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Abstract. In this paper we study a multi-partite version of the Erdős–Stone theorem. Given
integers r ă k and t ě 1, let exkpn,Kr`1ptqq be the maximum number of edges of Kr`1ptq-free
k-partite graphs with n vertices in each part, where Kr`1ptq is the complete pr ` 1q-partite graph
with t vertices in each part. We determine the exact value of exkpn,Kr`1ptqq for t ď 3, r ă k ď 2r
and sufficiently large n. We also characterize all extremal graphs for r, k such that r divides k,
analogous to a result of Erdős and Simonovits on forbidding Kr`1ptq in general graphs.

1. Introduction

Generalizing Mantel’s theorem from 1907 [18], Turán’s theorem from 1941 [23] started the sys-
temetic study of Extremal Graph Theory. Given a graph F , let expn, F q denote the largest number
of edges in a graph not containing F as a subgraph (called F -free). Let Kr denote the complete
graph on r vertices and Trpnq denote the complete r-partite graph on n vertices with tn{ru or rn{rs

in each part (known as the Turán graph); and trpnq be the size of Trpnq. Turán’s theorem [23] states
that expn,Kr`1q “ trpnq for all n ě r ě 1 and in addition, Trpnq is the unique extremal graph.

Let Kt1,...,tr denote the complete r-partite graph with parts of size t1, . . . , tr and write Krptq “

Kt,...,t with r parts. A celebrated result of Erdős and Stone [10] determines expn,Kr`1ptqq asymp-
totically:

expn,Kr`1ptqq “ trpnq ` opn2q “

ˆ

1 ´
1

r

˙

n2

2
` opn2q.

Erdős [7] and Simonovits [21] independently improved the error term above to Opn2´1{tq. Simonovits
[21] also showed that any extremal graph for Kr`1ptq can be obtained from Trpnq by adding or

removing Opn2´1{tq edges. Later Erdős and Simonovits [9] determined the structure of extremal
graphs for Kr`1ptq for t ď 3 as follows.

Theorem 1. [9] For t ď 3, every extremal graph G for Kr`1ptq has a vertex partition U1, . . . , Ur

such that

‚ GrUi, Ujs is complete for all i ‰ j,
‚ GrUis “ n{r ` opnq,
‚ GrU1s is extremal for Kt,t, and
‚ GrU2s, . . . , GrUrs are extremal for K1,t.

The restriction t ď 3 in Theorem 1 comes from our knowledge on expn,Kt,tq. A well-known open

problem in Extremal Graph Theory is proving expn,Kt,tq “ Ωpn2´1{tq and this is only known for
t ď 3.
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Extremal problems with multipartite graphs as host graphs have been studied since 1951, when
Zarankiewicz proposed the study of the largest number of edges in a Ks,t-free bipartite graph. Let
Gpn1, . . . , nkq denote the family of k-partite graphs with n1, . . . , nk vertices in its parts and write
Gkpnq “ Gpn, . . . , nq with k parts. Given a graph F , define expn1, . . . , nk;F q as the largest number
of edges in F -free graphs from Gpn1, . . . , nkq, and let exkpn, F q “ expn, . . . , n;F q (with k parts).

(Trivially exkpn, F q “
`

k
2

˘

n2 if the chromatic number χpF q ą k.) In 1975 Bollobás, Erdős, and
Szemerédi [2] investigated several Turán-type problem for multipartite graphs. Applying a simple
counting argument, they showed that, for any n, k, r P N with k ą r,

exkpn,Kr`1q “ trpkqn2 (1.1)

The main results of [2] were on the minimum degree that forces a copy of Kr in the graphs
of Gkpnq. This problem has been intensively studied and resolved when k “ r (frequently in its
complementary form concerning independent transversals) [13–15, 22], and more recently for k ą r
[17] (certain cases are still unsolved). There are several other extremal results for multipartite
graphs. Bollobás, Erdős, and Straus [1] determined expn1, . . . , nr;Krq for all n1, . . . , nr and r. Let
kKr denote k vertex-disjoint copies of Kr. The problem expn1, . . . , nr; kKrq were studied more
recently [6,12,24] and settled by Chen, Lu, and Yuan [5] when n1, . . . , nr are sufficiently large (k, r
are arbitrary but fixed). The minimum pair density of multipartite graphs that forces a clique was
studied by Bondy, Shen, Thomassé, and Thomassen [3] and Pfender [19].

In this paper we study exkpn,Kr`1ptqq, the multi-partite version of the Erdős–Stone theorem and
Theorem 1. To give the precise value of exkpn,Kr`1ptqq, we need the following definition. Given

a, t, n1, . . . , na P N, let z
paq

t pn1, . . . , naq be the a-partite Zarankiewicz number for Kt,t, that is, the
maximum number of edges in a Kt,t-free bipartite graph with part sizes n1, . . . , na. For simplicity,

we write z
paq

t pnq if n1 “ ¨ ¨ ¨ “ na. We also write ztpm,nq for z
p2q

t pm,nq.
Theorem 1 says that any extremal graph for Kr`1ptq is the join of an extremal graph for Kt,t

and r ´ 1 extremal graphs for K1,t. Inspired by this, a natural guess of an extremal graph for its
r-partite analogue is as follows. Suppose k “ ar ` b with 0 ď b ă r. We start with an n-blowup of
Trpkq, which has r classes and each class has either a or a ` 1 parts. We add a Kt,t-free graph to
one class with the most number of parts and tK1,t,K2,2u-free graphs to the remaining r ´ 1 classes.
If r ă k ď 2r, then it is easy to see (as in the proof of Theorem 2) that this graph is Kr`1ptq-free
and has trpkqn2 ` ztpn, nq ` pk ´ r ´ 1qpt ´ 1qn edges, and therefore

exkpn,Kr`1ptqq ě trpkqn2 ` ztpn, nq ` pk ´ r ´ 1qpt ´ 1qn.

In this paper we first improve this lower bound when t ě 2 and r ă k ď 2r.

Theorem 2. Suppose t ě 2, r ă k ď 2r and n ě 8t2. Then exkpn,Kr`1ptqq ě gpn, r, k, tq, where

gpn, r, k, tq :“ trpkqn2 ` ztpn, nq ` pt ´ 1qpk ´ r ´ 1qn ` mintk ´ r ´ 1, 2r ´ ku

Z

pt ´ 1q2

4

^

.

The following is our main result, in which we prove a matching upper bound when t P t2, 3u and
n is sufficiently large.

Theorem 3. For any t P t2, 3u and integers r, there exists n0 “ n0prq P N such that for n ě n0

and r ă k ď 2r, we have exkpn,Kr`1ptqq “ gpn, r, k, tq.

In fact, we conjecture that exkpn,Kr`1ptqq “ gpn, r, k, tq holds for all t ě 2, r ă k ď 2r, and
sufficiently large n.
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A natural question is whether our result can be extended to larger values of t and k. For larger
value of t, although we can use ztpn, nq without knowing its precise value, we need several properties

of this function in our proof. Kővári, Sós, Turán [16] showed that ztpn, nq “ Opn2´1{tq for t ě 2 and
proving a matching lower bound is a well-known open problem:

(Z) ztpn, nq “ Ωpn2´1{tq for t ě 2.

It was shown [4,8] that (Z) holds for t “ 2, 3. In addition, we will need the following properties.

(E1) For any a P N, there exists δ ą 0 such that for large n, z
pa`1q

t pnq ´ z
paq

t pnq ě δn2´1{t.
(E2) for any ε P p0, 1s, there exists δ ą 0 such that for large n,

ztpn, nq ´ ztpp1 ´ εqn, nq ě δn2´1{t.

(E3) ztpm,nq ´ ztpm ´ 1, nq ě t ´ 1.

We can easily verify (E1)–(E3) for t “ 2, 3. First, a proof of (E1) from (Z) for all t is given in

Section 3.3. Second, when t “ 2, 3, (E2) follows from ztpm,nq ď p1 ` op1qqmn1´1{t by Füredi [11]

and ztpn, nq ě p1´ op1qqn2´1{t for t “ 2, 3. Third, (E3) holds trivially because adding a vertex with
t ´ 1 edges to a Kt,t-free graph will not create a copy of Kt,t.

We do not know whether similar properties hold when k ą 2r: in (E2) we must deal with the
rk{rs-partite Zarankiewicz number; we also need to replace t ´ 1 by Ωpa2tq in (E3), which seems
out of reach at present.

Theorems 2 and 3 show that our problem is more complex than its non-partite counterpart,
Theorem 1. Finally, we show that, when r divides k, this additional complexity does not exist, and
we give an analogue of Theorem 1, modulo the existence of a set of constantly many exceptional
vertices.

Theorem 4. For r, k P N with r | k and t “ 2, 3, there exist C0, n0 P N such that the following holds
for n ě n0. Let G be a Kr`1ptq-free k-partite graph with n vertices in each part and exkpn,Kr`1ptqq

edges. Then there is a vertex partition of G into U1, . . . , Ur, each consisting of exactly k{r parts of
G, and a vertex set Z Ď V pGq with |Z| ď C0 such that

‚ GrUizZ,UjzZs is almost complete for all i ‰ j,
‚ GrU1zZs is Kt,t-free, and
‚ GrU2zZs, . . . , GrUrzZs are K1,t-free.

Showing Z “ H in Theorem 4 requires an a-partite analogue of (E2), which is unknown for a ě 3.
For the rest of this paper we only consider r ě 2, as it is easy to see that Theorems 2–4 hold for

r “ 1.

Notation. Given integers n ě m ě 1, let rns “ t1, . . . , nu and rm,ns “ tm,m ` 1, . . . , nu. We
omit floors and ceilings unless they are crucial, e.g., we may choose a set of εn vertices even if our
assumption does not guarantee that εn is an integer.

When X,Y Ď V pGq intersect, EGpX,Y q is defined as the collection of ordered pairs in px, yq P

X ˆ Y such that tx, yu P EpGq. Write eGpX,Y q “ |EGpX,Y q|. For a vertex v in G, let Npv,Xq “

Npvq XX and dpv,Xq “ |Npv,Xq|. Moreover, given X Ď V pGq, let epX,Gq be the number of edges
of G incident to the vertices of X. Given two graphs G and H on a common vertex set V , G X H
denotes a graph on V with EpG X Hq “ EpGq X EpHq. Given a k-partition tV1, V2, . . . , Vku, a set
S is called crossing if |S X Vi| ď 1, i P rks.

When we choose constants x, y ą 0, x ! y means that for any y ą 0 there exists x0 ą 0 such that
for any x ă x0 the subsequent statement holds. Hierarchies of other lengths are defined similarly.
Furthermore, all constants in the hierarchy are positive and for a constant appearing in the form
1{s, we always mean to choose s as an integer.
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2. Proof of Theorem 2

In this section we prove Theorem 2, that is, exkpn,Kr`1ptqq ě gpn, r, k, tq for r ă k ď 2r. Our
proof needs a t-regular K2,2-free bipartite graph with n vertices in each part. It is well known (see
[20]) that such graph exists for infinitely many n P N with n ě t2. The following proposition from
[25, Section 2] allows n to be any integer that is at least 8t2.

Proposition 2.1. [25] For t ě 1 and n ě 8t2, there exists a t-regular K2,2-free bipartite graph with
n vertices in each part.

Now we prove our lower bound on exkpn,Kr`1ptqq stated in Theorem 2.

Proof of Theorem 2. First assume r ă k ď 2r and t ě 2. Let V1, . . . , Vk be disjoint sets of size n
and, if k ă 2r, let Vk`1, . . . , V2r be empty sets. Let G1 be a complete r-partite graph with parts
V1 YVr`1, V2 YVr`2, . . . , Vr YV2r. Moreover, we add to G1 a maximum Kt,t-free bipartite graph with
bipartition V1 Y Vr`1, and a pt ´ 1q-regular K2,2-free bipartite graph on Vi Y Vi`r for 2 ď i ď k ´ r
(the existence of such graph is guaranteed by Proposition 2.1). The resulting graph is Kr`1ptq-
free because a copy of Kr`1ptq has at most 2t ´ 1 vertices in V1 Y Vr`1 and at most t vertices in
Vi Y Vi`r for 2 ď i ď k ´ r. This graph has trpkqn2 ` ztpnq ` pt ´ 1qpk ´ r ´ 1qn edges, and thus,
exkpn,Kr`1ptqq ě trpkqn2 ` ztpnq ` pt ´ 1qpk ´ r ´ 1qn. This proves the theorem when t “ 2 or
k “ 2r.

Now assume r ă k ă 2r and t ě 2. Let b “ k ´ r. Our goal is to give a better construction that
shows

exkpn,Kr`1ptqq ě trpkqn2 ` ztpn, nq ` pt ´ 1qpb ´ 1qn ` mintb ´ 1, r ´ bu

Z

pt ´ 1q2

4

^

.

Let Vi,j , pi, jq P rrs ˆ r2s be vertex sets, where Vb`1,2, . . . , Vr,2 are empty sets and other sets have
size n. Let G “ KpV1,1 Y V1,2, . . . , Vr,1 Y Vr,2q be the complete r-partite graph with parts V1,1 Y

V1,2, . . . , Vr,1 Y Vr,2. Thus epGq “ trpkqn2.
We first revise the partition as follows. Let t1 :“ rpt ´ 1q{2s and b1 :“ mintb ´ 1, r ´ bu. Let

tV 1
i,j , pi, jq P rrs ˆ r2su be obtained from

Ť

Vi,j by moving a set Si,1 of t1 vertices from Vi,1 to

Vi`b´1,1, and moving a set Si,2 of t1 vertices from Vi,2 to Vi`b´1,2, for every i P r2, b1 ` 1s. For i P rrs,
let Ui :“ V 1

i,1 Y V 1
i,2 and H :“ KpU1, . . . , Urq X KpV1,1, . . . , Vr,1, V1,2, . . . , Vr,2q. Let H 1 be obtained

from H by adding

‚ a Kt,t-free bipartite graph on U1 of size ztpn, nq, and
‚ a maximum tK1,t,K2,2u-free bipartite graph on Ui for i P r2, bs.
‚ 2t1 vertex-disjoint copies of K1,t´1 on each Ui, i P rb ` 1, b ` b1s, where the centers of stars
are the 2t1 vertices of Si´b`1,1 Y Si´b`1,2; then add a copy of Kt1,t1 on Si´b`1,1 Y Si´b`1,2.
See Figure 1.

For i P r2, bs, Proposition 2.1 implies that each H 1rUis is pt´ 1q-regular and thus for i P r2, b1 ` 1s,
H 1rUis has pn´ t1qpt´ 1q edges, and for i P rb1 ` 2, bs it has npt´ 1q edges; for i P rb` 1, b` b1s, each
H 1rUis has 2t

1pt ´ 1q ` pt1q2 edges. Therefore, the number of edges in H 1zH is

ztpn, nq ` pn ´ t1qpt ´ 1qb1 ` npt ´ 1qpb ´ b1 ´ 1q ` b1p2t1pt ´ 1q ` pt1q2q

“ztpn, nq ` pt ´ 1qpb ´ 1qn ` b1pt1q2 ` b1t1pt ´ 1q

“ztpn, nq ` pt ´ 1qpb ´ 1qn ` 2b1pt1q2 ` b1t1pt ´ 1 ´ t1q

“ztpn, nq ` pt ´ 1qpb ´ 1qn ` 2b1pt1q2 `

Z

pt ´ 1q2

4

^

.
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Figure 1. The lower bound construction for Kr`1ptq with r “ 5, k “ 8 and t “ 3.
The left figure is the standard construction similar to the one given in Theorem 1;
the right figure is the construction presented in our proof of Theorem 3.

We claim that H contains trpkqn2 ´ 2b1pt1q2 edges. Indeed, for every i P r2, b1 ` 1s, the vertices of
Si,1 moved from Vi,1 to Vi`b´1,1 lose n edges to Vi`b´1,1 and gain n´t1 edges to Vi,2, thus having a net
loss pt1q2 edges between Ui and Ui`b´1; the same holds for Si,2. Thus, our claim holds after summing

over all b1 such rows, which implies that epH 1q “ trpkqn2 ` ztpn, nq ` pt ´ 1qpb ´ 1qn ` b1t
pt´1q2

4 u.
At last, we show that H 1 is Kr`1ptq-free. Recall that by construction, every Ui is triangle-free,

U1 is Kt,t-free, U2, . . . , Ub are tK1,t,K2,2u-free, and each of Ub`1, . . . , UUb`b1 induces vertex-disjoint

copies of K1,t´1 whose centers are joined by copies of Kt1,t1 . Suppose K is a copy of Kr`1ptq in H 1.
By construction, K contains at most 2t´1 vertices in U1. We claim that |V pKqXpUiYUi`b´1q| ď 2t
for i P r2, b1 `1s and |V pKqXUj | ď t for i P rb1 `2, bsYrb`b1 `1, rs, which will lead to a contradiction
with |V pKq| “ pr ` 1qt. Indeed, for i P r2, rs, if K contains at least t ` 1 vertices in Ui, then these
vertices induce either a copy of K1,t or K2,2. By construction, this is only possible for i P rb`1, b`b1s

and in that case V pKq X Ui must intersect both Si´b`1,1 and Si´b`1,2. Furthermore, there exists
v P V pKq X Si´b`1,1 and v1 P V pKq X Si´b`1,2 such that v and v1 are in different color classes of
K. Since v and v1 have no common neighbor in Ui Y Ui´b`1, K induces at most two classes on
Ui Y Ui´b`1. Thus, |V pKq X pUi Y Ui´b`1q| ď 2t and we are done. □

Remark. Note that for t “ 2, both our constructions give the same value, which means that the
extremal graph is not unique. Indeed, it is easy to see that one can construct b1 ` 1 different ones –
as we can move vertices for a subset of the b1 rows.

3. Stability and proof outline

Let us first consider extremal graph for exkpn,Kr`1q. Given r, k P N with k ą r, write k “ ar ` b
for 0 ď b ď r ´ 1. By Turán’s theorem, the Turán graph Trpkq :“ Ka,...,a,a`1,...,a`1 (with b parts of
size a`1 and r´b parts of size a) is the unique largest Kr`1-free graph on k vertices. The following
definition shows that there are many extremal graphs for exkpn,Kr`1q.

Definition 3.1. Let Tr,kpnq be the collection of k-partite graphs with parts V1, . . . , Vk of size n
defined as follows. If b ą 0, we arbitrarily divide Var`1, . . . , Vk into r sets W1, . . . ,Wr (some of them
may be empty) such that each Wi is a subset of Vj for some j; if b “ 0, then let W1, . . . ,Wr be
empty sets. Now let T be the r-partite graph with parts U1, . . . , Ur such that

Ui “ Wi Y Zi, where Zi :“ Vpi´1qa`1 Y ¨ ¨ ¨ Y Via,
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obtained from the complete r-partite graph KpU1, . . . , Urq by removing edges between Wi and Wi1 ,
i ‰ i1, whenever Wi,Wi1 Ď Vj for some j (in other words, T “ KpU1, . . . , Urq X KpV1, . . . , Vkq).

Since T is r-partite, it is Kr`1-free. Let U “
Ť

iPrrs Ui and W “
Ť

iPrrs Wi. Note that eT pUq “
`

r
2

˘

a2n2 while the number of edges of T incident to W is equal to |W |pk ´ a´ 1qn “ bpk ´ a´ 1qn2.

Since trpkq “
`

r
2

˘

a2 ` bpk ´ a ´ 1q, it follows that epT q “ trpkqn2. By (1.1), T is an extremal graph

for Kr`1.
1

3.1. A stability theorem. We need the following stability result for exkpn,Kr`1ptqq. Given
two graphs G,H P Gkpnq on the same parts V1, . . . , Vk, we say that G and H are γ-close if
|EpGq△EpHq| ď γn2.

Theorem 5. For any k, r, t P N and any γ ą 0, there exist ε ą 0 and n0 P N such that the following
holds for every integer n ě n0. Suppose G P Gkpnq is Kr`1ptq-free and epGq ě ptrpkq ´ εqn2. Then
G is γ-close to a member of Tr,kpnq. In particular, we have epGq ď ptrpkq ` γqn2.

In the earlier version of this paper, we gave a self-contained proof of Theorems 5. Here we derive
it from a stronger result of Chen, Lu and Yuan [5, Theorem 1.5], in which they provide more
structural information. Their definition and result are more general by allowing the parts Vi of G
to have different sizes. Here we only state their definition and result that we need for the balanced
case.

Definition 3.2 (Stable partition). Let k ě r ě 2 be integers. Let P “ tP1, . . . , Pru and V “

tV1, . . . , Vku where |Vi| “ n for all i P rks be partitions of a common vertex set. For i P rrs, j P rks,
a set W “ Pi X Vj is called an integral part if W “ Vj , and called a partial part otherwise. We say
that P is stable to V, if each of P1, . . . , Pr has the same number of integral parts and at most one
partial part.

Definition 3.3 (pX, εq-stable). Let n, r, k be integers with n ě k ě r ě 2. For a given spanning
subgraph G of Kkpnq, let P “ tP1, . . . , Pru be a partition of V pGq and V “ tV1, . . . , Vku be the
natural k-partition. Given ε P p0, 1q and a set X Ď V pGq of size at most εn, we say that P is an
pX, εq-stable partition if

‚ G ´ X is ε-close to KpP1, . . . , Prq ´ X,
‚ tP1zX, . . . , PrzXu is stable to tV1zX, . . . , VkzXu.

Theorem 6. [5, Theorem 1.5] Let F be a graph with chromatic number r ` 1 ě 3. For every ε ą 0
there exists δ ą 0 and integer n0 ą 0 such that the following holds for n ě n0. Let G be an F -free
subgraph of Kkpnq with k ą r such that epGq ě exkpn, F q ´ δn2. Then, G has an pX, εq-stable
partition tP1, . . . , Pt´1u for some set X Ď V pGq of size at most εn.

Now Theorem 5 follows from Theorem 6 by setting F “ Kr`1ptq and noticing that i) a partition
is stable if and only if it is a partition required in Definition 3.1 and ii) as |X| ď εn, X is incident
to at most εn2 edges that we have no control on.

We remark that although Theorem 6 is stronger, the additional structural information is not
immediately useful to us. For example, the set X introduced in Theorem 6 is the set of atypical
vertices of G (see also the proof outline in next section). However, we need a stronger control and
indeed we need to distinguish two kinds of atypical vertices. Identifying them from X is almost
equivalent to identifying them from V pGq. So we choose to present and use the easier and more
classical version, Theorem 5, in this paper.

1Indeed, Chen, Lu, and Yuan [5] showed that Tr,kpnq are all the extremal graphs for exkpn,Kr`1q and described all
extremal graphs for expn1, . . . , nk;Kr`1q.
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3.2. Outline of the proofs. Now we give an outline of our proofs. Let G P Gkpnq be Kr`1ptq-free
and has the maximum number of edges. Since epGq ą trpkqn2, we can assume that G is γ-close
to some T P Tr,kpnq. Since epGq is maximum, we can easily derive a minimum degree condition by
symmetrization arguments.

Next we define atypical vertices. Roughly speaking, there are two types of atypical vertices: the
first type of vertices, denoted by Z2 Y W 2, are the “wrong” ones that do not exist in Tr,kpnq; the
second type of vertices, denoted by pW 1

i zWiq Y
Ť

j‰i Z
i
j for i P rrs, are the vertices that are not in

Ui but behave like the vertices of Ui, in other words, they are in the wrong place. We temporarily
ignore the first type of atypical vertices because there are only a constant number of them (see pP1q

and pP3q) and they contribute only Opnq to epGq. For the second type of atypical vertices, there
are only opnq of them (see pP1q and pP3q) and we move them to appropriate rows and redefine our

partition as Ũ1, . . . , Ũr (see (4.2)). A key observation is that Zi
j ‰ H (namely, there is a vertex in

Zj but behaves as a vertex in Zi) only if |Wj | ě p1 ´ op1qqn.

Now we estimate epGq. We split EpGq into EGpŨ1q, . . . , EGpŨrq, and EpG1q, where G1 :“ G X

KpŨ1, . . . , Ũrq. We have a relatively good estimate of epG1q (see Claim 4.3) taking into account that
the partition is no longer balanced. In contrast, due to the second type of atypical vertices, we can
only show that each GrŨis is “almost” Kt,t-free (see Claim 4.4). Similarly, we show that all but at

most one rows are “almost” K1,t-free (see Claim 4.6). Assuming that eGpŨ1q is the largest among

all eGpŨiq, i P rrs, we can use these properties and give an upper bound of epGq. Next we show that

Ũ1 has no atypical vertices (Claim 4.8), and thus eGpŨ1q ď z
pa`1q

t pnq. We further refine our estimate

on Ũi, i ą 1, and show that each second type atypical vertex contributes at most a constant number
of edges to EpGqzEpG1q (Claim 4.9). In summary, Ũ1 is indeed Kt,t-free, eGpŨiq “ Opnq for i ą 1,
and |Z2 Y W 2| “ Op1q, from which we conclude the proof of Theorem 4.

To prove Theorem 3, we refine earlier estimates as follows. We first show that |W 1
1| “ p1´ op1qqn

and Z2 Y W 2 “ H, where we use (E2). The rest of the proofs are further refinements of our

estimates. In particular, we show that if |W 1
i | is not too small, then Ũi essentially contains no vertex

from other rows.

3.3. Two quick proofs. We first derive (E1) from (Z).

Proof of (Z) ñ (E1). Given a ` 1 sets V1, . . . , Va`1 of size n, we define an pa ` 1q-partite graph G
on V1, . . . , Va`1 as follows. Let V

1
2 be a set of n vertices consisting of tn{2u vertices from V1 and rn{2s

vertices from V2. We place an extremal graph G1 for z
paq

t pnq on V 1
2 , V3, . . . , Va`1, in other words, G1

is an a-partite Kt,t-free graph with z
paq

t pnq edges. Next we add a maximum bipartite Kt,t-free graph

G2 on the remaining vertices of V1 and V2. By (Z), epG2q ě z
p2q

t ptn{2uq ě δn2´1{t for some δ ą 0.

Thus G “ G1 Y G2 is Kt,t-free and epGq “ epG1q ` epG2q ě z
paq

t pnq ` δn2´1{t. This gives (E1). □

We need the following simple proposition.

Proposition 3.4. Given r, t P N and reals γ, ε ą 0 such that ε2 ą 3r2t2γ, and let n be sufficiently
large. Suppose G is a Kr`1ptq-free graph with vertex partition V “ U1 Y ¨ ¨ ¨ Y Ur such that |Ui| ě n
for i P rrs and dpUi, Ujq ě 1 ´ γ, i, j P rrs, i ‰ j. Let X Ď V be the set of vertices v satisfies that
dpv, Uiq ě ε|Ui| for all i P rrs. Then |X| ď 2pt ´ 1qε´rt.

Proof. We call a copy of Krptq in G useful if it consists of exactly t vertices from each of U1, . . . , Ur.
We first show that for every v P X, Npvq contains many useful copies of Krptq. Indeed, dpUi, Ujq ě

1 ´ γ for every i, j P rrs, i ‰ j implies that GrUi, Ujs has at most γ|Ui||Uj | non-edges. Since
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dpv, Uiq ě ε|Ui| for all i P rrs, take Wi Ď Npvq X Ui of size exactly ε|Ui|. We can find
ś

iPrrs

`

ε|Ui|

t

˘

rt-sets which consists of t vertices from each Ui, amongst which, at most

ÿ

i,jPrrs,i‰j

γ|Ui||Uj | ¨

¨

˝

ź

i1Prrs

ˆ

ε|Ui1 |

t

˙

˛

‚¨
t

ε|Ui|

t

ε|Uj |
ď

r2t2γ

ε2

ź

i1Prrs

ˆ

ε|Ui1 |

t

˙

of them contain crossing non-edges. Therefore, Npvq contains at least
ˆ

1 ´
r2t2γ

ε2

˙

ź

i1Prrs

ˆ

ε|Ui1 |

t

˙

ě
εrt

2

ź

i1Prrs

ˆ

|Ui1 |

t

˙

useful copies of Krptq, where we used that r2t2γε´2 ă 1{3. Since G is Kr`1ptq-free, each useful copy
K of Krptq is in Npvq for at most t ´ 1 choices of v P X. Double counting on the number of pairs
pv,Kq such that K Ď Npvq is useful, we obtain that

|X|
εrt

2

ź

i1Prrs

ˆ

|Ui1 |

t

˙

ď pt ´ 1q
ź

i1Prrs

ˆ

|Ui1 |

t

˙

,

which gives |X| ď 2pt ´ 1qε´rt. □

4. Main Proofs

Given integers 1 ď s ď t and sufficiently large m,n, Kővári, Sós, Turán [16] showed that

zpm,n, s, tq ď Cmn1´1{s for some C “ Cptq ą 0, that is, a bipartite graph G with parts of size m

and n has at most Cmn1´1{s edges if G has no copy of Ks,t where the part of size s is in the part
of G of size m. We start the proof with the general setting, that is, for k “ ar ` b with 0 ď b ă r.
After we conclude the proof of Theorem 4, we focus on the case k ď 2r.

Proofs of Theorems 3 and 4. Suppose t “ 2, 3 and thus (Z) holds, that is, z
p2q

t pnq ě cn2´1{t for some
c ą 0. Take C “ Cptq as in the Kővári–Sós–Turán result in the previous paragraph. We choose
constants

1{n ! γ ! ε ! ε1 ! 1{k, 1{t, c, C.

Suppose G isKr`1ptq-free and has the maximum number of edges, that is, epGq “ exkpn,Kr`1ptqq.
Suppose further that epGq ą gpn, r, k, tq ą trpkqn2. By Theorem 5, G is γ-close to some T P Tr,kpnq

such that T “ KpU1, . . . , Urq XKpV1, . . . , Vkq, where U1, . . . , Ur is a partition of V pT q satisfying the
following properties:

‚ Ui “ Wi Y Zi such that Zi “ Vpi´1qa`1 Y ¨ ¨ ¨ Y Via, and
‚ Wi “ H if b “ 0 and Wi is a subset of Vqi for some qi with ar ă qi ď k otherwise.

For simplicity, we write ztpnq “ z
prk{rsq

t pnq.

The fact that G is γ-close to T gives the following observation.

(D0) for any i P rrs, there exists Bi Ď Ui of size at most 2
?
γn such that for any v P UizBi and

A Ď
Ť

jPrrsztiu Uj satisfying that none of the vertices of A is in the same cluster as v is, we

have dpv,Aq ď
?
γn.

To see it, fix i P rrs and write U˚ :“
Ť

j‰i Uj . Since G is γ-close to T , we have

eGpZi, U
˚q ě |Zi||U

˚| ´ γn2, and eG pWi, U
˚zVqiq ě |Wi||U

˚zVqi | ´ γn2.
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Let B1
i Ď Zi be the set of vertices v such that dpv, U˚q ą

?
γn, and B2

i Ď Wi be the set of vertices w

such that dpw,U˚zVqiq ą
?
γn. The displayed line above implies that |B1

i| ď
?
γn and |B2

i | ď
?
γn.

Now (D0) holds by setting Bi “ B1
i Y B2

i .

Minimum degree. For i P rks, let Ni :“ NT puiq for some ui P Vi. Note that this is well-defined as
the vertices of Vi share the same neighborhood in T . Using the maximality of epGq, we derive that
for every u P Vi, i P rks

dGpuq ě dT puq ´ 2tγn.

Indeed, since G is γ-close to T , that is, |EpGq△EpT q| ď γn2, for each i P rks, we can greed-
ily pick distinct u1, . . . , ut P Vi, such that |NGpujq△Ni| ď γn2{pn ´ jq ď 2γn, for j P rts. Let
N 1

i :“
Ş

jPrts NGpujq and note that |N 1
i△Ni| ď 2tγn. In particular, |N 1

i | ě |Ni| ´ 2tγn. Now for

a contradiction suppose there is u P Vi such that dGpuq ă dT puq ´ 2tγn “ |Ni| ´ 2tγn. Then we
replace NGpuq by N 1

i , that is, we disconnect all the edges of u in G and connect u to the vertices
of N 1

i . Thus, we obtain a k-partite graph on the same vertex set as G and has more edges than
G. Therefore, by the maximality of G, this new graph contains a copy of Kr`1ptq, denoted by
K. Clearly, K must contain the vertex u, as G is Kr`1ptq-free. Moreover, K must miss at least
one vertex from u1, . . . , ut, say uj , because the set tu, u1, . . . , utu is independent in G and K has
independence number t. However, as the neighborhood of u N 1

i is a subset of NGpujq, we can replace
u by uj and still get a copy of Kr`1ptq, which is in G, a contradiction.

Therefore, comparing with the degrees in T , we derive that for any vertex u,

dGpuq ě

#

pk ´ aqn ´ |Wi| ´ 2tγn, if u P Zi for i P rrs,

pk ´ 1 ´ aqn ´ 2tγn, if u P W.
(4.1)

Atypical vertices. In this step we identify a set of atypical vertices, that is, those behave differently
from the majority of the vertices. Let W :“

Ť

iPrrs Wi “ Var`1 Y ¨ ¨ ¨ Y Vk. We define W 2 :“

tv P W : dpv, Zjq ě εn, for all j P rrsu and W 1
i :“ tv P W : dpv, Ziq ă εnu. Then we have

W “ W 2 Y W 1
1 Y ¨ ¨ ¨ Y W 1

r. Next, for i P rrs, let Z2 :“
Ť

iPrrs Z
2
i , where

Z2
i :“ tv P Zi : dpv, Zjq ě εn, for all j P rrsztiu and dpv, Uiq ě εnu.

Furthermore, let Z 1
i :“ ZizZ

2
i and write Z 1

i as
Ť

jPrrs Z
j
i , where Zj

i , j ‰ i, consists of the vertices

v P Zi such that dpv, Zjq ă εn, and Zi
i consists of the vertices v such that dpv, Uiq ă εn. The

following are some useful properties of these sets.

Claim 4.1. The following properties hold for all i P rrs.

pP1q |W 1
i zWi| ď 2γn and |W 2| ď C0 :“ 2tε´rt.

pP2q W “ W 2 Y W 1
1 Y ¨ ¨ ¨ Y W 1

r is a partition of W .

pP3q |Z2
i | ď C0, |Zj

i | ď
?
γn for j ‰ i, and |Zi

i | ě p1 ´
?
γqan.

pP4q
Ť

jPrrs Z
j
i is a partition of Z 1

i.

Proof. Recall the definition of W 2 and that dpZi, Zjq ě 1 ´ γ for distinct i, j P rrs. Applying
Proposition 3.4 to the graph GrW 2 Y Zs with vertex partition pU1, . . . , Urq, we obtain that |W 2| ď

C0 :“ 2tε´rt. We next show that |W 1
i zWi| ď 2γn for each i P rrs. Indeed, because G is γ-close to

T , we have eGpZi,W
1
i zWiq ě an|W 1

i zWi| ´ γn2. On the other hand, by definition, eGpZi,W
1
i zWiq ă

|W 1
i zWi| ¨ εn. Thus, we get |W 1

i zWi| ă γn{pa ´ εq ă 2γn, verifying pP1q.
To see pP2q, suppose there is a vertex v P W 1

i XW 1
j . By definition, dpvq ď pk ´ 1qn´ 2pa´ εqn ă

pk ´ 1 ´ aqn ´
?
γn, contradicting (4.1).
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Next we show pP3q. Fix i P rrs. Since G is γ-close to T , we have dpZj , Zj1q ě 1 ´ γ and
dpUi, Zjq ě 1 ´ γ for distinct j, j1 P rrsztiu. Thus, we can apply Proposition 3.4 on GrUi Y

Ť

j‰i Zjs

(with the obvious r-partition) and obtain |Z2
i | ď C0. Moreover, for i ‰ j, from dpZi, Zjq ě 1 ´ γ

we infer |Zj
i | ď pγ{εqn ď

?
γn, as γ ! ε. Therefore, we also get |Zi

i | ě |Zi| ´ |Z2
i | ´

ř

j‰i |Zj
i | ě

an ´ C0 ´ pr ´ 1qγn{ε ě p1 ´
?
γqan.

Now we show pP4q. By definition, if v P Zi
i , then dpv, Uiq ă εn; if v P Zj

i for j ‰ i, then

dpv, Zjq ă εn. Thus, we have Z 1
i Ď

Ť

jPrrs Z
j
i by definition. A vertex v P Zi

i X Zj
i , j ‰ i, satisfies

that dpvq ă kn ´ p|Ui| ´ εnq ´ pa ´ εqn ď pk ´ aqn ´ |Wi| ´ p1 ´ 2εqn, contradicting (4.1). A vertex

v P Zj
i XZj1

i for distinct j, j1 P rrsztiu satisfies that dpvq ă pk´ 1qn´ 2pa´ εqn ď pk´a´ 2qn` 2εn,

contradicting (4.1) as well. Thus,
Ť

jPrrs Z
j
i is a partition of Z 1

i. □

For i P rrs, our refined partition is defined by

Ũi :“ Z̃i Y W 1
i , where Z̃i :“

ď

jPrrs

Zi
j . (4.2)

Then V pGq “ Z2 Y W 2 Y
Ť

iPrrs Ũi. Note that for any v P Ũi, we have dpv, Zi
i q ď dpv, Ziq ď εn, and

thus dpv, Z̃iq ď εn ` pr ´ 1q
?
γn by pP3q.

For every i P rrs, note that pP1q implies that |WizW
1
i | ď C0`pr´1q2γn ď 2rγn, and similarly pP3q

implies that |ZizZ̃i| ď C0 ` pr ´ 1q
?
γn ď r

?
γn.

We now derive a more handy minimum degree condition. For convenience, define dpv,Aq “

|A| ´ dpv,Aq. For v P Zi
i , we have dpv, Ũiq ě dpv, Uiq ´ |UizŨi|. Since dpv, Uiq ą an ` |Wi| ´ εn

and |UizŨi| ď |ZizZ̃i| ` |WizW
1
i | ď εn{2, we have dpv, Ũiq ě an ` |Wi| ´ εn ´ εn{2. By (4.1),

dpvq ď an ` |Wi| `
?
γn. It follows that dpv, V zŨiq ď 2εn. Now consider v P ŨizZ

i
i . The definition

of Ũi implies that dpv, Ziq ă εn and dpv, Ziq ą an ´ εn. Assume v P Vj . Then Vj X Zi “ H

and trivially dpv, Vjq “ n. It follows that dpv, Zi Y Vjq ą pa ` 1qn ´ εn. Hence dpv, Z̃i Y Vjq ě

dpv, Zi Y Vjq ´ |ZizZ̃i| ą pa ` 1qn ´ 3
2εn. On the other hand, either case of (4.1) implies that

dpvq ď pa ` 1qn `
?
γn. Consequently, dpv, V zpZ̃i Y Vjqq ď 2εn. In summary, for i P rrs and j P rks,

(Deg) If v P Zi
i , then dpv, V zŨiq ď 2εn; if v P pŨizZ

i
i q X Vj , then dpv, V zpZ̃i Y Vjqq ď 2εn.

Next we prove further properties on Zj
i and Z̃j .

Claim 4.2. If Zj
i ‰ H for some i ‰ j, then the following holds.

pQ1q For v P Zj
i and A Ď V pGqzpZi Y Zjq, we have dpv,Aq ě |A| ´ εn ´

?
γn.

pQ2q |Wi| ě p1 ´ ε ´
?
γqn.

pQ3q If |Z̃jzZj | ě t, then |Wj | ď 2tεn.

Proof. Note that dpv, Zjq ď εn and dpv, Ziq ď pa ´ 1qn, that is, v has at least n ` pan ´ εnq “

pa`1qn´εn non-neighbors in ZiYZj . On the other hand, (4.1) says that v has at most an`|Wi|`
?
γn

non-neighbors in G. Combining these two we get that v has at most |Wi|´n`εn`
?
γn ď εn`

?
γn

non-neighbors outside Zi Y Zj , and thus pQ1q holds. The fact that |Wi| ´ n ` εn `
?
γn ě 0

implies pQ2q.

For pQ3q, suppose to the contrary, |Z̃jzZj | ě t and |Wj | ą 2tεn. By pQ1q with A “ Wj , arbitrary

t vertices in Z̃jzZj have at least |Wj | ´ tpε `
?
γqn ě t common neighbors in Wj . We thus obtain a

copy of Kt,t with one part in Z̃jzZj and the other part in Wj – denote its vertex set by B. For any

i1 P rrsztju such that BXZj
i1 ‰ H, we have |Wi1 | ě p1´ε´

?
γqn by pQ2q. Since |Wj | ą 2tεn, Wi1 and



11

Wj do not belong to the same cluster, and thus no vertex of B is in the same cluster that contains
Wi1 , which implies that the vertices of B have at least |Wi1 | ´ 2tp2εnq ě n{2 common neighbors in

Wi1 by (Deg). For any i2 P rrsztju such that B X Zj
i2 “ H (and thus B X Zi2 “ H), by (Deg) we

have that the vertices of B have at least n{2 common neighbors in Zi2 . Because G is γ-close to T ,
these common neighborhoods, each of size at least n{2, have densities close to one between each
pair, and thus contain a copy of Kr´1ptq. Together with B, they form a copy of Kr`1ptq in G, a
contradiction. □

In particular, when b “ 0 (and thus Wi “ H for all i), pQ2q implies that Zj
i “ H whenever i ‰ j.

Consequently,

Ũi “ Zi
i “ ZizZ

2 for all i P rrs when b “ 0. (4.3)

Let L Ď rrs be the set of indices i such that |Wi| ě p1 ´ ε ´
?
γqn. pQ2q and pQ3q imply that

‚ for i P rrszL, we have Zj
i “ H for j ‰ i.

‚ for i P L, |Z̃izZi| ď t ´ 1 and thus |Z̃i| ď an ` t ´ 1.

First Estimate on epGq. Let G1 “ G X KpŨ1, . . . , Ũrq. We have epGq “ epG1q `
řr

i“1 eGpŨiq `

epZ2 Y W 2, Gq. Since G1 is r-partite, it is Kr`1-free. As G1 is a subgraph of G P Gkpnq, we have
epG1q ď trpkqn2 (but this is not good enough when b ą 0). Below we give an upper bound for
epG1q, which will be used throughout the proof. Recall that T “ KpV1, . . . , Vkq XKpU1, . . . , Urq has
precisely trpkqn2 edges.

Claim 4.3. We have epG1q ď trpkqn2 `
ř

iPrrspβi ´ αiq, where

βi :“
ÿ

jPLztiu

|Zi
j |

´

|Z̃jzZj | ` |W 1
j | ´ n ` |ZizZ̃i|

¯

and

αi :“|Z̃izZi||W
1
i | ` eT pW 1

i q ` eT pZ̃izZiq.

Proof. We first obtain Gp0q :“ KpZ1YW 1
1, . . . , ZrYW 1

rqXKpV1, . . . , Vkq from T . During this process,
we lose the edges of T between Wi and Wj , j ‰ i, if both ends of the edges are placed in W 1

i . Thus

epGp0qq “ trpkqn2 ´
ÿ

iPrrs

eT pW 1
i q. (4.4)

We imagine a dynamic process of obtaining G1 from Gp0q by recursively moving vertices. To
estimate epG1q, we track the changes of the edges with respect to complete r-partite graphs (but
also respecting the k-partition of G). More precisely, for l ą 0, let

Gplq :“ KpZ
plq
1 Y W 1

1, . . . , Z
plq
r Y W 1

rq X KpV1, . . . , Vkq

such that the r-partition of Gplq can be obtained by moving exactly one vertex from the partition
of Gpl´1q. The process terminates after m :“

ř

iPrrs |Z̃izZi| steps and thus G1 is a subgraph of Gpmq.

Furthermore, throughout the process, we only move vertices from the color classes in L to other
color classes. Therefore, we can give a linear ordering to the members of L, and for i P L we move
vertices from Zi only after we have moved the vertices in color classes j prior to i (denoted by

j ăL i). Now, in the l-th step, suppose we move v from Z
pl´1q

j to Z
pl´1q

i , namely, v P Zi
j , then the

change is

epGplqq ´ epGpl´1qq “ |Z
pl´1q

j zVp| ` |W 1
j | ´ |Z̃

pl´1q

i | ´ |W 1
i |,

where Vp Q v and Z̃
pl´1q

i “ Z
pl´1q

i zVp.
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Note that we have |Z
pl´1q

j zVp| ď pa´1qn`|Z̃jzZj |. Moreover for any j1 ăL j, we have Zi
j1 Ď Z

pl´1q

i .

Therefore, we have |Z̃
pl´1q

i | ě an ´ |ZizZ̃i| `
ř

j1ăLj
|Zi

j1 |. Putting all these together, we get

epGplqq ´ epGpl´1qq ď |Z̃jzZj | ` |W 1
j | ´ n ` |ZizZ̃i| ´

ÿ

j1ăLj

|Zi
j1 | ´ |W 1

i |.

Recalling that we moved v from Z
pl´1q

j to Z
pl´1q

i at the l-th step, we obtain

epG1q ´ epGp0qq ď

m
ÿ

l“1

¨

˝|Z̃jzZj | ` |W 1
j | ´ n ` |ZizZ̃i| ´

ÿ

j1ăLj

|Zi
j1 | ´ |W 1

i |

˛

‚,

where i, j depends on l. Since m “
ř

iPrrs |Z̃izZi|, we have

m
ÿ

l“1

p|Z̃jzZj | ` |W 1
j | ´ n ` |ZizZ̃i| ´ |W 1

i |q

“
ÿ

iPrrs

ÿ

jPLztiu

|Zi
j |p|Z̃jzZj | ` |W 1

j | ´ n ` |ZizZ̃i| ´ |W 1
i |q

“
ÿ

iPrrs

ÿ

jPLztiu

|Zi
j |p|Z̃jzZj | ` |W 1

j | ´ n ` |ZizZ̃i|q ´
ÿ

iPrrs

|Z̃izZi||W
1
i |.

Moreover, it is not hard to see that
m
ÿ

l“1

ÿ

j1ăLj

|Zi
j1 | “

ÿ

iPrrs

ÿ

tj1,j2uPpLztiu

2 q

|Zi
j1 ||Zi

j2 | “
ÿ

iPrrs

eT pZ̃izZiq.

Now the claim follows by combining these estimates with (4.4). □

What remains is to estimate the number of edges in each Ũi. For i P rrs, we have epGrŨisq “

epZi
i , GrŨisq ` eGpŨizZ

i
i q. To bound eGpŨizZ

i
i q “ eGppZ̃izZiq Y W 1

i q, we note that eGpZ̃izZi,W
1
i q ď

|Z̃izZi||W
1
i | and eGpW 1

i q ď eT pW 1
i q. However, we may not have eGpZ̃izZiq ď eT pZ̃izZiq because each

Zi
j is an independent set in T , but may not be independent in G when a ě 2. Thus, eGpZ̃izZiq ď

eT pZ̃izZiq `
ř

j‰i eGpZi
jq. Putting these together, for each i P rrs, we have

eGpŨizZ
i
i q “ eGpZ̃izZi,W

1
i q ` eGpW 1

i q ` eGpZ̃izZiq ď αi `
ÿ

j‰i

eGpZi
jq. (4.5)

Let fi :“ epZi
i , GrŨisq. By Claim 4.3, (4.5) and epGq “ epG1q ` epZ2 Y W 2, Gq `

ř

iPrrs eGpŨiq, we

derive that

epGq ď trpkqn2 ` epZ2 Y W 2, Gq `
ÿ

iPrrs

´

fi ` βi ´ αi ` eGpŨizZ
i
i q

¯

(4.6)

ď trpkqn2 ` epZ2 Y W 2, Gq `
ÿ

iPrrs

˜

fi ` βi `
ÿ

j‰i

eGpZi
jq

¸

(4.7)

We now focus on the structure of each Ũi. We first show that GrŨis is “almost” Kt,t-free.

Claim 4.4. The following holds for all i P rrs.

pK1q Both GrZ̃is and GrZi
i Y W 1

i s are Kt,t-free.
pK2q If |W 1

i | ą 2tεn ` 2γn, then |W 1
i zVqi | ď t ´ 1.
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pK3q If |W 1
i | ą 2tεn ` 2γn, then GrZ̃i Y pW 1

i X Vqiqs is Kt,t-free.

Proof. For pK1q, suppose there is a copy of Kt,t in Ũi, with vertex set denoted by B, contained

in Z̃i or in Zi
i Y W 1

i . Let NB be the set of common neighbors of these 2t vertices of B. First

assume that B Ď Z̃i. Then for any j P Lztiu, by (Deg) we have |NB X W 1
j | ě |W 1

j | ´ 4tεn,

and thus by pP1q |NB X Wj X W 1
j | ě |W 1

j | ´ 4tεn ´ 2γn ě n{2. For any j R L Y tiu, because

B X Zj “ H by pQ2q, we have |NB X Zj | ě an ´ 4tεn ě n{2 by (Deg). Note that every set in
tNB XZj : j R Lu Y tNB XWj XW 1

j : j P Lu has size at least n{2 and every pair of them has density

at least 1 ´ 4γ. Therefore we can find a copy of Kr´1ptq in the union of these sets, which gives rise
to a copy of Kr`1ptq together with B, a contradiction.

Second we assume that B Ď Zi
i YW 1

i . In this case we note that for any j ‰ i, we have BXZj “ H

and thus by (Deg), we have |NB X Zj
j | ě p1 ´

?
γqan ´ 4tεn ě n{2. Then as these sets have high

pairwise densities, as in the previous case, we can find a copy of Kr´1ptq in the union of these sets,
yielding a copy of Kr`1ptq together with B, a contradiction. Now pK1q is proved.

Now we turn to pK2q, and suppose |W 1
i | ą 2tεn` 2γn and thus |Wi XW 1

i | ą 2tεn by pP1q. First,
if W 1

i contains at least t vertices which are not from Vqi (the cluster containing Wi), then by (Deg),
each of these vertices have at most 2εn non-neighbors in Wi X W 1

i , and thus we can find a copy of
Kt,t in W 1

i , contradicting pK1q. So we have |W 1
i zVqi | ď t ´ 1.

For pK3q, suppose there is a copy of Kt,t as stated in the claim, whose vertex set is denoted
by B. As in the previous paragraph, we have |Wi| ą 2tεn by pP1q. Now observe crucially that if
B X Zi

j ‰ H, then by pQ2q |Wi| ` |Wj | ą n, and thus, Wi and Wj are not from the same cluster.

So by (Deg), for any j P rr ´ 1sztiu, if B X Zi
j “ H, then the vertices of B have large common

neighborhoods in Zj
j ; if B X Zi

j ‰ H, then the vertices of B have large common neighborhoods in

Wj X W 1
j (note that |Wj | ě p1 ´ ε ´

?
γqn by pQ2q). Since each of these common neighborhoods

have size at least n{2 and each pair of them has high density, we can find a copy of Kr´1ptq in the
union of these sets, yielding a copy of Kr`1ptq together with B, a contradiction. □

We now derive a lower bound for
ř

fi from Claims 4.3 and 4.4. For i P rrs, we have βi ď
ř

jPLztiu |Zi
j |p|Z̃jzZj | ` |W 1

jzVqj | ` |ZizZ̃i|q as |W 1
j | ´ n ď |W 1

jzVqj |. Fix j P Lztiu. Note that

|Wj | ě p1 ´ 2εqn. We have |Z̃jzZj | ď t ´ 1 by pQ3q, and |W 1
jzVqj | ď t ´ 1 by pK2q. If |Wi| ą n{2,

then |Zi
j | ď t ´ 1 by pQ3q. Furthermore, since |ZizZ̃i| ď pr ´ 1q

?
γn ` C0 by pP3q, it follows that

|Zi
j |

´

|Z̃jzZj | ` |W 1
jzVqj | ` |ZizZ̃i|

¯

ď pt ´ 1qpt ´ 1 ` t ´ 1 ` pr ´ 1q
?
γn ` C0q ď pt ´ 1qr

?
γn.

Otherwise |Wi| ď n{2, and by pQ2q, we have Zi1

i “ H for any i1 ‰ i. This implies |ZizZ̃i| “ |Z2
i | ď

C0. Using |Zi
j | ď

?
γn, pQ3q, and pK2q, we derive that

|Zi
j |

´

|Z̃jzZj | ` |W 1
jzVqj | ` |ZizZ̃i|

¯

ď
?
γnp2pt ´ 1q ` C0q ď 2C0

?
γn.

Summarizing these two cases for all j P Lztiu, we obtain that βi ď pr´1q2C0
?
γn, and consequently,

ÿ

iPrrs

βi ď 2pr ´ 1qrC0
?
γn. (4.8)

On the other hand, for all i ‰ j, the graph GrZi
js is Kt,t-free by pK1q and thus, by pP3q,

ř

i,j:i‰j eGpZi
jq ď rpr ´ 1qC

`?
γn

˘2´1{t
. Applying this with (4.7), (4.8), and the fact that epZ2 Y
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W 2, Gq ď pr ` 1qC0kn, we obtain that

epGq ď trpkqn2 ` pr ` 1qC0kn `
ÿ

iPrrs

fi ` 2pr ´ 1qrC0
?
γn `

ÿ

i,j:i‰j

eGpZi
jq

ď trpkqn2 `
ÿ

iPrrs

fi ` r2C
?
γn2´1{t,

as γ ! 1. Using the assumption epGq ě gpn, r, k, tq ě trpkqn2 ` ztpnq, we infer that
ÿ

iPrrs

fi ě ztpnq ´ r2C
?
γn2´1{t ě

c

2
n2´1{t (4.9)

by using (Z), ztpnq ě z
p2q

t pnq ě cn2´1{t, and γ ! 1.

We next study the existence of K1,t in each color class. To do so, we consider a copy of K3ptq in

GrŨi Y Ũjs for some i ‰ j.

Claim 4.5. For any i ‰ j, if GrŨi Y Ũjs contains a copy K of K3ptq, then there exists l R ti, ju

such that V pKq intersects Vql and every cluster in Zl.

Proof. We may assume that r ą 2 as otherwise the claim is trivial. Suppose to the contrary that
there is a copy K of K3ptq in, say, Ũ1 and Ũ2, such that for every l P r3, rs, there is a cluster in
Ul which does not intersect B :“ V pKq. Let Vil be a cluster in Zl such that B X Vil “ H, and
if there is no such cluster in Zl, then we choose Vil “ Vql . Note that in the former case, we have

|Ũl X Vil | “ |Z l
l X Vil | ě p1 ´

?
γaqn. In the latter case, we have Z1

l ‰ H or Z2
l ‰ H, which implies

that |Wl| ě p1 ´ 2εqn by pQ2q, and thus |Ũl X Vil | “ |W 1
l X Vil | ě p1 ´ 3εqn. Now, by (Deg), every

vertex in B has at most 2εn non-neighbors in Ũl X Vil for each l P r3, rs. Since for every l we have

|Ũl X Vil | ě 0.9n, one can find large common neighborhoods (e.g. of size n{2) of all vertices of B in

each Ũl XVil , and then find a copy of Kr´2ptq in these sets. Altogether we obtain a copy of Kr`1ptq,
a contradiction.

Therefore, for such a copy K of K3ptq, there exists l R ti, ju such that K must intersect all clusters

of Ul. Since V pKq X Zl ‰ H, we have Zi
l ‰ H or Zj

l ‰ H. Then by pQ2q, |Wl| ě p1 ´ 2εqn and in
particular, Vql ‰ H. Therefore V pKq X Vql ‰ H. □

Claim 4.6. For all but exactly one j P rrs, we have dpv, Zj
j q ď t ´ 1 for all v P Ũj.

Proof. First assume that there exists j P rrs such that GrŨjs contains a copy of K1,t, with vertex

set denoted by tv, u1, . . . , utu, v P Ũj and u1, . . . , ut P Zj
j . Fix i P rrsztju and let N 1 be the set

of common neighbors of u1, . . . , ut in Ũi X Ui. Suppose v P Vp and let N be the set of common

neighbors of these t ` 1 vertices in Ũi X Ui. In particular, N Ď N 1 and N is almost equal to the
union of a or a ` 1 clusters in Ũi. Suppose there is a copy of Kt´1,t with parts S1 of size t ´ 1 and
S2 of size t such that S1 Ď N 1 and S2 Ď N . Then by Claim 4.5, there exists l P rrszti, ju such
that B X Zl ‰ H and B X Vql ‰ H, where B denotes the vertex set of the copy of K3ptq. This is
impossible since v is the only possible vertex in B X pZl Y Vqlq and can not satisfy both. Therefore,

letting N˚ “ N Y pN 1 X Vpq, we infer that eGpN˚q “ eGpNq ` eGpN,N 1zNq “ Opn2´1{pt´1qq.

By pP1q, pP3q and (Deg), we have |ŨizN
˚| ď 3pt ` 1qεn. Let Ei be the set of the edges incident

to ŨizN
˚ and counted in fi. We split it to Ei XEGpZi

i q and Ei XEGpŨizZ
i
i , Z

i
i q. Note that by pK1q,

each of the terms can be split further into at most k Kt,t-free bipartite graphs, each with one part
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of size at most 3pt`1qεn and the other part of size at most p1` pr´2q
?
γqan. Therefore, we obtain

that
fi “ Opεn2´1{tq ` Opn2´1{pt´1qq “ Opεn2´1{tq. (4.10)

Now assume there exist distinct j1, j2 P rrs such that each GrŨjis contains a copy of K1,t whose

part of size t is in Zji
ji
. The arguments above imply that (4.10) holds for all i P rrs, and consequently,

ř

iPrrs fi “ Opεn2´1{tq, contradicting (4.9).

On the other hand, if dpv, Zj
j q ď t ´ 1 for all j P rrs and all v P Ũj , then

ř

jPrrs fj ď pt ´ 1qkn,

again contradicting (4.9). □

By Claim 4.6, without loss of generality, we assume that,

for i ě 2, dpv, Zi
i q ď t ´ 1 for all v P Ũi, and thus, fi ď

#

pt ´ 1q|Ũi| if a ě 2,

pt ´ 1q|ŨizZ
i
i | if a “ 1.

(4.11)

If b “ 0, then Ũi “ Zi
i “ ZizZ

2 for all i by (4.3). In this case Ũ1 is Kt,t-free by pK1q and Ũi is
K1,t-free for all i ě 2 by (4.11). Since G is γ-close to Krpanq, GrUizZ

2, UjzZ
2s is almost complete

for all i ‰ j. This completes the proof of Theorem 4 with Z :“ Z2. □

By (4.9) and (4.11), we get

f1 ě ztpnq ´ εn2´1{t. (4.12)

In particular, we claim that
|W1| ą 3tεn if b ą 0 (4.13)

(which we will refine a moment later). Indeed, the edges counted in f1 can be covered by GrZ1
1 s,

GrZ1
1 ,W1 X W 1

1s, and at most k Kt,t-free bipartite graphs, each with a part of size at most
?
γn

and a part of size at most an. If |W1| ď 3tεn, then eGpZ1
1 ,W1 X W 1

1q “ Opεn2´1{tq. Together with

eGpZ1
1 q ď z

paq

t pnq, we have

f1 ď z
paq

t pnq ` Opεn2´1{tq ă z
pa`1q

t pnq ´ εn2´1{t

by (E1), contradicting (4.12).

Now we can give a much cleaner structure, shown in a series of claims below. A key step is to
show that Z2 Y W 2 “ H. From now on we only consider k ď 2r.

Claim 4.7. Suppose v0 P V pGq and i P rrs satisfy that v0 has at least εn neighbors in Zj for every
j ‰ i. Then v0 has less than εn neighbors in Ui. In particular, we have Z2 “ H and W 2 “ H.

Proof. The second part of the claim follows immediately from the definitions of Z2 and W 2.
Suppose to the contrary, that there exist v0 P V pGq and i P rrs such that v0 has at least εn

neighbors in Zj for every j ‰ i and at least εn neighbors in Ui. Since |Zj
j | ě p1 ´

?
γqan for all

j P rrs, there exist sets N1, . . . , Nr´1 each of size εn ´
?
γn such that Nj Ď Zj

j X Npv0q for j ‰ i

and Ni Ď pZi
i Y Wiq X Npv0q. Recall that W 1

1 “ W 1
1 X Vq1 . By averaging, there exists N 1

1 Ď N1 with
|N 1

1| ě pεn ´
?
γn ´ 2rγnq{2 ě εn{3 such that all vertices of N 1

1 are in Z1
1 Y W 1

1 and from the same
cluster, that is,

N 1
1 Ď Q, where Q P tZ1

1 ,W
1
1u.

Note that N 1
1 Ď W 1

1 is possible only if i “ 1 and a “ 1. If i ‰ 1, then let N 1
i :“ NizppWizW

1
i q Y Vq1q

and for every j P rrszt1, iu, let N 1
j :“ Nj . By pP1q, |WizW

1
i | ď 2rγn, and by (4.16), |Wi XVq1 | ď γn.

Thus, we have |N 1
j | ě εn{3 for all j P rrs. Because the sets N 1

j are small, we can not apply the

degree conditions (Deg) to them and instead, we use (D0).
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Recall that B1 is given by (D0). Next we show that GrŨ1zB1s does not contain a copy of Kt´1,t

such that the part of size t is in N 1
1. Suppose instead, there is such a copy of Kt´1,t, with parts

denoted by A and B, such that |A| “ t, A Ď N 1
1zB1 and B Ď Ũ1zB1. Recall that N

1
i X Vq1 “ H and

for each j P rrszt1, iu, N 1
j Ď Zj

j . Observe that for every v P Ũ1zB1, we have dpv,N 1
jq ě |N 1

j | ´
?
γn.

Indeed, if j ‰ i, then N 1
j Ď Zj

j and we have dpv,N 1
jq ě |N 1

j | ´
?
γn by (D0); otherwise note that

N 1
i Ď Zi

i Y pW 1
i X Wiq, and by (D0) and N 1

i X Vq1 “ H we have dpv,N 1
iq ě |N 1

i | ´
?
γn. Therefore,

we obtain that the vertices in A Y B have at least |N 1
j | ´ p2t ´ 1q

?
γn ě p1 ´ γ1{3q|N 1

j | common

neighbors in each N 1
j , j P r2, rs. Because each pair N 1

j , N
1
j1 has a high density, we can find a copy

of Kr´1ptq in the union of these common neighborhoods, which together with A Y B Y tv0u form a
copy of Kr`1ptq, a contradiction.

Now given that GrŨ1zB1s does not contain a copy of Kt´1,t such that the part of size t is in
N 1

1zB1, we give a refined estimate on f1. Indeed, since GrN 1
1zB1, Z

1
1zB1s does not contain a copy of

Kt´1,t such that the part of size t is in N 1
1zB1, we get eGpN 1

1zB1, Z
1
1zB1q “ Opn2´1{pt´1qq. Similarly

eGpN 1
1zB1,W

1
1zB1q “ Opn2´1{pt´1qq. Suppose N 1

1 Ď Vq for some q P t1, q1u, then we have

EpGrŨ1sq “ EpGrŨ1zpN 1
1zB1qsq Y EpGrN 1

1zB1, Ũ1zpB1 Y Vqqsq Y EpGrN 1
1zB1, B1 X Ũ1qsq.

Recall that |N 1
1| ě εn{3 and |B1| ď 2

?
γn. Therefore, (regardless of a “ 1 or pa, bq “ p2, 0q) we can

bound f1 ď |EpGrŨ1sq| by

f1 ď zt
`

p1 ´ ε
3qn, n

˘

` Opn2´1{pt´1qq ` Op
?
γn2´1{tq ă ztpnq ´ 3rC0kn,

where we used (E2) and γ ! ε. This contradicts (4.12). □

When a “ 2 and b “ 0 (i.e., k “ 2r), since Z2
i “ H and Wi “ H for all i P rrs, by (4.3), we get

Ũi “ Zi for all i P rrs. Therefore epGq “ epG1q `
řr

i“1 eGpŨiq ` epZ2 Y W 2, Gq ď trpkqn2 ` ztpnq `

pr ´ 1qpt ´ 1qn by pK1q and (4.11), proving Theorem 3 for k “ 2r.

For the remaining of the proof, we only need to consider a “ 1 (and thus b ą 0). Moreover, now

for i, j P rrs each Zj
i Ď Zi is an independent set and thus eGpZj

i q “ 0. So we can first update our
bounds on epGq and f1. Recall the bounds (4.7), (4.8) and (4.11) and we have

epGq ď trpkqn2 `
ÿ

iPrrs

pfi ` βiq

ď trpkqn2 ` f1 ` pr ´ 1qpt ´ 1qp1 `
?
γqn ` 2pr ´ 1qrC0

?
γn,

yielding

f1 ě ztpn, nq ´ C0n (4.14)

Claim 4.8. Suppose b ą 0. Then Ũ1 “ Z1
1 Y W 1

1 and W 1
1 Ď Vq1.

Proof. Suppose to the contrary, there is a vertex v in Ũ1zpZ1
1 Y W 1

1q or W 1
1zVq1 , namely, v P Z1

i
for some 2 ď i ď r or v P W 1

1zVq1 . Suppose v P Vl. Then l ‰ q1. Moreover, if i is defined, then

W 1
1 X Vq1 Ď V zpZ̃i Y Vlq; otherwise, W

1
1 X Vq1 Ď V zVl. By (Deg), we have dpv,W 1

1 X Vq1q ď 2εn.
Let N :“ W 1

1 X Vq1 X Npvq. We have |pW 1
1 X Vq1qzN | ď 2εN . Since |W 1

1zVq1 | ď |W 1
1zW1| ď 2γn, it

follows that |W 1
1zN | ď 2εn ` 2γn ď 3εn.

Recall (4.13), |W1| ą 3tεn. By pK3q (if v P Z̃1zZ1) or pK1q (if v P W 1
1zVq1), we know thatGrZ1

1 , N s

contains no Kt´1,t with the part of size t in N . This implies that eGpZ1
1 , Nq “ Opn2´1{pt´1qq.

Furthermore, by pP3q and pK1q, GrZ̃1zZ1
1 , Z

1
1 s is a Kt,t-free bipartite graph with one part of size at
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most pr ´ 1q
?
γn and the other part of size at most n. Thus, eGpZ̃1zZ1

1 , Z
1
1 q ď Cpr ´ 1q

?
γn2´1{t.

By the similar arguments, we have eGpW 1
1zN,Z1

1 q ď Cp3εnqn1´1{t.
Putting these bounds together (and note that Z1

1 is an independent set, we get

f1 “ eGpZ1
1 , Nq ` eGpZ̃1zZ1

1 , Z
1
1 q ` eGpW 1

1zN,Z1
1 q

“ Opn2´1{pt´1qq ` Op
?
γn2´1{tq ` Opεn2´1{tq.

By (E1), this contradicts (4.14). □

Claim 4.8 shows that Ũ1 has no atypical vertices and is thus Kt,t-free by pK1q. Furthermore,

since Ũ1 “ Z1
1 Y W 1

1 and W 1
1 Ď Vq1 , it follows that

α1 “ β1 “ 0, and eGpŨ1q “ f1 ď ztp|Z1
1 |, |W 1

1|q. (4.15)

Therefore, if |W 1
1| ď p1 ´ γqn, then we have f1 ď ztpn, |W 1

1|q ď ztpn, nq ´ δn2´1{t for some δ ą 0
by (E2). This contradicts (4.14). So we obtain

if a “ 1, then |W 1
1| ě p1 ´ γqn pand thus 1 P Lq. (4.16)

Next we study GrŨis for i ě 2. A key observation is that copies of K1,t in GrŨis together with

copies of Kt´1,t in Ũ1 may form copies of K3ptq, which are restricted by Claim 4.5.

Claim 4.9. Suppose i P r2, rs.

(1) If there is a copy of K1,t in ŨizpZ1 Y Vq1q, then there exists l P rrsztiu such that the vertex
set of K1,t intersects both Vql and Zl.

(2) Both Z̃izZ1 and Zi
i Y pW 1

i zVq1q are K1,t-free.

Proof. For Part (1), let B be the vertex set of a copy ofK1,t in ŨizpZ1YVq1q. Since BXpZ1YVq1q “ H

and Ũ1 Ď Z1 Y Vq1 , by (Deg), all vertices of B have at most 2εn non-neighbors in Ũ1. Letting

N :“ Ũ1 X
Ş

wPB Npwq, we have |N | ě |Ũ1| ´ pt ` 1q2εn.

First assume that N is Kt´1,t-free and thus eGpNq “ Opn2´1{pt´1qq. Note that, since |Ũ1zN | ď

pt ` 1q2εn, the edges in Ũ1 incident to Ũ1zN can be split into two bipartite Kt,t-free graphs each
with one part of size at most pt ` 1q2εn and the other part of size at most n. Thus, the number of

such edges is Opεn2´1{tq. This gives f1 “ Opn2´1{pt´1qq ` Opεn2´1{tq, contradicting (4.12).
We thus assume N contains a copy of Kt´1,t. Together with B, they form a copy of K3ptq in

GrŨ1 Y Ũis and we denote its vertex set by B1. By Claim 4.5, there exists l R t1, iu such that B1

intersects Vql and Zl. By Claim 4.8, Ũ1 X Ul “ H, so B1 X Zl “ B X Zl and B indeed intersects Zl.

Since Ũi X Zl Ě B X Zl ‰ H, we infer that |Wl| ě p1 ´ 2εqn from pQ3q, which implies that ql ‰ q1
because of (4.13). It follows that W1 X Vql “ H and thus B X Vql “ B1 X Vql ‰ H, as desired.

For Part (2), let Ai :“ Zi
i Y pW 1

i zVq1q and B be the vertex set of a copy of K1,t in Z̃izZ1 or in Ai.
Then, by the first part of the claim, there exists l P rrsztiu such that B intersects Vql and Zl. This

is impossible if B Ď Ai because Ai X Zl “ H for any l R t1, iu, and also impossible if B Ď Z̃izZ1

because in which case B X W “ H and thus B X Vql “ H for any l R t1, iu. □

The following claim shows a clean structure for the Ũi such that W 1
i is not too small.

Claim 4.10. For i P r2, rs such that |Wi| ě 2εn, we have Ũi Ď Ui Y Vqi.

Proof. Suppose instead, for some i0 P r2, rs with |Wi0 | ě 2εn, there exists v P Ũi0zpUi0 Y Vqi0
q.

By pP4q and the fact that v P Ũi0zUi0 , we infer that dpv, Zjq ě εn for all j ‰ i0. Then, by
Claim 4.7, we have dpv, Ui0q ă εn. Consequently, dpv,W 1

i0
X Wi0q ă εn, namely, v has at least
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2εn ´ 2γn ´ εn ě p1{2qεn non-neighbors in W 1
i0

X Wi0 (in G). Note that v is adjacent to all the
vertices of W 1

i0
X Wi0 in T . Since GrW 1

i0
s Ď T rW 1

i0
s, we infer that

eGpW 1
i0q ` eGpZ̃i0zZi0 ,W

1
i0q ď eT pW 1

i0q ` |Z̃i0zZi0 ||W 1
i0 | ´ p1{2qεn.

Since eGpZ̃i0zZi0q ď eT pZ̃i0zZi0q and αi0 “ |Z̃i0zZi0 ||W 1
i | ` eT pW 1

i0
q ` eT pZ̃i0zZi0q, we have

eGpŨi0zZi0q “ eGpZ̃i0zZi0q ` eGpW 1
i0q ` eGpZ̃i0zZi0 ,W

1
i0q

ď eT pZ̃i0zZi0q ` eT pW 1
i0q ` |Z̃i0zZi0 ||W 1

i0 | ´ p1{2qεn

ď αi0 ´ p1{2qεn. (4.17)

Combining (4.5) and (4.17) gives
ÿ

iPrrs

eGpŨizZiq ď
ÿ

iPrrs

αi ´ p1{2qεn (4.18)

Recall that fi ď pt´ 1q|ŨizZi| (i ě 2) by (4.11), |W 1
1| ě p1´ γqn by (4.16), and |Zi

i | ě p1´
?
γqn

by pP3q. Therefore, as
řr

i“1 |ŨizZi| ď pb ´ 1qn ` r
?
γn ` γn, we obtain

r
ÿ

i“2

fi ď pt ´ 1q ppb ´ 1qn ` r
?
γn ` γnq ď pt ´ 1qpb ´ 1qn ` 3

?
γn. (4.19)

Since Z2 YW 2 “ H, (4.7) becomes epGq ď trpkqn2 `
ř

iPrrspfi `βi ` eGpŨizZiq ´αiq. Recall that
řr

i“1 βi ď 2r2C0
?
γn by (4.8). Together with (4.18) and (4.19), we derive that

epGq ď trpkqn2 ` ztpnq ` pt ´ 1qpb ´ 1qn ` 3
?
γn ` 2r2C0

?
γn ´ εn{2 ă gpn, r, k, tq,

as γ ! ε. This is a contradiction. □

Let L1 YL2 YL3 be a partition of r2, rs such that i P L1 if and only if |Z̃i| ă n, i P L2 if and only

if |Z̃i| “ n, and i P L3 if and only if |Z̃i| ą n. The following properties hold for L1, L2 and L3.

pR1q If i P L1, then Zj
i ‰ H for some j ‰ i. By pQ2q, we have i P L and, by Claim 4.10,

Z̃i “ Zi
i ⊊ Vi and W 1

i Ď Vqi .

pR2q If i P L2, then Z̃i “ Zi
i “ Vi. Indeed, otherwise Z̃i ‰ Zi

i , then |Zi
i | ă n and Zj

i ‰ H for some

j ‰ i. By pQ2q and Claim 4.10, we have Z̃i “ Zi
i , a contradiction.

pR3q If i P L3, then Z̃i ⊈ Zi (otherwise |Z̃i| ď n). By Claim 4.10, we have |Wi| ă 2εn, which

implies that Zj
i “ H for j ‰ i by pQ2q. Thus, Zi

i “ Zi “ Vi ⊊ Z̃i.

Now we derive our final bound on epGq. Write zi :“ |Z̃i| and wi :“ |W 1
i | for i P rrs.

By Claim 4.3 and the fact that Z2 Y W 2 “ H, we have

epGq “ epG1q `
ÿ

iPrrs

eGpŨiq ď trpkqn2 `
ÿ

iPrrs

´

βi ´ αi ` eGpŨiq

¯

.

Moreover, as a “ 1, (4.5) becomes eGpŨizZ
i
i q ď αi. It follows that eGpŨiq “ fi`eGpŨizZiq ď fi`αi.

For i P t1u Y L1 Y L2, we simply use fi as the upper bound and thus we get

eGpŨiq ´ αi ď fi ď

$

’

&

’

%

ztpz1, w1q if i “ 1 by (4.15),

pt ´ 1qmintzi, wiu if i P L1 by pR1q and Claim 4.9 (2),

pt ´ 1qpzi ´ n ` wiq if i P L2 by pR2q and (4.11).
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Additional work is needed for i P L3. We let λ “ maxt0, |L1| ´ |L3|u and for i P L3, let λi be the
number of indices j P L1 such that Zi

j ‰ H. By pR1q–pR3q, we know that if Zi
j ‰ H, then i P L3

and j P L1. This implies that λi ě 1 for every i P L3, and
ř

iPL3
λi ě |L1|, yielding that

ÿ

iPL3

pλi ´ 1q ě λ. (4.20)

Recall that GrtZizZ
i
1s is K1,t-free by Claim 4.9 (2). Since Zi

i “ Zi is an independent set, it follows

that eGpZ̃izZ
i
1q ď pt ´ 1q|Z̃izpZi Y Zi

1q|. Together with (4.11), this gives

eGpZ̃izZ
i
1q ` eGpZi

1, Ziq ď pt ´ 1q|Z̃izpZi Y Zi
1q| ` pt ´ 1q|Zi

1| “ pt ´ 1qpzi ´ nq.

Therefore, for i P L3, writing ϱi :“ eT pZi
1, Z̃izpZi Y Zi

1qq, we have

eGpZ̃iq “ eGpZ̃izZ
i
1q ` eGpZi

1, Ziq ` eGpZi
1, Z̃izpZi Y Zi

1q ď pt ´ 1qpzi ´ nq ` ϱi.

Moreover, the definition of αi implies that

eGpW 1
i q ` eGpZ̃izZi,W

1
i q ´ αi ď eT pW 1

i q ` |Z̃izZi||W
1
i | ´ αi “ ´eT pZ̃izZiq

“ ´ϱi ´ eT pZ̃izpZi Y Z1qq

ď ´ϱi ´

ˆ

λi

2

˙

ď ´ϱi ` 1 ´ λi.

Finally, by (4.11), we have eGpZi,W
1
i q ď pt ´ 1qwi for i P L3. Combining all these inequalities

together, we obtain that, for i P L3,

eGpŨiq ´ αi “ eGpZ̃iq ` eGpZi,W
1
i q ` eGpW 1

i q ` eGpZ̃izZi,W
1
i q ´ αi

ď pt ´ 1qpzi ´ n ` wiq ` p1 ´ λiq.

It follows that
ř

iPL3
peGpŨiq ´ αiq ď

ř

iPL3
pt ´ 1qpzi ´ n ` wiq ´ λ by using (4.20).

Using
řr

i“2pzi ´ nq “ n ´ z1 and
řr

i“2wi “ bn ´ w1, we derive that

ÿ

iPL1

mintzi, wiu `
ÿ

iPL2YL3

pzi ´ n ` wiq “
ÿ

iPL1

mintn ´ wi, n ´ ziu `

r
ÿ

i“2

pzi ´ n ` wiq

“
ÿ

iPL1

mintn ´ wi, n ´ ziu ` bn ´ w1 ` n ´ z1.

Therefore,

r
ÿ

i“2

peGpŨiq ´ αiq ď
ÿ

iPL1

pt ´ 1qmintzi, wiu `
ÿ

iPL2YL3

pt ´ 1qpzi ´ n ` wiq ´ λ

“ pt ´ 1qpbn ´ w1 ` n ´ z1q `
ÿ

iPL1

pt ´ 1qmintn ´ wi, n ´ ziu ´ λ.

Finally, we work on the βi’s and recall that βi “
ř

jPLztiu |Zi
j |p|Z̃jzZj |`|W 1

j |´n`|ZizZ̃i|q. For i P

t1uYL1YL2, as Z̃izZi “ H, βi “ 0. For i P L3, as |Wi| ă 2εn, we have ZizZ̃i “ H; for any j P Lztiu,

we have Z̃jzZj “ H and W 1
j Ď Vqj again by Claim 4.10. Hence βi “

ř

jPLztiu |Zi
j |p|W 1

j | ´ nq ď 0
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because |W 1
j | ď n. It then follows that (noting that L X L3 “ H)

ÿ

iě1

βi “
ÿ

iPL3

βi “
ÿ

iPL3

ÿ

jPLztiu

|Zi
j |p|W 1

j | ´ nq

“
ÿ

jPL

ÿ

iPL3ztju

|Zi
j |p|W 1

j | ´ nq “
ÿ

jPL

pn ´ zjqpwj ´ nq.

Note that 1 P L by (4.16) and pn´ z1qpw1 ´ nq ď 0 by Claim 4.8. Furthermore, since n´ zj “ 0 for
j P L2, it follows that

ř

iě1 βi “
ř

jPL1
pn ´ zjqpwj ´ nq.

Recall that eGpŨ1q “ f1 ď ztpz1, w1q. By (E3), we have ztpz1, w1q`pt´1qpn´z1`n´w1q ď ztpnq.
Thus, combining these estimates together, by (4.7), we get

epGq ď trpkqn2 `
ÿ

iPrrs

peGpŨiq ´ αi ` βiq ď trpkqn2 ` ztpnq ` pt ´ 1qpb ´ 1qn ` y ´ λ, (4.21)

where y :“
ř

iPL1
ppt ´ 1qmintn ´ wi, n ´ ziu ´ pn ´ ziqpn ´ wiqq. For each i P L1, let yi :“

mintn ´ wi, n ´ ziu and y1
i :“ maxtn ´ wi, n ´ ziu. Then yi ď y1

i and thus,

pt ´ 1qmintn ´ wi, n ´ ziu ´ pn ´ ziqpn ´ wiq “ yipt ´ 1 ´ y1
iq ď tpt ´ 1q2{4u ď 1.

Since L1 Ď Lzt1u, we have |L1| ď b ´ 1. Moreover, by Claim 4.10, we have wi ď |Wi| ` |W 1
i zWi| ď

2εn ` γn ď 3εn for each i P L3. If |L1 Y L2| ď b ´ 2, then

bn “
ÿ

iPrrs

|Wi| ď n ` pb ´ 2qn ` pr ´ b ` 1q ¨ 3εn ă bn,

a contradiction. This implies |L1 YL2| ě b´ 1, and |L3| ď r ´ b. Since |L1| ´ λ “ mint|L1|, |L3|u ď

|L3| ď r ´ b, it follows that |L1| ´ λ ď mintb ´ 1, r ´ bu. Consequently, as tpt ´ 1q2{4u ď 1, we get

y ´ λ ď |L1|tpt ´ 1q2{4u ´ λ ď mintb ´ 1, r ´ butpt ´ 1q2{4u,

Together with (4.21), it gives the desired bound epGq ď trpkqn2 ` ztpnq ` pt´ 1qpb´ 1qn`mintb´

1, r ´ butpt ´ 1q2{4u “ gpn, r, k, tq. This completes the proof of Theorem 3 for k ă 2r. □
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