

Available online at www.sciencedirect.com

Journal of Combinatorial Theory _{Series A}

Journal of Combinatorial Theory, Series A 111 (2005) 106-110

www.elsevier.com/locate/jcta

Non-uniform Turán-type problems

Dhruv Mubayi¹, Yi Zhao²

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA

> Received 9 June 2004 Available online 12 January 2005

Abstract

Given positive integers n, k, t, with $2 \le k \le n$, and $t < 2^k$, let m(n, k, t) be the minimum size of a family \mathscr{F} of (nonempty distinct) subsets of [n] such that every k-subset of [n] contains at least t members of \mathscr{F} , and every (k - 1)-subset of [n] contains at most t - 1 members of \mathscr{F} . For fixed k and t, we determine the order of magnitude of m(n, k, t). We also consider related Turán numbers $T_{\ge r}(n, k, t)$ and $T_r(n, k, t)$, where $T_{\ge r}(n, k, t)$ ($T_r(n, k, t)$) denotes the minimum size of a family $\mathscr{F} \subset {n \choose 2} (\mathscr{F} \subset {n \choose r})$ such that every k-subset of [n] contains at least t members of \mathscr{F} . We prove that $T_{\ge r}(n, k, t) = (1 + o(1))T_r(n, k, t)$ for fixed r, k, t with $t \le {k \choose r}$ and $n \to \infty$. @ 2004 Elsevier Inc. All rights reserved.

MSC: 05C65; 05D05

Keywords: Hypergraph Turán problem; Extremal set theory

1. Introduction

Given positive integers n, k, t, with $2 \le k \le n$ and $t < 2^k$. We call a family $\mathcal{F} \subset 2^{[n]} \setminus \emptyset$ a (k, t)-system if every k-subset of [n] contains at least t sets from \mathcal{F} , and every (k - 1)subset of [n] contains at most t - 1 sets from \mathcal{F} . Analogously, given integers n, k, t, r, with $1 \le r \le k \le n$ and $0 \le t < 2^k$, a *Turán*- $\ge r(n, k, t)$ -system (Turán-r(n, k, t)-system) is

0097-3165/\$ - see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jcta.2004.11.010

E-mail address: mubayi@math.uic.edu (D. Mubayi).

¹ Research supported in part by NSF Grants DMS-9970325 and DMS-0400812.

 $^{^2}$ Research supported in part by NSF Grant DMS-9983703, a VIGRE Postdoctoral Fellowship at University of Illinois at Chicago.

a family $\mathcal{F} \subset {\binom{[n]}{\geqslant r}}$ ($\mathcal{F} \subset {\binom{[n]}{r}}$) so that every *k*-subset of [*n*] contains at least *t* members of \mathcal{F} . We denote by m(n, k, t) the minimum size of a (k, t)-system, and by $T_{\geqslant r}(n, k, t)$ ($T_r(n, k, t)$) the minimum size of a Turán- $_{\geqslant r}(n, k, t)$ -system (Turán- $_r(n, k, t)$ -system).

Computer scientists introduced and studied m(n, k, t) (see [4,5,7] for its history and applications). Sloan et al. [7] proves that $m(n, k, t) = \Theta(n^{k-1})$ for 1 < t < k and $m(n, 3, 2) = \binom{n-1}{2} + 1$, and Füredi et al. [4] proves that for fixed $k, m(n, k, 2) = (1 + o(1))T_{k-1}(n, k, 2)$. $T_r(n, k, t)$ (especially $T_r(n, k, 1)$) is well known and sometimes called the generalized Turán number, though its nonuniform version $T_{\ge r}(n, k, t)$ appears not to have been studied before. Note that when $T_r(n, k, t) = \Omega(n^r)$ (for fixed t, r < k), the asymptotics of $T_r(n, k, t)$ are not known for any $r \ge 3$ and $t \ge 1$ (see [1] for an introduction to this problem, and [3,6] for surveys in the case t = 1).

In this note, we first study m(n, k, t) for all $1 \le t < 2^k$, determining its order of magnitude for fixed k, t.

Theorem 1. Let $2 \leq k \leq n$, $2 \leq t < 2^k$, and $\binom{k}{\leq j-1} < t \leq \binom{k}{\leq j}$. Then there exists a constant *c*, depending only on *k* and *t*, such that

$$c\binom{n}{k-j} \leqslant m(n,k,t) \leqslant \binom{n}{k-j} \quad for \quad t \leqslant \binom{k-1}{j} \quad (*)$$

$$\frac{1}{\binom{k}{j}}\binom{n}{j} \leqslant m(n,k,t) \leqslant \binom{n}{\leqslant j} \quad for \quad t > \binom{k-1}{j}.$$

Remark. When j = 1, (*) yields $m(n, k, t) = \Theta(n^{k-1})$ for $2 \le t \le k - 1$, a result from [7].

We can obtain the exact value of m(n, k, t) for some choices of t. For t = 1, k, and $2^k - 1$, it is trivial to see that m(n, k, t) is equal to $\binom{n}{k}$, n, and $\binom{n}{\leq k}$, respectively. We claim that $m(n, k, 2^k - 2) = \binom{n}{\leq k-1}$. To see this, we call a (k, t)-system \mathcal{H} minimal if $\sum_{S \in \mathcal{H}} |S| \leq \sum_{S \in \mathcal{H}'} |S|$ for every (k, t)-system \mathcal{H}' . If \mathcal{F} is a minimal (k, t)-system for $t = 2^k - 2 \ge 2^{k-1}$, and $A \in \mathcal{F}$, then $2^A \setminus \emptyset \subset \mathcal{F}$, since replacing A by $B \subset A$ for some $B \notin \mathcal{F}$ creates another (k, t)-system that contradicts the minimality of \mathcal{F} . Consequently $\mathcal{F}_k = \emptyset$, because $S \in \mathcal{F}_k$ now implies that $\mathcal{F}_k \setminus S$ is a (k, t)-system. Since $t = 2^k - 2$, we must have $\mathcal{F} = \binom{[n]}{\leq k-1}$.

Before proceeding our upcoming Theorem 3 which relates $T_{\ge r}(n, k, t)$ and $T_r(n, k, t)$, we make the following observation.

Observation 2. Let $1 \leq r \leq k$ and $0 \leq t < \sum_{i=r}^{k} \binom{k}{i}$. Let j be the unique integer satisfying $\sum_{i=r}^{j-1} \binom{k}{i} \leq t < \sum_{i=r}^{j} \binom{k}{i}$ and let $t_0 = t - \sum_{i=r}^{j-1} \binom{k}{i} \geq 0$. If \mathcal{F} is a Turán- $j(n, k, t_0)$ -system, then $\mathcal{F}' = \bigcup_{i=r}^{j-1} \binom{[n]}{i} \cup \mathcal{F}$ is a Turán- $\geq_r(n, k, t)$ -system. This implies that $T_{\geq r}(n, k, t) \leq \sum_{i=r}^{j-1} \binom{n}{i} + T_j(n, k, t_0)$.

Theorem 3. Let r, k, t, j, t_0 be fixed as in Observation 2.

1. If
$$t_0 = 0$$
, then $T_{\geq r}(n, k, t) = \sum_{i=r}^{J-1} \binom{n}{i}$.
2. If $t_0 \geq 1$, then $T_{\geq r}(n, k, t) = (1 + o(1)) \left(\sum_{i=r}^{J-1} \binom{n}{i} + T_J(n, k, t_0) \right)$.

Conjecture 4. Given r, k, t, j, t_0 as in Observation 2, $T_{\geq r}(n, k, t) = \sum_{i=r}^{j-1} {n \choose i} + T_j$ $(n, k, t_0).$

Most of our notations are standard: Given a set *X* and an integer *a*, let $\binom{X}{a} = \{S \subset X : |S| = a\}, \binom{X}{\leq a} = \{S \subset X : 1 \leq |S| \leq a\}, \binom{X}{\geq a} = \{S \subset X : |S| \geq a\}, \text{ and } 2^X = \{S : S \subset X\}.$ For $\mathcal{F} \subset 2^{[n]}$, let $\mathcal{F}_t = \mathcal{F} \cap \binom{[n]}{t}$ and $\overline{\mathcal{F}_t} = \binom{[n]}{t} \setminus \mathcal{F}_t$. Let $\mathcal{F}_{\leq t} = \bigcup_{i \leq t} \mathcal{F}_i$ and $\mathcal{F}_{\geq t} = \bigcup_{i \geq t} \mathcal{F}_i$. Write $\mathcal{F}(X)$ for $\mathcal{F} \cap 2^X$. An *r*-graph on *X* is a (hyper)graph $\mathcal{F} \subset \binom{X}{r}$.

2. Proofs

Proof of Theorem 1. The theorem follows easily from the following four statements.

(1) If $\binom{k-1}{j-1} < t \leq \binom{k}{j}$, then $m(n, k, t) \leq \binom{n}{k-j}$. (2) If $\binom{k-1}{j} < t \leq \binom{k}{\leq j}$, then $m(n, k, t) \leq \binom{n}{\leq j}$. (3) If $t > \binom{k}{\leq j-1}$, then $m(n, k, t) \geq \binom{n}{j} / \binom{k}{j}$. (4) If $\binom{k}{\leq j-1} < t \leq \binom{k-1}{j}$, then $m(n, k, t) \geq c \binom{n}{k-j}$, where *c* depends only on *k* and *j*.

The proofs of (1) and (3) are straightforward, so we only prove (2) and (4).

Proof of (2). Consider the smallest $i' \in [1, j]$ and the largest $i \in [1, j]$ such that $1 + \sum_{\ell=i'}^{j} \binom{k-1}{\ell} \leq t \leq \sum_{\ell=i}^{j} \binom{k}{\ell}$. Such i, i' exist since $\binom{k-1}{j} < t \leq \binom{k}{\leq j}$. We first show that $i' \leq i$. This is trivial for i = j, so assume that i < j. The choice of i implies that

$$t > \sum_{\ell=i+1}^{J} \binom{k}{\ell} = \binom{k}{i+1} + \sum_{\ell=i+2}^{J} \binom{k}{\ell} \ge \left[\binom{k-1}{i} + \binom{k-1}{i+1}\right] + \sum_{\ell=i+2}^{J} \binom{k-1}{\ell} + 1.$$

Since this is equal to $\sum_{\ell=i}^{j} \binom{k-1}{\ell} + 1$, the choice of i' implies that $i' \leq i$. Now let $\mathcal{F} = \bigcup_{\ell=i}^{j} \binom{[n]}{\ell}$. Every *k*-set of [n] has $\sum_{\ell=i}^{j} \binom{k}{\ell} \geq t$ members of \mathcal{F} ; every (k-1)-set of [n] has $\sum_{\ell=i}^{j} \binom{k-1}{\ell} \leq \sum_{\ell=i'}^{j} \binom{k-1}{\ell} \leq t-1$ members of \mathcal{F} . Consequently, $m(n, k, t) \leq |\mathcal{F}| \leq \binom{n}{\leq j}$. \Box

Proof of (4). First, the assumption $\binom{k}{\leq j-1} < \binom{k-1}{j}$ implies that j < k - j. Let \mathcal{F} be a (k, t)-system. Let $K_{k-1}^{(i)}$ denote the complete *i*-graph of order k - 1. Then $K_{k-1}^{(i)} \notin \mathcal{F}$ for all $i \in [j, k-1-j]$, otherwise we obtain a (k-1)-set which contains $\binom{k-1}{i} \ge \binom{k-1}{j} \ge t$ members of \mathcal{F} , a contradiction. Recall that the Ramsey number $R^{(i)}(s, t)$ is the smallest N such that every *i*-graph on N vertices contains a copy of either $K_s^{(i)}$ or $\overline{K_t^{(i)}}$. By Ramsey's theorem, $R^{(i)}(s, t)$ is finite. Define $m_{k-2j+1} = k$, and $m_{\ell} = R^{(k-j-\ell)}(k-1, m_{\ell+1})$ recursively for $\ell = k - 2j, k - 2j - 1, \dots, 2, 1$.

We claim that every m_1 -set of [n] contains at least one member of $\mathcal{F}_{\ge k-j}$. Indeed, consider an m_1 -set S_1 . Because $K_{k-1}^{(k-j-1)} \not\subset \mathcal{F}$, the definition of m_1 implies that there exists a m_2 -subset $S_2 \subseteq S_1$ with all of its (k - j - 1)-subsets absent from \mathcal{F} . Repeating this analysis, we find a sequence of subsets $S_3 \supseteq \cdots \supseteq S_{k-2j+1} = S$ of sizes $m_3 > \cdots > m_{k-2j+1} = k$, respectively. The *k*-set *S* thus contains no members of \mathcal{F} of size $k - j - 1, \ldots, j$. On the other hand, the *k*-set *S* must contain at least $t > {k - j - 1, \ldots, j$. By an easy averaging argument, we obtain $|\mathcal{F}| \ge {n \choose k-j} - {m \choose k-j}$. \Box

Proof of Theorem 3 (*Part 1*). Let $\mathcal{F} \subset {[n] \\ \geqslant r}$ be a minimal Turán- $_{\geqslant r}(n, k, t)$ -system. We are to show that $|\mathcal{F}| \ge \sum_{i=r}^{j-1} {n \choose i}$. Consider $\overline{\mathcal{F}_{< j}} = \bigcup_{i=r}^{j-1} {[n] \choose i} \setminus \mathcal{F}$. For every *k*-set *S* of [*n*],

$$\sum_{i=r}^{j-1} \binom{k}{i} = t \leq |\mathcal{F}(S)| = |\mathcal{F}_{
$$= \sum_{i=r}^{j-1} \binom{k}{i} - |\overline{\mathcal{F}_{$$$$

Therefore $|\overline{\mathcal{F}_{<j}}(S)| \leq |\mathcal{F}_{\geqslant j}(S)|$. Consequently (using $\binom{n-x}{k-x}$) is decreasing in x for $0 \leq x \leq k$), $|\overline{\mathcal{F}_{<j}}|\binom{n-j}{k-j} < \sum_{S \in \binom{[n]}{k}} |\overline{\mathcal{F}_{<j}}(S)| \leq \sum_{S \in \binom{[n]}{k}} |\mathcal{F}_{\geqslant j}(S)| \leq |\mathcal{F}_{\geqslant j}|\binom{n-j}{k-j}$. Thus $|\overline{\mathcal{F}_{<j}}| \leq |\mathcal{F}_{\geqslant j}|$, and therefore $|\mathcal{F}| = |\mathcal{F}_{<j}| + |\mathcal{F}_{\geqslant j}| \geq |\mathcal{F}_{<j}| + |\overline{\mathcal{F}_{<j}}| = \sum_{i=r}^{j-1} \binom{n}{i}$.

The main tool to prove the second part of Theorem 3 is the following well-known fact. For a family \mathcal{G} of *r*-graphs, the extremal function $ex(n, \mathcal{G})$ is the maximum number of edges in an *r*-graph on *n* vertices that contains no copy of any member of \mathcal{G} .

Theorem 5 (*Erdős-Simonovits* [2]). For every $\varepsilon > 0$ and every family of r-graphs \mathcal{G} , each of whose members has k vertices, there exists $\delta > 0$, such that every r-graph on n vertices with at least $\exp(n, \mathcal{G}) + \varepsilon\binom{n}{r}$ edges contains at least $\delta\binom{n}{k}$ copies of members of \mathcal{G} .

Proof of Theorem 3 (*Part 2*). It suffices to show that for every $\varepsilon > 0$, there exists $n_0 = n_0(\varepsilon, k, t) > 0$, such that for all $n \ge n_0$, $T_{\ge r}(n, k, t) \ge (1 - \varepsilon) \left(\sum_{i=r}^{j-1} \binom{n}{i} + T_j(n, k, t_0) \right)$. In fact, this follows from the following claims (taking $n_0 = \max\{n_1, n_2\}$):

(a) $T_{\geq r}(n, k, t) \geq T_{\geq j}(n, k, t_0),$ (b) $T_{\geq j}(n, k, t_0) > (1 - \varepsilon/2)T_j(n, k, t_0) \text{ for } n > n_1,$ (c) $T_j(n, k, t_0) \geq T_j(n, k, 1) \geq \binom{n}{j} / \binom{k}{j} > \frac{2(1-\varepsilon)}{\varepsilon} \sum_{i=r}^{j-1} \binom{n}{i}, \text{ for } n > n_2.$

Since (a) and (c) are easy to see, we only prove (b). Suppose that \mathcal{F} is a Turán- $\geq j(n, k, t_0)$ -system. Let \mathcal{G} be the family of all *j*-graphs on *k* vertices with more than $\binom{k}{j} - t_0$ edges. Let δ be the output of Theorem 5 for inputs $\varepsilon/[2\binom{k}{j}]$ and \mathcal{G} , and choose n_1 so that $\delta\binom{n}{k} > n^{k-1}$ for all $n > n_1$ (note that $n_1 = n_1(\varepsilon, k, t)$). We will show that $|\mathcal{F}_j| > (1 - \varepsilon/2)T_j(n, k, t_0)$

for $n > n_1$. Suppose, for contradiction, that $|\mathcal{F}_i| \leq (1 - \varepsilon/2)T_i(n, k, t_0)$. Since $ex(n, \mathcal{G}) =$ $\binom{n}{j} - T_j(n, k, t_0)$ and $T_j(n, k, t_0) \ge \binom{n}{j} / \binom{k}{j}$,

$$\begin{aligned} \overline{\mathcal{F}_j} &| \ge \binom{n}{j} - \left(1 - \frac{\varepsilon}{2}\right) T_j(n, k, t_0) \\ &= \operatorname{ex}(n, \mathcal{G}) + \frac{\varepsilon}{2} T_j(n, k, t_0) \ge \operatorname{ex}(n, \mathcal{G}) + \frac{\varepsilon}{2\binom{k}{j}} \binom{n}{j}. \end{aligned}$$

By Theorem 5 applied with input $\varepsilon/[2\binom{k}{j}]$, the *j*-graph with vertex set [*n*] and edge set $\overline{\mathcal{F}_j}$ contains at least $\delta_k^{(n)}$ copies of (not necessarily the same) members of \mathcal{G} . In other words, there are at least $\delta\binom{n}{k}$ k-sets of [n] that contain fewer than t_0 members of \mathcal{F}_i .

Now consider the family of k-sets of [n] which contains at least one member of \mathcal{F}_i for some i > j. Denote this by \mathcal{K}_i and let $\mathcal{K} = \bigcup_{j < i \leq k} \mathcal{K}_j$. Since $|\mathcal{K}_i| \leq |\mathcal{F}_i| {n-i \choose k-i}$ and $|\mathcal{F}| \leq \binom{n}{i},$

$$\begin{aligned} |\mathcal{K}| &= \sum_{j < i \leqslant k} |\mathcal{K}_i| \leqslant \sum_{j < i \leqslant k} |\mathcal{F}_i| \binom{n-i}{k-i} \\ &\leqslant \binom{n-j-1}{k-j-1} |\mathcal{F}| \leqslant \binom{n-j-1}{k-j-1} \binom{n}{j} < n^{k-1}. \end{aligned}$$

Since $\delta\binom{n}{k} > n^{k-1} > |\mathcal{K}|$ for $n > n_1$, at least one k-set S of [n] contains fewer than t_0 members of \mathcal{F}_j and no member of \mathcal{F}_i for i > j. Consequently S contains fewer than t_0 members of \mathcal{F} . This contradicts the assumption that \mathcal{F} is a Turán- $\geq i(n, k, t_0)$ -system.

Acknowledgments

The authors thank Gy. Turán for introducing them to the parameter m(n, k, t), and the referees for suggestions that improved the presentation.

References

- [1] W.G. Brown, P. Erdős, V.T. Sós, Some extremal problems on r-graphs. New directions in the theory of graphs, in: Proceedings of the Third Ann Arbor Conference University of Michigan, Ann Arbor, MI, 1971, Academic Press, New York, 1973, pp. 53-63.
- [2] P. Erdős, M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (2) (1983) 181–192.
- [3] Z. Füredi, Turán type problems, Surveys in Combinatorics, 1991 (Guildford, 1991), London Mathematical Society, Lecture Note Series, vol. 166, Cambridge University Press, Cambridge, 1991, pp. 253-300.
- [4] Z. Füredi, R.H. Sloan, K. Takata, Gy. Turán, On set systems with a threshold property, submitted for publication.
- [5] S. Jukna, Computing threshold functions by depth-3 threshold circuits with smaller thresholds of their gates, Inform. Process. Lett. 56 (1995) 147-150.
- [6] A. Sidorenko, What we know and what we do not know about Turán numbers, Graphs Combin. 11 (2) (1995) 179-199.
- [7] R.H. Sloan, K. Takata, Gy. Turán, On frequent sets of Boolean matrices, Ann. Math. Artif. Intell. 24 (1998) 193-209.

110