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Abstract

Given positive integers, k, ¢, with 2<k <n, andz < 2%, letm(n, k, 1) be the minimum size of
a family # of (nonempty distinct) subsets pi] such that everk-subset ofin] contains at leadt
members of#, and every(k — 1)-subset ofn] contains at most — 1 members of#. For fixedk
andt, we determine the order of magnituderatn, k, t). We also consider related Turan numbers
T>r(n, k,t) andT;(n, k, 1), whereT~ . (n, k, t) (T;(n, k, t)) denotes the minimum size of a family

F C ([2”1) (97 - <[’r’])) such that everk-subset ofin] contains at least members of%#. We

prove thatl> - (n, k, t) = (1 + 0o(1)) T (n, k, t) for fixed r, k, t with 7 < (’;) andn — oo.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Given positive integers, k, 1, with 2<k <n andr < 2*. We call a familyF c 21"\ ¢
a (k, t)-system if everyk-subset ofn] contains at leadtsets fromF, and every(k — 1)-
subset offn] contains at most — 1 sets from*. Analogously, given integers, k, ¢, r,
with 1<r <k <n and 0<r < 2%, aTuran >, (n, k, t)-system(Turéns (n, k, 1)-system) is
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afamily 7 c (1) (F c (U)) so that ever-subset offn] contains at leastmembers
of . We denote byn(n, k, t) the minimum size of &k, r)-system, and by~ , (n, k, 1)
(T (n, k, t)) the minimum size of a Turan- (n, k, r)-system (Turan-(n, k, t)-system).
Computer scientists introduced and studigd, &, 1) (seg4,5,7]forits history and appli-
cations). Sloan et a]7] proves thain(n, k, t) = @ 1) for 1 < t < k andm(n, 3,2) =
("51) +1, and Firedi et af4] proves that for fixed, m(n, k, 2) = (1+0(1)Tr—1(n, k, 2).
T, (n, k, t) (especialyT, (n, k, 1)) is well known and sometimes called the generalized Turan
number, though its nonuniform versidr. , (n, k, t) appears not to have been studied be-
fore. Note that whefT, (n, k, t) = Q") (for fixeds, r < k), the asymptotics of, (n, k, t)
are not known for any >3 andr > 1 (se€/1] for an introduction to this problem, aiid,6]
for surveys in the case=1).
In this note, we first studw (n, k, 1) forall 1<+ < 2%, determining its order of magnitude
for fixedk, ¢.

Theorem 1. Let2<k<n, 2<t < 2",and(<j.‘_1) < t<(<k/.).Thenthere exists a constant
¢, depending only on k andguch that '

c(,") < m k) < (")) for zg(k;l) “
B0 < mnkn < (2) sor s> (),

Remark. When j = 1, (x) yields m(n, k,1) = O(n*~1) for 2<r<k — 1, a result
from [7].

We can obtain the exact value @af(n, k, t) for some choices of. Forr = 1, k, and
2k — 1, it is trivial to see thain(n, k, t) is equal to(}), n, and(g"k), respectively. We
claim thatm(n, k, 28 — 2) = (g/?—l)- To see this, we call &, r)-system# minimal if
ZSE% ISI< D geq IS for every (k, r)-system?’. If F is a minimal(k, r)-system for
t=2— 2>2"*€1, andA € F, then 2 \ ¥ c F, since replacing\ by B c A for some
B ¢ F creates anothdi, ¢)-system that contradicts the minimality &f. Consequently
Fir = ¥, because € F; now implies thatF; \ S is a(k, 1)-system. Since = 28 — 2, we
must haveF = (g[,'(’]_l).

Before proceeding our upcoming Theor8mwhich relatesl's . (n, k, t) and T, (n, k, t),
we make the following observation.

Observation 2. Let 1<r<k and 0<t < Zfzr (’f) Let j be the unique integer sat-
isfying /-0 (<t < Y, () and letio = ¢ — Y/20 (9)=0. 1f Fis a Turan

j(n, k, to)-systemthenF’ = (J/ZF (") U F is a Turdn >, (n, k, 1)-system. This implies
that 7=, (n, k, ) < Y120 (U) + T (n, k, 10).

Theorem 3. Letr, k, t, j, to be fixed as in Observatidh
1. If 10 =0, thenT=,(n, k, 1) = Y10 (7).
2. 1fto>1,thenT,(n, k. 1) = (L+0(D) (XI5 () + 75 1.k, 10)).
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Conjecture 4. Givenr, k, t, j, to as in Observatior?, T, (n, k,t) = Z{;l () + T;
(n, k, to).

Most of our notations are standard: Given aXeind an integea, let (f) ={ScX:
S| =a), (X)) =5 € X : 1<ISI<a), (L) = (S € X : [S|>a}, and & = {5 :
S c X).ForF c 2" let 7 = Fn (") andF = (") \ F. Let F<, = U;<, F; and
Fsr = Ui, Fi. Write F(X) for F 0 2X. Anr-graph onX is a (hyper)grapl¥ c (¥).

2. Proofs

Proof of Theorem 1. The theorem follows easily from the following four statements.
@) 1t (52 <1< (5), thenmn, k, < ("))

) If (k;l) <kt<(<"j), thenm(n, k, z)gk(g”j).

(3) Ift > (gj—l)’ thenm(n, k, t)}(’;)/(j).
(4) If (gf—l) <1< (kyl), thenm(n, k, 1) >c (," ;), wherec depends only ok andj.

The proofs of (1) and (3) are straightforward, so we only prove (2) and (4).

Proof of (2). Consider the smallest € [1, j] and the largest € [1, j] such that 1+
S (O <e< ) (6). Suchi, i’ exist since(";l) < t< (gkj) We first show that
i’ <i. This s trivial fori = j, so assume that< j. The choice of implies that

J J
k k k k—1 k—1
= 2 ()G 2 =10+ ()]
eSS i+l S\ ! i+l
J
k—1
+ Z ( . ) +1
=i+2
Since this is equal t§__; (*;%) + 1, the choice of” implies thati’ <i. Now let F =
Us_; (). Everyk-set of [n] hasY")_; (¥)>+ members ofF; every (k — 1)-set of [n]
hasY°r_, (", <20, (5,5 <t — 1 members ofF. Consequentlym(n, k, 1) <|F|
<(Z)- o

Proof of (4). First, the assumptio(k;.‘_l) < (";1
(k, t)-system. LelI(,Ei_)l denote the compleiegraph of ordek — 1. ThenK,E"_)l ¢ Fforall
i € [j, k—1— ], otherwise we obtain@—1)-setwhich containf ;) > (";1) >t members

of F, a contradiction. Recall that the Ramsey numREt (s, 1) is the smallesN such that

) implies thatj < k — j. Let F be a

everyi-graph onN vertices contains a copy of eithKrs(i_) or K,(i). By Ramsey’s theorem,
R (s, 1) is finite. Definem_2j11 = k, andmy = R*=/=9(k — 1, my11) recursively for
L=k—-2j,k—2j—-1,...,2,1.
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We claim that everyni-set of [z] contains at least one member &t ;. Indeed,

consider anni-set S;. BecauseK,E’i}"” ¢ F, the definition ofm implies that there
exists amy-subsetS; C §; with all of its (k — j — 1)-subsets absent froti. Repeating
this analysis, we find a sequence of subs®tsS --- D S;_»;11 = S of sizesmz >

- > myg_2j41 = k, respectively. The&-setS thus contains no members &t of size

k—j—1,...,j.0nthe other hand, tHesetSmust contain at least> ( ;‘ ) members
of F, thus at least one member®t. ;. HenceScontains a member 0T>k ;. By an easy
averaging argument, we obtalﬁ‘|>(k J)/(k”ilj) =c(" J) O

Proof of Theorem 3 (Part1). LetF C ([”]) be a minimal Turans , (n, k, r)-system. We

are to show thatr|> Zi:r (*). ConsiderF_; = Ul.:r (") \ F. For everyk-setS of
[n],
i-1

k
> (l> =t<IFS)| = 1F<j( O]+ |F= (9]

i=r i ) -
=Y () = 17O+ F= ().
i=r !

Thereford 7 ; ()| <|F > ; (S)|. Consequently (using "¥) is decreasing irfor 0< x <),
|-7:</|(Z:j) < ZSE([ZJ) |-7:<j(S)| < Zse(lzl) |-7:>j(S)| <|-7:>j|(2:]/) Thus |-7:<j|
<|Fs |, and thereforéF| = |F_ ;| + | F> ;| > |F<j| + | F<;| = Zi]:_rl (7)-

The main tool to prove the second part of Theor@ia the following well-known fact.
For a familyG of r-graphs, the extremal function@x G) is the maximum number of edges
in anr-graph omn vertices that contains no copy of any membegof

Theorem 5(Erd6s-Simonovit§2] ). For everys > 0 and every family of r-graphg, each
of whose members has k vertictteere exist® > 0, such that every r-graph on n vertices
with at leastex(n, G) + ¢ () edges contains at leasf;) copies of members ¢f.

Proof of Theorem 3 (Part 2). It suffices to show that for every > 0, there existag =
no(e, k. 1) > 0, such that for alh >no, T »(n, k.0 > (1 — &) (T2} (1) + 7501, k. 10)).
In fact, this follows from the following claims (takingy = max{n1, n2}):

(@) Tx,(n, k,t)=>T> j(n,k, to),

() T> j(n,k,t0) > (L —¢/2)Tj(n, k,t0) forn > nl,

©) Tj(n k. 10)>T;(n.k, 1> (1)/(}) > 222 Y171 (1), for n > na.

Since (a) and (c) are easy to see, we only prove (b). Supposg thafTuran-. ; (n, k, to)-
system. Letj be the family of alj-graphs ork vertices with more tha((j‘.) — to edges. Let

5 be the output of Theoremfor inputSe/[Z(’]‘.)] andg, and choose; so thatj(}) > nk—1
for all n > ny (note thatny = ny(e, k, 1)). We will show that F;| > (1 — &/2)T;(n, k, to)
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forn > n1. Suppose, for contradiction, thigk; | < (1 —&/2)T; (n, k, t0). Since exn, G) =

(f}) —Tj(n, k, t0) andT(n, k, fo)>(f})/(.l,{')’

771 > (;’) - (1-3) nn ko0

= ex(n, §) + =T;(n, k, to) > eX(n, §) + — (”)
2 2(5)\J
J
By Theoremb applied with inputs/[Z(’]‘.)], thej-graph with vertex sdt:] and edge se?j
contains at Ieasi(Z) copies of (not necessarily the same) membei@ ofn other words,
there are at leask(}) k-sets offn] that contain fewer than members ofF;.

Now consider the family ok-sets of[xn] which contains at least one member &Bf
for somei > j. Denote this byk; and letC = U;_; <x K;. Since|K;|<|F|(;~;) and

FI< (),

Ki= Y ki< Y |fl~|<2:§:>

j<i<k j<i<k

n—j—1 n—j—1\(n 1
< FI< .
= (k—j—l)' |\<k—j—l)<j> ="
Sinced(}) > n*=1 > |K| for n > na, at least oné-setS of [r] contains fewer tham

members ofF; and no member of; for i > j. Consequentlys contains fewer tham
members ofF. This contradicts the assumption tifats a Turan-. ; (n, k, fg)-system. [
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