
On a two-sided Turán problem

Dhruv Mubayi∗ Yi Zhao†

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago

851 S. Morgan Street, Chicago, IL 60607
mubayi@math.uic.edu, zhao@math.uic.edu

Submitted: Aug 21, 2003; Accepted: Nov 3, 2003; Published: Nov 10, 2003
MR Subject Classifications: 05D05, 05C35

Abstract

Given positive integers n, k, t, with 2 ≤ k ≤ n, and t < 2k, let m(n, k, t) be the
minimum size of a family F of nonempty subsets of [n] such that every k-set in [n]
contains at least t sets from F , and every (k − 1)-set in [n] contains at most t − 1
sets from F . Sloan et al. determined m(n, 3, 2) and Füredi et al. studied m(n, 4, t)
for t = 2, 3. We consider m(n, 3, t) and m(n, 4, t) for all the remaining values of t
and obtain their exact values except for k = 4 and t = 6, 7, 11, 12. For example, we
prove that m(n, 4, 5) =

(
n
2

)
−17 for n ≥ 160. The values of m(n, 4, t) for t = 7, 11, 12

are determined in terms of well-known (and open) Turán problems for graphs and
hypergraphs. We also obtain bounds of m(n, 4, 6) that differ by absolute constants.

1 Introduction

We consider an extremal problem for set systems. Given integers n, k, t, with 2 ≤ k ≤ n,
and t < 2k, a family F ⊂ 2[n] \ ∅ is a (k, t)-system of [n] if every k-set in [n] contains
at least t sets from F , and every (k − 1)-set in [n] contains at most t − 1 sets from F .
Let m(n, k, t) denote the minimum size of a (k, t)-system of [n]. This threshold function
first arose in problems on computer science [10, 11] (although the notation m(n, k, t)
was not used until [6]). It was shown in [11] that m(n, k, t) = Θ(nk−1) for 1 < t < k
and m(n, 3, 2) =

(
n−1

2

)
+ 1. In [6], m(n, 4, 3) was determined exactly for large n and it

was shown that for fixed k, m(n, k, 2) = (1 + o(1))Tk−1(n, k, 2), where Tr(n, k, t) is the
generalized Turán number. For fixed k and t < 2k, the order of magnitude of m(n, k, t)
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was determined in [9]. A special case of this result is the following proposition, where(
a
≤b

)
=

∑b
i=1

(
a
i

)
.

Proposition 1. [9] m(n, k, 1) =
(

n
k

)
, m(n, k, k) = n, m(n, k, 2k − 2) =

(
n

≤k−1

)
and

m(n, k, 2k − 1) =
(

n
≤k

)
.

In this paper we study m(n, k, t) for k = 3, 4. The case k = 3 is not very difficult:
Proposition 1 determines m(n, 3, t) for t ∈ {1, 3, 6, 7} and [11] shows that m(n, 3, 2) =(

n−1
2

)
+ 1. The remaining cases t = 4 and t = 5 are covered below.

Proposition 2.

m(n, 3, t) =

{
n +

(
n
2

)
− bn2/4c t = 4,

n +
(

n
2

)
− bn/2c t = 5.

The main part of this paper is devoted to m(n, 4, t), a problem which is substantially
more difficult than the case k = 3. As mentioned above, both m(n, 4, 2) and m(n, 4, 3)
were studied in [6]. It was shown in [11] how these two functions apply to frequent sets of
Boolean matrices, a concept used in knowledge discovery and data mining. Perhaps the
determination of m(n, 4, t) for other t will have similar applications.

The cases t = 1, 4, 14, 15 are answered by Proposition 1 immediately. In this paper we
obtain the exact values of m(n, 4, t) for t = 5, 8, 9, 10, 13. Our bounds for m(n, 4, 6) differ
only by an absolute constant. For t = 7, 11, 12, we determine m(n, 4, t) exactly in terms
of well-known (and open) Turán problems in extremal graph and hypergraph theory.
Perhaps this connection provides additional motivation for investigating m(n, k, t) (the
first connection between m(n, k, t) and Turán numbers was shown in [6] via m(n, k, 2) =
(1 + o(1))Tk−1(n, k, 2)).

For a family of r-uniform hypergraphs H, let ex(n,H) be the maximum number of edges
in an n vertex r-uniform hypergraph G containing no member of H as a subhypergraph.
The (2-uniform) cycle of length l is written Cl. The complete 3-uniform hypergraph on

four points is K
(3)
4 , and the 3-uniform hypergraph on four points with three edges is

H(4, 3). An (n, 3, 2)-packing is a 3-uniform hypergraph on n vertices such that every pair
of vertices is contained in at most one edge. The packing number P (n, 3, 2) is the size
of a maximal (n, 3, 2)-packing. Note that the maximal packing is a Steiner system when
n ≡ 1 or 3 (mod 6).

Theorem 3 (Main Theorem).

m(n, 4, 5) =

(
n

2

)
− 17,

when n ≥ 160 and (
n

2

)
− 190 < m(n, 4, 6) ≤

(
n

2

)
− 5,
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when n ≥ 8. Furthermore,

m(n, 4, 7) = n +
(

n
2

)
− ex(n, {C3, C4}),

m(n, 4, 8) = n +
(

n
2

)
− 2n/3,

m(n, 4, 9) = n +
(

n
2

)
− 1,

m(n, 4, 10) = n +
(

n
2

)
,

m(n, 4, 11) = n +
(

n
2

)
+

(
n
3

)
− ex(n, K

(3)
4 ),

m(n, 4, 12) = n +
(

n
2

)
+

(
n
3

)
− ex(n, H(4, 3)),

m(n, 4, 13) = n +
(

n
2

)
+

(
n
3

)
− P (n, 3, 2).

It is worth recalling the known results for the three Turán numbers and the packing
number P (n, 3, 2) in Theorem 3 above.

• It is known that ( 1
2
√

2
+o(1))n3/2 ≤ ex(n, {C3, C4}) ≤ (1

2
+o(1))n3/2 (Erdős-Rényi [3],

Kővari-Sós-Turán [7]). Erdős and Simonovits [4] conjectured that ex(n, {C3, C4}) =
( 1

2
√

2
+ o(1))n3/2.

• It is known that (5/9)
(
n
3

)
≤ ex(n, K

(3)
4 ) ≤ (0.592 + o(1))

(
n
3

)
(Turán [14], Chung-Lu

[2]). It was conjectured [14] that the lower bound is correct (Erdős offered $1000
for a proof).

• It is known (2/7+o(1))
(
n
3

)
≤ ex(n, H(4, 3)) ≤ (1/3−10−6 +o(1))

(
n
3

)
(Frankl-Füredi

[5], Mubayi [8]). It was conjectured [8] that ex(n, H(4, 3)) = (2/7 + o(1))
(

n
3

)
.

• Spencer [12] determine P (n, 3, 2) exactly:

P (n, 3, 2) =

{
bn

3
bn−1

2
cc − 1 if n ≡ 5 (mod 6),

bn
3
bn−1

2
cc otherwise.

This paper is organized as follows. In Section 2 we describe the main idea in the proofs
and prove Proposition 2. The Main Theorem (Theorem 3) is proved in Section 3.

Most of our notations are standard: [n] = {1, 2, . . . , n}. For a set system F , let Ft denote
the family of t-sets in F , let F≤t = ∪i≤tFi and F≥t = ∪i≥tFi. If a ∈ F and b 6∈ F , we
simply write F − a for F \ {a} and F + b for F ∪ {b}. Given a set X and an integer
a, let 2X = {S : S ⊆ X},

(
X
a

)
= {S ⊂ X : |S| = a},

(
X
≤a

)
= {S ⊂ X : 1 ≤ |S| ≤ a}

and
(

X
≥a

)
= {S ⊂ X : |S| ≥ a}. We write F(X) for F ∩ 2X . An r-graph on X is a

(hyper)graph whose edges are r-subsets of X. All sets or subsets considered in this paper
are nonempty unless specified differently.

2 Ideas in the proofs and m(n, 3, t)

In this section we make some basic observations on m(n, k, t) and prove Proposition 2.
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Recall that a (k, t)-system F ⊆ 2[n] \ ∅ satisfies the following two conditions:

Property D (DENSE): Every k-set in [n] contains at least t sets from F ,

Property S (SPARSE): Every (k − 1)-set in [n] contains at most t − 1 sets from F .

The main idea in our proofs is to work with optimal (k, t)-systems which are defined as
follows.

Definition 4. Suppose that F is a (k, t)-system of [n]. We say that F is optimal if |F| =
m(n, k, t) and

∑
S∈F |S| is minimal among all (k, t)-system of [n] with size m(n, k, t).

The advantage of considering optimal (k, t)-systems F is that it allows us to assume
certain structure on F : if F does not have such a structure, we always modify F to
F ′ such that F ′ is a (k, t)-system with

∑
S∈F ′ |S| <

∑
S∈F |S|, a contradiction to the

optimality of F . A typical modification of F is replacing a set in F by one of its subsets.
Because the new system still satisfies Property D, we only need to check Property S in
this case.

For example, if F is an optimal (k, t)-system for t ≥ 2k−1, then we may assume that

A ∈ F ⇒
(
2A \ ∅

)
⊂ F . (?)

Indeed, if A ∈ F has a nonempty subset B 6∈ F , then F ′ = F−A+B is also a (k, t)-system,
because Property S holds trivially (any (k − 1)-set of [n] has at most 2k−1 − 1 ≤ t − 1
nonempty subsets). Since

∑
S∈F ′ |S| <

∑
S∈F |S|, this contradicts the optimality of F .

Now we consider m(n, 3, t) for 3 ≤ t ≤ 7. Applying Proposition 1 directly, we have
m(n, 3, 3) = n, m(n, 3, 6) =

(
n
≤2

)
and m(n, 3, 7) =

(
n
≤3

)
.

Proof of Proposition 2. We determine m(n, 3, t) exactly for t = 4, 5. Recall that
F(S) = F ∩ 2S for a set system F and a set S.

Let F be an optimal (3, t)-system with 4 ≤ t ≤ 5. Since t ≥ 4 ≥ 22, we may assume that
(?) holds in F . First, we claim that

(
[n]
1

)
⊂ F . Suppose instead, that there exists some

a ∈ [n] such that {a} 6∈ F . Pick a 3-set T = {a, b, c}. Since {a} 6∈ F , by (?), we know
that F does not contain {a, b}, {a, c} and T as well. Thus |F(T )| ≤ 3, a contradiction
to Property D. Second, we claim that F ⊂

(
[n]
≤2

)
. Suppose instead, that there exists a

set T ∈ F3. Then |F(T )| = 7 by (?) and consequently F ′ = F − T is a (3, t)-system of
cardinality |F| − 1, contradicting the optimality of F .

When t = 4, F2 = F \
(
[n]
1

)
is the edge set of a graph on n vertices in which every set

of 3 vertices has at least one edge, i.e., F2, the complement of F2 is a K3-free graph.
Thus |F2| ≥

(
n
2

)
− ex(n, K3) =

(
n
2

)
− bn2/4c. Consequently m(n, 3, 4) = n + |F2| ≥

n +
(

n
2

)
− bn2/4c. On the other hand,

(
[n]
1

)
∪ E(G) is a (3, 4)-system, where G is a

complete bipartite graph with two color classes of size bn/2c and dn/2e. Consequently
m(n, 3, 4) = n +

(
n
2

)
− bn2/4c.

When t = 5, F2 = F \
(
[n]
1

)
is the edge set of a graph on n vertices in which every 3

vertices have at least two edges. Therefore F2 is a matching M and |F2| =
(

n
2

)
− |M | ≥
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(
n
2

)
− bn/2c. Consequently m(n, 3, 5) ≥ n +

(
n
2

)
− bn/2c and equality holds for the (3, 5)-

system F =
(
[n]
1

)
∪ E(G), where G is a complete graph except for a matching of size

bn/2c.

3 The values of m(n, 4, t)

Applying Proposition 1, we obtain that m(n, 4, 1) =
(

n
4

)
, m(n, 4, 4) = n, m(n, 4, 14) =(

n
≤3

)
and m(n, 4, 15) =

(
n
≤4

)
. In this section we prove Theorem 3, i.e., determine m(n, 4, t)

for 5 ≤ t ≤ 13. We consider the cases 7 ≤ t ≤ 13 in Section 3.1. The more difficult cases
t = 5, 6 are studied in Section 3.2 and 3.3, respectively.

3.1 The cases 7 ≤ t ≤ 13

Our proof is facilitated by the following four lemmas, whose proofs are postponed to the
end of this section.

In Lemmas 5 - 8, F is an optimal (4, t)-system.

Lemma 5. If 2 ≤ t ≤ 14, then F4 = ∅.

Lemma 6. If 7 ≤ t ≤ 10, then F3 = ∅.

Lemma 7. If 7 ≤ t ≤ 14, then
(
[n]
1

)
⊂ F .

Lemma 8. If 11 ≤ t ≤ 14, then
(
[n]
2

)
⊂ F .

Proof of Theorem 3 for 7 ≤ t ≤ 13:

By Lemmas 5, 6 and 7, we conclude that

(
[n]

1

)
⊂ F ⊂

(
[n]

≤ 2

)
for 7 ≤ t ≤ 10.

Clearly, when t = 10, F =
(

[n]
≤2

)
and consequently m(n, 4, 10) =

(
n
≤2

)
.

When t = 9, F2 = F\
(
[n]
1

)
is the edge set of a graph on [n] in which every 4-set has at least

5 edges. Then there is at most one edge absent from F2, or |F2| ≥
(

n
2

)
− 1. Consequently

m(n, 4, 9) ≥ n +
(

n
2

)
− 1 and equality holds when F =

(
[n]
≤2

)
\ e for some e ∈

(
[n]
2

)
.

When t = 8, F2 = F \
(
[n]
1

)
is the edge set of a graph on [n] in which every 4-set has at

least 4 edges. Therefore, F2 contains no K3, S3 (a star with 3 leaves), or P3 (a path of
length 3). Thus all connected components of F2 have size at most 3 and each component
is either an edge or P2. So |F2| ≤ b2n/3c and |F| ≥ n +

(
n
2

)
− b2n/3c. Consequently

m(n, 4, 8) = n+
(

n
2

)
−b2n/3c and the optimal system is

(
[n]
≤2

)
\E(G), where G is the union

of disjoint copies of P2 and P1 covering [n] with maximum copies of P2.
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When t = 7, F2 = F \
(
[n]
1

)
is the edge set of a graph on [n] in which every 4-set has

at least 3 edges. Let G be a graph on [n] with E(G) = F2. Then G contains no copies
of C4 or C+

3 (C3 plus an edge). If C3 is also absent in G, then e(G) ≤ ex(n, {C3, C4}).
Otherwise, assume that G contains t(≥ 1) copies of C3 on a vertex-set T . Because G is
C+

3 -free, the copies of C3 must be vertex-disjoint and

e(G) = 3t + e(G \ T ) ≤ 3t + ex(n − 3t, {C3, C4}) ≤ ex(n, {C3, C4}),

where the last inequality is an easy exercise. Consequently m(n, 4, 7) ≥ n +
(

n
2

)
−

ex(n, {C3, C4}) and equality holds when F =
(

[n]
≤2

)
\E(G), where G is an extremal graph

without C3 or C4.

By Lemma 5, 7 and 8, we conclude that

(
[n]

≤ 2

)
⊂ F ⊂

(
[n]

≤ 3

)
for 11 ≤ t ≤ 13.

When t = 11, F3 = F \
(

[n]
≤2

)
is the edge set of a 3-graph in which every 4-set has at

least one hyper-edge. In other words, the 3-graph ([n],F3) contains no K
(3)
4 and therefore

|F3| ≤ ex(n, K
(3)
4 ). Consequently m(n, 4, 11) ≥

(
n
≤3

)
− ex(n, K

(3)
4 ) and equality holds

when F =
(

[n]
≤3

)
\ H, where H is the edge set of an extremal 3-graph without K

(3)
4 .

By a similar argument, we obtain that m(n, 4, 12) ≥
(

n
≤3

)
− ex(n, H(4, 3)) and equality

holds when F =
(

[n]
≤3

)
\H, where H is the edge set of an extremal 3-graph without H(4, 3).

Finally, when t = 13, F3 is an (n, 3, 2)-packing since every 4-set of [n] contains at most
one hyper-edge of F3. Since |F3| ≤ P (n, 3, 2), we have m(n, 4, 13) ≥

(
n
≤3

)
−P (n, 3, 2) and

equality holds when F3 is a maximal (n, 3, 2)-packing.

Before verifying Lemma 5, we start with a technical lemma, which is very useful in the
cases 5 ≤ t ≤ 7.

Lemma 9. Suppose that t ∈ {5, 6, 7} and F is an optimal (4, t)-system. Fix a set P ∈(
[n]
≤2

)
\ F and let

T = {T ∈
(

[n]

3

)
: T ⊃ P, |F(T )| = t − 1}. (1)

If T ⊂ F , then T 6∈ F for every 3-set T ⊃ P .

Proof. Suppose instead, that there exists a 3-set T0 ⊃ P and T0 ∈ F . If T = ∅, then let
F ′ = F − T0 + P . It is clear that F ′ satisfies Property D. F ′ also satisfies Property S
because |F ′(Y )| = |F(Y )| + 1 ≤ t − 2 + 1 = t − 1 for every 3-set Y ⊃ P . Therefore F ′ is
a (4, t)-system, a contradiction to the optimality of F .

Now assume that T 6= ∅. We claim that F ′ = F −T + P is a (4, t)-system, contradicting
the optimality of F . To check Property D, we only need to consider those 4-sets S which
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contain two members T1, T2 of T (because |F ′(Q)| = |F(Q)| for every 4-set Q that contains
at most one member of T ). Since |F(S)| ≥ |F(T1)| + |F(T2)| − |F(P )| ≥ 2(t − 1) − 2 =
2t − 4 ≥ t + 1 (using the assumption that t ≥ 5), we have |F ′(S)| ≥ t + 1 − 2 + 1 = t.
On the other hand, F ′ also satisfies Property S since for every 3-set Y ⊃ P , |F ′(Y )| =
|F(Y )| = t − 1 if Y ∈ T (⊂ F), otherwise |F ′(Y )| = |F(Y )| + 1 ≤ t − 2 + 1 = t − 1.

Proof of Lemma 5. We are to show that F4 = ∅ for 2 ≤ t ≤ 14.

When 8 ≤ t ≤ 14, (?) holds in F (since t ≥ 23). We may thus assume that F contains no
4-set, otherwise removing these 4-sets results in a smaller (4, t)-system, a contradiction
to the optimality of of F .

Let 2 ≤ t ≤ 7. Suppose to the contrary, that there exists a set S ∈ F4. We may assume
that |F(S)| = t, otherwise S could be removed from F . Let T =

(
S
3

)
\ F .

Case 1. T 6= ∅.
Suppose that T0 ∈ T has the minimal value of |F(T )| among all T ∈ T . We claim that
|F(T0)| ≤ t − 2. Suppose instead, that |F(T0)| ≥ t − 1. If |T | < 4, then there exists
T1 ∈

(
S
3

)
∩ F . Because T1, S ∈ F , we have |F(S)| ≥ |F(T0)| + 2 ≥ t − 1 + 2 > t, a

contradiction to the assumption that |F(S)| = t. If |T | = 4, then for every T ∈
(

S
3

)
, we

have |F(T )| ≥ t − 1 and T 6∈ F . Since | ∪T∈(S
3)

F(T )| = |F(S) \ S| = t − 1, we have

F(T1) = F(T2) 6= ∅ for every T1, T2 ∈
(

S
3

)
. But this is impossible because ∩4

i=1Ti = ∅.
Now let F ′ = F−S+T0. Trivially F ′ satisfies Property D and because |F ′(T0)| ≤ t−1, F ′

satisfies Property S as well. Thus F ′ is a (4, t)-system, a contradiction to the optimality
of F .

Case 2. T = ∅, i.e.,
(

S
3

)
⊂ F .

Note that this case does not exist for t = 2, 3, 4, because it implies that |F(S)| ≥ 4 + 1,
a contradiction to the assumption |F(S)| = t.

When t = 5, we know that F(S) = {S} ∪
(

S
3

)
. Pick any two elements a, b ∈ S and

consider T = {{a, b, c} : |F({a, b, c})| = 4}. Since F({a, b}) = ∅, it must be the case that
F(T ) = {{c}, {c, a}, {c, b}, {c, a, b}} for every T = {a, b, c} ∈ T . In particular, T ⊂ F .
We may therefore apply Lemma 9 to conclude that T 6∈ F for every 3-set T ⊂ {a, b}.
This is a contradiction to the assumption that T ∈ F for all T ∈

(
S
3

)
.

When t = 6, 7, since |F(S)| ≤ 7 and
(

S
≥3

)
⊂ F , we have |F ∩

(
S
≤2

)
| ≤ 2. Consequently

there exist a, b ∈ S such that F({a, b}) = ∅. Since T = {{a, b, c} : |F({a, b, c})| = t} = ∅,
we may again apply Lemma 9 and derive a contradiction as in the previous paragraph.

Proof of Lemma 6. We are to show that F3 = ∅ for 7 ≤ t ≤ 10. Suppose to the
contrary, that there exists a set T ∈ F3. We now separate the case t = 7 and the cases
t = 8, 9, 10.

Case 1. t = 7.

Since |F(T )| < 7 (by Property S), there exists a set P ∈
(

T
≤2

)
\ F . Define T as in (1),

trivially T ⊂ F . We may apply Lemma 9 to conclude that T 6∈ F , a contradiction.

Case 2. t = 8, 9, 10.
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Since t ≥ 23, we may assume that (?) holds in F . In particular, if T ∈ F3, then |F(T )| = 7.

Let D = {S ∈
(
[n]
4

)
: S ⊃ T, |F(S)| = t}. If D = ∅, then F ′ = F − T satisfies Property D

and is thus a (4, t)-system of size |F|− 1, a contradiction. Now suppose that |D| = 1 and
{a} ∪ T is the only element of D. Since t < 11, at least one of {a}, {a, b}, {a, c}, {a, d},
say {a}, is not contained in F . Let F ′ = F − T + {a}. F ′ satisfies Property S trivially.
Consider a 4-set S ⊃ T of [n]. If S 6= {a} ∪ T , then |F(S)| ≥ t + 1 and |F ′(S)| ≥ t. If
S = {a} ∪ T , then |F ′(S)| = |F(S)| = t. This means that F ′ satisfies Property D and
consequently F ′ is a (4, t)-system, a contradiction.

Now we assume that there exist a1, a2 ∈ [n] such that {ai} ∪ T ∈ D for i = 1, 2.
We will show that when 8 ≤ t ≤ 10, there are two vertices v1, v2 ∈ T such that
|F({a1, a2, v1, v2})| < t, contradicting Property D.

Define F{ai}(T ) = F({ai}∪T )−F(T ) for i = 1, 2. Since |F(T )| = 7, we have |F{ai}(T )| =
1, 2, 3 for t = 8, 9, 10, respectively. Using (?), we thus know that {ai} ⊆ F{ai}(T ) ⊂ F≤2

for every t ∈ {8, 9, 10}.

• When t = 8, we have F{ai}(T ) = {{ai}} for i = 1, 2. Thus |F({a1, a2, b, c})| ≤ 6 < 8
for any b 6= c ∈ T .

• When t = 9, we have F{a1}(T ) = {{a1}, {a1, c}} and F{a2}(T ) = {{a2}, {a2, d}}, for
not necessarily distinct c, d ∈ T . Consequently |F({a1, a2, b, c})| ≤ 8 < 9 for some
b ∈ T \ {c, d}.

• When t = 10, we may assume that F{a1}(T ) = {{a1}, {a1, b}, {a1, d}} and F{a2}(T )
= {{a2}, {a2, c}, {a2, d}}, where c, b ∈ T are not necessarily distinct. If c 6= b,
then |F({a1, a2, b, c})| ≤ 8 < 10. Otherwise, |F({a1, a2, b, w})| ≤ 8 < 10, where
w = T \ {c, d}.

Proof of Lemma 7. Let 7 ≤ t ≤ 14. We are to show that
(
[n]
1

)
⊂ F . Suppose instead,

say, that {n} 6∈ F .

For t ≥ 8, consider a set S ∈
(
[n]
4

)
and S 3 n. We know that no set from F(S) contains

n (otherwise (?) forces {n} ∈ F). Thus |F(S)| ≤ 7 < t, a contradiction to Property D.

For t = 7, consider a set T ∈
(
[n−1]

3

)
. By Property S and Property D, we have |F(T )| ≤ 6

and |F({n} ∪ T )| ≥ 7. Then there exists a set P ∈ F({n} ∪ T ) such that P ⊃ n. Let
F ′ = F−P+{n}. For any Y ∈

(
[n]
3

)
and n ∈ T , we have |F(Y )| ≤ 5 (because {n}, Y 6∈ F).

Therefore F ′ satisfies Property S and is thus a (4, t)-system, a contradiction.

Proof of Lemma 8. We are to show that
(
[n]
2

)
⊂ F for 11 ≤ t ≤ 13. Suppose to the

contrary, that there exist a, b ∈ [n] such that {a, b} 6∈ F . Pick any two elements v1, v2 ∈
[n]\{a, b} and consider D = {a, b, v1, v2}. Since (?) holds, we have {a, b, v1}, {a, b, v2} 6∈ F
(otherwise {a, b} ∈ F). Together with {a, b} and D, this gives us four members of
(2D \ ∅) \ F . Consequently |F(D)| ≤ 11, which contradicts Property D when t = 12, 13.
Now assume that t = 11. Then |F(D)| = 11 and |F({a, v1, v2})| = |F({b, v1, v2})| = 7.
Let F ′ = F − {a, v1, v2} + {a, b}. F ′ satisfies Property S trivially. To check Property D,
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we consider all the 4-sets S containing {a, v1, v2}. If S = {a, b, v1, v2}, then |F ′(S)| =
|F(S)| > 11. Otherwise, S = {a, v1, v2, v3} for some v3 ∈ [n] \ {a, b, v1, v2}. Since
|F({a, vi, vj})| = 7 for any i 6= j, only S and {v1, v2, v3} could be absent from F(S) and
consequently |F(S)| ≥ 13. We thus have |F ′(S)| = |F(S)| − 1 ≥ 13 − 1 > 11. Therefore
F ′ is a (4, 11)-system, a contradiction to the optimality of F .

3.2 m(n, 4, 5)

In this section we prove that m(n, 4, 5) =
(

n
2

)
− 17. Before the proof, we introduce the

following extensions of the Turán number:

Definition 10. A family G ∈
(
[n]
i

)
is called a Turán-i(n, k, t)-system if every k-set of [n]

contains at least t members of G. The generalized Turán number Ti(n, k, t) is defined as
the minimum size of a Turán-i(n, k, t)-system.

Replacing all the instances of i by ≥ i in the previous paragraph, we obtain the non-uniform
Turán number T≥i(n, k, t).

In the proof we will consider T3(k, 4, 1) =
(

k
3

)
− ex(k, K

(3)
4 ). Turán [14] conjectured

that T3(k, 4, 1) is achieved by the following 3-graph Hk (referred to as Turán’s 3-graph).
Partition [k] into A1 ∪ A2 ∪ A3, where bk/3c ≤ |Ai| ≤ dk/3e. The edges of Hk are 3-sets
which are either contained in some Ai or contain two vertices of Ai and one of A

i+1 (mod 3)
.

It is known [13] that Turán’s conjecture holds for k ≤ 13. For larger k, the following lower
bound of de Caen [1] suffices for our purpose:

T3(k, 4, 1) ≥ k(k − 1)(k − 3)

18
. (2)

We also need the following simple lemma on T≥1(n, k, t).

Lemma 11. [9] T≥1(n, k, t) = n − k + t for 1 ≤ t ≤ k.

Let F be an optimal (4, 5)-system with A = {a : {a} ∈ F}, B = [n] − A and assume
|A| = k. By Lemma 5, we may assume that F contains no 4-sets. In order to show that
|F| ≥

(
n
2

)
− 17, our proof consists of three stages described in Section 3.2.1 – 3.2.3. The

proof leads to a construction achieving this bound, which we present in Section 3.2.3 as
well.

3.2.1 Stage 1

We start with Claim 12 which reflects a rough picture of F and in turn implies a (weak)
lower bound (4) for |F|.
Given two disjoint sets C, D ∈ [n], we write F(C, D) = {S ∈ F : S ∩ C 6= ∅ and
S ∩ D 6= ∅}.
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Claim 12. 1. (F(A))2 is a matching in A.

2. (F(B))2 contains no matching of size 2 or star with 3 edges.

3. |F(A, B)| ≥ (n − k)(k − 2) + |F1,2(A, B)|, where F1,2(A, B) = {T ∈ F3 : |T ∩ A| =
1, |T ∩ B| = 2}.

4. |(F(A))3| ≥ k(k − 2)(k − 4)/24.

Proof. Part 1: Property S prevents F(A) from containing two adjacent (graph) edges.
Thus (F(A))2 is a matching.

Part 2: We first claim that

If P ∈
(

B

2

)
\ F and P ⊂ T, |T | = 3, then T 6∈ F . (3)

In fact, if Y is 3-set of [n] such that Y ⊃ P and |F(Y )| = 4, then Y ∈ F . We may
therefore apply Lemma 9 to conclude that T 6∈ F .

If there are a, b, c, d ∈ B such that {a, b}, {c, d} 6∈ F , then (F({a, b, c, d}))3 = ∅ by
(3). Consequently |F({a, b, c, d})| ≤ 4, a contradiction to Property D. Therefore, F(B)
contains no two vertex-disjoint (graph) edges. A similar argument shows that F(B)
contains no star with 3 edges.

Part 3: Consider a vertex b ∈ B and a 3-subset T of A. Since {b} 6∈ F , |F(T )| ≤ 4 and
|F({b} ∪ T )| ≥ 5, we have |F({b}, T )| ≥ 1. Define Gb = {Y \ {b} : Y ∈ F({b}, A)} for
every b ∈ B. Then Gb is a set system of

(
A
≤2

)
such that every 3-set in A contains at least

one member of Ga, in other words, Gb is a Turán-≥1(k, 3, 1)-system. By Lemma 11, we
have |Hb| ≥ T≥1(k, 3, 1) = k − 2. Repeating this for all b ∈ B, we have

|{S ∈ F(A, B) : |S ∩ B| = 1}| =
∑
b∈B

|Gb| ≥ (n − k)(k − 2).

Consequently |F(A, B)| ≥ (n − k)(k − 2) + |F1,2(A, B)|.
Part 4. Now we give a crude lower bound for (F(A))3. From Part 1, we know that
(F(A))2 is a matching M = {{xi, yi}}m

i=1. Let

D = {S ∈
(

A

4

)
: |S ∩ {xi, yi}| ≤ 1 for every {xi, yi} ∈ M}.

By Property D, every 4-set in D contains at least one member of (F(A))3. Since D is
minimal when m = bk/2c, we may assume that m = bk/2c when estimating (F(A))3

from below. The usual averaging arguments thus give the following lower bound (for even
k, the case when k is odd yields an even larger bound):

(F(A))3 ≥
|D|

k − 6
=

k(k − 2)(k − 4)(k − 6)

4!(k − 6)
=

k(k − 2)(k − 4)

24
.
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The consequence of Claim 12 is the following lower bound.

|F| ≥ |(F(A))1| + |(F(A))3| + |F(A, B)| + |(F(B))2| + |(F(B))3|

≥ k +
k(k − 2)(k − 4)

24
+ (n − k)(k − 2) + |F1,2(A, B)|

+

(
n − k

2

)
− 2 + |(F(B))3|. (4)

3.2.2 Stage 2

In this stage we first prove Claim 13, (F(A))2 = ∅, which not only implies that (F(A))≥2

is a Turán-3(k, 4, 1)-system, but also makes it possible to find more details about F(A, B)
and F(B), which are summarized in Claim 14. Claim 13 and 14 together describe the
fine structure of F . This leads to an improved lower bound (5) for |F|.
Let us first sketch the idea behind the proof of Claim 13. Suppose that {a1, a2} ∈ (F(A))2.
Then at least one of Bi = {b ∈ B : {ai, b} 6∈ F}, i = 1, 2 has size |B|/2 and consequently
either |F1,2(A, B)| or |(F(B))3| is at least 3(n− k). But because of (4), |F| is larger than
the trivial upper bound

(
n
2

)
, which is a contradiction.

Claim 13. (F(A))2 = ∅ provided that n ≥ 160.

Proof. Note that (4) and |F| ≤
(

n
2

)
imply that k = O(n1/3) as n → ∞ (in particular,

when n ≥ 20, k < n/2).

Suppose instead, that {a1, a2} ∈ (F(A))2. Pick a vertex b ∈ B. By Property S, at most
one of {a1, b} and {a2, b} is contained in F . Without loss of generality, we may assume
that B has a subset B1 of size n−k

2
, such that {a1, b} 6∈ F for every b ∈ B1. Consider

Ta1 = {T ∈ F3 : a1 ∈ T, |T ∩ B1| = 2}. If |Ta1 | ≥ 3(n − k), then (4) implies that (when
n ≥ 30),

|F| ≥ k +
k(k − 2)(k − 4)

24
+ (n − k)(k − 2) +

(
n − k

2

)
− 2 + |Ta1 |

≥
(

n

2

)
+ (n − k) +

k(k − 2)(k − 4)

24
−

(
k

2

)
+ k − 2

≥
(

n

2

)
+ n − 29 >

(
n

2

)
,

a contradiction to the trivial upper bound that |F| ≤
(

n
2

)
, where the third inequality

follows from the fact

min
k≥0

k(k − 2)(k − 4)

24
−

(
k

2

)
= −26.125 (achieved by k = 11).

We may therefore assume that |Ta1 | < 3(n − k). Let P = {P ∈
(

B1

2

)
: {a1} ∪ P ∈ Ta1}
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and T = {T ∈
(

B1

3

)
:
(

T
2

)
∩ P = ∅}. Then |P| = |Ta1 |, and therefore

|T | ≥
(

(n − k)/2

3

)
− |P|(n − k

2
− 2)

>
(n − k)(n − k − 2)(n − k − 4)

48
− 3

2
(n − k)2

≥ 3(n − k), when n − k ≥ 80 or n ≥ 160.

On the other hand, we have T ∈ F for every T ∈ T because |F({a1} ∪ T )| ≥ 5 and
F({a1}, T ) = ∅ . Consequently |(F(B))3| ≥ |T | > 3(n − k). Using this lower bound for
|(F(B))3| in (4), we obtain |F| ≥ k(k − 2)(k − 4)/24+

(
n
2

)
+n−2 >

(
n
2

)
, a contradiction.

Note that we make no effort to optimize the constant 160 in Claim 13.

With the help of Claim 13, we are able to see the fine structure of F as follows.

Claim 14. 1. (F(A, B))3 = ∅.

2. (F(B))3 = ∅ and |F(B)| = |(F(B))2| ≥
(|B|

2

)
− 1.

3. For every a ∈ A, we have |{b ∈ B : {a, b} ∈ F}| ≥ n − k − 2. Consequently
|(F(A, B))2| ≥ k(n − k − 2).

Proof. Part 1. Let T0 be a 3-set of [n] with T0 ∩ A 6= ∅ and T ∩ B 6= ∅.
If T0 ∩ B = {b1, b2} 6∈ F , then T0 6∈ F by (3). If T0 ⊃ {a, b} 6∈ F for some a ∈ A and
b ∈ B, then we consider all the 3-sets T ⊃ P such that |F(T )| = 4. If |T ∩B| = 2, then it
must be the case that T ∈ F . Otherwise, assume that T ∩A = {a, a′}. Since {a, a′} 6∈ F
by Claim 13, we also have T ∈ F . We may therefore apply Lemma 9 to conclude that
T0 6∈ F .

Finally we assume that P ∈ F for every P ∈
(

T0

2

)
and P 6⊂ A. Either |T0 ∩ B| = 2 or

|T0 ∩ A| = 2, we always have |(F(T0))≤2| = 4. Therefore T0 6∈ F by Property S.

We thus conclude that (F(A, B))3 = ∅.
Part 2. Suppose instead, that there exists T ∈ (F(B))3. Then we know that

(
T
2

)
⊂ F

by (3). Let D = {S ∈
(
[n]
4

)
: T ⊂ S, |F(S)| = 5}. We may assume that D 6= ∅, otherwise

|F(S)| ≥ 6 for every S ⊃ T , and T could be removed from F without hurting Property D.
Consider a set S = {a} ∪ T ∈ D. Either a ∈ A or a ∈ B. If a ∈ A, then F({a}, T ) = ∅;
if a ∈ B, then |F({a}, T )| = 1.

We claim that |D| = 1. Suppose instead, that D contains two members {a1} ∪ T and
{a2} ∪ T . If a1, a2 ∈ A, then we consider S0 = {a1, a2, b, c} for any two vertices b, c ∈ T .
From Part 1 we know that (F(S0))3 = ∅. We also have {a1, a2} 6∈ F by Claim 13.
Consequently |F(S0)| = 3 < 5, a contradiction to Property D. If a1, a2 ∈ B, then there
are two vertices b, c ∈ T such that {a1, b}, {a2, c} 6∈ F . This already contradicts Claim 12
Part 2. Finally, assume that a1 ∈ A, a2 ∈ B and {a2, d} ∈ F for some d ∈ T . Consider
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S0 = {a1, a2, b, c}, where {b, c} = T \ {d}. We know that (F(S0))3 = ∅ from Part 1 and
(3), (F(S0)2) ⊆ {{a1, a2}, {b, c}} from our assumption. Consequently |F(S0)| = 3 < 5,
again a contradiction.

Now assume that S0 = {a}∪T is the unique element of D. Let F ′ = F −T + {a, b, c} for
any two vertices b, c ∈ T . F ′ satisfies Property S since |F ′({a, b, c})| ≤ 3. F ′ also satisfies
Property D because |F ′(S)| ≥ 6−1 = 5 for every S ∈

(
[n]
4

)
\S0 and |F ′(S0)| = |F(S0)| = 5.

F ′ is thus another optimal (4, 5)-system. However, if a ∈ A, then F ′ contradicts Part 1.
If a ∈ B, then F ′ contradicts (3), because {a, b, c} ∈ F ′ and at least one of {a, b} and
{a, c} is not in F ′.

We thus conclude that (F(B))3 = ∅.
Now it is easy to see why there are no three vertices a, b, c ∈ B such that {a, b}, {a, c} 6∈ F .
In such a case, since (F(B))3 = ∅, we have |F({a, b, c, d})| ≤ 4 for any d ∈ B \ {a, b, c},
a contradiction to Property D. Together with Claim 12 Part 2, we conclude that F(B)
misses at most one edge on B.

Part 3. Suppose instead, that there exists an a ∈ A and b1, b2, b3 ∈ B such that {a, bi} 6∈
F for all i. Part 1 and Part 2 together imply that S = {a, b1, b2, b3} contains no 3-set
from F . Thus, |F(S)| ≤ 4, contradicting Property D.

We now refine (4) by applying Claims 13 and 14:

|F| = |(F(A))1| + |(F(A))3| + |(F(A, B))2| + |(F(B))2|

≥ k + T3(k, 4, 1) + k(n − k − 2) +

(
n − k

2

)
− 1

= g(k) +

(
n

2

)
− 1, (5)

where g(k) = T3(k, 4, 1) − k −
(

k
2

)
.

3.2.3 Stage 3

In this stage, we complete the proof that m(n, 4, 5) =
(

n
2

)
− 17 by analyzing (5).

Since T3(k, 4, 1) is known for k ≤ 13, we compute g(k) exactly for 0 ≤ k ≤ 11 and obtain
that min0≤k≤11 g(k) = g(7) = g(8) = −16. For k ≥ 12, using the inequality (2), we have
g(k) ≥ k(k − 1)(k − 3)/18 − k −

(
k
2

)
≥ −12. Putting these together, we have

min
k≥0

g(k) = g(7) = g(8) = −16 (6)

Applying (6) to (5), we obtain that |F| ≥
(

n
2

)
− 17.

Claims 13, 14 and (6) lead us to the following construction, which gives a (4, 5)-system
of cardinality

(
n
2

)
− 17.

Construction 1: Partition [n] into A∪B, where |A| = k = 7 or 8. Let F = F1∪F2∪F3,
where F1, F2 and F3 are defined as follows:
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• F1 = {{a} : a ∈ A}.

• Let M be a union of k disjoint copies of P2 (paths of length 2) whose middle vertices
are in A and end vertices make up a subset B0 of B. Let F2 =

(
B
2

)
\{e}∪(A×B)\M

for some e ∈ B \ B0.

• F3 is the edge set of the Turán 3-graph Hk on A.

We thus conclude that m(n, 4, 5) =
(

n
2

)
− 17.

3.3 m(n, 4, 6)

Let F be an optimal (4, 6)-system. Define A, B, F(A), F(B), F(A, B) as in Section 3.2
and assume that |A| = k. We first define another threshold function.

Definition 15. A (̂4, 2)-system of [n] is a set system G ⊆
(
[n]
2

)
∪

(
[n]
3

)
such that every

4-set of [n] contains at least two members of G and every 3-set of [n] contains at most
two members of G. Let m̂(n, 4, 2) denote the minimum size of such a set system.

The lower bound |F| ≥
(

n
2

)
− 190 in Theorem 3 is the consequence of the following claim,

whose proof is postponed to the end of this section.

Claim 16. F has the following properties.

1. There exists no T ∈ F3 which contains a ∈ A and b ∈ B such that {a, b} 6∈ F .

2. F(B) =
(

B
2

)
.

3. |F(A, B)| ≥ k(n − k) − 4.

4. |F≥2(A)| ≥ m̂(k, 4, 2) ≥ 2
(

k
7

)
/
(

k−3
4

)
= k(k − 1)(k − 2)/105.

Claim 16 also suggests a general way to construct (4, 6)-systems of [n]: Partition [n] into
A∪B with |A| = k for any 0 ≤ k ≤ n. Let F = F(A)∪F(A, B)∪F(B), with F(B) =

(
B
2

)
,

F(A, B) = A ×B and F(A) = (F(A))1 ∪ (F(A))≥2, where (F(A))1 = {{a} : a ∈ A} and

(F(A))≥2 is a (̂4, 2)-system on A.

In particular, the following construction gives a (4, 6)-systems of [n] of size
(

n
2

)
− 5.

Construction 2: Let k = 8 and A, B, F(B), F(A, B) and (F(A))1 are defined as above.
We construct (F(A))≥2 as follows.

• Suppose that A = A1 +A2, where A1 = {u1, u2, u3, u4} and A2 = {v1, v2, v3, v4}. Let
E0 = {{u1, v1}, {u1, v2}, {u2, v3}, {u3, v3}, {u4, v4}}. Let (F(A))2 = (A1 ×A2)−E0.

• (F(A))3 = {{u1, u2, u3}, {u2, u3, u4}, {v1, v2, v3}, {v1, v2, v4}}.
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Proof of Theorem 3 for t = 6. The upper bound m(n, 4, 6) ≤
(

n
2

)
− 5 follows from

Construction 2. Claim 16 gives the lower bound for |F| = m(n, 4, 6) as follows.

|F| = |(F(A))1| + |(F(A))≥2| + |F(A, B)| + |F(B)|

≥ k +
k(k − 1)(k − 2)

105
+ k(n − k) − 4 +

(
n − k

2

)
(7)

≥
(

n

2

)
− 190,

where the last inequality follows from mink≥0 k + k(k − 1)(k − 2)/105 −
(

k
2

)
= −186

(achieved by k = 35).

Remark: Actually, we almost determine m(n, 4, 6) exactly in terms of m̂(k, 4, 2) (off
only by 4). To see this, replace k(k − 1)(k − 2)/105 by m̂(k, 4, 2) in (7) and get an upper
bound following the general construction:

k + m̂(k, 4, 2) + k(n − k) +

(
n − k

2

)
− 4 ≤ |F| ≤ k + m̂(k, 4, 2) + k(n − k) +

(
n − k

2

)
,

for some k ≥ 0. The knowledge of m̂(k, 4, 2) for small values of k may lead to the final
settlement of m(n, 4, 6).

Proof of Claim 16.

Part 1: Suppose that there are two vertices a ∈ A and b ∈ B such that {a, b} 6∈ F . For
a 3-set T ⊃ {a, b}, if |F(T )| = 5, then T ∈ F . We may therefore apply Lemma 9 to
conclude that T 6∈ F for every 3-set T ⊃ {a, b}.
Part 2: We first claim that (3) holds in F . In fact, when P ∈

(
B
2

)
, we have {T ∈

(
[n]
3

)
:

P ⊂ T, |F(T )| = 5} = ∅. Then we can apply Lemma 9 to obtain (3).

Next, we show that if there exists a set T ∈ (F (B))3, then we obtain a contradiction.
The proof is similar to that of Claim 14 Part 2. First, we claim that D = {S ∈

(
n
4

)
: T ⊂

S, |F(S)| = 6} has exactly one member. Suppose instead, for example, that D contains
S1 = {a} ∪ T and S2 = {b} ∪ T for some a ∈ A and b ∈ B (other cases are similar). It
means that there are exactly two sets from F(S1), F(S2) which contain a, b, respectively.
From Part 1, we know that these two sets in S1 must be {a} and {a, b1} and the two
sets in S2 must be {b, b2} and {b, b3}, where b1, b2, b3 ∈ T . Assume that, for example,
b1, b2, b3 are all distinct. Consider S3 = {a, b, b1, b2}. It is easy to see that |F(S3)| ≤ 5, a
contradiction to Property D. Now assume that {a} ∪ T is the unique member of D, for
example, for some a ∈ A. Let F ′ = F − T + {a, b1, b2}. It is easy to see that F ′ is an
optimal (4, 6)-system. However, since {a, b1, b2} ∈ F ′ and {a, b2} 6∈ F ′, this contradicts
Part 1.

Since (F (B))3 = ∅,
(

B
2

)
⊂ F follows from Property D. Consequently F(B) =

(
B
2

)
.

Part 3: We first show that for every a ∈ A, there is at most one vertex b ∈ B such
that {a, b} 6∈ F . Suppose instead, that {a, b1}, {a, b2} 6∈ F for some a ∈ A. Consider
S = {a, b1, b2, c} for any vertex c ∈ B \ {b1, b2}. From Part 1 and 2 we know that
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(F(S))3 = ∅. Consequently |F(S)| ≤ 5, a contradiction to Property D. Second, for each
b ∈ B, there are at most two vertices a1, a2 ∈ A such that {ai, b} 6∈ F for i = 1, 2.
Suppose instead, that there are three vertices a1, a2, a3 ∈ A such that {ai, b} 6∈ F . Since
F({a1, a2, a3}, {b}) = ∅, we have F({a1, a2, a3}) = F({b, a1, a2, a3}), which either violates
Property D or Property S.

Now consider the bipartite graph G whose edge set is (A × B) − (F(A, B))2. By the
argument in the previous paragraph, G consists of vertex-disjoint edges or 2-paths whose
centers are in B. On the other hand, two independent edges {ai, bi}, i = 1, 2 in G (where
ai ∈ A) imply that {a1, a2} ∈ F (by Property D). If G contain 3 independent edges
{ai, bi}, then |F({a1, a2, a3})| = 6, a contradiction to Property S. Therefore G has at
most 4 edges which are from two disjoint 2-paths.

Part 4. Clearly F≥2(A) is a (̂4, 2)-system of [k]. Let us count the number of triples in

a (̂4, 2)-system G of [k]. The following lemma implies that every 7-set of [k] contains at
least two triples from G. We omit its proof because it is an easy case analysis.

Lemma 17. Every (̂4, 2)-system of [7] contains at least two triples.

Using Lemma 17 and the averaging argument, we have m̂(k, 4, 2) ≥ 2
(

k
7

)
/
(

k−3
4

)
.
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[6] Z. Füredi, R. H. Sloan, K. Takata, Gy. Turán, On set systems with a threshold prop-
erty, submitted.

the electronic journal of combinatorics 10 (2003), #R42 16
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