
Discrete Mathematics 313 (2013) 1119–1129

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On multipartite Hajnal–Szemerédi theorems
Jie Han, Yi Zhao ∗

Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, United States

a r t i c l e i n f o

Article history:
Received 8 March 2012
Received in revised form 13 December 2012
Accepted 5 February 2013
Available online 8 March 2013

Keywords:
Graph packing
Hajnal–Szemerédi
Absorbing method

a b s t r a c t

LetG be a k-partite graphwith n vertices in parts such that each vertex is adjacent to at least
δ∗(G) vertices in each of the other parts. Magyar and Martin (2002) [18] proved that for
k = 3, if δ∗(G) ≥

2
3n+ 1 and n is sufficiently large, then G contains a K3-factor (a spanning

subgraph consisting of n vertex-disjoint copies of K3). Martin and Szemerédi (2008) [19]
proved that G contains a K4-factor when δ∗(G) ≥

3
4n and n is sufficiently large. Both results

were proved using the Regularity Lemma. In this paper we give a proof of these two results
by the absorbing method. Our absorbing lemma actually works for all k ≥ 3 and may be
utilized to prove a general and tight multipartite Hajnal–Szemerédi theorem.

© 2013 Published by Elsevier B.V.

1. Introduction

LetH be a graph on h vertices, and let G be a graph on n vertices. Packing (or tiling) problems in extremal graph theory are
investigations of conditions under which Gmust contain many vertex disjoint copies of H (as subgraphs), where minimum
degree conditions are studied the most. An H-matching of G is a subgraph of Gwhich consists of vertex-disjoint copies of H .
A perfect H-matching, or H-factor, of G is an H-matching consisting of ⌊n/h⌋ copies of H . Let Kk denote the complete graph
on k vertices. The celebrated theorem of Hajnal and Szemerédi [5] says that every n-vertex graph Gwith δ(G) ≥ (k− 1)n/k
contains a Kk-factor (see [10] for another proof).

Using the Regularity Lemma of Szemerédi [23], researchers have generalized this theorem for packing arbitrary H [1,13,
22,14]. Results and methods for packing problems can be found in the survey of Kühn and Osthus [15].

In this paper we consider multipartite packing, which restricts G to be a k-partite graph for k ≥ 2. A k-partite graph
is called balanced if its partition sets have the same size. Given a k-partite graph G, it is natural to consider the minimum
partite degree δ∗(G), the minimum degree from a vertex in one partition set to any other partition set. When k = 2, δ∗(G)
is simply δ(G). In most of the rest of this paper, the minimum degree condition stands for the minimum partite degree for
short.

Let Gk(n) denote the family of balanced k-partite graphs with n vertices in each of its partition sets. It is easy to see
(e.g. using the König–Hall Theorem) that every bipartite graph G ∈ G2(n) with δ∗(G) ≥ n/2 contains a 1-factor. Fischer [4]
conjectured that if G ∈ Gk(n) satisfies

δ∗(G) ≥
k − 1
k

n, (1)

then G contains a Kk-factor and proved the existence of an almost Kk-factor for k = 3, 4. Magyar and Martin [18] noticed
that the condition (1) is not sufficient for odd k and instead proved the following theorem for k = 3. (They actually showed
that when n is divisible by 3, there is only one graph in G3(n), denoted by Γ3(n/3), that satisfies (1) but fails to contain a
K3-factor, and adding any new edge to Γ3(n/3) results in a K3-factor.)
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Theorem 1 ([18]). There exists an integer n0 such that if n ≥ n0 and G ∈ G3(n) satisfies δ∗(G) ≥ 2n/3 + 1, then G contains a
K3-factor.

On the other hand, Martin and Szemerédi [19] proved that the original conjecture holds for k = 4.

Theorem 2 ([19]). There exists an integer n0 such that if n ≥ n0 and G ∈ G4(n) satisfies δ∗(G) ≥ 3n/4, then G contains a
K4-factor.

Recently Keevash and Mycroft [8] and independently Lo and Markström [17] proved that Fischer’s conjecture is
asymptotically true, namely, δ∗(G) ≥

k−1
k n+o(n) guarantees aKk-factor for all k ≥ 3. Very recently, Keevash andMycroft [9]

improved this to an exact result.
In this paper we give a new proof of Theorems 1 and 2 by the absorbingmethod. Our approach is similar to that of [17] (in

contrast, a geometric approach was employed in [8]). However, in order to prove exact results by the absorbing lemma, one
needs only assume δ∗(G) ≥ (1 − 1/k)n, instead of δ∗(G) ≥ (1 − 1/k + α)n for some α > 0 as in [17]. In fact, our absorbing
lemma uses an even weaker assumption δ∗(G) ≥ (1 − 1/k − α)n and has a more complicated absorbing structure.

The absorbingmethod, initiated by Rödl, Ruciński, and Szemerédi [21], has been shown to be effective handling extremal
problems in graphs andhypergraphs. One example is the re-proof of Posa’s conjecture by Levitt, Sárközy, and Szemerédi [16],
while the original proof of Komlós, Sárközy, and Szemerédi [11] used the Regularity Lemma. Our paper is another example
of replacing the regularitymethodwith the absorbingmethod. Comparedwith the threshold n0 in Theorems 1 and 2 derived
from the Regularity Lemma, the value of our n0 is much smaller.

Before presenting our proof, let us first recall the approach used in [18,19]. Given a k-partite graph G ∈ Gk(n) with
parts V1, . . . , Vk, the authors said that G is ∆-extremal if each Vi contains a subset Ai of size ⌊n/k⌋ such that the density
d(Ai, Aj) ≤ ∆ for all i ≠ j. Using standard but involved graph theoretic arguments, they solved the extremal case for
k = 3, 4 [18, Theorem 3.1], [19, Theorem 2.1].

Theorem 3. Let k = 3, 4. There exists ∆ and n0 such that the following holds. Let n ≥ n0 and G ∈ Gk(n) be a k-partite graph
satisfying δ∗(G) ≥ (2/3)n + 1 when k = 3 and (1) when k = 4. If G is ∆-extremal, then G contains a Kk-factor.

To handle the non-extremal case, they proved the following lemma ([18, Lemma 2.2] and [19, Lemma 2.2]).

Lemma 4 (Almost Covering Lemma). Let k = 3, 4. Given ∆ > 0, there exists α > 0 such that for every graph G ∈ Gk(n) with
δ∗(G) ≥ (1 − 1/k)n − αn either G contains an almost Kk-factor that leaves at most C = C(k) vertices uncovered or G is
∆-extremal.

To improve the almost Kk-factor obtained from Lemma 4, they used the Regularity Lemma and Blow-up Lemma [12].
Here is where we need our absorbing lemma whose proof is given in Section 2. Our lemma actually gives a more detailed
structure than what is needed for the extremal case when G does not satisfy the absorbing property.

We need some definitions. Given positive integers k and r , let Θk×r denote the graph with vertices aij, i = 1, . . . , k, j =

1, . . . , r , and aij is adjacent to ai′j′ if and only if i ≠ i′ and j ≠ j′. In addition, given a positive integer t , the graph Θk×r(t)
denotes the blow-up ofΘk×r , obtained by replacing vertices aij with sets Aij of size t , and edges aijai′j′ with complete bipartite
graphs between Aij and Ai′j′ . Given ϵ, ∆ > 0 and t ≥ 1 (not necessarily an integer), we say that a k-partite graph G is (ϵ, ∆)-
approximate to Θk×r(t) if each of its partition sets Vi can be partitioned into

r
i=1 Vij such that ||Vij| − t| ≤ ϵt for all i, j and

d(Vij, Vi′j) ≤ ∆ whenever i ≠ i′.1

Lemma 5 (Absorbing Lemma). Given k ≥ 3 and ∆ > 0, there exists α = α(k, ∆) > 0 and an integer n1 > 0 such that the
following holds. Let n ≥ n1 and G ∈ Gk(n) be a k-partite graph on V1 ∪ · · · ∪ Vk such that δ∗(G) ≥ (1 − 1/k)n − αn. Then one
of the following cases holds.

(1) G contains a Kk-matching M of size |M| ≤ 2(k − 1)α4k−2n in G such that for every W ⊂ V \ V (M) with |W ∩ V1| = · · · =

|W ∩ Vk| ≤ α8k−6n/4, there exists a Kk-matching covering exactly the vertices in V (M) ∪ W.
(2) We may remove some edges from G so that the resulting graph G′ satisfies δ∗(G′) ≥ (1 − 1/k)n − αn and is (∆/6, ∆/2)-

approximate to Θk×k
 n
k


.

The Kk-matchingM in Lemma 5 has the so-called absorbing property: it can absorb any balanced set with amuch smaller
size.

Proof of Theorems 1 and 2. Let k = 3, 4. Let α ≪ ∆, where ∆ is given by Theorem 3 and α satisfies both Lemmas 4 and
5. Suppose that n is sufficiently large. Let G ∈ Gk(n) be a k-partite graph satisfying δ∗(G) ≥ (2/3)n + 1 when k = 3 and
(1) when k = 4. By Lemma 5, either G contains a subgraph which is (∆/6, ∆/2)-approximate to Θk×k

 n
k


or G contains an

1 Here we follow the definition of (ϵ, ∆)-approximation in [18,19]. It seems natural to require that d(Vij, Vi′ j′ ) ≥ 1 − ∆ whenever i ≠ i′ and j ≠ j′ as
well. However, this follows from d(Vij, Vi′ j) ≤ ∆ (i ≠ i′) when δ∗(G) ≥ (1 − 1/r)rt .
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absorbing Kk-matching M . In the former case, for i = 1, . . . , k, we add or remove at most ∆n
6k vertices from Vi1 to obtain a

set Ai ⊂ Vi of size ⌊n/k⌋. For i ≠ i′, we have

e(Ai, Ai′) ≤ e(Vi1, Vi′1) +
∆n
6k

(|Ai| + |Ai′ |)

≤
∆

2
|Vi1||Vi′1| + 2

∆n
6k

n
k


≤

∆

2


1 +

∆

6

2 n
k

2
+

∆n
3k

n
k


≤ ∆

n
k

n
k


,

which implies that d(Ai, Ai′) ≤ ∆. Thus G is∆-extremal. By Theorem 3, G contains a Kk-factor. In the latter case, G contains a
Kk-matchingM is of size |M| ≤ 2(k−1)α4k−2n such that for everyW ⊂ V\V (M)with |W∩V1| = · · · = |W∩Vk| ≤ α8k−6n/4,
there exists a Kk-matching on V (M)∪W . Let G′

= G\V (M) be the induced subgraph of G on V (G)\V (M), and n′
= |V (G′)|.

Clearly G′ is balanced. As α ≪ 1, we have

δ∗(G′) ≥ δ∗(G) − |M| ≥


1 −

1
k


n − 2(k − 1)α4k−2n ≥


1 −

1
k

− α


n′.

By Lemma 4, G′ contains a Kk-matching M ′ such that |V (G′) \ V (M ′)| ≤ C . Let W = V (G′) \ V (M ′). Clearly |W ∩ V1| = · · ·

= |W ∩ Vk|. Since C/k ≤ α8k−6n/4 for sufficiently large n, by the absorbing property of M , there is a Kk-matching M ′′ on
V (M) ∪ W . This gives the desired Kk-factorM ′

∪ M ′′ of G. �

Remarks. • Since our Lemma 5works for all k ≥ 3, it has the potential of proving a general multipartite Hajnal–Szemerédi
theorem. To do it, one only needs to prove Theorem 3 and Lemma 4 for k ≥ 5.

• Since our Lemma 5 gives a detailed structure of G when G does not have desired absorbing Kk-matching, it has the
potential of simplifying the proof of the extremal case. Indeed, if one can refine Lemma 4 such that it concludes that
G either contains an almost Kk-factor or it is approximate to Θk×k

 n
k


and other extremal graphs, then in Theorem 3 we

may assume that G is actually approximate to these extremal graphs.
• Using the Regularity Lemma, researchers have obtained results on packing arbitrary graphs in k-partite graphs, see

[24,7,3,2] for k = 2 and [20] for k = 3.With the help of the recent result of Keevash–Mycroft [8] and Lo–Markström [17],
it seems not very difficult to extend these results to the k ≥ 4 case (though exact results may bemuch harder). However,
it seems difficult to replace the regularity method by the absorbing method for these problems.

2. Proof of the absorbing lemma

In this section we prove the Absorbing Lemma (Lemma 5). We first introduce the concepts of reachability.

Definition 6. In a graph G, a vertex x is reachable from another vertex y by a set S ⊆ V (G) if both G[x ∪ S] and G[y ∪ S]
contain Kk-factors. In this case, we say S connects x and y.

The following lemmaplays a key role in constructing absorbing structures.Wepostpone its proof to the end of the section.

Lemma 7 (Reachability Lemma). Given k ≥ 3 and ∆ > 0, there exists α = α(k, ∆) > 0 and an integer n2 > 0 such that the
following holds. Let n ≥ n2 and G ∈ Gk(n) be a k-partite graph on V1 ∪ · · · ∪ Vk such that δ∗(G) ≥ (1 − 1/k)n − αn. Then one
of the following cases holds.

(1) For any x and y in Vi, i ∈ [k], x is reachable from y by either at least α3nk−1(k − 1)-sets or at least α3n2k−1(2k − 1)-sets in
G.

(2) We may remove some edges from G so that the resulting graph G′ satisfies δ∗(G′) ≥ (1 − 1/k)n − αn and is (∆/6, ∆/2)-
approximate to Θk×k

 n
k


.

With the aid of Lemma 7, the proof of Lemma 5 becomes standard counting and probabilistic arguments, as shown in [6].

Proof of Lemma 5. We assume that G does not satisfy the second property stated in the lemma.
Given a crossing k-tuple T = (v1, . . . , vk), with vi ∈ Vi, for i = 1, . . . , k, we call a set A an absorbing set for T if both G[A]

and G[A∪T ] contain Kk-factors. LetL(T ) denote the family of all 2k(k−1)-sets that absorb T (the reasonwhy our absorbing
sets are of size 2k(k − 1) can be seen from the proof of Claim 8 below).

Claim 8. For every crossing k-tuple T, we have |L(T )| > α4k−3n2k(k−1).
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Proof. Fix a crossing k-tuple T . First we try to find a copy of Kk containing v1 and avoiding v2, . . . , vk. By the minimum
degree condition, there are at least

k
i=2


n − 1 − (i − 1)


1
k

+ α


n


≥

k
i=2


n − (i − 1)

n
k

− ((k − 1)αn + 1)


such copies of Kk. When n ≥ 3k2 and 1
α

≥ 3k2, we have (k − 1)αn + 1 ≤ n/(3k) and thus the number above is at least

k
i=2


n − (i − 1)

n
k

−
n
3k


≥

n
k

k−1
, when k ≥ 3.

Fix such a copy of Kk on {v1, u2, u3, . . . , uk}. Consider u2 and v2. By Lemma 7 and the assumption that G does not satisfy
the second property of the lemma, we can find at least α3nk−1(k − 1)-sets or α3n2k−1(2k − 1)-sets to connect u2 and v2.
If S is a (k − 1)-set that connects u2 and v2, then S ∪ K also connects u2 and v2 for any k-set K such that G[K ] ∼= Kk and
K ∩ S = ∅. There are at least

(n − 2)
k

i=2


n − 1 − (i − 1)


1
k

+ α


n


≥
n
2

n
k

k−1

copies of Kk in G avoiding u2, v2 and S. If there are at least α3nk−1(k − 1)-sets that connect u2 and v2, then at least

α3nk−1
·
n
2

n
k

k−1 1
2k−1
k−1

 ≥ 2α4n2k−1

(2k−1)-sets connect u2 and v2 because a (2k−1)-set can be counted atmost


2k−1
k−1


times. Since 2α4 < α3, we can assume

that there are always at least 2α4n2k−1(2k− 1)-sets connecting u2 and v2. We inductively choose disjoint (2k− 1)-sets that
connects vi and ui for i = 2, . . . , k. For each i, wemust avoid T , u2, . . . , uk, and i−2 previously selected (2k−1)-sets. Hence
there are at least 2α4n2k−1

− (2k − 1)(i − 1)n2k−2 > α4n2k−1 choices of such (2k − 1)-sets for each i ≥ 2. Putting all these
together, and using the assumption that α is sufficiently small, we have

|L(T )| ≥

n
k

k−1
· (α4n2k−1)k−1 > α4k−3n2k(k−1). �

Every set S ∈ L(T ) is balanced because G[S] contains a Kk-factor and thus |S ∩V1| = · · · = |S ∩Vk| = 2(k−1). Note that

there are


n
2(k−1)

k
balanced 2k(k − 1)-sets in G. Let F be the random family of 2k(k − 1)-sets obtained by selecting each

balanced 2k(k − 1)-set from V (G) independently with probability p := α4k−3n1−2k(k−1). Then by Chernoff’s bound, since n
is sufficiently large, with probability 1 − o(1), the family F satisfies the following properties:

|F | ≤ 2E(|F |) ≤ 2p


n
2(k − 1)

k

≤ α4k−2n, (2)

|L(T ) ∩ F | ≥
1
2

E(|L(T ) ∩ F |) ≥
1
2
p|L(T )| ≥

α8k−6n
2

for every crossing k-tuple T . (3)

Let Y be the number of intersecting pairs of members of F . Since each fixed balanced 2k(k − 1)-set intersects at most

2k(k − 1)


n−1
2(k−1)−1

 
n

2(k−1)

k−1
other balanced 2k(k − 1)-sets in G,

E(Y ) ≤ p2


n
2(k − 1)

k

2k(k − 1)


n − 1
2k − 3


n

2(k − 1)

k−1

≤
1
8
α8k−6n.

ByMarkov’s bound,with probability at least 1
2 , Y ≤ α8k−6n/4. Therefore,we can find a familyF satisfying (2), (3) and having

at most α8k−6n/4 intersecting pairs. Remove one set from each of the intersecting pairs and the sets that have no Kk-factor
from F , we get a subfamily F ′ consisting of pairwise disjoint absorbing 2k(k−1)-sets which satisfies |F ′

| ≤ |F | ≤ α4k−2n
and for all crossing T ,

|L(T ) ∩ F ′
| ≥

α8k−6n
2

−
α8k−6n

4
≥

α8k−6n
4

.

SinceF ′ consists of disjoint absorbing sets and each absorbing set is covered by a Kk-matching, V (F ′) is covered by some
Kk-matching M . Since |F ′

| ≤ α4k−2n, we have |M| ≤ 2k(k − 1)α4k−2n/k = 2(k − 1)α4k−2n. Now consider a balanced set
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W ⊆ V (G)\V (F ′) such that |W ∩V1| = · · · = |W ∩Vk| ≤ α8k−6n/4. Arbitrarily partitionW into at most α8k−6n/4 crossing
k-tuples. We absorb each of the k-tuples with a different 2k(k − 1)-set from L(T ) ∩ F ′. As a result, V (F ′) ∪ W is covered
by a Kk-matching, as desired. �

The rest of the paper is devoted to proving Lemma 7. First we prove a useful lemma. A weaker version of it appears in
[19, Proposition 1.4] with a brief proof sketch.

Lemma 9. Let k ≥ 2 be an integer, t ≥ 1 and ϵ ≪ 1. Let H be a k-partite graph on V1 ∪· · ·∪Vk such that |Vi| ≥ (k−1)(1−ϵ)t
for all i and each vertex is nonadjacent to at most (1 + ϵ)t vertices in each of the other color classes. Then either H contains at
least ϵ2tk copies of Kk, or H is (16k4ϵ1/2k−2

, 16k4ϵ1/2k−2
)-approximate to Θk×(k−1)(t).

Proof. First we derive an upper bound for |Vi|, i ∈ [k]. Suppose for example, that |Vk| ≥ (k − 1)(1 + ϵ)t + ϵt . Then if we
greedily construct copies of Kk while choosing the last vertex from Vk, by the minimum degree condition and ϵ ≪ 1, there
are at least

|V1| · (|V2| − (1 + ϵ)t) · · · (|Vk−1| − (k − 2)(1 + ϵ)t) · (|Vk| − (k − 1)(1 + ϵ)t)

≥ (k − 1)(1 − ϵ)t · (k − 2 − kϵ)t · · · (1 − (2k − 3)ϵ)t · ϵt

≥


k − 1 −

1
2


k − 2 −

1
2


· · ·


1 −

1
2


ϵtk ≥

ϵ

2
tk

copies of Kk in H , so we are done. We thus assume that for all i,

|Vi| ≤ (k − 1)(1 + ϵ)t + ϵt < (k − 1)(1 + 2ϵ)t. (4)

Now we proceed by induction on k. The base case is k = 2. If H has at least ϵ2t2 edges, then we are done. Otherwise
e(H) < ϵ2t2. Using the lower bound for |Vi|, we obtain that

d(V1, V2) <
ϵ2t2

|V1| · |V2|
≤

ϵ2

(1 − ϵ)2
< ϵ.

Hence H is (2ϵ, ϵ)-approximate to Θ2×1(t). When k = 2, 16k4ϵ1/2k−2
= 256ϵ, so we are done.

Now assume that k ≥ 3 and the conclusion holds for k − 1. Let H be a k-partite graph satisfying the assumptions and
assume that H contains less than ϵ2tk copies of Kk.

For simplicity, write Ni(v) = N(v) ∩ Vi for any vertex v. Let V ′

1 ⊂ V1 be the vertices which are in at least ϵtk−1 copies of
Kk in H , and let Ṽ1 = V1 \ V ′

1. Note that |V ′

1| < ϵt otherwise we get at least ϵ2tk copies of Kk in H . Fix v0 ∈ Ṽ1. For 2 ≤ i ≤ k,
by the minimum degree condition and k ≥ 3,

|Ni(v0)| ≥ (k − 1)(1 − ϵ)t − (1 + ϵ)t = (k − 2)

1 −

k
k − 2

ϵ


t ≥ (k − 2)(1 − 3ϵ)t.

On the other hand, following the same arguments as we used for (4), we derive that

|Ni(v0)| ≤ (k − 2)(1 + 2ϵt). (5)

The minimum degree condition implies that a vertex in N(v0) misses at most (1 + ϵ)t vertices in each Ni(v0). We
now apply induction with k − 1, t and 3ϵ on H[N(v0)]. Because of the definition of V ′

1, we conclude that N(v0) is (ϵ′, ϵ′)-
approximate to Θ(k−1)×(k−2)(t), where

ϵ′
:= 16(k − 1)4(3ϵ)1/2

k−3
.

This means that we can partition Ni(v0) into Ai1 ∪ · · · Ai(k−2) for 2 ≤ i ≤ k such that

∀ 2 ≤ i ≤ k, 1 ≤ j ≤ k − 2, (1 − ϵ′)t ≤ |Aij| ≤ (1 + ϵ′)t and (6)

∀ 2 ≤ i < i′ ≤ k, 1 ≤ j ≤ k − 2, d(Aij, Ai′j) ≤ ϵ′. (7)

Furthermore, let Ai(k−1) := Vi \ N(v0) for i = 2, . . . , k. By (5) and the minimum degree condition, we get that

(1 − (3k − 5)ϵ)t ≤ |Ai(k−1)| ≤ (1 + ϵ)t, (8)

for i = 2, . . . , k.
Let Ac

ij = Vi \ Aij denote the complement of Aij. Let ē(A, B) = |A||B| − e(A, B) denote the number of non-edges between
two disjoint sets A and B, and d̄(A, B) = ē(A, B)/(|A||B|) = 1 − d(A, B). Given two disjoint sets A and B (with density close
to one) and α > 0, we call a vertex a ∈ A is α-typical to B if degB(a) ≥ (1 − α)|B|.
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Claim 10. Let 2 ≤ i ≠ i′ ≤ k, 1 ≤ j ≠ j′ ≤ k − 1.

(1) d(Aij, Ai′j′) ≥ 1 − 3ϵ′ and d(Aij, Ac
i′j) ≥ 1 − 3ϵ′.

(2) All but at most
√
3ϵ′ vertices in Aij are

√
3ϵ′-typical to Ai′j′ ; at most

√
3ϵ′ vertices in Aij are

√
3ϵ′-typical to Ac

i′j.

Proof. (1). Since Ac
i′j =


j′≠j Ai′j′ , the second assertion d(Aij, Ac

i′j) ≥ 1 − 3ϵ′ immediately follows from the first assertion
d(Aij, Ai′j′) ≥ 1 − 3ϵ′. Thus it suffices to show that d(Aij, Ai′j′) ≥ 1 − 3ϵ′, or equivalently that d̄(Aij, Ai′j′) ≤ 3ϵ′.

Assume j ≥ 2. By (7), we have e(Aij, Ai′j) ≤ ϵ′
|Aij||Ai′j|. So ē(Aij, Ai′j) ≥ (1−ϵ′)|Aij||Ai′j|. By theminimumdegree condition

and (6),

ē(Aij, Ac
i′j) ≤ [(1 + ϵ)t − (1 − ϵ′)|Ai′j|]|Aij|

≤ [(1 + ϵ)t − (1 − ϵ′)(1 − ϵ′)t]|Aij|

< (ϵ + 2ϵ′)t|Aij|,

which implies that ē(Aij, Ai′j′) ≤ (ϵ + 2ϵ′)t|Aij| for any j′ ≠ j and 1 ≤ j′ ≤ k − 1. By (6) and (8), we have |Ai′j′ | ≥ (1 − ϵ′)t .
Hence

d̄(Aij, Ai′j′) ≤ (ϵ + 2ϵ′)
t

|Ai′j′ |
≤ (ϵ + 2ϵ′)

t
(1 − ϵ′)t

≤ 3ϵ′,

where the last inequality holds because ϵ ≪ ϵ′
≪ 1.

(2) Given two disjoint sets A and B, if d̄(A, B) ≤ α for some α > 0, then at most
√

α|A| vertices a ∈ A satisfy degB(a) <
1 −

√
α

|B|. Hence Part (2) immediately follows from Part (1). �

We need a lower bound for the number of copies of Kk in a dense k-partite graph.

Proposition 11. Let G be a k-partite graphwith vertex class V1, . . . , Vk. Suppose for every two vertex classes, the pairwise density
d(Vi, Vj) ≥ 1 − α for some α ≤ (k + 1)−4, then there are at least 1

2


i |Vi| copies of Kk in G.

Proof. Given two disjoint sets Vi and Vj, if d̄(Vi, Vj) ≤ α for some α > 0, then at most
√

α|Vi| vertices v ∈ Vi satisfy degVj(v)

<

1 −

√
α

|Vj|. Thus, by choosing typical vertices greedily and the assumption α ≤ (k + 1)−4, there are at least

1 −
√

α

|V1|


1 − 2

√
α

|V2| · · ·


1 − k

√
α

|Vk| >


1 − (1 + · · · + k)

√
α


i

|Vi| >
1
2


i

|Vi|

copies of Kk in G. �

Let ϵ′′
= 2k

√
ϵ′. Now we want to study the structure of Ṽ1.

Claim 12. Given v ∈ Ṽ1 and 2 ≤ i ≤ k, there exists j ∈ [k − 1], such that |NAij(v)| < ϵ′′t.

Proof. Suppose instead, that there exist v ∈ Ṽ1 and some 2 ≤ i0 ≤ k, such that |NAi0 j
(v)| ≥ ϵ′′t for all j ∈ [k − 1]. By the

minimum degree condition, for each 2 ≤ i ≤ k, there is at most one j ∈ [k − 1] such that |NAij(v)| < t/3. Therefore we can
greedily choose k − 2 distinct ji for i ≠ i0, such that |NAiji

(v)| ≥ t/3. Let ji0 be the (unique) unused index. Note that

∀ i ≠ i0,
|Aiji |

|NAiji
(v)|

≤
(1 + ϵ′)t

t/3
< 4, and

|Ai0ji0
|

|NAi0 ji0
(v)|

≤
(1 + ϵ′)t

ϵ′′t
<

2
ϵ′′

.

So for any i ≠ i′, by Claim 10 and the definition of ϵ′′, we have

d̄(NAiji
(v),NAi′ ji′

(v)) ≤
3ϵ′

|Aiji ||Ai′ji′ |

|NAiji
(v)||NAi′ ji′

(v)|
≤ 3ϵ′

· 4 ·
2
ϵ′′

=
6
k2

ϵ′′. (9)

Since ϵ ≪ ϵ′′
≪ 1, by Proposition 11, there are at least

1
2


i

NAiji
(v) ≥

1
2

· ϵ′′t

t
3

k−2

=
ϵ′′

2 · 3k−2
tk−1 > ϵtk−1

copies of Kk−1 in N(v), contradicting the assumption v ∈ Ṽ1. �
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Note that if degAij(v) < ϵ′′t , at least |Aij| − ϵ′′t vertices of Aij are not in N(v). By the minimum degree condition, (6) and
(8), it follows that

|Ac
ij \ N(v)| ≤ (1 + ϵ)t − (|Aij| − ϵ′′t) ≤ (1 + ϵ)t − (1 − ϵ′)t + ϵ′′t ≤ 2ϵ′′t. (10)

Fix a vertex v ∈ Ṽ1. Given 2 ≤ i ≤ k, let ℓi denote the (unique) index such that |NAiℓi
(v)| < ϵ′′t (the existence of ℓi follows

from Claim 12).

Claim 13. We have ℓ2 = ℓ3 = · · · = ℓk.

Proof. Otherwise, say ℓ2 ≠ ℓ3, then we set j2 = ℓ3 and for 3 ≤ i ≤ k, greedily choose distinct jk, jk−1, . . . , j3 ∈ [k−1]\ {ℓ3}

such that ji ≠ ℓi (this is possible as j3 is chosen at last). Let us bound the number of copies of Kk−1 in
k

i=2 NAiji
(v). By (10),

we get |NAiji
(v)| ≥ |Aiji |−2ϵ′′t ≥ t/2 for all i. As in (9), for any i ≠ i′, we derive that d̄(NAiji

(v),NAi′ ji′
(v)) ≤ 3ϵ′′

·4 ·4 = 48ϵ′′.

Since ϵ′′
≪ 1, by Proposition 11, we get at least 1

2

 t
2

k−1
> ϵtk−1 copies of Kk−1 in N(v), a contradiction. �

We define A1j := {v ∈ Ṽ1 : |NA2j(v)| < ϵ′′t} for j ∈ [k − 1]. By Claims 12 and 13, this yields a partition of Ṽ1 =
k−1

j=1 A1j
such that

d(A1j, Aij) <
ϵ′′t|A1j|

|A1j||Aij|
≤

ϵ′′t
(1 − ϵ′)t

< (1 + 2ϵ′)ϵ′′ for i ≥ 2 and j ≥ 1. (11)

By (6), (8) and (10), as (3k − 5)ϵ ≤ ϵ′, we have

d̄(A1j, Aij′) <
|A1j|2ϵ′′t
|A1j||Aij′ |

≤
2ϵ′′t

(1 − ϵ′)t
< 3ϵ′′ for i ≥ 2 and j ≠ j′. (12)

We claim |A1j| ≤ (1 + ϵ)t + (1 + 2ϵ′)ϵ′′
|A1j| for all j. Otherwise, by the minimum degree condition, we have degA1j(v) >

(1 + 2ϵ′)ϵ′′
|A1j| for all v ∈ Aij, and consequently d(A1j, Aij) > (1 + 2ϵ′)ϵ′′, contradicting (11). We thus conclude that

|A1j| ≤
1 + ϵ

1 − (1 + 2ϵ′)ϵ′′
t < (1 + 2ϵ′′)t. (13)

Since |V ′

1| ≤ ϵt , we have |
k−1

j=1 A1j| = |V1 \ V ′

1| ≥ |V1| − ϵt . Using (13), we now obtain a lower bound for |A1j|, j ∈ [k − 1]:

|A1j| ≥ (k − 1)(1 − ϵ)t − (k − 2)(1 + 2ϵ′′)t − ϵt ≥ (1 − 2kϵ′′)t. (14)

It remains to show that for 2 ≤ i ≠ i′ ≤ k, d(Ai(k−1), Ai′(k−1)) is small. Write N(v1 · · · vm) =


1≤i≤m N(vi).

Claim 14. d(Ai(k−1), Ai′(k−1)) ≤ 6ϵ′′ for 2 ≤ i, i′ ≤ k.

Proof. Suppose to the contrary, that say d(A(k−1)(k−1), Ak(k−1)) > 6ϵ′′. We first select k − 2 sets Aij with 1 ≤ i ≤ k − 2 and
1 ≤ j ≤ k − 2 such that no two of them are on the same row or column – there are (k − 2)! choices. Fix one of them, say
A11, A22, . . . , A(k−2)(k−2). We construct copies of Kk−2 in A11 ∪ A22 ∪ · · · ∪ A(k−2)(k−2) as follows. Pick arbitrary v1 ∈ A11. For
2 ≤ i ≤ k − 2, we select vi ∈ NAii(v1 · · · vi−1) such that vi is

√
3ϵ′-typical to A(k−1)(k−1), Ak(k−1) and all Ajj, i < j ≤ k − 2. By

Claim 10 and (10), there are at least (1− (k− 2)
√
3ϵ′)|Aii|− 2ϵ′′t ≥ t/2 choices for each vi. After selecting v1, . . . , vk−2, we

select adjacent vertices vk−1 ∈ A(k−1)(k−1) and vk ∈ Ak(k−1) such that vk−1, vk ∈ N(v1 · · · vk−2). For j ∈ {k − 1, k}, we know
thatN(v1)misses atmost 2ϵ′′t vertices in Aj(k−1), and atmost (k−3)

√
3ϵ′|Aj(k−1)| vertices of Aj(k−1) are not inN(v2 · · · vk−2).

Since d(A(k−1)1, Ak1) > 6ϵ′′ and ϵ′′
= 2k

√
ϵ′, there are at least

6ϵ′′
|A(k−1)(k−1)||Ak(k−1)| − 2ϵ′′t(|A(k−1)(k−1)| + |Ak(k−1)|) − 2(k − 3)

√
3ϵ′|A(k−1)(k−1)||Ak(k−1)|

≥


6ϵ′′

− 4ϵ′′
− 4(k − 3)

√
ϵ′


|A(k−1)(k−1)||Ak(k−1)|

= 12
√

ϵ′|A(k−1)(k−1)||Ak(k−1)| ≥ 6
√

ϵ′t2

such pairs vk−1, vk. Together with the choices of v1, . . . , vk−2, we obtain at least (k − 2)!
 t
2

k−2 6
√

ϵ′t2 > ϵtk copies of Kk,
a contradiction. �

In summary, by (6), (8), (13) and (14), we have (1 − 2kϵ′′)t ≤ |Aij| ≤ (1 + 2ϵ′′)t for all i and j. In order to make
k−1

j=1 A1j

a partition of V1, we move the vertices of V ′

1 to A11. Since |V ′

1| < ϵt , we still have ||Aij| − t| ≤ 2kϵ′′t after moving these
vertices. On the other hand, by (7), (11), and Claim 14, we have d(Aij, Ai′j) ≤ 6ϵ′′

≤ 2kϵ′′ for i ≠ i′ and all j (we now have
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d(A11, Ai1) ≤ 2ϵ′′ for all i ≥ 2 because |A11| becomes slightly larger). ThereforeH is (2kϵ′′, 2kϵ′′)-approximate toΘk×(k−1)(t).
By the definitions of ϵ′′ and ϵ′,

2kϵ′′
= 4k2

√
ϵ′ = 4k2


16(k − 1)4(3ϵ)1/2k−3

≤ 16k4ϵ1/2k−2
,

where the last inequality is equivalent to
 k−1

k

2
31/2k−2

≤ 1 or 31/2k−1
≤

k
k−1 , which holds because 3 ≤ 1 +

2k−1

k−1 ≤
1 +

1
k−1

2k−1
for k ≥ 2.

This completes the proof of Lemma 9. �

We are ready to prove Lemma 7.

Proof of Lemma 7. First assume that G ∈ G3(n) is minimal, namely, G satisfies the minimum partite degree condition but
removing any edge of G will destroy this condition. Note that this assumption is only needed by Claim 20.

Given 0 < ∆ ≤ 1, let

α =
1
2k


∆

24k(k − 1)
√
2k

2k−1

. (15)

Without loss of generality, assume that x, y ∈ V1 and y is not reachable by α3nk−1(k − 1)-sets or α3n2k−1(2k − 1)-sets
from x.

For 2 ≤ i ≤ k, define

Ai1 = Vi ∩ (N(x) \ N(y)), Aik = Vi ∩ (N(y) \ N(x)),
Bi = Vi ∩ (N(x) ∩ N(y)), Ai0 = Vi \ (N(x) ∪ N(y)).

Let B =


i≥2 Bi. If there are at least α3nk−1 copies of Kk−1 in B, then x is reachable from y by at least α3nk−1(k − 1)-sets.
We thus assume there are less than α3nk−1 copies of Kk−1 in B.

Clearly, for i ≥ 2, Ai1, Aik, Bi and Ai0 are pairwise disjoint. The following claim bounds the sizes of Aik, Bi and Ai0.

Claim 15. (1) (1 − k2α) n
k < |Ai1|, |Aik| ≤ (1 + kα) n

k ,
(2) (k − 2 − 2kα) n

k ≤ |Bi| < (k − 2 + k(k − 1)α) n
k ,

(3) |Ai0| < (k + 1)αn.

Proof. For v ∈ V , and i ∈ [k], write Ni(v) := N(v)∩Vi. By theminimum degree condition, we have |Ai1|, |Aik| ≤ (1/k+α)n.
Since Ni(x) = Ai1 ∪ Bi, it follows that

|Bi| ≥


k − 1
k

− α


n −


1
k

+ α


n. (16)

If some Bi, say Bk, has at least
 k−2

k + (k − 1)α

n vertices, then there are at least

k
i=2 |Bi| − (i − 2)

 1
k + α


n copies of

Kk−1 in B. By (16) and |Bk| ≥
 k−2

k + (k − 1)α

n, this is at least

αn ·

k−1
i=2


k − 1
k

− α


n − (i − 1)


1
k

+ α


n = αn ·

k−1
i=2


k − i
k

− iα

n

≥ αn ·

k−1
i=2


k − i − 1

2

k


n because 2k2α ≤ 1,

≥ αn ·
1
2

n
k

k−2

≥ α2nk−1 because 2kk−2α ≤ 1.

This is a contradiction.
We may thus assume that |Bi| <

 k−2
k + (k − 1)α


n for 2 ≤ i ≤ k, as required for Part (2). As Ni(x) = Ai1 ∪ Bi, it follows

that

|Ai1| >


k − 1
k

− α


n −


k − 2
k

+ (k − 1)α

n =


1
k

− kα

n.

The same holds for |Aik| thus Part (1) follows. Finally

|Ai0| = |Vi| − |Ni(x)| − |Aik| < n −


k − 1
k

− α


n −


1
k

− kα

n = (k + 1)αn,

as required for Part (3). �
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Let t = n/k and ϵ = 2kα. By the minimum degree condition, every vertex u ∈ B is nonadjacent to at most (1 + kα)n/k
< (1+ϵ)t vertices in other color classes of B. By Claim 15, |Bi| ≥ (k−2−2kα) n

k = (k−2−ϵ)t ≥ (k−2)(1−ϵ)t . Thus G[B]
is a (k− 1)-partite graph that satisfies the assumptions of Lemma 9. We assumed that B contains less than α3nk−1 < ϵ2tk−1

copies of Kk−1, so by Lemma 9, B is (α′, α′)-approximate to Θ(k−1)×(k−2)
 n
k


, where

α′
:= 16(k − 1)4(2kα)1/2

k−3
.

This means that we can partition Bi, 2 ≤ i ≤ k, into Ai2 ∪· · · Ai(k−1) such that (1−α′) n
k ≤ |Aij| ≤ (1+α′) n

k for 2 ≤ j ≤ k−1
and

∀ 2 ≤ i < i′ ≤ k, 2 ≤ j ≤ k − 1, d(Aij, Ai′j) ≤ α′. (17)

Together with Claim 15 Part (1), we obtain that (using k2α ≤ α′)

∀ 2 ≤ i ≤ k, 1 ≤ j ≤ k, (1 − α′)
n
k

≤ |Aij| ≤ (1 + α′)
n
k
. (18)

Let Ac
ij = Vi \ Aij denote the complement of Aij. The following claim is an analog of Claim 10, and its proof is almost the

same — after we replace (1 + ϵ)t with (1 + kα)n/k and ϵ′ with α′ (and we use α ≪ α′). We thus omit the proof.

Claim 16. Let 2 ≤ i ≠ i′ ≤ k, 1 ≤ j ≠ j′ ≤ k, and {j, j′} ≠ {1, k}.

(1) d(Aij, Ai′j′) ≥ 1 − 3α′ and d(Aij, Ac
i′j) ≥ 1 − 3α′.

(2) All but at most
√
3α′ vertices in Aij are

√
3α′-typical to Ai′j′ ; at most

√
3α′ vertices in Aij are

√
3α′-typical to Ac

i′j. �

Now let us study the structure of V1. Let α′′
= 2k

√
α′. Recall that N(xv) = N(x) ∩ N(v). Let V ′

1 be the set of the vertices
v ∈ V1 such that there are at least αnk−1 copies of Kk−1 in each of N(xv) and N(yx). We claim that |V ′

1| < 2αn. Otherwise,
since a (k − 1)-set intersects at most (k − 1)nk−2 other (k − 1)-sets, there are at least

2αn · αnk−1(αnk−1
− (k − 1)nk−2) > α3n2k−1

copies of (2k − 1)-sets connecting x and y, a contradiction.
Let Ṽ1 := V1\V ′

1. The following claim is an analog of Claim12 for Lemma9 and can be proved similarly. The only difference
between their proofs is that here we find at least αnk−1 copies of Kk−1 in each of N(xv) and N(yv), which contradicts the
definition of Ṽ1.

Claim 17. Given v ∈ Ṽ1 and 2 ≤ i ≤ k, there exists j ∈ [k] such that |NAij(v)| < α′′t. �

Fix an vertex v ∈ Ṽ1. Claim 17 implies that for each 2 ≤ i ≤ k, there exists ℓi such that |NAiℓi
(v)| < α′′t . Our next claim

is an analog of Claim 13 for Lemma 9 and can be proved similarly.

Claim 18. We have ℓ2 = ℓ3 = · · · = ℓk. �

We now define A1j := {v ∈ Ṽ1 : |NA2j(v)| < α′′t} for j ∈ [k]. By Claims 17 and 18, this yields a partition of Ṽ1 =
k

j=1 A1j
such that

d(A1j, Aij) <
α′′t|A1j|

|A1j||Aij|
≤

α′′t
(1 − α′)t

< (1 + 2α′)α′′ for i ≥ 2 and j ≥ 1. (19)

For v ∈ A1j, we have |NAij(v)| < α′′t for i ≥ 2. By the minimum degree condition and (18),

|Ac
ij \ N(v)| ≤


1
k

+ α


n − (|Aij| − α′′t) < 2α′′t. (20)

By (18) and (20), we derive that

d̄(A1j, Aij′) <
|A1j| · 2α′′t
|A1j||Aij′ |

≤
2α′′t

(1 − α′)t
< 3α′′ for i ≥ 2 and j ≠ j′. (21)

We claim that |A1j| ≤ (1+ α)t + (1+ 2α′)α′′
|A1j| for all j. Otherwise, by the minimum degree condition, we have degA1j(v)

> (1 + 2α′)α′′
|A1j| for all v ∈ Aij, and consequently d(A1j, Aij) > (1 + 2α′)α′′, contradicting (19). We thus conclude that

|A1j| ≤
1 + α

1 − (1 + 2α′)α′′
t < (1 + 2α′′)

n
k
. (22)
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Since |V ′

1| ≤ 2αn, we have |
k

j=1 A1j| = |V1 \ V ′

1| ≥ |V1| − 2αn. Using (22), we now obtain a lower bound for |A1j|, j ∈ [k].

|A1j| ≥ n − (k − 1)(1 + 2α′′)
n
k

− 2αn ≥ (1 − 2kα′′)
n
k
. (23)

It remains to show that d(Ai1, Ai′1) and d(Aik, Ai′k), 2 ≤ i, i′ ≤ k, are small. First we show that if both densities are
reasonably large then there are too many reachable (2k − 1)-sets from x to y. The proof resembles the one of Claim 14.

Claim 19. For 2 ≤ i ≠ i′ ≤ k, either d(Ai1, Ai′1) ≤ 6α′′ or d(Aik, Ai′k) ≤ 6α′′.

Proof. Suppose instead, that say d(A(k−1)1, Ak1), d(A(k−1)k, Akk) > 6α′′. Fix a vertex v1 in A1j, for some 2 ≤ j ≤ k − 1, say
v1 ∈ A12. We construct two vertex disjoint copies of Kk−1 in N(xv1) and N(yv1) as follows. We first select k − 3 sets Aij with
2 ≤ i ≤ k − 2 and 3 ≤ j ≤ k − 1 such that no two of them are on the same row or column – there are (k − 3)! choices. Fix
one of them, say A23, . . . , A(k−2)(k−1). For 2 ≤ i ≤ k−2, we select vi ∈ NAi(i+1)(v1 · · · vi−1) that is

√
3α′-typical to A(k−1)1, Ak1

and Aj(j+1), i < j ≤ k − 2. By Claim 16 and (20), there are at least
1 − (k − 2)

√
3α′


|Ai(i+1)| − (kα + α′

+ α′′)
n
k

≥
n
2k

such vi. After selecting v2, . . . , vk−2, we select two adjacent vertices vk−1 ∈ A(k−1)1 and vk ∈ Ak1 such that vk−1 and vk
are in N(v1 · · · vk−2). For j = k − 1, k, we know that N(v1) misses at most (kα + α′

+ α′′)n/k vertices in Aj1 and at most
(k − 3)

√
3α′|Aj1| vertices of Aj1 are not in N(v2 · · · vk−2). Since d(A(k−1)1, Ak1) > 6α′′, there are at least

6α′′
|A(k−1)1||Ak1| − (kα + α′

+ α′′)
n
k
(|A(k−1)1| + |Ak1|) − 2(k − 3)

√
3α′|A(k−1)1||Ak1| ≥ 6

√
α′

n
k

2
such pairs vk−1, vk. Hence N(xv1) contains at least

(k − 3)!
 n
2k

k−3
6
√

α′

n
k

2
≥

√
α′

n
k

k−1
≥

√
αnk−1

copies of Kk−1. Let C be such a copy of Kk−1. Then we follow the same procedure and construct a copy of Kk−1 on N(yv1) \ C .
After fixing k − 3 sets Aij with 2 ≤ i ≤ k − 2 and 3 ≤ j ≤ k − 1 such that no two of them are on the same row or column,
there are still at least n

2k such vi for 2 ≤ i ≤ k − 2. Then, as d(Aik, Ai′k) > 6α′′, there are at least 6
√

α′
 n
k

2 choices of
vk−1 ∈ A(k−1)k and vk ∈ Akk such that vk−1 and vk are in N(v1 · · · vk−2). This gives at least

√
αnk−1 copies of Kk−1 in N(yv1).

Then, since there are at least |V1| − |A11| − |A1k| ≥ αn choices of v1, totally there are at least αn
√

αnk−1
2

= α2n2k−1

reachable (2k − 1)-sets from x to y, a contradiction. �

Next we show that if any of d(Ai1, Ai′1) or d(Aik, Ai′k), 2 ≤ i, i′ ≤ k, is sufficiently large, then we can remove edges from
G such that the resulting graph still satisfies the minimum degree condition, which contradicts the assumption that G is
minimal.

Claim 20. For 2 ≤ i ≠ i′ ≤ k, d(Ai1, Ai′1), d(Aik, Ai′k) ≤ 6k
√

α′′.

Proof. Without loss of generality, assume that d(A2k, A3k) > 6k
√

α′′. By Claim 19, we have d(A21, A31) < 6α′′. Combining
this with (17), we have d(A2j, A3j) < 6α′′ for all j ∈ [k − 1]. Now fix j ∈ [k − 1]. The number of non-edges between A2j and
A3j satisfies ē(A2j, A3j) > (1 − 6α′′)|A2j||A3j|. By the minimum degree condition and (18),

ē(A2k, A3j) < (1 + kα)
n
k
|A3j| − (1 − 6α′′)|A2j||A3j| ≤ 7α′′

n
k
|A3j|.

Using (18) again, we obtain that

d(A2k, A3j) ≥ 1 −
7α′′ n

k |A3j|

|A2k||A3j|
≥ 1 − 8α′′.

This implies that d(A2k, Ac
3k) ≥ 1 − 8α′′. Similarly we derive that d(A3k, Ac

2k) ≥ 1 − 8α′′. For i = 2, 3, define AT
ik as the set of

the vertices in Aik that are
√
8α′′-typical to Ac

(5−i)k. Thus |Aik \ AT
ik| ≤

√
8α′′|Aik|.

Let AT1
ik =


v ∈ AT

ik : degA(5−i)k
(v) ≤

√
8α′′|Ac

jk|


and AT2

ik = AT
ik \ AT1

ik . For u ∈ AT2
2k, we have

deg
V3

(u) = deg
Ac3k

(u) + deg
A3k

(u) >

1 −

√
8α′′


|Ac

3k| +
√
8α′′|Ac

3k| = |Ac
3k|.

Since |Ac
3k| ≥ degV3(x) and |Ac

3k| is an integer, we conclude that degV3(u) ≥ degV3(x) + 1. Similarly we can derive that
degV2(v) ≥ degV2(x)+ 1 for every v ∈ AT2

3k. If there is an edge uv joining some u ∈ AT2
2k and some v ∈ AT2

3k, then we can delete
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this edge and the resulting graph still satisfies the minimum degree condition. Therefore we may assume that there is no
edge between AT2

2k and AT2
3k. Then

e(A2k, A3k) ≤ e(A2k \ AT
2k, A3k) + e(A2k, A3k \ AT

3k) + e(AT1
2k, A

T
3k) + e(AT

2k, A
T1
3k)

≤ 2
√
8α′′|A2k||A3k| + |AT1

2k|
√
8α′′|Ac

3k| + |AT1
3k|

√
8α′′|Ac

2k|

≤
√
8α′′


2|A2k||A3k| + |A2k||Ac

3k| + |A3k||Ac
2k|


=
√
8α′′ (|A2k||V3| + |A3k||V2|)

≤ 3
√

α′′ · 2k|A2k||A3k| by (18).

Therefore d(A2k, A3k) ≤ 6k
√

α′′. �

In summary, by (18), (22) and (23), we have (1 − 2kα′′) n
k ≤ |Aij| ≤ (1 + 2α′′) n

k for all i and j. In order to make
k

j=1 Aij

a partition of Vi, we move the vertices of V ′

1 to A11 and the vertices of Ai0 to Ai2 for 2 ≤ i ≤ k. Since |V ′

1| < 2αn and
|Ai0| ≤ (k + 1)αn, we have ||Aij| −

n
k | ≤ 2kα′′ n

k after moving these vertices. On the other hand, by (17), (19), and Claim 20,
we have d(Aij, Ai′j) ≤ 6k

√
α′′ for i ≠ i′ and all j. (In fact, for i ≥ 2, we now have d(A11, Ai1) ≤ 2α′′ as we added at most

2αn vertices to A11. For i′ > i ≥ 2, we now have d(A12, Ai2) ≤ 2α′′ and d(Ai2, Ai′2) ≤ 2α′ as we moved at most (k + 1)αn
vertices to Ai2.) Therefore after deleting edges, G is


2kα′′, 6k

√
α′′


-approximate to Θk×k(n/k). By (15), and the definitions

of α′′ and α′,G is (∆/6, ∆/2)-approximate to Θk×k(n/k). �
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