TURAN NUMBER OF COMPLETE MULTIPARTITE GRAPHS IN
MULTIPARTITE GRAPHS
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ABSTRACT. In this paper we study a multi-partite version of the Erd6s—Stone theorem. Given
integers r < k and t > 1, let exx(n, Kr+1(t)) be the maximum number of edges of K,y1(t)-free
k-partite graphs with n vertices in each part, where K,11(¢) is the complete (r + 1)-partite graph
with ¢ vertices in each part. We determine the exact value of exx(n, Kr41(t)) for t <3, r <k < 2r
and sufficiently large n. We also characterize all extremal graphs for r, k& such that r divides k,
analogous to a result of Erdds and Simonovits on forbidding K,41(t) in general graphs.

1. INTRODUCTION

Generalizing Mantel’s theorem from 1907 [18], Turdn’s theorem from 1941 [23] started the sys-
temetic study of Extremal Graph Theory. Given a graph F, let ex(n, F') denote the largest number
of edges in a graph not containing F' as a subgraph (called F-free). Let K, denote the complete
graph on r vertices and T}.(n) denote the complete r-partite graph on n vertices with |n/r| or [n/r|
in each part (known as the Turdn graph); and t,(n) be the size of T}.(n). Turdn’s theorem [23] states
that ex(n, Ky41) = t;(n) for all n > r > 1 and in addition, T;.(n) is the unique extremal graph.

Let Ky, . 4, denote the complete r-partite graph with parts of size ti,...,t,. and write K, (t) =
K+ with r parts. A celebrated result of Erdés and Stone [10] determines ex(n, K,11(t)) asymp-
totically:

n2
ex(n, Kp11(t)) = t,(n) + o(n?) = <1 - i) — +o(n?).

2
Erdés [7] and Simonovits [21] independently improved the error term above to O(n>~ /). Simonovits
[21] also showed that any extremal graph for K,;1(t) can be obtained from T,(n) by adding or
removing O(n?~/*) edges. Later Erdés and Simonovits [J] determined the structure of extremal

graphs for K, 1(t) for t < 3 as follows.

Theorem 1. [9] For t < 3, every extremal graph G for K,41(t) has a vertex partition Uy, ..., U,
such that

G|U;, Uj] is complete for all i # j,

GU;] = n/r + o(n),

G|U1] is extremal for Kiy, and

G|Us),...,G[U,] are extremal for K ;.

The restriction ¢t < 3 in Theorem 1 comes from our knowledge on ex(n, K; ;). A well-known open
problem in Extremal Graph Theory is proving ex(n, K;;) = Q(n?>~1/*) and this is only known for
t<3.
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Extremal problems with multipartite graphs as host graphs have been studied since 1951, when
Zarankiewicz proposed the study of the largest number of edges in a K, ;-free bipartite graph. Let
G(ni,...,nk) denote the family of k-partite graphs with nq,...,ny vertices in its parts and write
Gr(n) = G(n,...,n) with k parts. Given a graph F, define ex(ny,...,ng; F') as the largest number
of edges in F-free graphs from G(nq,...,n), and let exg(n, F) = ex(n,...,n; F) (with k parts).
(Trivially exg(n, F') = (g)n2 if the chromatic number x(F) > k.) In 1975 Bollobéas, Erdds, and
Szemerédi [2] investigated several Turdn-type problem for multipartite graphs. Applying a simple
counting argument, they showed that, for any n, k,r € N with k > r,

exp(n, Kpp1) = tp(k)n? (1.1)

The main results of [2] were on the minimum degree that forces a copy of K, in the graphs
of Gg(n). This problem has been intensively studied and resolved when k = r (frequently in its
complementary form concerning independent transversals) [13-15,22], and more recently for k > r
[17] (certain cases are still unsolved). There are several other extremal results for multipartite
graphs. Bollobés, Erdds, and Straus [1] determined ex(ni,...,n,; K,) for all ny,...,n, and r. Let
kK, denote k vertex-disjoint copies of K,. The problem ex(ni,...,n,;kK,) were studied more
recently [6,12,24] and settled by Chen, Lu, and Yuan [5] when nq,...,n, are sufficiently large (k,r
are arbitrary but fixed). The minimum pair density of multipartite graphs that forces a clique was
studied by Bondy, Shen, Thomassé, and Thomassen [3] and Pfender [19].

In this paper we study exx(n, K,1(t)), the multi-partite version of the Erdés—Stone theorem and
Theorem 1. To give the precise value of ex(n, K,+1(t)), we need the following definition. Given

(a)

a,t,ny,...,ng € N, let 2,7’ (n1,...,n,) be the a-partite Zarankiewicz number for K, that is, the
maximum number of edges in a Ky -free bipartite graph with part sizes ni,...,n,. For simplicity,
we write zga) (n) if ny = -+ = ng. We also write z;(m,n) for zf@ (m,n).

Theorem 1 says that any extremal graph for K,,1(t) is the join of an extremal graph for K,
and r — 1 extremal graphs for K7 ;. Inspired by this, a natural guess of an extremal graph for its
r-partite analogue is as follows. Suppose k = ar + b with 0 < b < r. We start with an n-blowup of
T (k), which has r classes and each class has either a or a + 1 parts. We add a K -free graph to
one class with the most number of parts and {K ;, K2 2}-free graphs to the remaining r — 1 classes.
If r < k < 2r, then it is easy to see (as in the proof of Theorem 2) that this graph is K, ;1(¢)-free
and has t,(k)n? + z(n,n) + (k —r — 1)(t — 1)n edges, and therefore

exp(n, K1 (1)) = t(B)n® + ze(n,n) + (k —r — 1)(t — D)n.
In this paper we first improve this lower bound when ¢ > 2 and r < k < 2r.

Theorem 2. Supposet =2, r <k < 2r and n = 8t2. Then exy(n, K,41(t)) = g(n,r, k,t), where

t—1)2
g(n,r k,t) =t (E)n® + z:(n,n) + (t = 1)(k —r — D)n + min{k — r — 1,2r — k} {( 1 ) J .
The following is our main result, in which we prove a matching upper bound when t € {2, 3} and
n is sufficiently large.

Theorem 3. For any t € {2,3} and integers r, there exists ng = no(r) € N such that for n = ny
and r < k < 2r, we have exg(n, K,+1(t)) = g(n,r, k,t).

In fact, we conjecture that exg(n, K,4+1(t)) = g(n,r k,t) holds for all t > 2, r < k < 2r, and
sufficiently large n.
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A natural question is whether our result can be extended to larger values of ¢ and k. For larger
value of ¢, although we can use z;(n, n) without knowing its precise value, we need several properties
of this function in our proof. Kévari, Sés, Turan [16] showed that z;(n,n) = O(n?>~/*) for t > 2 and
proving a matching lower bound is a well-known open problem:

(Z) z(n,n) = Qn* V) for t > 2.
It was shown [1,8] that (Z) holds for ¢ = 2, 3. In addition, we will need the following properties.

(E'1) For any a € N, there exists 6 > 0 such that for large n, ZEGH) (n) — zt(a) (n) = on?- VL,
(E2) for any € € (0, 1], there exists § > 0 such that for large n,
z2(n,n) — z((1 — &)n,n) = dn>~ V1,

(E3) z¢(m,n) —z(m—1,n) >t — 1.

We can easily verify (F1)-(£3) for ¢t = 2,3. First, a proof of (£1) from (Z) for all ¢ is given in
Section 3.3. Second, when t = 2,3, (E2) follows from zi(m,n) < (1 + o(1))mn'~'/ by Fiiredi [11]
and z;(n,n) = (1 —0(1))n?> "V for t = 2,3. Third, (£3) holds trivially because adding a vertex with
t — 1 edges to a Ky -free graph will not create a copy of Ky ;.

We do not know whether similar properties hold when k& > 2r: in (£2) we must deal with the
[k/r]-partite Zarankiewicz number; we also need to replace t — 1 by Q(a?t) in (F3), which seems
out of reach at present.

Theorems 2 and 3 show that our problem is more complex than its non-partite counterpart,
Theorem 1. Finally, we show that, when r divides k, this additional complexity does not exist, and
we give an analogue of Theorem 1, modulo the existence of a set of constantly many exceptional
vertices.

Theorem 4. Forr,k e N withr | k and t = 2,3, there exist Cy,ng € N such that the following holds
forn =mng. Let G be a K,1(t)-free k-partite graph with n vertices in each part and exy(n, K,41(t))
edges. Then there is a vertex partition of G into Uy, ...,U,, each consisting of exactly k/r parts of
G, and a vertex set Z < V(G) with |Z| < Cy such that

o GIU\Z,U;\Z] is almost complete for all i # j,

o G|U\Z] is Ki4-free, and

o GIU\Z],...,G[U\Z] are K -free.

Showing Z = (J in Theorem 4 requires an a-partite analogue of (£2), which is unknown for a > 3.
For the rest of this paper we only consider r > 2, as it is easy to see that Theorems 2—4 hold for
r=1.

Notation. Given integers n = m > 1, let [n] = {1,...,n} and [m,n] = {m,m + 1,...,n}. We
omit floors and ceilings unless they are crucial, e.g., we may choose a set of en vertices even if our
assumption does not guarantee that en is an integer.

When X,Y < V(G) intersect, Eg(X,Y) is defined as the collection of ordered pairs in (z,y) €
X x Y such that {z,y} € E(G). Write eq(X,Y) = |[Eg(X,Y)|. For a vertex v in G, let N(v, X) =
N()nX and d(v, X) = |N(v, X)|. Moreover, given X < V(G), let e(X, G) be the number of edges
of GG incident to the vertices of X. Given two graphs G and H on a common vertex set V, G n H
denotes a graph on V with E(G n H) = E(G) n E(H). Given a k-partition {Vi,Va, ..., Vi}, a set
S is called crossing if |S nV;| < 1,1 € [k].

When we choose constants x,y > 0, x < y means that for any y > 0 there exists ¢ > 0 such that
for any & < xg the subsequent statement holds. Hierarchies of other lengths are defined similarly.
Furthermore, all constants in the hierarchy are positive and for a constant appearing in the form
1/s, we always mean to choose s as an integer.
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2. PROOF OF THEOREM 2

In this section we prove Theorem 2, that is, exx(n, K,41(t)) = g(n,r, k,t) for r < k < 2r. Our
proof needs a t-regular K o-free bipartite graph with n vertices in each part. It is well known (see
[20]) that such graph exists for infinitely many n € N with n > t2. The following proposition from
[25, Section 2] allows n to be any integer that is at least 8t2.

Proposition 2.1. [25] Fort > 1 and n > 8t2, there exists a t-reqular Kao-free bipartite graph with
n vertices in each part.

Now we prove our lower bound on exy(n, K,11(t)) stated in Theorem 2.

Proof of Theorem 2. First assume r < k < 2r and t > 2. Let Vp,...,V; be disjoint sets of size n
and, if k < 2r, let Viy1,..., Va2, be empty sets. Let G’ be a complete r-partite graph with parts
ViuVes1, VauViga, ..., Vo U Vs, Moreover, we add to G’ a maximum K ;-free bipartite graph with
bipartition Vi U V,41, and a (t — 1)-regular K> o-free bipartite graph on V; U Vi, for 2 <i <k —r
(the existence of such graph is guaranteed by Proposition 2.1). The resulting graph is K,11(t)-
free because a copy of K,i(t) has at most 2t — 1 vertices in V; U V;.41 and at most ¢ vertices in
Vi U Vigy for 2 < i < k —r. This graph has t,.(k)n? + z;(n) + (t — 1)(k — 7 — 1)n edges, and thus,
exg(n, Ky41(t)) = t.(k)n? + 2¢(n) + (t — 1)(k — r — 1)n. This proves the theorem when t = 2 or
k= 2r.

Now assume r < k < 2r and t = 2. Let b = k — r. Our goal is to give a better construction that
shows

2
exp(n, Kry1(t)) = tp(k)n® + ze(n,n) + (t — 1)(b — 1)n + min{b — 1,7 — b} {(t 41) J .
Let Vi j, (i,7) € [r] x [2] be vertex sets, where Vji19,...,V; 2 are empty sets and other sets have
size n. Let G = K(VipuVig,..., Vi1 U V;2) be the complete r-partite graph with parts V1 U
Vig,.-, Vi1 U Vpo. Thus e(G) = t,.(k)n?

We first revise the partition as follows. Let ¢’ := [(t — 1)/2] and b’ := min{b — 1,7 — b}. Let
{Vi;,(i,7) € [r] x [2]} be obtained from (JV;; by moving a set S;1 of ¢’ vertices from V; to
Vitb—1,1, and moving a set S; o of ¢’ vertices from Vj 5 to Vijp_1 2, for every i € [2,0' +1]. For i e [r],
let U; := V;’l U Vl’2 and H := K(Uy,...,Up)) n K(Vi1,...,Vo1,Vio,...,Vi2). Let H' be obtained
from H by adding

e a K -free bipartite graph on U; of size z(n,n), and

e a maximum {K ;, K3 2}-free bipartite graph on U; for i € [2,b].

o 2t' vertex-disjoint copies of K11 on each Uj, i € [b+ 1,b+ '], where the centers of stars
are the 2t" vertices of S;_p111 U Si—p+1,2; then add a copy of Ky y on Si_pip11 U Sipi1,2-
See Figure 1.

For i € [2,b], Proposition 2.1 implies that each H'[U;] is (t — 1)-regular and thus for ¢ € [2,V' + 1],
H'[U;] has (n—t")(t — 1) edges, and for i € [b/ + 2, b] it has n(t — 1) edges; for i € [b+1,b+ V'], each
H'[U;] has 2t'(t — 1) + (¢)? edges. Therefore, the number of edges in H'\H is

zi(n,n) + (n—t)t = +nt—1)(b—b —1) + 2t —1) + (t)?)
=z(n,n) + (t—1)(b—Dn+ )2+t -1
=zi(n,n) + (t — 1)(b—1)n + 20/ (t')* + bt/ (t —

=z (n,n) + (t —1)(b—1)n + 20/ ()% + [(t - 1)2J .

_|_

)
—1-t)
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FIGURE 1. The lower bound construction for K, 1(t) with r =5, k = 8 and ¢ = 3.
The left figure is the standard construction similar to the one given in Theorem 1;
the right figure is the construction presented in our proof of Theorem 3.

We claim that H contains t,(k)n? — 2b'(¢')? edges. Indeed, for every i € [2,b" + 1], the vertices of
S;,1 moved from V; 1 to V11 lose n edges to V1,1 and gain n—t" edges to V; 2, thus having a net
loss (t')? edges between U; and U;44_1; the same holds for Si2. Thus, our claim holds after summing
over all b such rows, which implies that e(H') = t,.(k)n? + z;(n,n) + (t — 1)(b— 1)n + b’[@].

At last, we show that H' is K,,1(t)-free. Recall that by construction, every U; is triangle-free,
Uy is Kyii-free, Us, ..., Uy are {K1 4, Ko 2}-free, and each of Upyy, ..., Uy, ,, induces vertex-disjoint
copies of K1 ;1 whose centers are joined by copies of Ky . Suppose K is a copy of K,11(t) in H'.
By construction, K contains at most 2t —1 vertices in U;. We claim that |V (K) N (U;uU;p-1)| < 2t
fori e [2,V/+1] and |V(K)nU;| < tforie [/ +2,b]u[b+V +1,r], which will lead to a contradiction
with |[V(K)| = (r + 1)t. Indeed, for i € [2,7], if K contains at least ¢ + 1 vertices in Uj;, then these
vertices induce either a copy of K ; or K» 2. By construction, this is only possible for i € [b+1,b+V']
and in that case V(K) n U; must intersect both S;_p11 and Sj_p412. Furthermore, there exists
veV(K)nSi_pr11 and v € V(K) n Si_py1,2 such that v and v' are in different color classes of
K. Since v and v’ have no common neighbor in U; U U;_p,1, K induces at most two classes on
Ui O U;—pt1. Thus, |[V(K) n (U; U Uj—p+1)| < 2t and we are done. O

Remark. Note that for ¢ = 2, both our constructions give the same value, which means that the
extremal graph is not unique. Indeed, it is easy to see that one can construct b’ + 1 different ones —
as we can move vertices for a subset of the ' rows.

3. STABILITY AND PROOF OUTLINE

Let us first consider extremal graph for exg(n, K,11). Given r,k € N with k > r, write k = ar +b
for 0 < b <r —1. By Turan’s theorem, the Turdn graph T (k) := Kq . 4a+1,.a+1 (With b parts of
size a+ 1 and r — b parts of size a) is the unique largest K, ;1-free graph on k vertices. The following
definition shows that there are many extremal graphs for exy(n, Ky11).

Definition 3.1. Let 7, ,(n) be the collection of k-partite graphs with parts Vi,...,V} of size n
defined as follows. If b > 0, we arbitrarily divide V41, ..., V} into r sets W1, ..., W, (some of them
may be empty) such that each Wj is a subset of V; for some j; if b = 0, then let W1q,..., W, be
empty sets. Now let T be the r-partite graph with parts Uy, ..., U, such that

U, =W, u Z;, where Z; := V(i—l)a+1 U - U Vi,



6 JIE HAN AND YI ZHAO

obtained from the complete r-partite graph K(Uy,...,U,) by removing edges between W; and Wy,
i # i', whenever W;, Wy < Vj for some j (in other words, T' = K(Uy,...,U,) n K(Vi,...,V&)).

Since T is r-partite, it is K, 1-free. Let U = Uiem U; and W = Uie[r] Wi;. Note that ep(U) =
(5)a*n? while the number of edges of T' incident to W is equal to |W|(k —a — 1)n = b(k — a — 1)n*.
Since t,(k) = (5)a* + b(k — a — 1), it follows that e(T) = ¢,(k)n?. By (1.1), T is an extremal graph
for K,41.!

3.1. A stability theorem. We need the following stability result for exy(n,K,+1(t)). Given
two graphs G,H € Gi(n) on the same parts Vi,..., Vs, we say that G and H are ~-close if
|E(GYAE(H)| < yn?.

Theorem 5. For any k,r,t € N and any v > 0, there exist € > 0 and ng € N such that the following
holds for every integer n > ng. Suppose G € Gi(n) is K,11(t)-free and e(G) = (t.(k) — e)n?. Then
G is y-close to a member of T, x(n). In particular, we have e(G) < (t.(k) + v)n>.

In the earlier version of this paper, we gave a self-contained proof of Theorems 5. Here we derive
it from a stronger result of Chen, Lu and Yuan [5, Theorem 1.5], in which they provide more
structural information. Their definition and result are more general by allowing the parts V; of G
to have different sizes. Here we only state their definition and result that we need for the balanced
case.

Definition 3.2 (Stable partition). Let & > r > 2 be integers. Let P = {P;,...,P.} and V =
{Vi,..., Vi} where |V;| = n for all i € [k] be partitions of a common vertex set. For i € [r],j € [k],
aset W = P; n'Vj is called an integral part if W = Vj, and called a partial part otherwise. We say
that P is stable to V, if each of Py,..., P. has the same number of integral parts and at most one
partial part.

Definition 3.3 ((X,e)-stable). Let n,r, k be integers with n > k > r > 2. For a given spanning
subgraph G of Kj(n), let P = {P1,..., P} be a partition of V(G) and V = {V1,...,Vi} be the
natural k-partition. Given € € (0,1) and a set X < V(G) of size at most en, we say that P is an
(X, e)-stable partition if

e G — X is e-close to K(Py,...,P,) — X,

o {P\X,...,P.\X} is stable to {V1\X, ..., Vi\X}.

Theorem 6. [5, Theorem 1.5] Let F' be a graph with chromatic number r +1 = 3. For every e > 0
there exists 0 > 0 and integer ng > 0 such that the following holds for n = ng. Let G be an F-free
subgraph of Kp(n) with k > r such that e(G) = exg(n,F) — én®. Then, G has an (X,¢)-stable
partition {Py, ..., P,_1} for some set X € V(G) of size at most en.

Now Theorem 5 follows from Theorem 6 by setting F' = K, ;1(¢) and noticing that i) a partition
is stable if and only if it is a partition required in Definition 3.1 and ii) as | X| < en, X is incident
to at most en? edges that we have no control on.

We remark that although Theorem 6 is stronger, the additional structural information is not
immediately useful to us. For example, the set X introduced in Theorem 6 is the set of atypical
vertices of G (see also the proof outline in next section). However, we need a stronger control and
indeed we need to distinguish two kinds of atypical vertices. Identifying them from X is almost
equivalent to identifying them from V(G). So we choose to present and use the easier and more
classical version, Theorem 5, in this paper.

"ndeed, Chen, Lu, and Yuan [5] showed that 7;.x(n) are all the extremal graphs for exx(n, K,+1) and described all
extremal graphs for ex(ni,...,ng; Kry1).
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3.2. Outline of the proofs. Now we give an outline of our proofs. Let G € Gx(n) be K, 11(t)-free
and has the maximum number of edges. Since e(G) > t.(k)n?, we can assume that G is v-close
to some 71" € T, 1 (n). Since e(G) is maximum, we can easily derive a minimum degree condition by
symmetrization arguments.

Next we define atypical vertices. Roughly speaking, there are two types of atypical vertices: the
first type of vertices, denoted by Z” U W”, are the “wrong” ones that do not exist in 7, x(n); the
second type of vertices, denoted by (W/\W;) u J;; Z]i- for i € [r], are the vertices that are not in
U; but behave like the vertices of U;, in other words, they are in the wrong place. We temporarily
ignore the first type of atypical vertices because there are only a constant number of them (see (P1)
and (P3)) and they contribute only O(n) to e(G). For the second type of atypical vertices, there
are only o(n) of them (see (P1) and (F3)) and we move them to appropriate rows and redefine our
partition as Uy, ..., U, (see (4.2)). A key observation is that Z; # (J (namely, there is a vertex in
Z; but behaves as a vertex in Z;) only if |W;| = (1 — o(1))n.

Now we estimate e(G). We split E(G) into Eg(Uh),...,Eq(U,), and E(G'), where G’ := G n
K(Uy,...,U,). We have a relatively good estimate of ¢(G’) (see Claim 4.3) taking into account that
the partition is no longer balanced. In contrast, due to the second type of atypical vertices, we can
only show that each G[U;] is “almost” K ;-free (see Claim 4.4). Similarly, we show that all but at
most one rows are “almost” K ;-free (see Claim 4.6). Assuming that eg(ﬁl) is the largest among

all eq(U;), i € [r], we can use these properties and give an upper bound of e(G). Next we show that
U, has no atypical vertices (Claim 4.8), and thus eq(U;) < zt((”l)(n). We further refine our estimate
on ﬁi, 1 > 1, and show that each second type atypical vertex contributes at most a constant number
of edges to E(G)\E(G") (Claim 4.9). In summary, U; is indeed Ky free, eq(U;) = O(n) for i > 1,
and |Z" 0 W”"| = O(1), from which we conclude the proof of Theorem 4.

To prove Theorem 3, we refine earlier estimates as follows. We first show that [W{| = (1—o0(1))n
and Z" 0 W”" = &, where we use (E2). The rest of the proofs are further refinements of our
estimates. In particular, we show that if |[IW/| is not too small, then U; essentially contains no vertex

from other rows.

3.3. Two quick proofs. We first derive (F1) from (Z).

Proof of (Z) = (E1). Given a + 1 sets Vi,...,V 41 of size n, we define an (a + 1)-partite graph G
on Vi,..., Va4 as follows. Let V4 be a set of n vertices consisting of |n/2] vertices from V; and [n/2]

vertices from V5. We place an extremal graph G’ for zga) (n) on V4, Vs, ..., Vayi1, in other words, G’

is an a-partite K ¢-free graph with z§a) (n) edges. Next we add a maximum bipartite K ;-free graph

G” on the remaining vertices of Vi and Va. By (Z), e(G") = z§2)([n/2j) > 6n2~1/t for some § > 0.
Thus G = G' U G" is Ky -free and e(G) = e(G') + ¢(G") = zt(a) (n) 4+ 6n>~Yt. This gives (F1). O

We need the following simple proposition.

Proposition 3.4. Given r,t € N and reals v, > 0 such that €2 > 3r’t%y, and let n be sufficiently
large. Suppose G is a K,1(t)-free graph with vertex partition V.=Uy U --- U U, such that |U;| = n
forie[r] and d(U;,U;) = 1 -7, 4,j€[r], i # j. Let X SV be the set of vertices v satisfies that

d(v,U;) = €|U;| for all i € [r]. Then |X| < 2(t —1)e™".

Proof. We call a copy of K,(t) in G useful if it consists of exactly ¢ vertices from each of Uy, ..., U,.
We first show that for every v € X, N(v) contains many useful copies of K, (t). Indeed, d(U;, U;) >
1 — ~ for every 4,j € [r], i # j implies that G[U;,U;] has at most |U;||U;| non-edges. Since
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d(v,U;) = e|U;| for all i € [r], take W; € N(v) n U; of size exactly ¢|U;|. We can find [ [;cp (El(t]”)
rt-sets which consists of ¢ vertices from each U;, amongst which, at most

U\t Py g (U
MIan . <
Z Y|Us||Uj| H] ( " ) e|Uil €|Uj] &2 ig] t

i,5€[r],i#j velr

of them contain crossing non-edges. Therefore, N (v) contains at least

r2t2y e|Uy| grt |Uy |
() ) =2 I ()

i'elr i'e[r]
useful copies of K, (t), where we used that r?t>v¢=2 < 1/3. Since G is K, ,1(t)-free, each useful copy
K of K,(t) is in N(v) for at most ¢t — 1 choices of v € X. Double counting on the number of pairs

(v, K) such that K < N(v) is useful, we obtain that

IXlit H] <|Uti"> <(t-1) H] <|U;>

i'elr i'elr

which gives | X| < 2(t — 1)e". O

4. MAIN PROOFS

Given integers 1 < s < t and sufficiently large m,n, Kévari, Sés, Turdn [16] showed that
z(m,n,s,t) < Cmn!'~Ys for some C = C(t) > 0, that is, a bipartite graph G with parts of size m
and n has at most Cmn'~1/* edges if G has no copy of K s,t Where the part of size s is in the part
of G of size m. We start the proof with the general setting, that is, for k = ar + b with 0 < b < r.
After we conclude the proof of Theorem 4, we focus on the case k < 2r.

Proofs of Theorems 3 and j. Suppose t = 2,3 and thus (Z) holds, that is, zf@ (n) = en®~* for some
¢ > 0. Take C = C(t) as in the K6vari-Sés—Turédn result in the previous paragraph. We choose
constants

I/n«y«exe «1/k1/t,cC.

Suppose G is K,41(t)-free and has the maximum number of edges, that is, e(G) = exx(n, K,11(t)).
Suppose further that e(G) > g(n,r, k,t) > t.(k)n?. By Theorem 5, G is y-close to some T € T, (n)
such that T'= K(Uy,...,U,) n K(Vi,..., Vi), where Uy, ..., U, is a partition of V(7T') satisfying the
following properties:

e U, =W, u Z; such that Z; = V(i_l)aﬂ U - U Vi, and
o Wi = if b =0 and W; is a subset of V;, for some ¢; with ar < ¢; < k otherwise.
(Uf/r])(n)_

For simplicity, we write z:(n) = 2,
The fact that G is v-close to T' gives the following observation.

(DO) for any i € [r], there exists B; < U; of size at most 2,/yn such that for any v € U;\B; and
Ac Uje[r]\{i} U; satisfying that none of the vertices of A is in the same cluster as v is, we

have d(v, A) < \/7n.

To see it, fix i € [r] and write U* := (J;,; U;. Since G is y-close to T', we have

eG(Zi,U*) 2 |Z;||U*| = n®, and  eq (Wi, U\Vy,) = [Wil|US\V, | — yn.
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Let B} € Z; be the set of vertices v such that d(v,U*) > /yn, and B = W; be the set of vertices w
such that d(w, U*\V,,) > /yn. The displayed line above implies that |B]| < /yn and |B!| < \/yn.
Now (DO0) holds by setting B; = B, u BY.

Minimum degree. For i € [k], let N; := Np(u;) for some u; € V;. Note that this is well-defined as
the vertices of V; share the same neighborhood in 7. Using the maximality of e(G), we derive that
for every u e V;, i € [k]
dg(u) = dr(u) — 2tyn.
Indeed, since G is y-close to T, that is, |E(G)AE(T)| < yn?, for each i € [k], we can greed-
ily pick distinct uy,...,u; € Vi, such that |[Ng(uj)AN;| < yn?/(n — j) < 27yn, for j € [t]. Let
N/ = ﬂje[t] N¢(uj) and note that |[NJAN;| < 2tyn. In particular, |[N/| > |N;| — 2tyn. Now for
a contradiction suppose there is u € V; such that dg(u) < dr(u) — 2tyn = |N;| — 2tyn. Then we
replace Ng(u) by N/, that is, we disconnect all the edges of u in G and connect u to the vertices
of N/. Thus, we obtain a k-partite graph on the same vertex set as G and has more edges than
G. Therefore, by the maximality of G, this new graph contains a copy of K,.1(t), denoted by
K. Clearly, K must contain the vertex u, as G is K,41(t)-free. Moreover, K must miss at least
one vertex from uq,...,us, say uj, because the set {u,ui,...,us} is independent in G and K has
independence number ¢t. However, as the neighborhood of u N/ is a subset of N¢(u;), we can replace
u by u; and still get a copy of K,1(t), which is in G, a contradiction.
Therefore, comparing with the degrees in T', we derive that for any vertex w,

do(u) > {(k‘ —a)n — |W;| = 2tyn, ifue Z; forie[r],
G

4.1
(k—1—a)n—2tyn, if ue W. (4.1)

Atypical vertices. In this step we identify a set of atypical vertices, that is, those behave differently
from the majority of the vertices. Let W := Uie[r] Wi = Varg1 U --- U V. We define W” :=
{veW:dwvZj) = en, forall j € [r]} and W/ := {v € W : d(v,Z;) < en}. Then we have
W=W"uWju---uW. Next, for i€ [r], let Z" := [,y Z/, where

Z!={ve Z :d(v,Z;) = en, for all je[r]\{i} and d(v,U;) > en}.

Furthermore, let Z := Z;\Z;" and write Z; as (J; Z , where Z7, j # i, consists of the vertices

v € Z; such that d(v,Z;) < en, and Z! consists of the vertices v such that d(v,U;) < en. The
following are some useful properties of these sets.

Claim 4.1. The following properties hold for all i € [r].
(P1) [WAW;| < 2yn and [W"| < Cj := 2te™™
(P2) W=W"UW]u---uW/is a partition of W.
(P3) ]Z”| C’o, |ZJ| fn for j #1i, and |Z{| = (1 — \/7)an.
(P4) Ujepn Zi is a partition of Z;.

Proof. Recall the definition of W” and that d(Z;,Z;) > 1 — ~ for distinct 4,5 € [r]. Applying
Proposition 3.4 to the graph G[W” u Z] with vertex partition (U, ...,U,), we obtain that |W”"| <
Cp := 2te™"". We next show that [W/\W;| < 2yn for each i € [r]. Indeed, because G is y-close to
T, we have eq(Z;, W/\W;) = an|W/\W;| — yn?. On the other hand, by definition, eq(Z;, W/\W;) <
|W/\W;| - en. Thus, we get |[W/\W;| < yn/(a —¢) < 27yn, verifying (P1).

To see (P2), suppose there is a vertex v € W/ n Wj. By definition, d(v) < (k —1)n —2(a —¢&)n <
(k —1—a)n — /yn, contradicting (4.1).
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Next we show (P3). Fix i € [r]. Since G is 7y-close to T, we have d(Z;,Z;) > 1 — v and
d(U;, Zj) = 1 — for distinct j, 5" € [r]\{i}. Thus, we can apply Proposition 3.4 on G[U; U Uj# Zj]
(with the obvious r-partition) and obtain |Z/| < Cy. Moreover, for i # j, from d(Z;, Z;) = 1 — v
we infer |Z7| < (v/e)n < VN, as v « e. Therefore, we also get |Z!| > |Z;| — | 2| — X 77| >
an — Cy — (r —1)yn/e = (1 — /7)an.

Now we show (P4). By definition, if v € Z¢, then d(v,U;) < en; if v € Zg for j # i, then
d(v, Z;) < en. Thus, we have Z] elr] Zl-j by definition. A vertex v € Z! n Zij, j # 1, satisfies
that d(v) < kn — (|U;] —en) — (a —e)n < (k — a)n — |W;| — (1 — 2¢)n, contradicting (4.1). A vertex
vE Zij N Zz-jl for distinct j, 5" € [r]\{i} satisfies that d(v) < (k—1)n—2(a—e)n < (k—a—2)n+ 2¢en,
contradicting (4.1) as well. Thus, Uje[r] Zij is a partition of Z!. O

Yka)

For i € [r], our refined partition is defined by

Ui == Z; W/, where Z; := U Z}. (4.2)
Jelr]

Then V(G) = Z" 0 W" U Uep U;. Note that for any v € U;, we have d(v, Z!) < d(v, Z;) < en, and
thus d(v, Z;) < en + (r — 1),/4n by (P3).

For every i € [r], note that (P1) implies that [W;\W/| < Cy+(r—1)2yn < 2rvyn, and similarly (P3)
implies that |Z;\Z;| < Co + (r —1),/yn < /N

We now derive a more handy minimum degree condition. For convenience, define d(v, A) =
|A| — d(v, A). For v e Z}, we have d(v,U;) = d(v,U;) — |U\U;|. Since d(v,U;) > an + |W;| — en
and |U\U;| < |Z\Zi| + [WA\W/| < en/2, we have d(v,U;) = an + [Wi| —en — en/2. By (4.1),
d(v) < an + |W;| + \/yn. It follows that d(v, V\U;) < 2en. Now consider v € U;\Z!. The definition
of U; implies that d(v, Z;) < en and d(v,Z;) > an —en. Assume v € V;. Then V; n Z; =
and trivially d(v,V;) = n. It follows that d(v,Z; U V;) > (a + 1)n — en. Hence d(v,Z; U V;) =
d(v, Z; O Vy) — |Z\Zi| > (a + 1)n — 3en. On the other hand, either case of (4.1) implies that
d(v) < (a+1)n+ \/yn. Consequently, d(v, V\(Z; UV})) < 2en. In summary, for i € [r] and j € [k],

(Deg) If v € Z¢, then d(v, V\U;) < 2en; if v e (U\Z}) n V;, then d(v, V\(Z; U V})) < 2en.

Next we prove further properties on Zij and Zj.

Claim 4.2. If Zl-j # & for some i # j, then the following holds.
(Q1) Forve Z/ and A< V(G\(Zi U Z;), we have d(v, A) = |A| — en — NG
(@2) Wil > (1~ /A)n.
(@Q3) If |Z\Z;| = t, then |Wj| < 2ten.

Proof. Note that d(v,Z;) < en and d(v, Z;) < (a — 1)n, that is, v has at least n + (an —en) =
(a+1)n—en non-neighbors in Z;UZ;. On the other hand, (4.1) says that v has at most an+|W;|+,/yn
non-neighbors in G. Combining these two we get that v has at most |W;|—n+en+,/yn < en+,/n
non-neighbors outside Z; U Z;, and thus (Q1) holds. The fact that |[W;| —n +en 4+ \/yn = 0
implies (Q)2).

For (3), suppose to the contrary, |Zj\Zj\ >t and |W;| > 2ten. By (Q1) with A = W, arbitrary
t vertices in Z;\Z; have at least |W;| — (¢ + /y)n > ¢t common neighbors in W;. We thus obtain a
copy of K;; with one part in Zj\Zj and the other part in W — denote its vertex set by B. For any
i’ € [r]\{j} such that Ble.j, # (&, we have |Wy| > (1—e—,/7)n by (Q2). Since |W;| > 2ten, Wy and
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W; do not belong to the same cluster, and thus no vertex of B is in the same cluster that contains
Wy, which implies that the vertices of B have at least |Wy| — 2¢t(2en) = n/2 common neighbors in
Wi by (Deg). For any ¢” € [r]\{j} such that B n Z}, = & (and thus B n Zy = &), by (Deg) we
have that the vertices of B have at least n/2 common neighbors in Z;». Because G is 7-close to T,
these common neighborhoods, each of size at least n/2, have densities close to one between each
pair, and thus contain a copy of K,_1(t). Together with B, they form a copy of K,11(t) in G, a
contradiction. O

In particular, when b = 0 (and thus W; = ¢J for all 7), (Q)2) implies that Zg = (J whenever ¢ # j.
Consequently,
Ui = Zi = Z\z" for all i € [r] when b = 0. (4.3)
Let L < [r] be the set of indices ¢ such that |[W;| > (1 —e — \/¥)n. (Q2) and (Q)3) imply that
e for i € [r]\L, we have Zg = (J for j # i.
o forie L, |Z\Zj| <t—1 and thus | Z;| < an +t — 1.

First Estimate on ¢(G). Let G’ = G n K(Uy,...,U,). We have e(G) = e(G') + YI_, ec(U:) +
e(Z" UW" @G). Since G’ is r-partite, it is K,y1-free. As G’ is a subgraph of G € Gi(n), we have
e(G") < t.(k)n? (but this is not good enough when b > 0). Below we give an upper bound for
e(G"), which will be used throughout the proof. Recall that T'= K(V,..., V) n K(Uy,...,U,) has
precisely t,.(k)n? edges.

Claim 4.3. We have e(G’) < t,(k)n® + Die[r](Bi — ai), where

Biim 2, 12 (1Z0\Z] + W)l = n+|2ZAZ) and
Jen )
Q; :|ZZ\Zz‘|Wl/’ + eT(WiI) + BT(ZZ\ZZ)

Proof. We first obtain G := K(Z,uW/{, ..., Z,uW!)nK(V1,..., V) from T. During this process,
we lose the edges of T' between W; and Wj, j # 1, if both ends of the edges are placed in W}. Thus

e(GO) =t (kyn® — Y er(W)). (4.4)

i€[r]

We imagine a dynamic process of obtaining G’ from G(® by recursively moving vertices. To
estimate e(G’), we track the changes of the edges with respect to complete r-partite graphs (but
also respecting the k-partition of G). More precisely, for [ > 0, let

GO = KZO oW, Z0 OW!) A K(WVA,..., V)

such that the r-partition of G®) can be obtained by moving exactly one vertex from the partition
of GU=1. The process terminates after m := Die[r] |Z;\Z;| steps and thus G’ is a subgraph of G(™),
Furthermore, throughout the process, we only move vertices from the color classes in L to other
color classes. Therefore, we can give a linear ordering to the members of L, and for i € L we move
vertices from Z; only after we have moved the vertices in color classes j prior to ¢ (denoted by
Jj <z ). Now, in the [-th step, suppose we move v from Z](-lfl) to Zi(lfl), namely, v € Z;, then the
change is
e(G) —e(G) = 12NV |+ (W] =120 = W)
7(—-1) (1=1)
where V), 3 v and Z =27, \Vp.

i
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Note that we have \Z](.l_l)\%] < (a—1)n+|Z;\Z;|. Moreover for any j' <7, 4, we have Z;, c Zi(l_l).

Therefore, we have ]Zi(l_l)| > an — |Z)\Zi| + ] |Z]Z,] Putting all these together, we get

j'<rj
e(GY) — e(GU) <1 Z\Zj| + (W) = n + | Z\Zi| — Z |Z3| — [W].
J'<ij
Recalling that we moved v from ZJ(.lfl) to Zi(l*l) at the [-th step, we obtain
e(G") — e Z ZNZ| + WS =+ 1Z0NZ = 3 1251 = 1WA
=1 J'<rj

where 7, j depends on [. Since m = ;] |Zi\Z;|, we have

Y UZNZ5| + Wi = n+ | Z\Zs| — W)
=1
=Y D 1ZHIZNZ | + W = n+|Z\Zi| — [W]))
i€[r] jeL\{:}
= > D ZHZN\Z | + W) =n + | ZN\Zi) = Y 1Z0\Zil W),
ie[r] jeL\{i} i€[r]

Moreover, it is not hard to see that

Sz =YY 1z = Y en(Z0Z).

I=1j'<pj ie[r] {j17j2}€(L\2{i}) ielr]

O

Now the claim follows by combining these estimates with (4.4).

What remains is to estimate the number of edges in each U;. For i € [r], we have e(G[U;]) =
e(Z1,GIU]) + eq(U\Z}). To bound eq(U\Z}) = ec((Zi\Zi) v W), we note that eq(Z\Z;, W) <
|Z\Zi||W!| and eq(W}) < er(W!). However, we may not have eq(Z;\Z;) < er(Z;\Z;) because each
Z} is an independent set in 7', but may not be independent in G when a > 2. Thus, eq(Z;\Z;) <
er(Z\Z;) + Dk eg(ZJZ-). Putting these together, for each i € [r], we have
ea(UNZ]) = ea(Z\Zi, W) + e¢(W)) + ea(Z\Z;) < ai + Y ea(Z)). (4.5)
J#i

Let f; := e(Z},G[U;]). By Claim 4.3, (4.5) and ¢(G) = e(G") + e(Z" 0 W",G) + 2ie[r] eq(U;), we
derive that

o(G) <t (k) +e(Z" oW, G+ 3 (fi+ B — i+ ea(UNZ))) (4.6)
i€[r]
<t (k)n® +e(Z" W', G)+ )] (fz- +Bi+ ). eG(z;i)> (4.7)
ie[r] j#i

We now focus on the structure of each U;. We first show that G [UZ] is “almost” K ;-free.

Claim 4.4. The following holds for all i € [r].
(K1) Both G[Z:] and G[Z} 0 W!] are Ky 4-free.

7

(K2) If |W]| > 2ten + 2yn, then |W/\V,,| <t —1.
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(K3) If |[W!| > 2ten + 2yn, then G[Z; U (W] A V,,)] is Ky y-free.

Proof For (K1), suppose there is a copy of K;; in U;, with vertex set denoted by B, contained
in Z; or in ZZ u W/. Let Np be the set of common neighbors of these 2t vertices of B. First
assume that B < Z;. Then for any j € L\{i}, by (Deg) we have |[Np N Wil = |Wj| — 4ten,
and thus by (P1) [Ng n W; n Wj| > [Wj| — 4ten — 2yn > n/2. For any j ¢ L U {i}, because
B nZj = & by (Q2), we have [Ng n Zj| = an — 4ten = n/2 by (Deg). Note that every set in
{NgnZ;j:j¢ L} u{NgnW;nWj: je L} has size at least n/2 and every pair of them has density
at least 1 — 4~y. Therefore we can find a copy of K,_1(t) in the union of these sets, which gives rise
to a copy of K,1(t) together with B, a contradiction.

Second we assume that B < Zf U W/. In this case we note that for any j # i, we have BN Z; = (J
and thus by (Deg), we have |[Np n Z]]] > (1 —,/y)an — 4ten > n/2. Then as these sets have high
pairwise densities, as in the previous case, we can find a copy of K,_1(t) in the union of these sets,
yielding a copy of K, 1(t) together with B, a contradiction. Now (K1) is proved.

Now we turn to (K2), and suppose |W/| > 2ten + 2yn and thus |W; n W/| > 2ten by (P1). First,
if W/ contains at least ¢ vertices which are not from Vj, (the cluster containing W;), then by (Deg),
each of these vertices have at most 2en non-neighbors in W; n W/, and thus we can find a copy of
K;; in W/, contradicting (K'1). So we have |W/\V,,| <t — 1.

For (K 3) suppose there is a copy of K;; as stated in the claim, whose vertex set is denoted
by B. As in the previous paragraph, we have |W;| > 2ten by (P1). Now observe crucially that if
Bn Zji- # (J, then by (Q2) |W;| + |W;| > n, and thus, W; and W; are not from the same cluster.
So by (Deg), for any j € [r — 1]\{i}, if B n Z; = (J, then the vertices of B have large common

neighborhoods in Zj; if Bn Z; # (J, then the vertices of B have large common neighborhoods in
W; n W (note that [Wj| > (1 — e — /7)n by (Q2)). Since each of these common neighborhoods
have size at least n/2 and each pair of them has high density, we can find a copy of K,_1(t) in the
union of these sets, yielding a copy of K,;1(t) together with B, a contradiction. O

We now derive a lower bound for 3, f; from Claims 4.3 and 4.4. For i € [r], we have §; <
Sjen iy |ZIIZAZ| + WAV, | + Z0Z]) as (W) —n < WAVl Fix j € L\{i}. Note that
[Wj| = (1 —2¢e)n. We have |Z;\Z;| <t —1by (Q3), and [WA\Vy,| <t —1by (K2). If [W;| > n/2,
then |Z]’| <t —1 by (Q3). Furthermore, since | Z;\Z;| < (r — 1)/ yn + Co by (P3), it follows that

| Z}| (\Zj\ij + WAV, | + |Zz-\ZZ-\) S{E-1){t—1+t—1+ (r—1)yAn+Co) < (t —1)r\/An.

Otherwise |W;| < n/2, and by (Q2), we have Z!' = & for any i’ # i. This implies |Z;\Z;| = |Z/| <
Cy. Using |ij| < /n, (Q3), and (K2), we derive that
23] (12)\Z3] + WAV, | + 1ZAZi] ) < yAn(2(t = 1) + Co) < 2Coy/n.

Summarizing these two cases for all j € L\{i}, we obtain that 3; < (r —1)2Cy,/7n, and consequently,

2 Bi < 2(r — 1)rCoy/An. (4.8)
elr]

On the other hand, for all ¢ # j, the graph G[Z;] is K;;-free by (K1) and thus, by (F3),
i jin eg(Z]Z:) <r(r—1)C (\ﬁn)Z_l/t. Applying this with (4.7), (4.8), and the fact that e(Z” U
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W’ G) < (r + 1)Cokn, we obtain that

e(G) < tp(k)n® + (r + 1)Cokn + Y fi+2(r = DrCoyyn+ ), ec(Z))
i€lr] i\jrit
<to(k)n® + Y fi+ 2Oy,

i€[r]

as 7 « 1. Using the assumption e(G) = g(n,r,k,t) = t.(k)n? + 2;(n), we infer that

Z fi = zi(n) — r?Cyam> V= gnQ_l/t (4.9)
i€[r]

by using (7), z(n) = zt(2)(n) > en? 1t and v « 1.

We next study the existence of K7 in each color class. To do so, we consider a copy of K3(t) in
G[U; v Uj] for some i # j.

Claim 4.5. For any i # j, if G[U; U f]j] contains a copy K of K3(t), then there exists | ¢ {i,7}
such that V (K) intersects Vy, and every cluster in Z;.

Proof. We may assume that r > 2 as otherwise the claim is trivial. Suppose to the contrary that
there is a copy K of K3(t) in, say, U; and Us, such that for every [ € [3,r], there is a cluster in
U; which does not intersect B := V(K). Let V;, be a cluster in Z; such that B n'V;, = ¢J, and
if there is no such cluster in Z;, then we choose V;, = V;,. Note that in the former case, we have
U n V| =12} n Vil = (1 - vya)n. In the latter case, we have Z! # & or Z} # (f, which implies
that [W;| = (1 — 2¢)n by (Q2), and thus |U; N V;,| = [W/ A Vj,| = (1 — 3¢)n. Now, by (Deg), every
vertex in B has at most 2en non-neighbors in U; N V;, for each [ € [3,r]. Since for every [ we have
|U; A V;,| = 0.9n, one can find large common neighborhoods (e.g. of size n/2) of all vertices of B in
cach U; N Vj,, and then find a copy of K,_5(t) in these sets. Altogether we obtain a copy of K, 1(t),
a contradiction.

Therefore, for such a copy K of K3(t), there exists [ ¢ {7, j} such that K must intersect all clusters
of Uj. Since V(K) n Z; # &, we have Z} # & or sz # . Then by (Q2), [W;| = (1 — 2¢)n and in
particular, V,, # J. Therefore V(K) NV, # &. O

Claim 4.6. For all but exactly one j € [r], we have d(v, ZJJ) <t—1forallve Uj.

Proof. First assume that there exists j € [r] such that G[U;] contains a copy of K¢, with vertex

set denoted by {v,u1,...,u}, v € Uj and ui,...,us € Z;. Fix i € [r]\{j} and let N’ be the set
of common neighbors of ui,...,us in U; n U;. Suppose v € Vp and let N be the set of common
neighbors of these ¢ + 1 vertices in U; n U;. In particular, N = N’ and N is almost equal to the
union of a or a + 1 clusters in U;. Suppose there is a copy of K;_1; with parts Sp of size t — 1 and
Sy of size t such that S; € N’ and So © N. Then by Claim 4.5, there exists [ € [r]\{i,j} such
that B nZ; # & and B NV, # J, where B denotes the vertex set of the copy of K3(t). This is
impossible since v is the only possible vertex in B n (Z; u V) and can not satisfy both. Therefore,
letting N* = N U (N’ A V},), we infer that eq(N*) = eq(N) + eq(N, N'\N) = O(n?~V/{t=1),

By (P1), (P3) and (Deg), we have |U;\N*| < 3(t + 1)en. Let E’ be the set of the edges incident
to U;\N* and counted in f;. We split it to E* n Eg(Z!) and E* n Eq(U\Z}, Z}). Note that by (K1),
each of the terms can be split further into at most k K ;-free bipartite graphs, each with one part
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of size at most 3(¢ 4 1)en and the other part of size at most (1+ (r —2),/7)an. Therefore, we obtain
that
fi = O(en®> Y + 0>~ Y1) = O(en? 1Y), (4.10)

Now assume there exist distinct ji, jo € [r] such that each G[U},] contains a copy of Ki; whose
part of size t is in Z]]Z The arguments above imply that (4.10) holds for all ¢ € [r], and consequently,
Diefr] fi = O(en?=1/), contradicting (4.9).

On the other hand, if d(v, ZJ]) <t—1forall je[r] and all v € Uj, then e fi < (8= 1)kn,
again contradicting (4.9). O

By Claim 4.6, without loss of generality, we assume that,
t—D|U;| ifa>2,

(t—1)|0\Z!] if a = 1. (4.11)

fori>2, d(v, Zf) <t—1forallveU; andthus, f; < {

If b =0, then U; = Zi = Z\Z" for all i by (4.3). In this case Uy is Ky 4-free by (K1) and U; is
K 4-free for all i > 2 by (4.11). Since G is v-close to K, (an), GIU;\Z",U;\Z"] is almost complete

for all 7 # j. This completes the proof of Theorem 4 with Z := Z". O
By (4.9) and (4.11), we get
f1 = zi(n) —en® V¢ (4.12)
In particular, we claim that
|[Wi| > 3ten ifb>0 (4.13)

(which we will refine a moment later). Indeed, the edges counted in f; can be covered by G[Z1],
G[Z}, W1 n W]], and at most k K;-free bipartite graphs, each with a part of size at most Jan

and a part of size at most an. If [W;| < 3ten, then eq(Z}, Wi n W{) = O(en?~/t). Together with
eq(Z4) < z§a) (n), we have

fi< zt(a)(n) + O(en* ' < z£a+1)(n) —en? 1/t
by (E1), contradicting (4.12).

Now we can give a much cleaner structure, shown in a series of claims below. A key step is to
show that Z” U W” = &&. From now on we only consider k < 2r.

Claim 4.7. Suppose vo € V(G) and i € [r] satisfy that vy has at least en neighbors in Z; for every
j # 1. Then vy has less than en neighbors in U;. In particular, we have Z" = & and W" = .

Proof. The second part of the claim follows immediately from the definitions of Z” and W”.
Suppose to the contrary, that there exist vg € V(G) and i € [r] such that vy has at least en

neighbors in Z; for every j # i and at least en neighbors in U;. Since |ZJJ\ > (1 — /7)an for all
J € [r], there exist sets Ni,...,N,_1 each of size en — ,/yn such that N; Zj N N(vg) for j # i
and N; € (Z! U W;) 0 N(vo). Recall that W{ = W{ nV,,. By averaging, there exists N| = Ny with
|N{| = (en — \/yn — 2ryn)/2 > en/3 such that all vertices of N{ are in Z{ U W/ and from the same
cluster, that is,
Nj € Q, where Q € {Z],W7}.

Note that N7 < W/ is possible only if i = 1 and a = 1. If ¢ # 1, then let N} := N;\(W;\W/) u V)
and for every j € [r]\{1,4}, let Nj := N;. By (1), [W;\W]| < 2ryn, and by (4.16), [W; 0V, | < yn.
Thus, we have |NJ| > en/3 for all j € [r]. Because the sets N are small, we can not apply the
degree conditions (Deg) to them and instead, we use (DO0).
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Recall that By is given by (D0). Next we show that G[U;\B;] does not contain a copy of K;_j
such that the part of size ¢ is in N{. Suppose instead, there is such a copy of K; 14, with parts
denoted by A and B, such that |A| = ¢, A < N{\By and B < U;\B;. Recall that N/ nV,, = & and
for each j € [r]\{1,i}, N/ < Z]j:.. Observe that for every v € U;\By, we have d(v,Nj) = [Nj| — y/n.
Indeed, if j # 4, then N]'- c Z]]- and we have d(U,N]{) > ]N]’\ — /An by (D0); otherwise note that
N) < Z} u (W] nW;), and by (D0) and N n Vg, = & we have d(v, N]) > |N]| — /yn. Therefore,
we obtain that the vertices in A U B have at least [Nj| — (2t — 1),/An > (1 — 71/3)|Nj4| common
neighbors in each N J’-, Jj € [2,r]. Because each pair N ;, N J’./ has a high density, we can find a copy
of K,_1(t) in the union of these common neighborhoods, which together with A U B U {vp} form a
copy of K,1(t), a contradiction.

Now given that G[ﬁl\Bl] does not contain a copy of K;_1; such that the part of size t is in
N{\Bj, we give a refined estimate on f;. Indeed, since G[N;\B1, Z{\B1] does not contain a copy of
K1, such that the part of size ¢ is in N{\Bj, we get eq(Nj\Bi, Z}\B1) = O(n?>~Y/(¢=1). Similarly
ec(N)\B1, W{\By) = O(n?>~"/(=1). Suppose N| <V, for some q € {1,q}, then we have

E(G[U1]) = B(G[UI\(N1\B1)]) v E(G[N{\B1,Ui\(B1 v V,)]) v E(G[N{\B1, B n U1))).

)
Recall that |N{| = en/3 and |Bi| < 2,/yn. Therefore, (regardless of a = 1 or (a,b) = (2,0)) we can
bound f1 < |E(G[U1])| by

fi<z(1—%n,n)+ O(n* V=) 4 O(ﬁnz_l/t) < z(n) — 3rCokn,
where we used (E2) and v « . This contradicts (4.12). O

When a = 2 and b = 0 (i.e., k = 2r), since Z/ = J and W; = & for all i € [r], by (4.3), we get
U; = Z; for all i € [r]. Therefore e(G) = e(G') + Xi_, ec(Us) + e(Z2" O W",G) < t,(k)n* + z(n) +
(r—1)(t —1)n by (K1) and (4.11), proving Theorem 3 for k = 2r.

For the remaining of the proof, we only need to consider a = 1 (and thus b > 0). Moreover, now

for i,j € [r] each Zij C Z; is an independent set and thus eg(Zg) = 0. So we can first update our
bounds on e(G) and f1. Recall the bounds (4.7), (4.8) and (4.11) and we have

e(G) < to(k)n® + > (fi + Bi)

i€[r]
<t (B)n? + f1+ (r = 1)t — D)1 + /7)n + 2(r — 1)rCor/n,
yielding
fi = z(n,n) — Con (4.14)

Claim 4.8. Suppose b> 0. Then Uy = Z} 0 W/ and W] € V,,.

Proof. Suppose to the contrary, there is a vertex v in Uy\(Z} u W}) or W{\V,,, namely, v € Z}
for some 2 < ¢ < r or v e W{\V,,. Suppose v € V;. Then | # ¢;. Moreover, if i is defined, then
Wi AV, € V\(Z; uV); otherwise, W] n V,, < V\V,. By (Deg), we have d(v, W] nV,,) < 2en.
Let N := W{ n Vg, n N(v). We have [(W] n V, )\N| < 2eN. Since [W{\V,, | < [W\Wi| < 2vn, it
follows that |W{\N| < 2en + 2yn < 3en.

Recall (4.13), [W1| > 3ten. By (K3) (ifv e Z1\Z1) or (K1) (ifv € W{\V,,), we know that G[Z}], N]
contains no K; 1, with the part of size ¢ in N. This implies that eg(Z}, N) = O(n?~ YD),
Furthermore, by (P3) and (K1), G[Z\Z], Z}] is a K, free bipartite graph with one part of size at
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most (r — 1),/yn and the other part of size at most n. Thus, ec(Z)\Z1,2}) < C(r — 1)/An?= e,
By the similar arguments, we have eq(W/{\N, Z1) < C(3en)n'~*.
Putting these bounds together (and note that Z{ is an independent set, we get
fi = ec(Z1,N) + ec(Z1\Z1, Z{) + e(Wi\N, Z})
— O(n* V) L O(yAn? Y4 + O(en* 1),
By (E'1), this contradicts (4.14). O

Claim 4.8 shows that U; has no atypical vertices and is thus Ky -free by (K1). Furthermore,
since Uy = Z{ U W/ and W/ < V,,, it follows that

a1=p1=0, and eq(U1)=fi <z(2Zi],|W]]). (4.15)

Therefore, if |[W{| < (1 — v)n, then we have fi < z/(n, |[W]|) < z(n,n) — dn?>~1/t for some § > 0
by (E2). This contradicts (4.14). So we obtain
if a =1, then [Wj| > (1—v)n (and thus 1€ L). (4.16)

Next we study G[U;] for i = 2. A key observation is that copies of K, in G[U;] together with
copies of K;_1; in U; may form copies of K3(t), which are restricted by Claim 4.5.

Claim 4.9. Suppose i € [2,r].
(1) If there is a copy of K14 in U\(Z1 U Vy,), then there exists | € [r]\{i} such that the vertex
set of K1, intersects both V,, and Z;.
(2) Both Z\Z1 and Z! v (W/\V,,) are Ki4-free.

Proof. For Part (1), let B be the vertex set of a copy of K14 in U;\(Z1UV,,). Since Bn(Z1UV,,) = &
and Uy, < Z; U Vi, by (Deg), all vertices of B have at most 2en non-neighbors in U;. Letting
N := U A (Nyep N(w), we have |[N| = U] — (t + 1)2en.

First assume that N is K;_j s-free and thus eg(N) = O(n?>~1/¢=1). Note that, since |U;\N| <
(t + 1)2en, the edges in U; incident to U;\N can be split into two bipartite K -free graphs each
with one part of size at most (¢ + 1)2en and the other part of size at most n. Thus, the number of
such edges is O(en® V). This gives f1 = O(n?>~V/=1) 4 O(en?~1/t), contradicting (4.12).

We thus assume N contains a copy of K;_1,;. Together with B, they form a copy of K3(t) in
G[U; u U;] and we denote its vertex set by B’. By Claim 4.5, there exists [ ¢ {1,} such that B’
intersects V,, and Z;. By Claim 4.8, Uy n U =,so B nZ = Bn Z; and B indeed intersects Z;.
Since U; n Z, © B~ Z; # &, we infer that [Wi| = (1 — 2¢e)n from (Q)3), which implies that ¢; # ¢
because of (4.13). It follows that W1 n'V,, = ¢J and thus B nV,, = B’ n'V,, # (J, as desired.

For Part (2), let A; := Z! U (W/\V,,) and B be the vertex set of a copy of K1 in Z;\Z; or in A;.
Then, by the first part of the claim, there exists [ € [r]\{i} such that B intersects V,, and Z;. This
is impossible if B € A; because A; N Z; = & for any [ ¢ {1,i}, and also impossible if B < Z-\Zl
because in which case B n W = & and thus B nV,, = J for any [ ¢ {1,i}. O

The following claim shows a clean structure for the U; such that W/ is not too small.
Claim 4.10. Fori € [2,7] such that |W;| = 2en, we have U; S U; UV, .

Proof. Suppose instead, for some ig € [2,r] with |W;,| > 2en, there exists v € Uio\(UiO U tio).

By (P4) and the fact that v € UiO\UZ-O, we infer that d(v,Z;) > en for all j # 9. Then, by
Claim 4.7, we have d(v,U;,) < en. Consequently, d(v, W] n Wj,) < en, namely, v has at least
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2en — 2yn — en = (1/2)en non-neighbors in Wi n W;, (in G). Note that v is adjacent to all the
vertices of W; n W;, in T Since G[W] | < T[Wj ], we infer that

ea(W}) + ec(Zi)\Ziy, W) < er(W}) + | Zig\Zio | [W},| — (1/2)en.
Since GG(Z‘O\Zz‘O) < €T(Zi0\Zi0) and o, = |Zio\Zi0’|Wi,| + eT(VVi’ ) + eT(ZiO\ZiO), we have

6G(Ui0\Zio) = 6G(Zi0\Zio) + eG(Wilo) + eG(Zio\Zlov W/ )
er(Zig\Ziy) + er(Wy)) + | Zig\Zi, [|W;, | — (1/2)en

<
< i, — (1/2)en. (4.17)

Combining (4.5) and (4.17) gives

Dl eaUNZ) < Y] o — (1/2)en (4.18)

i€[r] i€[r]
Recall that f; < (t — 1)|U:\Zi| (i = 2) by (4.11), [W{| = (1 —y)n by (4.16), and |Z}| = (1 — \/7)n
by (P3). Therefore, as 3\_; |U\Z;| < (b— 1)n + ry/3n + yn, we obtain

Zfz\ t—1)((b—1)n+ryyn+n) < (t —1)(b— D)n + n. (4.19)

Since Z" OW" = &, (4.7) becomes e(G) < t.(k)n +Zz€ 1(fi+ Bi +eq(U\Z;) — a;). Recall that
iy Bi < 2r?Co\/An by (4.8). Together with 8) and (4. 19), we derive that

(4.1
e(G) < tr(k)n® + z(n) + (t — 1)(b — D)n + yn + 2r2Co/yn — en/2 < g(n, 7, k, t),
as v « €. This is a contradiction. O

Let Ly u Ly U L3 be a partition of [2, 7] such that i € L; if and only if |Zl| < n, i€ Ly if and only
if |Z;| = n, and i € Ls if and only if |Z;| > n. The following properties hold for Ly, Ly and Ls.

(R1) If i € L1, then ZJ # @ for some j # i. By (Q2), we have ¢ € L and, by Claim 4.10,
Zi = ZEC V;and W) S V.

(R2) Ifi € Ly, then Z; = Zi = _ V. Indeed, otherwise Z; # Z!, then |Z!| < n and Z! # & for some
j # 4. By (Q2) and Claim 4.10, we have Z; = Z¢, a contradlctlon

(R3) 1If i € L3, then Z; ¢ Z; (otherwise |Z;| < n). By Claim 4.10, we have |W;| < 2en, which
implies that Zij = for j # i by (Q2). Thus, Z! = Z; = V; € Z;.

Now we derive our final bound on e(G). Write z; := |Z;| and w; := |W/| for i € [r].

By Claim 4.3 and the fact that Z” 0 W” = &, we have

e(G) = e(@) + Y, ea(Ui) <t (k) + 3 (B — s + eq(T1))
ielr] i€[r]
Moreover, as a = 1, (4.5) becomes eg(U;\Z¢) < a;. It follows that eq(U;) = fi+ec(U\Zi) < fi+a.
Forie {1} uL; v LQ, we simply use f; as the upper bound and thus we get
zt(z1,w1) if i =1 by (4.15),
ec(Ui) —a; < f; <4 (t—1)min{z;, w;}  if i e Ly by (R1) and Claim 4.9 (2),
(t—1)(zi —n+ w;) if i € Ly by (R2) and (4.11).
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Additional work is needed for i € L3. We let A\ = max{0, [L1| — [L3|} and for i € L3, let \; be the
number of indices j € Ly such that Z; # . By (R1)-(R3), we know that if Z; # ¢, then i € L3
and j € L1. This implies that A; > 1 for every i € L3, and },,.;. A; > [L1], yielding that

Di—1)= A (4.20)
iEL3
Recall that G[tZ;\Z!] is K1 free by Claim 4.9 (2). Since Z! = Z; is an independent set, it follows
that eq(Z\Z%) < (t — 1)|Z;\(Z; v Z})|. Together with (4.11), this gives
ec(ZN\ZY) + ec(Z1,Z:) < (t = V)| Z\(Zi 0 Z})| + (t = D|Z]] = (t = 1)(zi — n).
Therefore, for i € Ls, writing o; := ep(Zi, Z;\(Z; U Z%)), we have
eg(Zi) = eg(Z,\Zi) + eg(Z{, ZZ) + e(;(Z{', Zl\(ZZ U Zi) < (t - 1)(22 — n) + 0;-
Moreover, the definition of a; implies that
ea(W)) + ea(Z\Z;, W)) — i < exr(W)) + | Z\Zi||W]| — i = —er(Z:)\Z:)
=—0; —er(Z\(Z; v Z1))

Y
S —0i— (21) < -0+ 1-N

Finally, by (4.11), we have eq(Z;, W/) < (t — 1)w; for i € L3. Combining all these inequalities
together, we obtain that, for i € L,
ea(Us) — ai = ea(Zi) + ea(Zi, W)) + ec(W)) + ea(Z\Zi, W]) — a;
<(t—1D(zi —n+w)+ (1=N).

It follows that >, ; (eq(Ui) — i) < Xcp, (t —1)(2i — n +w;) — A by using (4.20).
Using >/ _o(z —n) =n — 2z and > );_, w; = bn — wy, we derive that

Z min{z;, w;} + Z (zi —n+w;) = Z min{n —w;,n — z;} + z:(z2 —n+ w;)
i=2

iGLl iELQ UL3 iGLl

= Z min{n —w;,n — z;} + bn —wy + n — 2.
€l

Therefore,

Ing
=
9

l§

) =) < (= Dmin{z,wib + > (E—1)(z —n+w) — A

=2 i€l 1€elaulsg
=({t—-1)(bn—w;+n—2z)+ Z(t—l)min{n—wi,n—zi}—)\.
iGLl

Finally, we work on the f§;’s and recall that 5; = 3¢/ (5 |Z;|(\ZJ\ZJ| +|Wil—n+ |Zi\Z;|). Forie
{1}UL1U Ly, as Z\Z; = &, Bi = 0. Fori € Ls, as |W;| < 2en, we have Z;\Z; = &; for any j € L\{i},
we have Z;\Z; = & and W} € V,; again by Claim 4.10. Hence 8; = X e/ (5 |ZJZ|(\WJ’| -n) <0
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because [W}| < n. It then follows that (noting that L n L3 = &)

Zﬂz‘= Zﬁi= Z Z | Z5|(IW}] —n)

=1 i€Ls3 i€eL3 jeL\{i}
=30 > 1ZH(WS = n) = D (n— 2)(w; — n).
jeL ieL3\{j} JeL

Note that 1 € L by (4.16) and (n — z1)(wi —n) < 0 by Claim 4.8. Furthermore, since n — z; = 0 for
j € Lo, it follows that 21‘21 Bi = ZjeLl(n — zj)(wj —n).

Recall that eq(U1) = f1 < (21, w1). By (E3), we have z(z1, w1)+ (t—1)(n—z1+n—wy) < z(n).
Thus, combining these estimates together, by (4.7), we get

e(G) < tr(k)n? + Z (eq(Uy) — i + Bi) < tp(k)n? + ze(n) + (t —1)(b—D)n+y — A, (4.21)
i€[r]

where y = >, .; ((t — 1)min{n — wi,n — z;} — (n — 2z;)(n — w;)). For each i € Ly, let y; :=
min{n — w;,n — z} and y; := max{n — w;,n — z;}. Then y; <y, and thus,

(t — D) min{n —w;,n — 2z} — (n— 2z)(n —w;) = yi(t — 1 —yl) < |(t —1)?/4] < 1.

Since L; < L\{1}, we have |Li| < b — 1. Moreover, by Claim 4.10, we have w; < |W;| + |[W/\W;| <
2en + yn < 3en for each i € L3. If [L1 U Ly| < b — 2, then

b= Wil <n+(b—2n+(r—b+1) 3en <bn,

i€[r]

a contradiction. This implies |L; U La| = b—1, and |Ls| < r —b. Since |L1| — A = min{|L1|, |L3|} <
|L3| < r —b, it follows that |Li| — A < min{b — 1,7 — b}. Consequently, as |(t — 1)?/4] < 1, we get

y— A< |Li|[(t — 1)%/4] — X < min{b — 1,7 — b}[(t — 1)/4],

Together with (4.21), it gives the desired bound e(G) < t,.(k)n? + z;(n) + (t — 1)(b— 1)n + min{b —
1,r —b}|(t — 1)2/4] = g(n,r, k,t). This completes the proof of Theorem 3 for k < 2r. O
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