Non-uniform Turán-type problems

Dhruv Mubayi ${ }^{1}$, Yi Zhao ${ }^{2}$
Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA

Received 9 June 2004
Available online 12 January 2005

Abstract

Given positive integers n, k, t, with $2 \leqslant k \leqslant n$, and $t<2^{k}$, let $m(n, k, t)$ be the minimum size of a family \mathscr{F} of (nonempty distinct) subsets of [n] such that every k-subset of [n] contains at least t members of \mathscr{F}, and every $(k-1)$-subset of [n] contains at most $t-1$ members of \mathscr{F}. For fixed k and t, we determine the order of magnitude of $m(n, k, t)$. We also consider related Turán numbers $T_{\geqslant r}(n, k, t)$ and $T_{r}(n, k, t)$, where $T_{\geqslant r}(n, k, t)\left(T_{r}(n, k, t)\right)$ denotes the minimum size of a family $\mathscr{F} \subset\binom{[n]}{\geqslant r}\left(\mathscr{F} \subset\binom{[n]}{r}\right)$ such that every k-subset of $[n]$ contains at least t members of \mathscr{F}. We

 prove that $T_{\geqslant r}(n, k, t)=(1+o(1)) T_{r}(n, k, t)$ for fixed r, k, t with $t \leqslant\binom{ k}{r}$ and $n \rightarrow \infty$. © 2004 Elsevier Inc. All rights reserved.MSC: 05C65; 05D05

Keywords: Hypergraph Turán problem; Extremal set theory

1. Introduction

Given positive integers n, k, t, with $2 \leqslant k \leqslant n$ and $t<2^{k}$. We call a family $\mathcal{F} \subset 2^{[n]} \backslash \emptyset$ a (k, t)-system if every k-subset of $[n]$ contains at least t sets from \mathcal{F}, and every $(k-1)$ subset of [n] contains at most $t-1$ sets from \mathcal{F}. Analogously, given integers n, k, t, r, with $1 \leqslant r \leqslant k \leqslant n$ and $0 \leqslant t<2^{k}$, a Turán- $\geqslant r(n, k, t)$-system (Turán- $r(n, k, t)$-system) is

[^0]0097-3165/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcta.2004.11.010
a family $\mathcal{F} \subset\binom{[n]}{\underset{r}{ }}\left(\mathcal{F} \subset\binom{[n]}{r}\right)$ so that every k-subset of $[n]$ contains at least t members of \mathcal{F}. We denote by $m(n, k, t)$ the minimum size of a (k, t)-system, and by $T_{\geqslant r}(n, k, t)$ $\left(T_{r}(n, k, t)\right)$ the minimum size of a Turán- $\geqslant_{r}(n, k, t)$-system (Turán-r (n, k, t)-system).

Computer scientists introduced and studied $m(n, k, t)$ (see [4,5,7] for its history and applications). Sloan et al. [7] proves that $m(n, k, t)=\Theta\left(n^{k-1}\right)$ for $1<t<k$ and $m(n, 3,2)=$ $\binom{n-1}{2}+1$, and Füredi et al. [4] proves that for fixed $k, m(n, k, 2)=(1+o(1)) T_{k-1}(n, k, 2)$. $T_{r}(n, k, t)$ (especially $T_{r}(n, k, 1)$) is well known and sometimes called the generalized Turán number, though its nonuniform version $T_{\geqslant r}(n, k, t)$ appears not to have been studied before. Note that when $T_{r}(n, k, t)=\Omega\left(n^{r}\right)$ (for fixed $\left.t, r<k\right)$, the asymptotics of $T_{r}(n, k, t)$ are not known for any $r \geqslant 3$ and $t \geqslant 1$ (see [1] for an introduction to this problem, and [3,6] for surveys in the case $t=1$).

In this note, we first study $m(n, k, t)$ for all $1 \leqslant t<2^{k}$, determining its order of magnitude for fixed k, t.

Theorem 1. Let $2 \leqslant k \leqslant n, 2 \leqslant t<2^{k}$, and $\binom{k}{\leqslant j-1}<t \leqslant\binom{ k}{\leqslant j}$. Then there exists a constant c, depending only on k and t, such that

$$
\begin{align*}
& c\binom{n}{k-j} \leqslant m(n, k, t) \leqslant\binom{ n}{k-j} \text { for } t \leqslant\binom{ k-1}{j} \tag{*}\\
& \left.\frac{1}{\binom{k}{j}} \begin{array}{l}
n \\
j
\end{array}\right) \leqslant m(n, k, t) \leqslant\binom{ n}{\leqslant j} \text { for } t>\binom{k-1}{j} .
\end{align*}
$$

Remark. When $j=1,(*)$ yields $m(n, k, t)=\Theta\left(n^{k-1}\right)$ for $2 \leqslant t \leqslant k-1$, a result from [7].

We can obtain the exact value of $m(n, k, t)$ for some choices of t. For $t=1, k$, and $2^{k}-1$, it is trivial to see that $m(n, k, t)$ is equal to $\binom{n}{k}, n$, and $\binom{n}{\leqslant k}$, respectively. We claim that $m\left(n, k, 2^{k}-2\right)=\binom{n}{\leqslant k-1}$. To see this, we call a (k, t)-system \mathcal{H} minimal if $\sum_{S \in \mathcal{H}}|S| \leqslant \sum_{S \in \mathcal{H}^{\prime}}|S|$ for every (k, t)-system \mathcal{H}^{\prime}. If \mathcal{F} is a minimal (k, t)-system for $t=2^{k}-2 \geqslant 2^{k-1}$, and $A \in \mathcal{F}$, then $2^{A} \backslash \emptyset \subset \mathcal{F}$, since replacing A by $B \subset A$ for some $B \notin \mathcal{F}$ creates another (k, t)-system that contradicts the minimality of \mathcal{F}. Consequently $\mathcal{F}_{k}=\emptyset$, because $S \in \mathcal{F}_{k}$ now implies that $\mathcal{F}_{k} \backslash S$ is a (k, t)-system. Since $t=2^{k}-2$, we must have $\mathcal{F}=\binom{[n]}{\leqslant k-1}$.

Before proceeding our upcoming Theorem 3 which relates $T_{\geqslant r}(n, k, t)$ and $T_{r}(n, k, t)$, we make the following observation.

Observation 2. Let $1 \leqslant r \leqslant k$ and $0 \leqslant t<\sum_{i=r}^{k}\binom{k}{i}$. Let j be the unique integer satisfying $\sum_{i=r}^{j-1}\binom{k}{i} \leqslant t<\sum_{i=r}^{j}\binom{k}{i}$ and let $t_{0}=t-\sum_{i=r}^{j-1}\binom{k}{i} \geqslant 0$. If \mathcal{F} is a Turán${ }_{j}\left(n, k, t_{0}\right)$-system, then $\mathcal{F}^{\prime}=\bigcup_{i=r}^{j-1}\binom{[n]}{i} \cup \mathcal{F}$ is a Turán- $\geqslant r(n, k, t)$-system. This implies that $T_{\geqslant r}(n, k, t) \leqslant \sum_{i=r}^{j-1}\binom{n}{i}+T_{j}\left(n, k, t_{0}\right)$.

Theorem 3. Let r, k, t, j, t_{0} be fixed as in Observation 2.

1. If $t_{0}=0$, then $T_{\geqslant r}(n, k, t)=\sum_{i=r}^{j-1}\binom{n}{i}$.
2. If $t_{0} \geqslant 1$, then $T_{\geqslant r}(n, k, t)=(1+o(1))\left(\sum_{i=r}^{j-1}\binom{n}{i}+T_{j}\left(n, k, t_{0}\right)\right)$.

Conjecture 4. Given r, k, t, j, t_{0} as in Observation 2, $T_{\geqslant r}(n, k, t)=\sum_{i=r}^{j-1}\binom{n}{i}+T_{j}$ (n, k, t_{0}).

Most of our notations are standard: Given a set X and an integer a, let $\binom{X}{a}=\{S \subset X$: $|S|=a\},\binom{X}{\leqslant a}=\{S \subset X: 1 \leqslant|S| \leqslant a\},\binom{X}{\geqslant a}=\{S \subset X:|S| \geqslant a\}$, and $2^{X}=\{S:$ $S \subset X\}$. For $\mathcal{F} \subset 2^{[n]}$, let $\mathcal{F}_{t}=\mathcal{F} \cap\binom{[n]}{t}$ and $\overline{\mathcal{F}_{t}}=\binom{[n]}{t} \backslash \mathcal{F}_{t}$. Let $\mathcal{F}_{\leqslant t}=\cup_{i \leqslant t} \mathcal{F}_{i}$ and $\mathcal{F}_{\geqslant t}=\cup_{i \geqslant t} \mathcal{F}_{i}$. Write $\mathcal{F}(X)$ for $\mathcal{F} \cap 2^{X}$. An r-graph on X is a (hyper)graph $\mathcal{F} \subset\binom{X}{r}$.

2. Proofs

Proof of Theorem 1. The theorem follows easily from the following four statements.
(1) If $\binom{k-1}{j-1}<t \leqslant\binom{ k}{j}$, then $m(n, k, t) \leqslant\binom{ n}{k-j}$.
(2) If $\binom{k-1}{j}<t \leqslant\binom{ k}{\leqslant j}$, then $m(n, k, t) \leqslant\binom{ n}{\leqslant j}$.
(3) If $t>\binom{k}{\leqslant j-1}$, then $m(n, k, t) \geqslant\binom{ n}{j} /\binom{k}{j}$.
(4) If $\binom{k}{\leqslant-1}<t \leqslant\binom{ k-1}{j}$, then $m(n, k, t) \geqslant c\binom{n}{k-j}$, where c depends only on k and j.

The proofs of (1) and (3) are straightforward, so we only prove (2) and (4).
Proof of (2). Consider the smallest $i^{\prime} \in[1, j]$ and the largest $i \in[1, j]$ such that $1+$ $\sum_{\ell=i^{\prime}}^{j}\binom{k-1}{\ell} \leqslant t \leqslant \sum_{\ell=i}^{j}\binom{k}{\ell}$. Such i, i^{\prime} exist since $\binom{k-1}{j}<t \leqslant\binom{ k}{\leqslant j}$. We first show that $i^{\prime} \leqslant i$. This is trivial for $i=j$, so assume that $i<j$. The choice of i implies that

$$
\begin{aligned}
t>\sum_{\ell=i+1}^{j}\binom{k}{\ell}= & \binom{k}{i+1}+\sum_{\ell=i+2}^{j}\binom{k}{\ell} \geqslant\left[\binom{k-1}{i}+\binom{k-1}{i+1}\right] \\
& +\sum_{\ell=i+2}^{j}\binom{k-1}{\ell}+1 .
\end{aligned}
$$

Since this is equal to $\sum_{\ell=i}^{j}\binom{k-1}{\ell}+1$, the choice of i^{\prime} implies that $i^{\prime} \leqslant i$. Now let $\mathcal{F}=$ $\cup_{\ell=i}^{j}\binom{[n]}{\ell}$. Every k-set of [n] has $\sum_{\ell=i}^{j}\binom{k}{\ell} \geqslant t$ members of \mathcal{F}; every $(k-1)$-set of [n]

Proof of (4). First, the assumption $\binom{k}{\leqslant j-1}<\binom{k-1}{j}$ implies that $j<k-j$. Let \mathcal{F} be a (k, t)-system. Let $K_{k-1}^{(i)}$ denote the complete i-graph of order $k-1$. Then $K_{k-1}^{(i)} \not \subset \mathcal{F}$ for all $i \in[j, k-1-j]$, otherwise we obtain a $(k-1)$-set which contains $\binom{k-1}{i} \geqslant\binom{ k-1}{j} \geqslant t$ members of \mathcal{F}, a contradiction. Recall that the Ramsey number $R^{(i)}(s, t)$ is the smallest N such that every i-graph on N vertices contains a copy of either $K_{s}^{(i)}$ or $\overline{K_{t}^{(i)}}$. By Ramsey's theorem, $R^{(i)}(s, t)$ is finite. Define $m_{k-2 j+1}=k$, and $m_{\ell}=R^{(k-j-\ell)}\left(k-1, m_{\ell+1}\right)$ recursively for $\ell=k-2 j, k-2 j-1, \ldots, 2,1$.

We claim that every m_{1}-set of [n] contains at least one member of $\mathcal{F}_{\geqslant k-j}$. Indeed, consider an m_{1}-set S_{1}. Because $K_{k-1}^{(k-j-1)} \not \subset \mathcal{F}$, the definition of m_{1} implies that there exists a m_{2}-subset $S_{2} \subseteq S_{1}$ with all of its $(k-j-1)$-subsets absent from \mathcal{F}. Repeating this analysis, we find a sequence of subsets $S_{3} \supseteq \cdots \supseteq S_{k-2 j+1}=S$ of sizes $m_{3}>$ $\ldots>m_{k-2 j+1}=k$, respectively. The k-set S thus contains no members of \mathcal{F} of size $k-j-1, \ldots, j$. On the other hand, the k-set S must contain at least $t>\binom{k}{k}$ members of \mathcal{F}, thus at least one member of $\mathcal{F} \geqslant j$. Hence S contains a member of $\mathcal{F} \geqslant k-j$. By an easy averaging argument, we obtain $|\mathcal{F}| \geqslant\binom{ n}{k-j} /\binom{m_{1}}{k-j}=c\binom{n}{k-j}$.

Proof of Theorem 3 (Part 1). Let $\mathcal{F} \subset\binom{[n]}{\geqslant r}$ be a minimal Turán- $\geqslant r(n, k, t)$-system. We are to show that $|\mathcal{F}| \geqslant \sum_{i=r}^{j-1}\binom{n}{i}$. Consider $\overline{\mathcal{F}_{<j}}=\bigcup_{i=r}^{j-1}\binom{[n]}{i} \backslash \mathcal{F}$. For every k-set S of [n],

$$
\begin{aligned}
\sum_{i=r}^{j-1}\binom{k}{i} & =t \leqslant|\mathcal{F}(S)|=\left|\mathcal{F}_{<j}(S)\right|+\left|\mathcal{F}_{\geqslant j}(S)\right| \\
& =\sum_{i=r}^{j-1}\binom{k}{i}-\left|\overline{\mathcal{F}_{<j}}(S)\right|+\left|\mathcal{F}_{\geqslant j}(S)\right| .
\end{aligned}
$$

Therefore $\left|\overline{\mathcal{F}_{<j}}(S)\right| \leqslant\left|\mathcal{F}_{\geqslant j}(S)\right|$. Consequently (using $\binom{n-x}{k-x}$ is decreasing in x for $0 \leqslant x \leqslant k$), $\left|\overline{\mathcal{F}_{<j}}\right|\binom{n-j}{k-j}<\sum_{S \in\binom{[n]}{k}}\left|\overline{\mathcal{F}_{<j}}(S)\right| \leqslant \sum_{S \in\binom{[n]}{k}}\left|\mathcal{F}_{\geqslant j}(S)\right| \leqslant\left|\mathcal{F}_{\geqslant j}\right|\binom{n-j}{k-j}$. Thus $\left|\overline{\mathcal{F}_{<j}}\right|$ $\leqslant\left|\mathcal{F}_{\geqslant j}\right|$, and therefore $|\mathcal{F}|=\left|\mathcal{F}_{<j}\right|+\left|\mathcal{F}_{\geqslant j}\right| \geqslant\left|\mathcal{F}_{<j}\right|+\left|\overline{\mathcal{F}_{<j}}\right|=\sum_{i=r}^{j-1}\binom{n}{i}$.

The main tool to prove the second part of Theorem 3 is the following well-known fact. For a family \mathcal{G} of r-graphs, the extremal function $\operatorname{ex}(n, \mathcal{G})$ is the maximum number of edges in an r-graph on n vertices that contains no copy of any member of \mathcal{G}.

Theorem 5 (Erdös-Simonovits [2]). For every $\varepsilon>0$ and every family of r-graphs \mathcal{G}, each of whose members has k vertices, there exists $\delta>0$, such that every r-graph on n vertices with at least $\operatorname{ex}(n, \mathcal{G})+\varepsilon\binom{n}{r}$ edges contains at least $\delta\binom{n}{k}$ copies of members of \mathcal{G}.

Proof of Theorem 3 (Part 2). It suffices to show that for every $\varepsilon>0$, there exists $n_{0}=$ $n_{0}(\varepsilon, k, t)>0$, such that for all $n \geqslant n_{0}, T_{\geqslant r}(n, k, t) \geqslant(1-\varepsilon)\left(\sum_{i=r}^{j-1}\binom{n}{i}+T_{j}\left(n, k, t_{0}\right)\right)$. In fact, this follows from the following claims (taking $n_{0}=\max \left\{n_{1}, n_{2}\right\}$):
(a) $T_{\geqslant r}(n, k, t) \geqslant T_{\geqslant j}\left(n, k, t_{0}\right)$,
(b) $T_{\geqslant j}\left(n, k, t_{0}\right)>(1-\varepsilon / 2) T_{j}\left(n, k, t_{0}\right)$ for $n>n_{1}$,
(c) $T_{j}\left(n, k, t_{0}\right) \geqslant T_{j}(n, k, 1) \geqslant\binom{ n}{j} /\binom{k}{j}>\frac{2(1-\varepsilon)}{\varepsilon} \sum_{i=r}^{j-1}\binom{n}{i}$, for $n>n_{2}$.

Since (a) and (c) are easy to see, we only prove (b). Suppose that \mathcal{F} is a Turán- $\geqslant_{j}\left(n, k, t_{0}\right)$ system. Let \mathcal{G} be the family of all j-graphs on k vertices with more than $\binom{k}{j}-t_{0}$ edges. Let δ be the output of Theorem 5 for inputs $\varepsilon /\left[2\binom{k}{j}\right]$ and \mathcal{G}, and choose n_{1} so that $\delta\binom{n}{k}>n^{k-1}$ for all $n>n_{1}$ (note that $n_{1}=n_{1}(\varepsilon, k, t)$. We will show that $\left|\mathcal{F}_{j}\right|>(1-\varepsilon / 2) T_{j}\left(n, k, t_{0}\right)$
for $n>n_{1}$. Suppose, for contradiction, that $\left|\mathcal{F}_{j}\right| \leqslant(1-\varepsilon / 2) T_{j}\left(n, k, t_{0}\right)$. Since ex $(n, \mathcal{G})=$ $\binom{n}{j}-T_{j}\left(n, k, t_{0}\right)$ and $T_{j}\left(n, k, t_{0}\right) \geqslant\binom{ n}{j} /\binom{k}{j}$,

$$
\begin{aligned}
\left|\overline{\mathcal{F}_{j}}\right| & \geqslant\binom{ n}{j}-\left(1-\frac{\varepsilon}{2}\right) T_{j}\left(n, k, t_{0}\right) \\
& =\operatorname{ex}(n, \mathcal{G})+\frac{\varepsilon}{2} T_{j}\left(n, k, t_{0}\right) \geqslant \operatorname{ex}(n, \mathcal{G})+\frac{\varepsilon}{2\binom{k}{j}}\binom{n}{j} .
\end{aligned}
$$

By Theorem 5 applied with input $\varepsilon /\left[2\binom{k}{j}\right]$, the j-graph with vertex set $[n]$ and edge set $\overline{\mathcal{F}_{j}}$ contains at least $\delta\binom{n}{k}$ copies of (not necessarily the same) members of \mathcal{G}. In other words, there are at least $\delta\binom{n}{k} k$-sets of [n] that contain fewer than t_{0} members of \mathcal{F}_{j}.

Now consider the family of k-sets of [n] which contains at least one member of \mathcal{F}_{i} for some $i>j$. Denote this by \mathcal{K}_{i} and let $\mathcal{K}=\cup_{j<i \leqslant k} \mathcal{K}_{j}$. Since $\left.\left|\mathcal{K}_{i}\right| \leqslant\left|\mathcal{F}_{i}\right| \begin{array}{c}n-i \\ k-i\end{array}\right)$ and $|\mathcal{F}| \leqslant\binom{ n}{j}$,

$$
\begin{aligned}
|\mathcal{K}| & =\sum_{j<i \leqslant k}\left|\mathcal{K}_{i}\right| \leqslant \sum_{j<i \leqslant k}\left|\mathcal{F}_{i}\right|\binom{n-i}{k-i} \\
& \leqslant\binom{ n-j-1}{k-j-1}|\mathcal{F}| \leqslant\binom{ n-j-1}{k-j-1}\binom{n}{j}<n^{k-1} .
\end{aligned}
$$

Since $\delta\binom{n}{k}>n^{k-1}>|\mathcal{K}|$ for $n>n_{1}$, at least one k-set S of $[n]$ contains fewer than t_{0} members of \mathcal{F}_{j} and no member of \mathcal{F}_{i} for $i>j$. Consequently S contains fewer than t_{0} members of \mathcal{F}. This contradicts the assumption that \mathcal{F} is a Turán- $\geqslant_{j}\left(n, k, t_{0}\right)$-system.

Acknowledgments

The authors thank Gy. Turán for introducing them to the parameter $m(n, k, t)$, and the referees for suggestions that improved the presentation.

References

[1] W.G. Brown, P. Erdős, V.T. Sós, Some extremal problems on r-graphs. New directions in the theory of graphs, in: Proceedings of the Third Ann Arbor Conference University of Michigan, Ann Arbor, MI, 1971, Academic Press, New York, 1973, pp. 53-63.
[2] P. Erdős, M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (2) (1983) 181-192.
[3] Z. Füredi, Turán type problems, Surveys in Combinatorics, 1991 (Guildford, 1991), London Mathematical Society, Lecture Note Series, vol. 166, Cambridge University Press, Cambridge, 1991, pp. 253-300.
[4] Z. Füredi, R.H. Sloan, K. Takata, Gy. Turán, On set systems with a threshold property, submitted for publication.
[5] S. Jukna, Computing threshold functions by depth-3 threshold circuits with smaller thresholds of their gates, Inform. Process. Lett. 56 (1995) 147-150.
[6] A. Sidorenko, What we know and what we do not know about Turán numbers, Graphs Combin. 11 (2) (1995) 179-199.
[7] R.H. Sloan, K. Takata, Gy. Turán, On frequent sets of Boolean matrices, Ann. Math. Artif. Intell. 24 (1998) 193-209.

[^0]: E-mail address: mubayi@math.uic.edu (D. Mubayi).
 ${ }^{1}$ Research supported in part by NSF Grants DMS-9970325 and DMS-0400812.
 ${ }^{2}$ Research supported in part by NSF Grant DMS-9983703, a VIGRE Postdoctoral Fellowship at University of Illinois at Chicago.

