regular pair in G′ with density
exceeding d. Since �(G′)¿ ( 12 + �− (d+ �))n, and ��d, an easy computation shows
that:

�(R)¿ ( 12 + �− 2d)‘: (10)

Throughout the proof we will use two classes of tripartite graphs: the unbalanced
triangle-graph H∗(t) is one with three color-classes of size t; t; �t (t = cL, for some
constant 0¡c6 1), and every pair of its color-classes is �-regular. The balanced
triangle-graph H∗∗(t) is deAned similarly but all its color classes have the same
size t.
The outline of the proof is as follows:
We show that, except for a special case, G′′ can be tiled by H∗(L1) and H∗∗(L2)

in a way that a positive percentage of vertices of G′′ are in copies of H∗∗(L2). Here
L2 = (2 + �)L1 = cL for some constant 0¡c6 1. Next, the vertices in V0 will be in-
serted into appropriate cluster triangles, H∗’s or H∗∗’s, such that after we remove
all copies of H containing new vertices, each of the remaining triangles still has
an H -tiling leaving out at most 4w vertices. The connection among clusters will A-
nally reduce the number of left-over vertices to a constant that depends only on w
and u.
In the special case, we will show that in G, there exists an almost-independent

vertex set A of size n=(2+�). Plus, B=V (G)\A can be either tiled by K(u; w) almost
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completely, or partitioned into B1 and B2 with |B1| = n=(2 + �); |B2| = �n=(2 + �),
and d(B1; B2) ≈ 1. In either case, we conclude that except for a constant number of
vertices, G can be tiled by H .

4.2. The maximal clique cover of the reduced graph

In order to tile G′′ with H∗ and H∗∗, we need the following preparation in pure
graph theory.
Given a graph G, a k-clique cover 2= {2k; 2k−1; : : : ; 21} is a collection of disjoint

cliques, where 2i corresponds to a set of cliques of order i for i∈{k; k−1; : : : ; 1}, and
V (G)=

⋃k
i=1 V (2i). We will say a k-clique cover 2={2k; 2k−1; : : : ; 21} is maximal if

for any other k-clique cover 2′={2′
k ; 2

′
k−1; : : : ; 2

′
1}, if for some 16 i6 k, |2′

i |¿ |2i|,
then there is a i¡ j6 k such that |2j|¿ |2′

j|.
Consider a maximal 3-clique cover 2= {23; 22; 21} in the graph G. Let K and K ′

be two cliques in 2 of sizes i and j, with i6 j. We say K and K ′ are:

• well-connected (or K ,→ K ′) if deg(v; K ′) = j − 1; ∀v∈K ,
• over-connected (or K

¿
,→K ′) if deg(K; K ′)¿ i(j − 1) and KK ′,

• under-connected (or K
¡
,→K ′) if deg(K; K ′)¡i(j − 1).

The following propositions hold because 2 is maximal:

Proposition 15. (1) deg(c; e)6 1, deg(e; e′)6 2, deg({c; c′}; 4)6 4 and deg({e; e′}; 4)
6 8 for any c; c′ in 21, e; e′ in 22, and 4 in 23.
(2) Fix an edge e∈22, and label its end vertices by Top(e) and Bot(e). If an-

other e′ ∈22 satis@es e ,→ e′, then the vertices of e′ can be labeled as Top(e′)
and Bot(e′) such that {Top(e);Top(e′)}×{Bot(e);Bot(e′)} form a complete bipartite
graph. Moreover, if E = {e′ ∈22 : e ,→ e′}, then {Top(e′) : e′ ∈E} and {Bot(e′) :
e′ ∈E} form two independent sets.
(3) If deg({c1; c2}; 4) = 4 for c1; c2 ∈21 and 4∈23, then c1 ,→ 4, c2 ,→ 4, and

N (c1; 4)=N (c2; 4). If Topc(4) denotes the vertex of 4 that is not contained in N (c; 4)
when c ,→ 4, then Topc1 (4) = Topc2 (4) (we can simply use Top(4) to denote this
vertex, as it is independent of the choice of vertex c∈21). It is obvious that Top(4)
plays the same role as the elements of 21, and 4 can be replaced by c1 ∪ N (c2; 4).
Moreover, if S1 ={4∈23 : c1 ,→ 4; c2 ,→ 4}, then {Top(4) : 4∈S1} is an independent
set.
(4) If deg(e1; 4) = deg(e2; 4) = 4 for e1; e2 ∈22 and 4∈23, then e1 ,→ 4, e2 ,→

4, and the same vertex of 4 is adjacent to both ends of e1 and e2. We will use
Tip(4) to denote this vertex and it is independent of the choice of edges e1 and e2.
Further, we can label the other two vertices of 4 as Top(4) and Bot(4), and the
end points of ei, i = 1; 2 as Top(ei) and Bot(ei) such that {Top(e1);Top(e2);Top(4)}
and {Bot(e1);Bot(e2);Bot(4)} are independent sets. Hence, the pair {Top(4);Bot(4)}
plays the same role as e1 or e2. Finally, let S2 = {4∈23 : e1 ,→ 4; e2 ,→ 4}, then
{Top(4) : 4∈S2} and {Bot(4) : 4∈S2} form two independent sets in R.
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(5) A 4∈23 can be over-connected to at most one element in 21 or 22. Moreover,
if 4 is over-connected to one element, it will be under-connected to any other element
of 21 and 22.

As a result of the above properties, we have:

Lemma 16. Suppose 2={21; 22; 23} is a maximal 3-clique cover of a graph G, with

|21|¿ 2 or |21|= 0; |22|¿ 2:

Then

|23|¿ |21|+ 2�(G)− v(G):

Proof. First, assume that |21|¿ 2. Since 2 is maximal, any two singletons c; c′ ∈21

satisfy

deg({c; c′}; 21) = 0;

deg({c; c′}; 22)6 2|22|;

deg({c; c′}; 23)6 4|23|:
Together we have

2�(G)6 deg({c; c′}; V (G))6 2(2|23|+ |22|):
Combining with the fact that 3|23|+2|22|+ |21|= v(G), the claim thus follows. Next,
assume |21|= 0; |22|¿ 2. Any two edges e; e′ ∈22 satisfy

deg({e; e′}; 22 \ {e; e′})6 4(|22| − 2);

deg({e; e′}; 23)6 8|23|;
and consequently

4�(G)− 86 deg({e; e′}; V (G) \ {e; e′})6 4(|22| − 2) + 8|23|:
Using 3|23|+ 2|22|= v(G) and |21|= 0, the claim follows.

We now And a maximal 3-clique cover 2={23; 22; 21} in the reduced graph R and
use ’i to denote the normalized size |2i|=‘, for 16 i6 3. Each element (clique) of 2
corresponds to a cluster-clique in G′′. Corresponding to 2 = {23; 22; 21}, the family
of cluster-cliques is denoted by 7 = {73; 72; 71}.
We assume that at least one of |22| and |21| is bigger than one. Otherwise we

remove all the vertices (of G) in 71 and 72 to V0 such that the remaining vertices
of G′′ are covered by the copies of H∗∗(L) (from 73) and still |V0|6 4�n. This helps
us jump to Section 4.3.2. Furthermore, if |21| = 1 and |22|¿ 1, we remove all the
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vertices in 71 to V0 such that the resulting cover 2 satisAes |21|= 0. Hence, we can
apply Lemma 16 to R and 2. Using the degree condition (10), we get

’3¿’1 + 2�− 4d: (11)

Throughout Section 4.3, we will assume that ’3¿’1+2�+. for some positive number
. deAned in (9). The special case ’36’1 + 2�+ . will be discussed in Section 4.4.

4.3. The general case

Let s= ’3 − ’1 − 2�. Our assumption is that s¿..

4.3.1. The decomposition lemma
For two cliques K and K ′ in the reduced graph R, we say that K ′ is good for K , if

K ,→ K ′ or K
¿
,→K ′, otherwise K ′ is bad for K . An element x of 21 or 22 is called

typical if for the constant b= �(1 + �)=(1− �)�, |{4∈23: x
¿
,→4}|¡b, otherwise, x is

referred to as an atypical element. The same terminology will be used in G′′ as well.
First let us estimate the numbers of good triangles in 23 for a given typical edges

e in 22. Let 9e = |{4∈23 : deg(e; 4)6 3}|=‘. Then

2( 12 + �− 2d)‘6 deg(e; R)6 (4’3 − 9e + 2’2 + ’1)‘ + 2b; (12)

which implies 9e6’1 + s + 5d. Consequently, there are at least (2� − 5d)‘ good
triangles in 23 for e.
Similarly, for a typical singleton c∈21, let 9c = |{4∈23 : c

¡
,→4}|=‘. By the degree

condition and the fact that 2 is maximal, we have

( 12 + �− 2d)‘6 (2’3 − 9c + ’2)‘ + b;

which implies 9c6 s=2 + 3d. Consequently, there are at least (’1 + 2� + s=2 − 3d)‘
good triangles for each typical c∈21.

The Slicing Lemma in [12] says that subgraphs of a regular pair are also regular:

Proposition 17. Let Vi and Vj , 16 i; j6 ‘, be two clusters in G′′ that correspond to
endpoints of an edge e in the reduced graph R. If both of Vi and Vj are partitioned to
p sub-clusters {V 1

i ; : : : ; V
p
i } and {V 1

j ; : : : ; V
p
j } such that the sizes of sub-clusters are at

least cL for some c∈ (0; 1), then the (V r
i ; V

t
j ), 16 r; t6p, are �′-regular pairs, with

�′ =min(�=2; �=c). In particular, (V t
i ; V

t
j ); 16 t6p, are p disjoint �′-regular edges.

Evenly partitioning both clusters Vi; Vj into p parts thus replaces the old edge
(Vi; Vj) with p new edges in the cluster graph. This procedure will be referred to as a
p-partition of a cluster edge. The p-partition of a cluster triangle is deAned similarly.
For simplicity, we will still use � as the parameter in the new regular pairs.
Now we are ready to state the decomposition algorithm of G′′.
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Decomposition Algorithm:

(1) u-partition all cluster edges in 72:
Recall that u is the neck of the bottle-graph H . Let L′ = L=u denote the size of
the resulting sub-clusters. A new cluster edge corresponds to the same edge of 22

as before.
(2) Form copies of H∗(L′) with new typical cluster edges:

Suppose (V i
1; V

i
2) is a new cluster edge corresponding to a typical edge e∈22. We

arbitrarily choose a cluster triangle T ∈73 whose corresponding triangle 4∈P3 is
good for e. We use V i

1; V
i
2 and �L′ vertices from the cluster corresponding to

Tip(4) to form a copy of H∗(L′). We repeat this for all new typical edges in 72.
A cluster triangle could be chosen more than once, but not more than (1− �)=�u
times.

(3) Form copies of H∗(L′) with new atypical cluster edges:
Consider a cluster edge (V i

1; V
i
2) corresponding to an atypical edge e∈22. By

deAnition, there are at least �(1+�)=(1−�)� triangles in 23 that are over-connected
to e. Following Proposition 15.5, the corresponding cluster triangles (is this clear?)
were not involved in Step 2. Each of these triangles T has at least two clusters
adjacent to both V i

1 and V i
2; we label one of them as Tip(T ). As in Step 2, we

use V i
1; V

i
2 and �L′ vertices from Tip(T ) to from a copy of H∗(L′).

(4) Partition all cluster triangles and create a new triangle family:
Let T ∈73 be a cluster triangle with cluster sizes L; L, and L− s�L′ (06 s6 (1−
�)=�u). It means that one of its clusters has been used to form s copies of H∗(L′)
in either Step 2 or 3. Let L′′ = �L′=(1 − �) = L=(w − u). It is easy to see that T
can be divided into s copies of H∗(L′′) and (1 − �)=�u − s copies of H∗∗(L′′).
Repeat this to all cluster triangles and denote by 7′

3 the new family of H∗∗(L′′).
(5) Form copies of H∗ with typical clusters in 71:

Consider a cluster U corresponding to some typical singleton c∈21. We choose
(1 + �)L=(1 − �)L′′ triangles from 7′

3 whose corresponding triangles in 23 are
good for c. Each of these triangles T = {V1; V2; V3} contains two clusters V1 and
V2 adjacent to U . Using (1 + �)=2L′′ vertices from each of V1, V2, and the entire
V3, we make two copies of H∗(L′′=2). The remaining vertices of V1 and V2 will
be assigned to U . Together with (1− �)=(1 + �)L′′ vertices of U , they form two
copies of H∗((1− �)=2(1+ �)L′′). After repeating this to all selected triangles, we
eliminate U .

(6) Form copies of H∗ with atypical clusters in 71:
By deAnition, each atypical singleton c∈21 has at least �(1 + �)=(1 − �)� over-
connected triangles. By Proposition 15.5, these triangles were not involved in Steps
1–5. We thus follow the same procedure in Step 5 to eliminate any cluster corre-
sponding to c.

The correctness of the above algorithm is immediate from the following claim:

Claim 18. There are enough triangles to carry out steps 2–6 of the decomposition
algorithm.
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Proof. In Step 1 we created ’2u‘ sub-cluster edges. To verify the correctness of Step
2, we need to show that when we sequentially consider all new typical edges, there
are always good triangle available, even under the constraint that no triangles could
be used more than (1− �)=�u times. Recall that the number of good triangles for any
typical edge is at least (2�− 5d)‘. We expect the following inequality to hold:

’2u‘6
1− �
�

u(2�− 5d)‘:

That is, 2�− 5d− �=(1− �)’2¿ 0. In fact,

2�− 5d− �
1− �

’2 = 2�− 5d− �(1− 3’3 − ’1)
2(1− �)

= 2�− 5d− �
1− �

(
1
2
− 3

2
(’1 + 2�+ s)− 1

2
’1

)

= 2�
(
1 +

3�
2(1− �)

)
− �

2(1− �)
+

2�
1− �

’1

+
3�

2(1− �)
s− 5d

=
2�

1− �
’1 + s1; (13)

where s1 = 3�=2(1− �)s− 5d¿�.�d¿ 0.
In Step 3, u new edges were created from each atypical edge in 22. Observe that

the number of (available) over-connected triangles for each atypical edge in 22 is
�(1 + �)=(1 − �)�. Again each triangle can be used by (1 − �)=�u new edges. The
correctness of Step 3 follows from

u¡
⌈
1 + �
1− �

⌉
1− �
�

u:

In Step 4, each triangle in 73 that has been used by s new cluster edges is partitioned
into L=L′′ − s copies of H∗∗(L′′). After eliminating a total of L=L′’2‘ new cluster
edges, the number of new triangles |7′

3| thus becomes (’3 − ’2�=(1− �))L=L′′‘.
The correctness of Step 6 comes from the same argument as in Step 3. Finally, to

Anish the proof, we need to justify the correctness of Step 5, or to show that there are
enough good triangles in 7′

3 for all typical singletons of 71. Because the number of
good triangles in 23 is at least (’1 + 2�+ s=2− 3d)‘, the number of good triangles in
7′

3 is at least (’1 + 2�+ s=2− 3d− �=(1− �)’2)L=L′′‘. To guarantee that each single
cluster has a disjoint set of L=((1 − �)=(1 + �)L′′) good triangles in Step 5, we need
to verify(

’1 + 2�+
s
2
− 3d− �

1− �
’2

)
‘
L
L′′

− L
(1− �)=(1 + �)L′′

’1‘¿ 0;

or equivalently,

’1 + 2�+
s
2
− 3d− �

1− �
’2 −

(
1 + �
1− �

)
’1¿ 0: (14)
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Substituting for 2�− �=(1− �)’2 = 2�=(1− �)’1 + s1 + 5d in (14), we get

s
2
+ s1 + 2d¿

.
2
¿ 0: (15)

After the decomposition G′′ is covered by disjoint copies of H∗ and H∗∗, and by
(15), at least (.=2)n of its vertices are covered by the copies of H∗∗. It is worth
mentioning that in this decomposition there are four possible sizes for copies of H∗:
H∗(L=u), H∗(L=(w − u)), H∗(L=2(w − u)) and H∗(L=2(w + u)), while all the copies
of H∗∗ are H∗∗(L=(w − u)). Using Proposition 17, we further partition some cluster
triangles such that the resulting cover is made of H∗(L1) and H∗∗((2 + �)L1), with
L1 = L=2u(w − u)(w + u)(2w + u). Hence,

Lemma 19. If ’3 −’1 − 2�¿., then G′′ can be covered by vertex disjoint copies of
H∗(L1) and H∗∗(L2), in which L2 = (2 + �)L1 = CL for some 0¡C6 1. Moreover,
at least .=2n of the vertices of G are included in the copies of H∗∗.

4.3.2. Handling of exceptional vertices
The proof of the Main Theorem in the general case is immediate from the following

lemma:

Lemma 20. If a graph G satis@es (8) and contains a vertex subset V0 of size at most
=n, with ��=6 1, and G′′ = G \ V0 can be partitioned to two disjoint subgraphs
G1 ∪ G2 such that:

(1) G1 has an H∗(L1)-factor and G2 has an H∗∗(L2), where L2 = (2+ �)L1 =CL, for
some constant 0¡C6 1,

(2) |V (G2)|= >n, with =�>�1,

then G has an H-matching leaving at most 3w=� uncovered.

Proof. DeAne H∗ and H∗∗ as the families of H∗ and H∗∗ used in the tiling of G1

and G2, respectively. Let H=H∗ ∪H∗∗, h1 = |H∗|; h2 = |H∗∗|. We know,

(2 + �)L1h1 + 3(2 + �)L1h2 = |V (G′′)|= n− =n: (16)

We assume that >6 1
2 , because we can always reduce the number of H∗∗ by dividing

one copy of H∗∗((2 + �)L1) into three copies of H∗(L1). In T = {U1; U2; U3}∈H∗,
the cluster that contains �L1 vertices is always denoted by U3, and referred to as the
small cluster of T .
We will use two complete tripartite graphs H2=K(w+u; w+u; 2w) and H3=K(h; h; h).

Clearly, both H2 and H3 contain H -factors. We also use H− = K(w; w; u − 1) and
H−

3 = K(h; h; h− 1). The following is a corollary of the Key Lemma in [12]:

Lemma 21. Suppose T={V1; V2; V3} is an original cluster triangle in G′′, i.e., |Vi|=L
and (Vi; Vj) is an �-regular pair. T ′ = {W1; W2; W3} is derived from T with Wi ⊂
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Vi; |Wi|= d1L; i = 1; 2; 3, for some d1��. Then H3 ⊂ T ′. In particular, H ⊂ T ′, its
small color class could come from any of W1; W2, or W3.

For a cluster U , we write v ∼ U if deg(v; U )¿d |U |. For each exceptional vertex
v∈V0, we will use vertices in V (G′′) to construct either one or three copies of H .
There are two possible ways to accomplish this:

• If there exists a triangle T = {U1; U2; U3}∈H∗∗ and i∈{1; 2; 3} such that v ∼
Uj ∀j �= i, then Ui is called a host cluster of v. Let Wi =Ui and Wj = N (v; Uj) for
j �= i. Using Lemma 21, we can And a copy of H3, or an H−

3 in W1; W2; W3. Now
H−

3 ∪ {v} forms a copy of H3. We remove this H3 copy such that the resulting Ui
has one more vertex than the other two clusters.

• If there exists a triangle T = {U1; U2; U3}∈H∗ (U3 as the small cluster) such that
v ∼ U1 and v ∼ U2, then as above, we can remove an H− from T (with u − 1
vertices from U3) such that H− ∪ {v} forms a copy of H . As a result, U3 now has
one more vertex than �|U1| and �|U2|.

We sequentially consider all vertices in V0. For each one, if applicable, we perform
one of the above two procedures. Note in above procedures, U1; U2, and U3 always
represents updated clusters, i.e., they only contains the remaining vertices after some
copies of H−

3 or H− are removed. To prevent a cluster from losing too many vertices,
we will leave a cluster-triangle (either in H∗∗ or H∗) alone if any of its clusters has
lost

√
=L1 vertices.

When we proceed to the mth vertex of V0, we need to show that there always exists
an available cluster triangle T such that either T ∈H∗ satisAes v ∼ U1 and v ∼ U2 or
T ∈H∗∗ satisAes ∃i∈{1; 2; 3}; ∀j �= i; v ∼ Uj.
Let m1 denote the number of H∗ whose small clusters can host v, and m2 denote

the number of H∗∗ that contain at least one host cluster for v. Note G′′ could have
lost at most (m− 1)(3h− 1) vertices. By the degree condition we have:

( 12 + �− 3h=)n6 ( 12 + �− =)n− (m− 1)(3h− 1)

6 deg(v; V (G′′))

6 (h1 − m1)(1 + �+ d)L1 + m1(2 + �)L1

+ (h2 − m2)(1 + 2d)(2 + �)L1 + 3m2(2 + �)L1:

We divide last two of these inequalities by n−=n and let t1=(m1(2+�)L1)=(n−=n); t2=
(m23(2 + �)L1)=(n− =n). Using (1 + �)=(2 + �) = 1

2 + �, >= (3(2 + �)L1h2)=(n− =n),
and (16), we have

1
2
+ �− 3h=6 (1− >− t1)

(
1 + �+ d
2 + �

)
+ t1 +

(
1 + 2d

3

)
(>− t2) + t2

6
(
1
2
+ �+ d

)
(1− >) +

(
1
2
− �

)
t1 +

(
1
3
+ d

)
>+

2
3
t2;
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and (
1
2
+ �− 1

3

)
>− d− 3h=6

1
2
t1 +

2
3
t26

7
6
max(t1; t2):

That implies max(t1; t2)¿ ( 17 + 6=7�)>− d− 3h=¿ 1
7>. Since t1 = m1(1− >)=h1, and

t2 = m2>=h2, then either m1¿ 1
7>h1 or m2¿ 1

7h1. Moreover,

min
(
1
7
>h1;

1
7
h2

)
¿

√
=
n
L1

=
=n√
=L1

:

This means that the above procedure can be repeated for all v∈V0.
After V0 becomes empty, we add some more vertices to V0 to achieve super-regularity

inside the triangles and then eliminate new (at most 6�n) exceptional vertices. In
T = {U1; U2; U3}, we move a vertex v from cluster Ui to V0 if there exists j �= i
with deg(v; Uj)¡ (d− �)|Uj|. The �-regularity of the cluster-pairs guarantees that there
are at most 2�|Ui| such vertices in each cluster. For T = {U1; U2; U3}∈H∗, we may
also remove extra vertices to maintain |U1| = |U2|, |U3|¿ �|U1|. After this, all pairs
inside the triangles satisfy (�; d=2) super-regularity.
The new elements of H∗ do not necessarily follow the original deAnition of H∗.

Instead, if T = {U1; U2; U3}, we have |U1| = |U2| and |U3|¿ �|U1|. For convenience,
we still denote such triangles by H∗. Moreover, there might be a discrepancy among
three clusters in a triangle H∗∗ in H∗∗. Suppose each Ui hosted xi exceptional vertices,
and we set x = x1 + x2 + x3. The current size of Ui is (2 + �)L1 − xh+ xi, 16 i6 3.
We divide this triangle into three copies of H∗ with clusters sizes (L(x); L(x); �L(x) +
x3); (L(x); �L(x)+x2; L(x)), and (�L(x)+x1; L(x); L(x)), where L(x)=L1−wx. After we
repeat this to all the triangles in H∗∗, we obtain a new triangle family (still denoted
by H) containing only H∗-type cluster-triangles. Non-small clusters (U1 or U2) in
diRerent triangles may have diRerent sizes, but they satisfy |U1|= |U2|¿ (1−√

=)L1.
Denote the induced subgraph of G on the remaining vertices by G′′. Our goal is to

tile G′′ with H . Let us Arst estimate the size of the largest H -matching of a current
cluster-triangle.

Claim 22. For any cluster-triangle T = {U1; U2; U3}∈H, there is an H-matching of
T that leaves out K(Ui) vertices in Ui for i = 1; 2; 3, in which K(U1) + K(U2) +
K(U3)¡ 4w.

Proof. Let T={U1; U2; U3} be a cluster-triangle in H, with |U1|=|U2|=s; |U3|=�s+t.
We will remove i copies of H2 from T such that in each copy the color class of size
2w always resides in U3. Let U ′

1; U
′
2; U

′
3 denote the new clusters of T . To achieve

|U ′
3|= �|U ′

1|(=�|U ′
2|), we want to have

�s+ t − 2iw = �(s− i(w + u));

or

i =
t

2w − �(w + u)
:

This, in turn, implies that the above procedure can be repeated until |U ′
3|−�|U ′

1|¡ 2w−
�(w + u). Finally, by the Blow-up Lemma, the new graph T ′ = {U ′

1; U
′
2; U

′
3} with
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|U ′
1|= |U ′

2|=s′; |U ′
3|=�s′ can be tiled with H except for at most h−1 vertices. Overall

there exists an H -matching of T that leaves out at most h + 2w − �(w + u)¡ 4w
vertices.

If we directly apply the algorithm in Claim 22 to all the elements of H, we will
get an H -matching of G′′ that leaves out at most 4w|H| vertices. Since |H| = O(‘)
and ‘ is not larger than the constant M (�) (according to the Regularity Lemma), this
already conArms Conjecture 8.
However, using the connection between clusters in diRerent triangles of |H|, the

number of uncovered vertices will be reduced to a constant independent of |H|. Instead
of performing the tiling immediately, we Arst use Claim 22 to And the numbers of extra
vertices K(U ) for each cluster U . We then deAne a directed graph D whose vertices
are all the clusters (large or small). Suppose U ∈T; U ′ ∈T ′ and T ′ = {U ′; U ′′; U ′′′}.
We draw a directed edge from U to U ′ if and only if U is adjacent to both U ′′ and
U ′′′.

Claim 23. For any C ∈V (D), degout(C)¿ (4�=3)|V (D)|.

Proof. For T = {U1; U2; U3} in H, if there is a directed edge from C to some cluster
in T , C must be adjacent to at least two clusters in T . We deAne t1, t2, and t3 as
the fractions of the triangles T ∈H for which, respectively, C is adjacent to all but
U3, C is adjacent to all but one of U1; U2, and C is adjacent to all Ui. By the degree
condition, we have

1
2 + �− 2d6 (1− 2�)t1 + (12 + �)t2 + t3

= (12− �) + (12 − �)t1 + 2�t2 + (12 + �)t3:

Since �= �=2(2 + �)6 1
6 , we have ( 12 + �)6 2( 12 − �). This in turn implies

2�− 2d6 ( 12 − �)t1 + 2�t2 + (12 + �)t3

6 ( 12 − �)(t1 + t2 + 2t3):

Therefore in D,

degout(C) = (t1 + t2 + 3t3)|H|

¿
2�− 2d
1
2 − �

|V (D)|
3

¿
4�
3
|V (D)|:

In a directed graph D we deAne the source set of a vertex v as

W(v) = {u∈V (D): there is a directed path from u to v}:
It is easy to see that |W(u)|¿ |W(v)| if u∈Nout(v). We call a set S(D) ⊆ V (D) the
sink set of D if V (D) =

⋃
v∈S(D) W(v).



Ali Shokoufandeh, Yi Zhao /Discrete Mathematics 277 (2004) 171–191 187

Lemma 24. In a directed graph D, with � = minv∈V (D) degout(v), there is a sink set
S of size at most |V (D)|=(�+ 1).

Proof. Let x1 be a vertex in which

|W(x1)|= max
v∈V (D)

|W(v)|:

Since Nout(x1)∈W(x1) (otherwise, some out-neighbor of x1 would produce a larger
source set), we have |W(x1)|¿ � + 1. Let D′ = D \ W(x1). Then for every vertex
v∈D′, the set Nout(v;D′) is the same as Nout(v;D), since if v′ ∈Nout(v;D) ∩W(x1),
v would also be in W(x1). Now, let x2 be a vertex with the largest source set in D′.
We have W(x2)¿ �+1 in D′. This procedure can be repeated at most |V (D)|=(�+1)
times and the proof follows.

We are now ready to describe our tiling algorithm. For each cluster U , by Claim 22,
we Arst And K(U ), the number of left-over vertices in each cluster U . Next, applying
Claim 23 and Lemma 24 in the directed (cluster) graph D, we And a sink set S of
size at most 3=4�. We then assume that only the clusters in S may carry left-over
vertices. In fact, assume there exists some cluster C0 �∈ S with K(C0)¿ 0. We can
And a directed path C0; C1; : : : ; Ct from C0 to some cluster Ct ∈S. Set x = K(C0).
For i = 1; : : : ; t, suppose Ti is the triangle that contains Ci. Depending on whether Ci
is a large or a small cluster, it takes either w or v vertices of Ci to form a copy of
H inside Ti. Denote this number by ui. For i=1; : : : ; t, we form x copies of H with x
vertices from Ci−1 and (h− 1)x vertices from Ti (in particular (ui − 1)x vertices from
Ci). After this, K(C0) becomes zero and K(Ct) is increased by x.
Although one cluster might be included in many such paths, since the total number

of extra numbers is much smaller than dL1, the super-regularity will not be impacted
even after the above procedure is applied to all the clusters. Finally, we apply the
Blow-up Lemma to all the triangles in H. The only triangles that could carry uncovered
cvertices are the ones containing clusters of S, and each of them could carry at most
4w uncovered vertices. Therefore, the total number of left-over vertices is at most

4w × |V (D)|
4�|V (D)|=3 =

3w
�
:

4.4. The special case

Recall that 2 = {21; 22; 23} is the maximal clique-cover of R. In this section, we
assume that

s= ’3 − ’1 − 2�6 .: (17)

Depending on the (relative) size of 21, our special case will further be separated into
two cases:
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4.4.1. Special case (I): ’1¡/
Since .�/�1− �, we have ’3¡ 2�+ 2/ and

’2 =
1
2
(1− 3’3 − ’1)¿

1
2
(1− 6�− 7/) =

1
2

(
2(1− �)
2 + �

− 7/
)
�/: (18)

Recall that for any two edges e; e′ ∈22, deg({e; e′}; 22)6 4’2‘, and deg({e; e′}; 23)
6 8’3‘. Let

m= |{4∈23 : deg({e; e′}; 4)¡ 8}|=‘
and

m′ = |{e∈22 : deg({e; e′}; e)¡ 4}|=‘:
Then

4( 12 + �− 2d)6 8’3 − m+ 4’2 − m′ + 2’1;

which implies

m+ m′6 4/ + 8d: (19)

According to Proposition 15.15, a triangle that is over-connected to some edge must be
under-connected to any other edge. According to (19), the number of such triangles is
small, and so is the number of edges that are over-connected to some triangles. Since
|22| is not small, we can always And two edges e1; e2 ∈22 such that deg(ei; 4)6 4,
for any 4∈23 and i = 1; 2. Let

S= {4∈23 : deg({e1; e2}; 4) = 8}= {4∈23 : e1 ,→ 4; e2 ,→ 4}
and

E= {e∈22 : deg({e1; e2}; e) = 4}= {e∈22 : e1 ,→ e; e2 ,→ e}:
The same computation as above shows that all but at most 4/+8d elements of 22 and
23 belong to S and E. By Proposition 15.2 and 15.4, the sets A = {Top(e);Top(4) :
e∈E; 4∈S} and B= {Bot(e);Bot(4) : e∈E; 4∈S} are both independent, and

|A|= |B|= ’2 + ’3 − (4/ + 8d)¿ 1
2 − �− 6/:

Let �=12/. By the degree condition in the reduced graph R for any cluster a∈A and
b∈B we have deg(a; R \ A)¿ (1− �)|R \ A| and deg(b; R \ B)¿ (1− �)|R \ B|. Next,
we form a set C with clusters Tip(4) for all 4∈S and the remaining clusters in R.
From here on, A; B, and C refer to their underlying vertex sets in G. First we

move the vertices in V0 to C. We then remove a vertex v∈C to A (or to B) if
deg(v; A)¡�1|A| (or deg(v; B)¡�1|B|), where ���1�1. We still denote the resulting
sets by A; B and C.
In an ideal case, |A|=|B|=1=(2+�)n and |C|=�=(2+�)n. By super-regularity between

every two class in {A; B; C}, the Blow-up Lemma produces the desired H -factor in G.
If |A|¡ 1=(2 + �)n and |B|¡ 1=(2 + �)n, an argument similar to Claim 22 shows that
all but 5w vertices of G can be covered by disjoint copies of H . Consequently, we may
assume that |A|¿ 1=(2+�)n. In the following we consider the case that |B|¡ 1=(2+�)n
and |C|¡ 2�n (the other cases are similar).
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From A we will move a vertex v to one of the classes B or C with fewer vertices
for which deg(v; A)¿�1|A|. We still denote the resulting sets by A; B and C. After
this step, either we can achieve the ideal case, or we have deg(v; A)6 �1|A|, for all
v∈A. Assume the latter is true and set t = |A| − 1=(2 + �)n. We need the following
fact:

Proposition 25.

!i(G)¿ (�(G)− i + 1)
n

2(i + 1)S(G)
:

To see this, take a maximal set of i-stars in G and let m denote its size. Let E represent
the number of edges between the stars and the remaining vertices of G. We have the
following chain of inequalities which proves the proposition:

(n− m(i + 1))(�(G)− (i − 1))6E6m(i + 1)S(G):

Proposition 25 implies that we can And t vertex disjoint w-stars in A. After moving the
centers of these w-stars to either B or C to reach the ideal case, we immediately remove
t copies of H that contain these w-stars. The remaining sets A; B and C have size ratio
(1; 1; �) and satisfy the super-regularity condition. The Blow-up Lemma completes the
proof.

4.4.2. Special case (II): ’1¿ /
Similarly to Special Case (I), we can And two clusters c; c′ in 21 such that no

triangle is over-connected to either of c or c′. Let

m= |{4∈23 : deg({c; c′}; 4)6 3}|=‘ and m′ = |{e∈22 : deg({c; c′}; e)6 1}|=‘:
We have

2( 12 + �− 2d)6 4’3 − m+ 2’2 − m′;

which implies

m+ m′6 s+ 4d¡ 2.:

Therefore, there are altogether ’3 + ’2 − 2. triangles and edges well-connected to
both c and c′. Applying Proposition 15.3 to these triangles 4 and edges e, the clusters
Top(4) and Top(e) play the same roles as clusters c and c′. Together with the rest of
the clusters in 21, they form an independent cluster set A with

|A|¿ (’3 + ’2 + ’1 − 2.)‘ =
(
1
2
− �− .

2
− 2.

)
‘:

We then deAne B as the remaining clusters of these triangles and edges, i.e., B is made
up of edges and singletons. We add vertices in the clusters which are not in A or B
to V0. Clearly, |V0|¡ 6.n.
We use Vb for the underlying vertices of G in the clusters of B. Our objective is

to cover Vb ∪ V0 with copies of K(w; u), then combine each copy of K(w; u) with w
vertices of A to obtain the desired H -matching. For simplicity we deAne H0 as K(w; u).
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To tile G(Vb ∪V0) with H0, we almost repeat Section 4.3. The only extra requirement
is that vertices in each copy of H0 must share many common neighbors in A.
Indeed, since B is covered by cluster edges and singletons, as the way we modiAed

73 ∪ 72 to H∗∗ ∪ H∗ in Section 4.3.1, we can then cover B with balanced and
unbalanced cluster-edges, with cluster ratios (1:1) and (1 : �), respectively. This is
always possible, because

2�− �
1− �

’2¿
2�

1− �
’1 =

2�
1− �

/:

From here on, A refers to its underlying vertex sets in G. Let � = 6.. We have

( 12 − �− �)n6 |A|6 ( 12 − �)n;

and

deg(v; Vb)¿ ( 12 + �− 3d)n¿ (1− �)|Vb|; ∀v∈A:
We move at most 2�|Vb| vertices from Vb to A if such a vertex v satisAes

deg(v; A)¡�1|A|; (20)

with ���1�/. To Anish the proof of the Main Theorem we need to consider the
following three cases:
Case (1): |A|= (12 − �)n
Let V be a subset of Vb, in which for all v∈V,

deg(v; A)6 (1− �2)|A|; (21)

with ���2��1.
Let us Arst consider the ideal case of |V| = 0. We will And an H0-matching that

covers all but a constant number of vertices of Vb ∪ V0. Since (21) does not hold, for
every copy of H0 with vertices {v1; : : : ; vw+u}, the common neighborhood of vi; i =
1; : : : ; w + u, will almost cover the whole set A. Moreover, the common neighborhood
of any w vertices in A is almost |B|. Next we break down all but a constant number
of vertices of A into sets of size w. By the KTonig–Hall Theorem, there exists a perfect
matching between the copies of H0 from B and the w-sets from A. This in turn implies
that G contains disjoint copies of H except for a constant number of vertices.
If no vertices in any clusters of B satisfy (20), we may tile Vb ∪V0 with H0 exactly

as in Section 4.3.2. Otherwise, we have to make sure that the size ratio of two new
clusters in any cluster edge Ats the need of H0-tiling. If an unbalanced edge (U1; U2)
with |U1|=L1 = |U2|a loses some vertices, we remove more vertices from U1; U2 to V0

such that the resulting clusters U ′
1; U

′
2 satisfy (I) |U ′

1|¿L1=2, (II) 1¿ |U ′
1|=|U ′

2|¿ �.
If a balanced edge (U1; U2) with |U1|= |U2|=L2 loses vertices, we may remove more
vertices to V0 such that the resulting clusters U ′

1; U
′
2 satisfy |U ′

1| = |U ′
2|¿L2=2. It is

easy to see that after these steps, the size of V0 is smaller than C0�n, where C0 = 4=�.
Next, we follow the same argument as in Lemma 20 to And a H0-matching of Vb that
leaves out only (1=2 + �)=�2w vertices. After combining with A, the total number of
vertices uncovered by copies of H is bounded by

2w × 1=2 + �
�

× 1
1=2 + �

=
2w
�
:
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When |V|¿ 0, we will need an H0-matching of Vb ∪ V0 in which each copy of H0

contains at most one vertex of V. As a result, the vertices in any copy of H0 still
have reasonably large common degree in A and the KTonig–Hall Theorem still holds.
Observe that in the case |V|= 0, the vertices of V0 were inserted into diRerent H0’s.
Since |V|¡ 2�=�2n¡�2n, we can simply move the vertices in V to V0 and then
follow the procedure used in the ideal case.
Case 2: |A|¡ ( 12 − �)n
In Case 1, each copy of H has one of its w-vertex color class coming from A.

When |A|¡ ( 12 − �)n, we will change the tiling such that some copies of H have their
u-vertex color class chosen from A. The rest is similar to Case 1.
Case 3: |A|¿ ( 12 − �)n
Similarly to Special Case (I) in Section 4.4.1, the existence of |A| − ( 12 − �)n copies

of w-stars in A will help to reduce the |A|. We then Anish the tiling using an argument
similar to Case 1.
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