On a two-sided Turán problem

Dhruv Mubayi* Yi Zhao ${ }^{\dagger}$
Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago
851 S. Morgan Street, Chicago, IL 60607
mubayi@math.uic.edu, zhao@math.uic.edu

Submitted: Aug 21, 2003; Accepted: Nov 3, 2003; Published: Nov 10, 2003
MR Subject Classifications: 05D05, 05C35

Abstract

Given positive integers n, k, t, with $2 \leq k \leq n$, and $t<2^{k}$, let $m(n, k, t)$ be the minimum size of a family \mathcal{F} of nonempty subsets of $[n]$ such that every k-set in $[n]$ contains at least t sets from \mathcal{F}, and every $(k-1)$-set in [n] contains at most $t-1$ sets from \mathcal{F}. Sloan et al. determined $m(n, 3,2)$ and Füredi et al. studied $m(n, 4, t)$ for $t=2,3$. We consider $m(n, 3, t)$ and $m(n, 4, t)$ for all the remaining values of t and obtain their exact values except for $k=4$ and $t=6,7,11,12$. For example, we prove that $m(n, 4,5)=\binom{n}{2}-17$ for $n \geq 160$. The values of $m(n, 4, t)$ for $t=7,11,12$ are determined in terms of well-known (and open) Turán problems for graphs and hypergraphs. We also obtain bounds of $m(n, 4,6)$ that differ by absolute constants.

1 Introduction

We consider an extremal problem for set systems. Given integers n, k, t, with $2 \leq k \leq n$, and $t<2^{k}$, a family $\mathcal{F} \subset 2^{[n]} \backslash \emptyset$ is a (k, t)-system of $[n]$ if every k-set in [n] contains at least t sets from \mathcal{F}, and every $(k-1)$-set in $[n]$ contains at most $t-1$ sets from \mathcal{F}. Let $m(n, k, t)$ denote the minimum size of a (k, t)-system of $[n]$. This threshold function first arose in problems on computer science [10, 11] (although the notation $m(n, k, t)$ was not used until [6]). It was shown in [11] that $m(n, k, t)=\Theta\left(n^{k-1}\right)$ for $1<t<k$ and $m(n, 3,2)=\binom{n-1}{2}+1$. In [6], $m(n, 4,3)$ was determined exactly for large n and it was shown that for fixed $k, m(n, k, 2)=(1+o(1)) T_{k-1}(n, k, 2)$, where $T_{r}(n, k, t)$ is the generalized Turán number. For fixed k and $t<2^{k}$, the order of magnitude of $m(n, k, t)$

[^0]was determined in [9]. A special case of this result is the following proposition, where $\binom{a}{\leq b}=\sum_{i=1}^{b}\binom{a}{i}$.

Proposition 1. [9] $m(n, k, 1)=\binom{n}{k}, m(n, k, k)=n, m\left(n, k, 2^{k}-2\right)=\binom{n}{\leq k-1}$ and $m\left(n, k, 2^{k}-1\right)=\binom{n}{\leq k}$.

In this paper we study $m(n, k, t)$ for $k=3,4$. The case $k=3$ is not very difficult: Proposition 1 determines $m(n, 3, t)$ for $t \in\{1,3,6,7\}$ and [11] shows that $m(n, 3,2)=$ $\binom{n-1}{2}+1$. The remaining cases $t=4$ and $t=5$ are covered below.

Proposition 2.

$$
m(n, 3, t)= \begin{cases}n+\binom{n}{2}-\left\lfloor n^{2} / 4\right\rfloor & t=4, \\ n+\binom{n}{2}-\lfloor n / 2\rfloor & t=5\end{cases}
$$

The main part of this paper is devoted to $m(n, 4, t)$, a problem which is substantially more difficult than the case $k=3$. As mentioned above, both $m(n, 4,2)$ and $m(n, 4,3)$ were studied in [6]. It was shown in [11] how these two functions apply to frequent sets of Boolean matrices, a concept used in knowledge discovery and data mining. Perhaps the determination of $m(n, 4, t)$ for other t will have similar applications.
The cases $t=1,4,14,15$ are answered by Proposition 1 immediately. In this paper we obtain the exact values of $m(n, 4, t)$ for $t=5,8,9,10,13$. Our bounds for $m(n, 4,6)$ differ only by an absolute constant. For $t=7,11,12$, we determine $m(n, 4, t)$ exactly in terms of well-known (and open) Turán problems in extremal graph and hypergraph theory. Perhaps this connection provides additional motivation for investigating $m(n, k, t)$ (the first connection between $m(n, k, t)$ and Turán numbers was shown in [6] via $m(n, k, 2)=$ $\left.(1+o(1)) T_{k-1}(n, k, 2)\right)$.
For a family of r-uniform hypergraphs \mathcal{H}, let $\operatorname{ex}(n, \mathcal{H})$ be the maximum number of edges in an n vertex r-uniform hypergraph \mathcal{G} containing no member of \mathcal{H} as a subhypergraph. The (2-uniform) cycle of length l is written C_{l}. The complete 3 -uniform hypergraph on four points is $K_{4}^{(3)}$, and the 3-uniform hypergraph on four points with three edges is $H(4,3)$. An ($n, 3,2$)-packing is a 3-uniform hypergraph on n vertices such that every pair of vertices is contained in at most one edge. The packing number $P(n, 3,2)$ is the size of a maximal ($n, 3,2$)-packing. Note that the maximal packing is a Steiner system when $n \equiv 1$ or $3(\bmod 6)$.

Theorem 3 (Main Theorem).

$$
m(n, 4,5)=\binom{n}{2}-17
$$

when $n \geq 160$ and

$$
\binom{n}{2}-190<m(n, 4,6) \leq\binom{ n}{2}-5,
$$

when $n \geq 8$. Furthermore,

$$
\begin{aligned}
m(n, 4,7) & =n+\binom{n}{2}-e x\left(n,\left\{C_{3}, C_{4}\right\}\right) \\
m(n, 4,8) & =n+\binom{n}{2}-2 n / 3 \\
m(n, 4,9) & =n+\binom{n}{2}-1 \\
m(n, 4,10) & =n+\binom{n}{2} \\
m(n, 4,11) & =n+\left(\begin{array}{l}
n \\
2 \\
2
\end{array}\right)+\binom{n}{3}-e x\left(n, K_{4}^{(3)}\right) \\
m(n, 4,12) & =n+\left(\begin{array}{l}
n \\
2 \\
3
\end{array}\right)-e x(n, H(4,3)) \\
m(n, 4,13) & =n+\binom{n}{3}-P(n, 3,2)
\end{aligned}
$$

It is worth recalling the known results for the three Turán numbers and the packing number $P(n, 3,2)$ in Theorem 3 above.

- It is known that $\left(\frac{1}{2 \sqrt{2}}+o(1)\right) n^{3 / 2} \leq \operatorname{ex}\left(n,\left\{C_{3}, C_{4}\right\}\right) \leq\left(\frac{1}{2}+o(1)\right) n^{3 / 2}$ (Erdős-Rényi [3], Kővari-Sós-Turán [7]). Erdős and Simonovits [4] conjectured that ex $\left(n,\left\{C_{3}, C_{4}\right\}\right)=$ $\left(\frac{1}{2 \sqrt{2}}+o(1)\right) n^{3 / 2}$.
- It is known that $(5 / 9)\binom{n}{3} \leq \operatorname{ex}\left(n, K_{4}^{(3)}\right) \leq(0.592+o(1))\binom{n}{3}$ (Turán [14], Chung-Lu [2]). It was conjectured [14] that the lower bound is correct (Erdős offered \$1000 for a proof).
- It is known $(2 / 7+o(1))\binom{n}{3} \leq \operatorname{ex}(n, H(4,3)) \leq\left(1 / 3-10^{-6}+o(1)\right)\binom{n}{3}$ (Frankl-Füredi [5], Mubayi [8]). It was conjectured [8] that $\operatorname{ex}(n, H(4,3))=(2 / 7+o(1))\binom{n}{3}$.
- Spencer [12] determine $P(n, 3,2)$ exactly:

$$
P(n, 3,2)= \begin{cases}\left\lfloor\frac{n}{3}\left\lfloor\frac{n-1}{2}\right\rfloor\right\rfloor-1 & \text { if } n \equiv 5(\bmod 6), \\ \left\lfloor\frac{n}{3}\left\lfloor\frac{n-1}{2}\right\rfloor\right\rfloor & \text { otherwise } .\end{cases}
$$

This paper is organized as follows. In Section 2 we describe the main idea in the proofs and prove Proposition 2. The Main Theorem (Theorem 3) is proved in Section 3.
Most of our notations are standard: $[n]=\{1,2, \ldots, n\}$. For a set system \mathcal{F}, let \mathcal{F}_{t} denote the family of t-sets in \mathcal{F}, let $\mathcal{F}_{\leq t}=\cup_{i \leq t} \mathcal{F}_{i}$ and $\mathcal{F}_{\geq t}=\cup_{i \geq t} \mathcal{F}_{i}$. If $a \in \mathcal{F}$ and $b \notin \mathcal{F}$, we simply write $\mathcal{F}-a$ for $\mathcal{F} \backslash\{a\}$ and $\mathcal{F}+b$ for $\mathcal{F} \cup\{b\}$. Given a set X and an integer a, let $2^{X}=\{S: S \subseteq X\},\binom{X}{a}=\{S \subset X:|S|=a\},\binom{X}{\leq a}=\{S \subset X: 1 \leq|S| \leq a\}$ and $\binom{X}{\geq a}=\{S \subset X:|S| \geq a\}$. We write $\mathcal{F}(X)$ for $\mathcal{F} \cap 2^{X}$. An r-graph on X is a (hyper)graph whose edges are r-subsets of X. All sets or subsets considered in this paper are nonempty unless specified differently.

2 Ideas in the proofs and $m(n, 3, t)$

In this section we make some basic observations on $m(n, k, t)$ and prove Proposition 2.

Recall that a (k, t)-system $\mathcal{F} \subseteq 2^{[n]} \backslash \emptyset$ satisfies the following two conditions:
Property D (DENSE): Every k-set in $[n]$ contains at least t sets from \mathcal{F}, Property S (SPARSE): Every $(k-1)$-set in $[n]$ contains at most $t-1$ sets from \mathcal{F}.

The main idea in our proofs is to work with optimal (k, t)-systems which are defined as follows.

Definition 4. Suppose that \mathcal{F} is a (k, t)-system of $[n]$. We say that \mathcal{F} is optimal if $|\mathcal{F}|=$ $m(n, k, t)$ and $\sum_{S \in \mathcal{F}}|S|$ is minimal among all (k, t)-system of $[n]$ with size $m(n, k, t)$.

The advantage of considering optimal (k, t)-systems \mathcal{F} is that it allows us to assume certain structure on \mathcal{F} : if \mathcal{F} does not have such a structure, we always modify \mathcal{F} to \mathcal{F}^{\prime} such that \mathcal{F}^{\prime} is a (k, t)-system with $\sum_{S \in \mathcal{F}^{\prime}}|S|<\sum_{S \in \mathcal{F}}|S|$, a contradiction to the optimality of \mathcal{F}. A typical modification of \mathcal{F} is replacing a set in \mathcal{F} by one of its subsets. Because the new system still satisfies Property \mathbf{D}, we only need to check Property \mathbf{S} in this case.
For example, if \mathcal{F} is an optimal (k, t)-system for $t \geq 2^{k-1}$, then we may assume that

$$
A \in \mathcal{F} \Rightarrow\left(2^{A} \backslash \emptyset\right) \subset \mathcal{F}
$$

Indeed, if $A \in \mathcal{F}$ has a nonempty subset $B \notin \mathcal{F}$, then $\mathcal{F}^{\prime}=\mathcal{F}-A+B$ is also a (k, t)-system, because Property \mathbf{S} holds trivially (any $(k-1)$-set of $[n]$ has at most $2^{k-1}-1 \leq t-1$ nonempty subsets). Since $\sum_{S \in \mathcal{F}^{\prime}}|S|<\sum_{S \in \mathcal{F}}|S|$, this contradicts the optimality of \mathcal{F}.
Now we consider $m(n, 3, t)$ for $3 \leq t \leq 7$. Applying Proposition 1 directly, we have $m(n, 3,3)=n, m(n, 3,6)=\binom{n}{\leq 2}$ and $m(n, 3,7)=\binom{n}{\leq 3}$.

Proof of Proposition 2. We determine $m(n, 3, t)$ exactly for $t=4,5$. Recall that $\mathcal{F}(S)=\mathcal{F} \cap 2^{S}$ for a set system \mathcal{F} and a set S.
Let \mathcal{F} be an optimal $(3, t)$-system with $4 \leq t \leq 5$. Since $t \geq 4 \geq 2^{2}$, we may assume that (\star) holds in \mathcal{F}. First, we claim that $\binom{[n]}{1} \subset \mathcal{F}$. Suppose instead, that there exists some $a \in[n]$ such that $\{a\} \notin \mathcal{F}$. Pick a 3 -set $T=\{a, b, c\}$. Since $\{a\} \notin \mathcal{F}$, by (\star), we know that \mathcal{F} does not contain $\{a, b\},\{a, c\}$ and T as well. Thus $|\mathcal{F}(T)| \leq 3$, a contradiction to Property D. Second, we claim that $\mathcal{F} \subset\binom{[n]}{\leq 2}$. Suppose instead, that there exists a set $T \in \mathcal{F}_{3}$. Then $|\mathcal{F}(T)|=7$ by (\star) and consequently $\mathcal{F}^{\prime}=\mathcal{F}-T$ is a $(3, t)$-system of cardinality $|\mathcal{F}|-1$, contradicting the optimality of \mathcal{F}.
When $t=4, \mathcal{F}_{2}=\mathcal{F} \backslash\binom{[n]}{1}$ is the edge set of a graph on n vertices in which every set of 3 vertices has at least one edge, i.e., $\overline{\mathcal{F}_{2}}$, the complement of \mathcal{F}_{2} is a K_{3}-free graph. Thus $\left|\mathcal{F}_{2}\right| \geq\binom{ n}{2}-e x\left(n, K_{3}\right)=\binom{n}{2}-\left\lfloor n^{2} / 4\right\rfloor$. Consequently $m(n, 3,4)=n+\left|\mathcal{F}_{2}\right| \geq$ $n+\binom{n}{2}-\left\lfloor n^{2} / 4\right\rfloor$. On the other hand, $\binom{[n]}{1} \cup E(G)$ is a $(3,4)$-system, where G is a complete bipartite graph with two color classes of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$. Consequently $m(n, 3,4)=n+\binom{n}{2}-\left\lfloor n^{2} / 4\right\rfloor$.
When $t=5, \mathcal{F}_{2}=\mathcal{F} \backslash\binom{[n]}{1}$ is the edge set of a graph on n vertices in which every 3 vertices have at least two edges. Therefore $\overline{\mathcal{F}_{2}}$ is a matching M and $\left|\mathcal{F}_{2}\right|=\binom{n}{2}-|M| \geq$
$\binom{n}{2}-\lfloor n / 2\rfloor$. Consequently $m(n, 3,5) \geq n+\binom{n}{2}-\lfloor n / 2\rfloor$ and equality holds for the (3,5)system $\mathcal{F}=\binom{[n]}{1} \cup E(G)$, where G is a complete graph except for a matching of size $\lfloor n / 2\rfloor$.

3 The values of $m(n, 4, t)$

Applying Proposition 1, we obtain that $m(n, 4,1)=\binom{n}{4}, m(n, 4,4)=n, m(n, 4,14)=$ $\binom{n}{\leq 3}$ and $m(n, 4,15)=\binom{n}{\leq 4}$. In this section we prove Theorem 3, i.e., determine $m(n, 4, t)$ for $5 \leq t \leq 13$. We consider the cases $7 \leq t \leq 13$ in Section 3.1. The more difficult cases $t=5,6$ are studied in Section 3.2 and 3.3, respectively.

3.1 The cases $7 \leq t \leq 13$

Our proof is facilitated by the following four lemmas, whose proofs are postponed to the end of this section.
In Lemmas $5-8, \mathcal{F}$ is an optimal $(4, t)$-system.
Lemma 5. If $2 \leq t \leq 14$, then $\mathcal{F}_{4}=\emptyset$.
Lemma 6. If $7 \leq t \leq 10$, then $\mathcal{F}_{3}=\emptyset$.
Lemma 7. If $7 \leq t \leq 14$, then $\binom{[n]}{1} \subset \mathcal{F}$.
Lemma 8. If $11 \leq t \leq 14$, then $\binom{[n]}{2} \subset \mathcal{F}$.
Proof of Theorem 3 for $7 \leq t \leq 13$:
By Lemmas 5, 6 and 7, we conclude that

$$
\binom{[n]}{1} \subset \mathcal{F} \subset\binom{[n]}{\leq 2} \quad \text { for } 7 \leq t \leq 10
$$

Clearly, when $t=10, \mathcal{F}=\binom{[n]}{\leq 2}$ and consequently $m(n, 4,10)=\binom{n}{\leq 2}$.
When $t=9, \mathcal{F}_{2}=\mathcal{F} \backslash\binom{[n]}{1}$ is the edge set of a graph on $[n]$ in which every 4 -set has at least 5 edges. Then there is at most one edge absent from \mathcal{F}_{2}, or $\left|\mathcal{F}_{2}\right| \geq\binom{ n}{2}-1$. Consequently $m(n, 4,9) \geq n+\binom{n}{2}-1$ and equality holds when $\mathcal{F}=\binom{[n]}{\leq 2} \backslash e$ for some $e \in\binom{[n]}{2}$.
When $t=8, \mathcal{F}_{2}=\mathcal{F} \backslash\binom{[n]}{1}$ is the edge set of a graph on $[n]$ in which every 4 -set has at least 4 edges. Therefore, $\overline{\mathcal{F}_{2}}$ contains no K_{3}, S_{3} (a star with 3 leaves), or P_{3} (a path of length 3). Thus all connected components of $\overline{\mathcal{F}_{2}}$ have size at most 3 and each component is either an edge or P_{2}. So $\left|\overline{\mathcal{F}_{2}}\right| \leq\lfloor 2 n / 3\rfloor$ and $|\mathcal{F}| \geq n+\binom{n}{2}-\lfloor 2 n / 3\rfloor$. Consequently $m(n, 4,8)=n+\binom{n}{2}-\lfloor 2 n / 3\rfloor$ and the optimal system is $\binom{[n]}{\leq 2} \backslash E(G)$, where G is the union of disjoint copies of P_{2} and P_{1} covering $[n]$ with maximum copies of P_{2}.

When $t=7, \mathcal{F}_{2}=\mathcal{F} \backslash\binom{[n]}{1}$ is the edge set of a graph on $[n]$ in which every 4 -set has at least 3 edges. Let G be a graph on $[n]$ with $E(G)=\overline{\mathcal{F}_{2}}$. Then G contains no copies of C_{4} or C_{3}^{+}(C_{3} plus an edge). If C_{3} is also absent in G, then $e(G) \leq e x\left(n,\left\{C_{3}, C_{4}\right\}\right)$. Otherwise, assume that G contains $t(\geq 1)$ copies of C_{3} on a vertex-set T. Because G is C_{3}^{+}-free, the copies of C_{3} must be vertex-disjoint and

$$
e(G)=3 t+e(G \backslash T) \leq 3 t+e x\left(n-3 t,\left\{C_{3}, C_{4}\right\}\right) \leq e x\left(n,\left\{C_{3}, C_{4}\right\}\right)
$$

where the last inequality is an easy exercise. Consequently $m(n, 4,7) \geq n+\binom{n}{2}-$ $e x\left(n,\left\{C_{3}, C_{4}\right\}\right)$ and equality holds when $\mathcal{F}=\binom{[n]}{\leq 2} \backslash E(G)$, where G is an extremal graph without C_{3} or C_{4}.
By Lemma 5, 7 and 8 , we conclude that

$$
\binom{[n]}{\leq 2} \subset \mathcal{F} \subset\binom{[n]}{\leq 3} \quad \text { for } 11 \leq t \leq 13
$$

When $t=11, \mathcal{F}_{3}=\mathcal{F} \backslash\binom{[n]}{\leq 2}$ is the edge set of a 3 -graph in which every 4 -set has at least one hyper-edge. In other words, the 3-graph ($[n], \overline{\mathcal{F}_{3}}$) contains no $K_{4}^{(3)}$ and therefore $\left|\overline{\mathcal{F}_{3}}\right| \leq e x\left(n, K_{4}^{(3)}\right)$. Consequently $m(n, 4,11) \geq\binom{ n}{\leq 3}-e x\left(n, K_{4}^{(3)}\right)$ and equality holds when $\mathcal{F}=\binom{[n]}{\leq 3} \backslash \mathcal{H}$, where \mathcal{H} is the edge set of an extremal 3-graph without $K_{4}^{(3)}$.
By a similar argument, we obtain that $m(n, 4,12) \geq\binom{ n}{\leq 3}-e x(n, H(4,3))$ and equality holds when $\mathcal{F}=\binom{[n]}{\leq 3} \backslash \mathcal{H}$, where \mathcal{H} is the edge set of an extremal 3-graph without $H(4,3)$. Finally, when $t=13, \overline{\mathcal{F}_{3}}$ is an $(n, 3,2)$-packing since every 4 -set of $[n]$ contains at most one hyper-edge of $\overline{\mathcal{F}_{3}}$. Since $\left|\overline{\mathcal{F}_{3}}\right| \leq P(n, 3,2)$, we have $m(n, 4,13) \geq\binom{ n}{\leq 3}-P(n, 3,2)$ and equality holds when $\overline{\mathcal{F}_{3}}$ is a maximal ($n, 3,2$)-packing.

Before verifying Lemma 5, we start with a technical lemma, which is very useful in the cases $5 \leq t \leq 7$.

Lemma 9. Suppose that $t \in\{5,6,7\}$ and \mathcal{F} is an optimal $(4, t)$-system. Fix a set $P \in$ $\binom{[n]}{\leq 2} \backslash \mathcal{F}$ and let

$$
\begin{equation*}
\mathcal{T}=\left\{T \in\binom{[n]}{3}: T \supset P,|\mathcal{F}(T)|=t-1\right\} \tag{1}
\end{equation*}
$$

If $\mathcal{T} \subset \mathcal{F}$, then $T \notin \mathcal{F}$ for every 3 -set $T \supset P$.
Proof. Suppose instead, that there exists a 3 -set $T_{0} \supset P$ and $T_{0} \in \mathcal{F}$. If $\mathcal{T}=\emptyset$, then let $\mathcal{F}^{\prime}=\mathcal{F}-T_{0}+P$. It is clear that \mathcal{F}^{\prime} satisfies Property D. \mathcal{F}^{\prime} also satisfies Property \mathbf{S} because $\left|\mathcal{F}^{\prime}(Y)\right|=|\mathcal{F}(Y)|+1 \leq t-2+1=t-1$ for every 3 -set $Y \supset P$. Therefore \mathcal{F}^{\prime} is a $(4, t)$-system, a contradiction to the optimality of \mathcal{F}.
Now assume that $\mathcal{T} \neq \emptyset$. We claim that $\mathcal{F}^{\prime}=\mathcal{F}-\mathcal{T}+P$ is a $(4, t)$-system, contradicting the optimality of \mathcal{F}. To check Property \mathbf{D}, we only need to consider those 4 -sets S which
contain two members T_{1}, T_{2} of \mathcal{T} (because $\left|\mathcal{F}^{\prime}(Q)\right|=|\mathcal{F}(Q)|$ for every 4 -set Q that contains at most one member of $\mathcal{T})$. Since $|\mathcal{F}(S)| \geq\left|\mathcal{F}\left(T_{1}\right)\right|+\left|\mathcal{F}\left(T_{2}\right)\right|-|\mathcal{F}(P)| \geq 2(t-1)-2=$ $2 t-4 \geq t+1$ (using the assumption that $t \geq 5$), we have $\left|\mathcal{F}^{\prime}(S)\right| \geq t+1-2+1=t$. On the other hand, \mathcal{F}^{\prime} also satisfies Property \mathbf{S} since for every 3 -set $Y \supset P,\left|\mathcal{F}^{\prime}(Y)\right|=$ $|\mathcal{F}(Y)|=t-1$ if $Y \in \mathcal{T}(\subset \mathcal{F})$, otherwise $\left|\mathcal{F}^{\prime}(Y)\right|=|\mathcal{F}(Y)|+1 \leq t-2+1=t-1$.

Proof of Lemma 5. We are to show that $\mathcal{F}_{4}=\emptyset$ for $2 \leq t \leq 14$.
When $8 \leq t \leq 14,(\star)$ holds in \mathcal{F} (since $t \geq 2^{3}$). We may thus assume that \mathcal{F} contains no 4 -set, otherwise removing these 4 -sets results in a smaller $(4, t)$-system, a contradiction to the optimality of of \mathcal{F}.
Let $2 \leq t \leq 7$. Suppose to the contrary, that there exists a set $S \in \mathcal{F}_{4}$. We may assume that $|\mathcal{F}(S)|=t$, otherwise S could be removed from \mathcal{F}. Let $\mathcal{T}=\binom{S}{3} \backslash \mathcal{F}$.
Case 1. $\mathcal{T} \neq \emptyset$.
Suppose that $T_{0} \in \mathcal{T}$ has the minimal value of $|\mathcal{F}(T)|$ among all $T \in \mathcal{T}$. We claim that $\left|\mathcal{F}\left(T_{0}\right)\right| \leq t-2$. Suppose instead, that $\left|\mathcal{F}\left(T_{0}\right)\right| \geq t-1$. If $|\mathcal{T}|<4$, then there exists $T_{1} \in\binom{S}{3} \cap \mathcal{F}$. Because $T_{1}, S \in \mathcal{F}$, we have $|\mathcal{F}(S)| \geq\left|\mathcal{F}\left(T_{0}\right)\right|+2 \geq t-1+2>t$, a contradiction to the assumption that $|\mathcal{F}(S)|=t$. If $|\mathcal{T}|=4$, then for every $T \in\binom{S}{3}$, we have $|\mathcal{F}(T)| \geq t-1$ and $T \notin \mathcal{F}$. Since $\left|\cup_{T \in\binom{S}{3}} \mathcal{F}(T)\right|=|\mathcal{F}(S) \backslash S|=t-1$, we have $\mathcal{F}\left(T_{1}\right)=\mathcal{F}\left(T_{2}\right) \neq \emptyset$ for every $T_{1}, T_{2} \in\binom{S}{3}$. But this is impossible because $\cap_{i=1}^{4} T_{i}=\emptyset$. Now let $\mathcal{F}^{\prime}=\mathcal{F}-S+T_{0}$. Trivially \mathcal{F}^{\prime} satisfies Property \mathbf{D} and because $\left|\mathcal{F}^{\prime}\left(T_{0}\right)\right| \leq t-1, \mathcal{F}^{\prime}$ satisfies Property \mathbf{S} as well. Thus \mathcal{F}^{\prime} is a $(4, t)$-system, a contradiction to the optimality of \mathcal{F}.
Case 2. $\mathcal{T}=\emptyset$, i.e., $\binom{S}{3} \subset \mathcal{F}$.
Note that this case does not exist for $t=2,3,4$, because it implies that $|\mathcal{F}(S)| \geq 4+1$, a contradiction to the assumption $|\mathcal{F}(S)|=t$.
When $t=5$, we know that $\mathcal{F}(S)=\{S\} \cup\binom{S}{3}$. Pick any two elements $a, b \in S$ and consider $\mathcal{T}=\{\{a, b, c\}:|\mathcal{F}(\{a, b, c\})|=4\}$. Since $\mathcal{F}(\{a, b\})=\emptyset$, it must be the case that $\mathcal{F}(T)=\{\{c\},\{c, a\},\{c, b\},\{c, a, b\}\}$ for every $T=\{a, b, c\} \in \mathcal{T}$. In particular, $\mathcal{T} \subset \mathcal{F}$. We may therefore apply Lemma 9 to conclude that $T \notin \mathcal{F}$ for every 3 -set $T \subset\{a, b\}$. This is a contradiction to the assumption that $T \in \mathcal{F}$ for all $T \in\binom{S}{3}$.
When $t=6$, 7 , since $|\mathcal{F}(S)| \leq 7$ and $\binom{S}{\geq 3} \subset \mathcal{F}$, we have $\left|\mathcal{F} \cap\binom{S}{\leq 2}\right| \leq 2$. Consequently there exist $a, b \in S$ such that $\mathcal{F}(\{a, b\})=\emptyset$. Since $\mathcal{T}=\{\{a, b, c\}:|\mathcal{F}(\{a, b, c\})|=t\}=\emptyset$, we may again apply Lemma 9 and derive a contradiction as in the previous paragraph.

Proof of Lemma 6. We are to show that $\mathcal{F}_{3}=\emptyset$ for $7 \leq t \leq 10$. Suppose to the contrary, that there exists a set $T \in \mathcal{F}_{3}$. We now separate the case $t=7$ and the cases $t=8,9,10$.
Case 1. $t=7$.
Since $|\mathcal{F}(T)|<7$ (by Property S), there exists a set $P \in\binom{T}{\leq 2} \backslash \mathcal{F}$. Define \mathcal{T} as in (1), trivially $\mathcal{T} \subset \mathcal{F}$. We may apply Lemma 9 to conclude that $\bar{T} \notin \mathcal{F}$, a contradiction.
Case 2. $t=8,9,10$.

Since $t \geq 2^{3}$, we may assume that (\star) holds in \mathcal{F}. In particular, if $T \in \mathcal{F}_{3}$, then $|\mathcal{F}(T)|=7$. Let $\mathcal{D}=\left\{S \in\binom{[n]}{4}: S \supset T,|\mathcal{F}(S)|=t\right\}$. If $\mathcal{D}=\emptyset$, then $\mathcal{F}^{\prime}=\mathcal{F}-T$ satisfies Property \mathbf{D} and is thus a $(4, t)$-system of size $|\mathcal{F}|-1$, a contradiction. Now suppose that $|\mathcal{D}|=1$ and $\{a\} \cup T$ is the only element of \mathcal{D}. Since $t<11$, at least one of $\{a\},\{a, b\},\{a, c\},\{a, d\}$, say $\{a\}$, is not contained in \mathcal{F}. Let $\mathcal{F}^{\prime}=\mathcal{F}-T+\{a\} . \mathcal{F}^{\prime}$ satisfies Property \mathbf{S} trivially. Consider a 4 -set $S \supset T$ of $[n]$. If $S \neq\{a\} \cup T$, then $|\mathcal{F}(S)| \geq t+1$ and $\left|\mathcal{F}^{\prime}(S)\right| \geq t$. If $S=\{a\} \cup T$, then $\left|\mathcal{F}^{\prime}(S)\right|=|\mathcal{F}(S)|=t$. This means that \mathcal{F}^{\prime} satisfies Property \mathbf{D} and consequently \mathcal{F}^{\prime} is a $(4, t)$-system, a contradiction.
Now we assume that there exist $a_{1}, a_{2} \in[n]$ such that $\left\{a_{i}\right\} \cup T \in \mathcal{D}$ for $i=1,2$. We will show that when $8 \leq t \leq 10$, there are two vertices $v_{1}, v_{2} \in T$ such that $\left|\mathcal{F}\left(\left\{a_{1}, a_{2}, v_{1}, v_{2}\right\}\right)\right|<t$, contradicting Property \mathbf{D}.
Define $\mathcal{F}_{\left\{a_{i}\right\}}(T)=\mathcal{F}\left(\left\{a_{i}\right\} \cup T\right)-\mathcal{F}(T)$ for $i=1,2$. Since $|\mathcal{F}(T)|=7$, we have $\left|\mathcal{F}_{\left\{a_{i}\right\}}(T)\right|=$ $1,2,3$ for $t=8,9,10$, respectively. Using (\star), we thus know that $\left\{a_{i}\right\} \subseteq \mathcal{F}_{\left\{a_{i}\right\}}(T) \subset \mathcal{F}_{\leq 2}$ for every $t \in\{8,9,10\}$.

- When $t=8$, we have $\mathcal{F}_{\left\{a_{i}\right\}}(T)=\left\{\left\{a_{i}\right\}\right\}$ for $i=1,2$. Thus $\left|\mathcal{F}\left(\left\{a_{1}, a_{2}, b, c\right\}\right)\right| \leq 6<8$ for any $b \neq c \in T$.
- When $t=9$, we have $\mathcal{F}_{\left\{a_{1}\right\}}(T)=\left\{\left\{a_{1}\right\},\left\{a_{1}, c\right\}\right\}$ and $\mathcal{F}_{\left\{a_{2}\right\}}(T)=\left\{\left\{a_{2}\right\},\left\{a_{2}, d\right\}\right\}$, for not necessarily distinct $c, d \in T$. Consequently $\left|\mathcal{F}\left(\left\{a_{1}, a_{2}, b, c\right\}\right)\right| \leq 8<9$ for some $b \in T \backslash\{c, d\}$.
- When $t=10$, we may assume that $\mathcal{F}_{\left\{a_{1}\right\}}(T)=\left\{\left\{a_{1}\right\},\left\{a_{1}, b\right\},\left\{a_{1}, d\right\}\right\}$ and $\mathcal{F}_{\left\{a_{2}\right\}}(T)$ $=\left\{\left\{a_{2}\right\},\left\{a_{2}, c\right\},\left\{a_{2}, d\right\}\right\}$, where $c, b \in T$ are not necessarily distinct. If $c \neq b$, then $\left|\mathcal{F}\left(\left\{a_{1}, a_{2}, b, c\right\}\right)\right| \leq 8<10$. Otherwise, $\left|\mathcal{F}\left(\left\{a_{1}, a_{2}, b, w\right\}\right)\right| \leq 8<10$, where $w=T \backslash\{c, d\}$.

Proof of Lemma 7. Let $7 \leq t \leq 14$. We are to show that $\binom{[n]}{1} \subset \mathcal{F}$. Suppose instead, say, that $\{n\} \notin \mathcal{F}$.
For $t \geq 8$, consider a set $S \in\binom{[n]}{4}$ and $S \ni n$. We know that no set from $\mathcal{F}(S)$ contains n (otherwise (\star) forces $\{n\} \in \mathcal{F}$). Thus $|\mathcal{F}(S)| \leq 7<t$, a contradiction to Property D.
For $t=7$, consider a set $T \in\binom{[n-1]}{3}$. By Property \mathbf{S} and Property \mathbf{D}, we have $|\mathcal{F}(T)| \leq 6$ and $|\mathcal{F}(\{n\} \cup T)| \geq 7$. Then there exists a set $P \in \mathcal{F}(\{n\} \cup T)$ such that $P \supset n$. Let $\mathcal{F}^{\prime}=\mathcal{F}-P+\{n\}$. For any $Y \in\binom{[n]}{3}$ and $n \in T$, we have $|\mathcal{F}(Y)| \leq 5$ (because $\{n\}, Y \notin \mathcal{F}$). Therefore \mathcal{F}^{\prime} satisfies Property \mathbf{S} and is thus a $(4, t)$-system, a contradiction.

Proof of Lemma 8. We are to show that $\binom{[n]}{2} \subset \mathcal{F}$ for $11 \leq t \leq 13$. Suppose to the contrary, that there exist $a, b \in[n]$ such that $\{a, b\} \notin \mathcal{F}$. Pick any two elements $v_{1}, v_{2} \in$ $[n] \backslash\{a, b\}$ and consider $D=\left\{a, b, v_{1}, v_{2}\right\}$. Since (\star) holds, we have $\left\{a, b, v_{1}\right\},\left\{a, b, v_{2}\right\} \notin \mathcal{F}$ (otherwise $\{a, b\} \in \mathcal{F}$). Together with $\{a, b\}$ and D, this gives us four members of $\left(2^{D} \backslash \emptyset\right) \backslash \mathcal{F}$. Consequently $|\mathcal{F}(D)| \leq 11$, which contradicts Property \mathbf{D} when $t=12,13$. Now assume that $t=11$. Then $|\mathcal{F}(D)|=11$ and $\left|\mathcal{F}\left(\left\{a, v_{1}, v_{2}\right\}\right)\right|=\left|\mathcal{F}\left(\left\{b, v_{1}, v_{2}\right\}\right)\right|=7$. Let $\mathcal{F}^{\prime}=\mathcal{F}-\left\{a, v_{1}, v_{2}\right\}+\{a, b\} . \mathcal{F}^{\prime}$ satisfies Property \mathbf{S} trivially. To check Property \mathbf{D},
we consider all the 4 -sets S containing $\left\{a, v_{1}, v_{2}\right\}$. If $S=\left\{a, b, v_{1}, v_{2}\right\}$, then $\left|\mathcal{F}^{\prime}(S)\right|=$ $|\mathcal{F}(S)|>11$. Otherwise, $S=\left\{a, v_{1}, v_{2}, v_{3}\right\}$ for some $v_{3} \in[n] \backslash\left\{a, b, v_{1}, v_{2}\right\}$. Since $\left|\mathcal{F}\left(\left\{a, v_{i}, v_{j}\right\}\right)\right|=7$ for any $i \neq j$, only S and $\left\{v_{1}, v_{2}, v_{3}\right\}$ could be absent from $\mathcal{F}(S)$ and consequently $|\mathcal{F}(S)| \geq 13$. We thus have $\left|\mathcal{F}^{\prime}(S)\right|=|\mathcal{F}(S)|-1 \geq 13-1>11$. Therefore \mathcal{F}^{\prime} is a $(4,11)$-system, a contradiction to the optimality of \mathcal{F}.

$3.2 m(n, 4,5)$

In this section we prove that $m(n, 4,5)=\binom{n}{2}-17$. Before the proof, we introduce the following extensions of the Turán number:

Definition 10. A family $\mathcal{G} \in\binom{[n]}{i}$ is called a Turán-i (n, k, t)-system if every k-set of $[n]$ contains at least t members of \mathcal{G}. The generalized Turán number $T_{i}(n, k, t)$ is defined as the minimum size of a Turán-i (n, k, t)-system.
Replacing all the instances of i by $\geq i$ in the previous paragraph, we obtain the non-uniform Turán number $T_{\geq i}(n, k, t)$.

In the proof we will consider $T_{3}(k, 4,1)=\binom{k}{3}-\operatorname{ex}\left(k, K_{4}^{(3)}\right)$. Turán [14] conjectured that $T_{3}(k, 4,1)$ is achieved by the following 3-graph \mathcal{H}_{k} (referred to as Turán's 3-graph). Partition $[k]$ into $A_{1} \cup A_{2} \cup A_{3}$, where $\lfloor k / 3\rfloor \leq\left|A_{i}\right| \leq\lceil k / 3\rceil$. The edges of \mathcal{H}_{k} are 3-sets which are either contained in some A_{i} or contain two vertices of A_{i} and one of $A_{i+1(\bmod 3)}$. It is known [13] that Turán's conjecture holds for $k \leq 13$. For larger k, the following lower bound of de Caen [1] suffices for our purpose:

$$
\begin{equation*}
T_{3}(k, 4,1) \geq \frac{k(k-1)(k-3)}{18} . \tag{2}
\end{equation*}
$$

We also need the following simple lemma on $T_{\geq 1}(n, k, t)$.
Lemma 11. [9] $T_{\geq 1}(n, k, t)=n-k+t$ for $1 \leq t \leq k$.
Let \mathcal{F} be an optimal $(4,5)$-system with $A=\{a:\{a\} \in \mathcal{F}\}, B=[n]-A$ and assume $|A|=k$. By Lemma 5 , we may assume that \mathcal{F} contains no 4 -sets. In order to show that $|\mathcal{F}| \geq\binom{ n}{2}-17$, our proof consists of three stages described in Section 3.2.1-3.2.3. The proof leads to a construction achieving this bound, which we present in Section 3.2.3 as well.

3.2.1 Stage 1

We start with Claim 12 which reflects a rough picture of \mathcal{F} and in turn implies a (weak) lower bound (4) for $|\mathcal{F}|$.
Given two disjoint sets $C, D \in[n]$, we write $\mathcal{F}(C, D)=\{S \in \mathcal{F}: S \cap C \neq \emptyset$ and $S \cap D \neq \emptyset\}$.

Claim 12. 1. $(\mathcal{F}(A))_{2}$ is a matching in A.
2. $\overline{(\mathcal{F}(B))_{2}}$ contains no matching of size 2 or star with 3 edges.
3. $|\mathcal{F}(A, B)| \geq(n-k)(k-2)+\left|\mathcal{F}_{1,2}(A, B)\right|$, where $\mathcal{F}_{1,2}(A, B)=\left\{T \in \mathcal{F}_{3}:|T \cap A|=\right.$ $1,|T \cap B|=2\}$.
4. $\left|(\mathcal{F}(A))_{3}\right| \geq k(k-2)(k-4) / 24$.

Proof. Part 1: Property \mathbf{S} prevents $\mathcal{F}(A)$ from containing two adjacent (graph) edges. Thus $(\mathcal{F}(A))_{2}$ is a matching.
Part 2: We first claim that

$$
\begin{equation*}
\text { If } P \in\binom{B}{2} \backslash \mathcal{F} \text { and } P \subset T,|T|=3 \text {, then } T \notin \mathcal{F} \text {. } \tag{3}
\end{equation*}
$$

In fact, if Y is 3 -set of $[n]$ such that $Y \supset P$ and $|\mathcal{F}(Y)|=4$, then $Y \in \mathcal{F}$. We may therefore apply Lemma 9 to conclude that $T \notin \mathcal{F}$.
If there are $a, b, c, d \in B$ such that $\{a, b\},\{c, d\} \notin \mathcal{F}$, then $(\mathcal{F}(\{a, b, c, d\}))_{3}=\emptyset$ by (3). Consequently $|\mathcal{F}(\{a, b, c, d\})| \leq 4$, a contradiction to Property D. Therefore, $\overline{\mathcal{F}(B)}$ contains no two vertex-disjoint (graph) edges. A similar argument shows that $\overline{\mathcal{F}(B)}$ contains no star with 3 edges.
Part 3: Consider a vertex $b \in B$ and a 3-subset T of A. Since $\{b\} \notin \mathcal{F},|\mathcal{F}(T)| \leq 4$ and $|\mathcal{F}(\{b\} \cup T)| \geq 5$, we have $|\mathcal{F}(\{b\}, T)| \geq 1$. Define $\mathcal{G}_{b}=\{Y \backslash\{b\}: Y \in \mathcal{F}(\{b\}, A)\}$ for every $b \in B$. Then \mathcal{G}_{b} is a set system of $\binom{A}{\leq 2}$ such that every 3 -set in A contains at least one member of \mathcal{G}_{a}, in other words, \mathcal{G}_{b} is a $\operatorname{Turán}^{-} \geq 1(k, 3,1)$-system. By Lemma 11, we have $\left|\mathcal{H}_{b}\right| \geq T_{\geq 1}(k, 3,1)=k-2$. Repeating this for all $b \in B$, we have

$$
|\{S \in \mathcal{F}(A, B):|S \cap B|=1\}|=\sum_{b \in B}\left|\mathcal{G}_{b}\right| \geq(n-k)(k-2) .
$$

Consequently $|\mathcal{F}(A, B)| \geq(n-k)(k-2)+\left|\mathcal{F}_{1,2}(A, B)\right|$.
Part 4. Now we give a crude lower bound for $(\mathcal{F}(A))_{3}$. From Part 1, we know that $(\mathcal{F}(A))_{2}$ is a matching $M=\left\{\left\{x_{i}, y_{i}\right\}\right\}_{i=1}^{m}$. Let

$$
\mathcal{D}=\left\{S \in\binom{A}{4}:\left|S \cap\left\{x_{i}, y_{i}\right\}\right| \leq 1 \text { for every }\left\{x_{i}, y_{i}\right\} \in M\right\}
$$

By Property \mathbf{D}, every 4 -set in \mathcal{D} contains at least one member of $(\mathcal{F}(A))_{3}$. Since \mathcal{D} is minimal when $m=\lfloor k / 2\rfloor$, we may assume that $m=\lfloor k / 2\rfloor$ when estimating $(\mathcal{F}(A))_{3}$ from below. The usual averaging arguments thus give the following lower bound (for even k, the case when k is odd yields an even larger bound):

$$
(\mathcal{F}(A))_{3} \geq \frac{|\mathcal{D}|}{k-6}=\frac{k(k-2)(k-4)(k-6)}{4!(k-6)}=\frac{k(k-2)(k-4)}{24} .
$$

The consequence of Claim 12 is the following lower bound.

$$
\begin{align*}
|\mathcal{F}| \geq & \left|(\mathcal{F}(A))_{1}\right|+\left|(\mathcal{F}(A))_{3}\right|+|\mathcal{F}(A, B)|+\left|(\mathcal{F}(B))_{2}\right|+\left|(\mathcal{F}(B))_{3}\right| \\
\geq & k+\frac{k(k-2)(k-4)}{24}+(n-k)(k-2)+\left|\mathcal{F}_{1,2}(A, B)\right| \\
& +\binom{n-k}{2}-2+\left|(\mathcal{F}(B))_{3}\right| . \tag{4}
\end{align*}
$$

3.2.2 Stage 2

In this stage we first prove Claim $13,(\mathcal{F}(A))_{2}=\emptyset$, which not only implies that $(\mathcal{F}(A))_{\geq 2}$ is a Turán-3 $(k, 4,1)$-system, but also makes it possible to find more details about $\mathcal{F}(A, \bar{B})$ and $\mathcal{F}(B)$, which are summarized in Claim 14. Claim 13 and 14 together describe the fine structure of \mathcal{F}. This leads to an improved lower bound (5) for $|\mathcal{F}|$.
Let us first sketch the idea behind the proof of Claim 13. Suppose that $\left\{a_{1}, a_{2}\right\} \in(\mathcal{F}(A))_{2}$. Then at least one of $B_{i}=\left\{b \in B:\left\{a_{i}, b\right\} \notin \mathcal{F}\right\}, i=1,2$ has size $|B| / 2$ and consequently either $\left|\mathcal{F}_{1,2}(A, B)\right|$ or $\left|(\mathcal{F}(B))_{3}\right|$ is at least $3(n-k)$. But because of $(4),|\mathcal{F}|$ is larger than the trivial upper bound $\binom{n}{2}$, which is a contradiction.
Claim 13. $(\mathcal{F}(A))_{2}=\emptyset$ provided that $n \geq 160$.
Proof. Note that (4) and $|\mathcal{F}| \leq\binom{ n}{2}$ imply that $k=O\left(n^{1 / 3}\right)$ as $n \rightarrow \infty$ (in particular, when $n \geq 20, k<n / 2)$.
Suppose instead, that $\left\{a_{1}, a_{2}\right\} \in(\mathcal{F}(A))_{2}$. Pick a vertex $b \in B$. By Property \mathbf{S}, at most one of $\left\{a_{1}, b\right\}$ and $\left\{a_{2}, b\right\}$ is contained in \mathcal{F}. Without loss of generality, we may assume that B has a subset B_{1} of size $\frac{n-k}{2}$, such that $\left\{a_{1}, b\right\} \notin \mathcal{F}$ for every $b \in B_{1}$. Consider $\mathcal{T}_{a_{1}}=\left\{T \in \mathcal{F}_{3}: a_{1} \in T,\left|T \cap B_{1}\right|=2\right\}$. If $\left|\mathcal{T}_{a_{1}}\right| \geq 3(n-k)$, then (4) implies that (when $n \geq 30$),

$$
\begin{aligned}
|\mathcal{F}| & \geq k+\frac{k(k-2)(k-4)}{24}+(n-k)(k-2)+\binom{n-k}{2}-2+\left|\mathcal{T}_{a_{1}}\right| \\
& \geq\binom{ n}{2}+(n-k)+\frac{k(k-2)(k-4)}{24}-\binom{k}{2}+k-2 \\
& \geq\binom{ n}{2}+n-29>\binom{n}{2}
\end{aligned}
$$

a contradiction to the trivial upper bound that $|\mathcal{F}| \leq\binom{ n}{2}$, where the third inequality follows from the fact

$$
\left.\min _{k \geq 0} \frac{k(k-2)(k-4)}{24}-\binom{k}{2}=-26.125 \quad \text { (achieved by } k=11\right)
$$

We may therefore assume that $\left|\mathcal{T}_{a_{1}}\right|<3(n-k)$. Let $\mathcal{P}=\left\{P \in\binom{B_{1}}{2}:\left\{a_{1}\right\} \cup P \in \mathcal{T}_{a_{1}}\right\}$
and $\mathcal{T}=\left\{T \in\binom{B_{1}}{3}:\binom{T}{2} \cap P=\emptyset\right\}$. Then $|\mathcal{P}|=\left|\mathcal{T}_{a_{1}}\right|$, and therefore

$$
\begin{aligned}
|\mathcal{T}| & \geq\binom{(n-k) / 2}{3}-|\mathcal{P}|\left(\frac{n-k}{2}-2\right) \\
& >\frac{(n-k)(n-k-2)(n-k-4)}{48}-\frac{3}{2}(n-k)^{2} \\
& \geq 3(n-k), \quad \text { when } n-k \geq 80 \text { or } n \geq 160 .
\end{aligned}
$$

On the other hand, we have $\mathcal{T} \in \mathcal{F}$ for every $T \in \mathcal{T}$ because $\left|\mathcal{F}\left(\left\{a_{1}\right\} \cup T\right)\right| \geq 5$ and $\mathcal{F}\left(\left\{a_{1}\right\}, T\right)=\emptyset$. Consequently $\left|(\mathcal{F}(B))_{3}\right| \geq|\mathcal{T}|>3(n-k)$. Using this lower bound for $\left|(\mathcal{F}(B))_{3}\right|$ in (4), we obtain $|\mathcal{F}| \geq k(k-2)(k-4) / 24+\binom{n}{2}+n-2>\binom{n}{2}$, a contradiction.

Note that we make no effort to optimize the constant 160 in Claim 13.
With the help of Claim 13, we are able to see the fine structure of \mathcal{F} as follows.
Claim 14. 1. $(\mathcal{F}(A, B))_{3}=\emptyset$.
2. $(\mathcal{F}(B))_{3}=\emptyset$ and $|\mathcal{F}(B)|=\left|(\mathcal{F}(B))_{2}\right| \geq\binom{|B|}{2}-1$.
3. For every $a \in A$, we have $|\{b \in B:\{a, b\} \in \mathcal{F}\}| \geq n-k-2$. Consequently $\left|(\mathcal{F}(A, B))_{2}\right| \geq k(n-k-2)$.

Proof. Part 1. Let T_{0} be a 3 -set of $[n]$ with $T_{0} \cap A \neq \emptyset$ and $T \cap B \neq \emptyset$.
If $T_{0} \cap B=\left\{b_{1}, b_{2}\right\} \notin \mathcal{F}$, then $T_{0} \notin \mathcal{F}$ by (3). If $T_{0} \supset\{a, b\} \notin \mathcal{F}$ for some $a \in A$ and $b \in B$, then we consider all the 3 -sets $T \supset P$ such that $|\mathcal{F}(T)|=4$. If $|T \cap B|=2$, then it must be the case that $T \in \mathcal{F}$. Otherwise, assume that $T \cap A=\left\{a, a^{\prime}\right\}$. Since $\left\{a, a^{\prime}\right\} \notin \mathcal{F}$ by Claim 13, we also have $T \in \mathcal{F}$. We may therefore apply Lemma 9 to conclude that $T_{0} \notin \mathcal{F}$.
Finally we assume that $P \in \mathcal{F}$ for every $P \in\binom{T_{0}}{2}$ and $P \not \subset A$. Either $\left|T_{0} \cap B\right|=2$ or $\left|T_{0} \cap A\right|=2$, we always have $\left|\left(\mathcal{F}\left(T_{0}\right)\right)_{\leq 2}\right|=4$. Therefore $T_{0} \notin \mathcal{F}$ by Property \mathbf{S}.
We thus conclude that $(\mathcal{F}(A, B))_{3}=\emptyset$.
Part 2. Suppose instead, that there exists $T \in(\mathcal{F}(B))_{3}$. Then we know that $\binom{T}{2} \subset \mathcal{F}$ by (3). Let $\mathcal{D}=\left\{S \in\binom{[n]}{4}: T \subset S,|\mathcal{F}(S)|=5\right\}$. We may assume that $\mathcal{D} \neq \emptyset$, otherwise $|\mathcal{F}(S)| \geq 6$ for every $S \supset T$, and T could be removed from \mathcal{F} without hurting Property \mathbf{D}. Consider a set $S=\{a\} \cup T \in \mathcal{D}$. Either $a \in A$ or $a \in B$. If $a \in A$, then $\mathcal{F}(\{a\}, T)=\emptyset$; if $a \in B$, then $|\mathcal{F}(\{a\}, T)|=1$.
We claim that $|\mathcal{D}|=1$. Suppose instead, that \mathcal{D} contains two members $\left\{a_{1}\right\} \cup T$ and $\left\{a_{2}\right\} \cup T$. If $a_{1}, a_{2} \in A$, then we consider $S_{0}=\left\{a_{1}, a_{2}, b, c\right\}$ for any two vertices $b, c \in T$. From Part 1 we know that $\left(\mathcal{F}\left(S_{0}\right)\right)_{3}=\emptyset$. We also have $\left\{a_{1}, a_{2}\right\} \notin \mathcal{F}$ by Claim 13. Consequently $\left|\mathcal{F}\left(S_{0}\right)\right|=3<5$, a contradiction to Property D. If $a_{1}, a_{2} \in B$, then there are two vertices $b, c \in T$ such that $\left\{a_{1}, b\right\},\left\{a_{2}, c\right\} \notin \mathcal{F}$. This already contradicts Claim 12 Part 2. Finally, assume that $a_{1} \in A, a_{2} \in B$ and $\left\{a_{2}, d\right\} \in \mathcal{F}$ for some $d \in T$. Consider
$S_{0}=\left\{a_{1}, a_{2}, b, c\right\}$, where $\{b, c\}=T \backslash\{d\}$. We know that $\left(\mathcal{F}\left(S_{0}\right)\right)_{3}=\emptyset$ from Part 1 and (3), $\left(\mathcal{F}\left(S_{0}\right)_{2}\right) \subseteq\left\{\left\{a_{1}, a_{2}\right\},\{b, c\}\right\}$ from our assumption. Consequently $\left|\mathcal{F}\left(S_{0}\right)\right|=3<5$, again a contradiction.
Now assume that $S_{0}=\{a\} \cup T$ is the unique element of D. Let $\mathcal{F}^{\prime}=\mathcal{F}-T+\{a, b, c\}$ for any two vertices $b, c \in T$. \mathcal{F}^{\prime} satisfies Property \mathbf{S} since $\left|\mathcal{F}^{\prime}(\{a, b, c\})\right| \leq 3$. \mathcal{F}^{\prime} also satisfies Property \mathbf{D} because $\left|\mathcal{F}^{\prime}(S)\right| \geq 6-1=5$ for every $S \in\binom{[n]}{4} \backslash S_{0}$ and $\left|\mathcal{F}^{\prime}\left(S_{0}\right)\right|=\left|\mathcal{F}\left(S_{0}\right)\right|=5$. \mathcal{F}^{\prime} is thus another optimal $(4,5)$-system. However, if $a \in A$, then \mathcal{F}^{\prime} contradicts Part 1. If $a \in B$, then \mathcal{F}^{\prime} contradicts (3), because $\{a, b, c\} \in \mathcal{F}^{\prime}$ and at least one of $\{a, b\}$ and $\{a, c\}$ is not in \mathcal{F}^{\prime}.
We thus conclude that $(\mathcal{F}(B))_{3}=\emptyset$.
Now it is easy to see why there are no three vertices $a, b, c \in B$ such that $\{a, b\},\{a, c\} \notin \mathcal{F}$. In such a case, since $(\mathcal{F}(B))_{3}=\emptyset$, we have $|\mathcal{F}(\{a, b, c, d\})| \leq 4$ for any $d \in B \backslash\{a, b, c\}$, a contradiction to Property D. Together with Claim 12 Part 2, we conclude that $\mathcal{F}(B)$ misses at most one edge on B.
Part 3. Suppose instead, that there exists an $a \in A$ and $b_{1}, b_{2}, b_{3} \in B$ such that $\left\{a, b_{i}\right\} \notin$ \mathcal{F} for all i. Part 1 and Part 2 together imply that $S=\left\{a, b_{1}, b_{2}, b_{3}\right\}$ contains no 3 -set from \mathcal{F}. Thus, $|\mathcal{F}(S)| \leq 4$, contradicting Property D.
We now refine (4) by applying Claims 13 and 14:

$$
\begin{align*}
|\mathcal{F}| & =\left|(\mathcal{F}(A))_{1}\right|+\left|(\mathcal{F}(A))_{3}\right|+\left|(\mathcal{F}(A, B))_{2}\right|+\left|(\mathcal{F}(B))_{2}\right| \\
& \geq k+T_{3}(k, 4,1)+k(n-k-2)+\binom{n-k}{2}-1 \\
& =g(k)+\binom{n}{2}-1, \tag{5}
\end{align*}
$$

where $g(k)=T_{3}(k, 4,1)-k-\binom{k}{2}$.

3.2.3 Stage 3

In this stage, we complete the proof that $m(n, 4,5)=\binom{n}{2}-17$ by analyzing (5).
Since $T_{3}(k, 4,1)$ is known for $k \leq 13$, we compute $g(k)$ exactly for $0 \leq k \leq 11$ and obtain that $\min _{0 \leq k \leq 11} g(k)=g(7)=g(8)=-16$. For $k \geq 12$, using the inequality (2), we have $g(k) \geq k(k-1)(k-3) / 18-k-\binom{k}{2} \geq-12$. Putting these together, we have

$$
\begin{equation*}
\min _{k \geq 0} g(k)=g(7)=g(8)=-16 \tag{6}
\end{equation*}
$$

Applying (6) to (5), we obtain that $|\mathcal{F}| \geq\binom{ n}{2}-17$.
Claims 13, 14 and (6) lead us to the following construction, which gives a $(4,5)$-system of cardinality $\binom{n}{2}-17$.

Construction 1: Partition $[n]$ into $A \cup B$, where $|A|=k=7$ or 8. Let $\mathcal{F}=\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$, where $\mathcal{F}_{1}, \mathcal{F}_{2}$ and \mathcal{F}_{3} are defined as follows:

- $\mathcal{F}_{1}=\{\{a\}: a \in A\}$.
- Let M be a union of k disjoint copies of P_{2} (paths of length 2) whose middle vertices are in A and end vertices make up a subset B_{0} of B. Let $\mathcal{F}_{2}=\binom{B}{2} \backslash\{e\} \cup(A \times B) \backslash M$ for some $e \in B \backslash B_{0}$.
- \mathcal{F}_{3} is the edge set of the Turán 3 -graph \mathcal{H}_{k} on A.

We thus conclude that $m(n, 4,5)=\binom{n}{2}-17$.

$3.3 m(n, 4,6)$

Let \mathcal{F} be an optimal (4,6)-system. Define $A, B, \mathcal{F}(A), \mathcal{F}(B), \mathcal{F}(A, B)$ as in Section 3.2 and assume that $|A|=k$. We first define another threshold function.

Definition 15. $A \widehat{(4,2)}$-system of $[n]$ is a set system $\mathcal{G} \subseteq\binom{[n]}{2} \cup\binom{[n]}{3}$ such that every 4 -set of $[n]$ contains at least two members of \mathcal{G} and every 3-set of [n] contains at most two members of \mathcal{G}. Let $\hat{m}(n, 4,2)$ denote the minimum size of such a set system.

The lower bound $|\mathcal{F}| \geq\binom{ n}{2}-190$ in Theorem 3 is the consequence of the following claim, whose proof is postponed to the end of this section.

Claim 16. \mathcal{F} has the following properties.

1. There exists no $T \in \mathcal{F}_{3}$ which contains $a \in A$ and $b \in B$ such that $\{a, b\} \notin \mathcal{F}$.
2. $\mathcal{F}(B)=\binom{B}{2}$.
3. $|\mathcal{F}(A, B)| \geq k(n-k)-4$.
4. $\left|\mathcal{F}_{\geq 2}(A)\right| \geq \hat{m}(k, 4,2) \geq 2\binom{k}{7} /\binom{k-3}{4}=k(k-1)(k-2) / 105$.

Claim 16 also suggests a general way to construct $(4,6)$-systems of $[n]$: Partition $[n]$ into $A \cup B$ with $|A|=k$ for any $0 \leq k \leq n$. Let $\mathcal{F}=\mathcal{F}(A) \cup \mathcal{F}(A, B) \cup \mathcal{F}(B)$, with $\mathcal{F}(B)=\binom{B}{2}$, $\mathcal{F}(A, B)=A \times B$ and $\mathcal{F}(A)=(\mathcal{F}(A))_{1} \cup(\mathcal{F}(A))_{\geq 2}$, where $(\mathcal{F}(A))_{1}=\{\{a\}: a \in A\}$ and $(\mathcal{F}(A))_{\geq 2}$ is a $\widehat{(4,2)}$-system on A.
In particular, the following construction gives a (4, 6)-systems of $[n]$ of size $\binom{n}{2}-5$.
Construction 2: Let $k=8$ and $A, B, \mathcal{F}(B), \mathcal{F}(A, B)$ and $(\mathcal{F}(A))_{1}$ are defined as above. We construct $(\mathcal{F}(A))_{\geq 2}$ as follows.

- Suppose that $A=A_{1}+A_{2}$, where $A_{1}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $A_{2}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $E_{0}=\left\{\left\{u_{1}, v_{1}\right\},\left\{u_{1}, v_{2}\right\},\left\{u_{2}, v_{3}\right\},\left\{u_{3}, v_{3}\right\},\left\{u_{4}, v_{4}\right\}\right\}$. Let $(\mathcal{F}(A))_{2}=\left(A_{1} \times A_{2}\right)-E_{0}$.
- $(\mathcal{F}(A))_{3}=\left\{\left\{u_{1}, u_{2}, u_{3}\right\},\left\{u_{2}, u_{3}, u_{4}\right\},\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}, v_{4}\right\}\right\}$.

Proof of Theorem 3 for $t=6$. The upper bound $m(n, 4,6) \leq\binom{ n}{2}-5$ follows from Construction 2. Claim 16 gives the lower bound for $|\mathcal{F}|=m(n, 4,6)$ as follows.

$$
\begin{align*}
|\mathcal{F}| & =\left|(\mathcal{F}(A))_{1}\right|+\left|(\mathcal{F}(A))_{\geq 2}\right|+|\mathcal{F}(A, B)|+|\mathcal{F}(B)| \\
& \geq k+\frac{k(k-1)(k-2)}{105}+k(n-k)-4+\binom{n-k}{2} \tag{7}\\
& \geq\binom{ n}{2}-190,
\end{align*}
$$

where the last inequality follows from $\min _{k \geq 0} k+k(k-1)(k-2) / 105-\binom{k}{2}=-186$ (achieved by $k=35$).
Remark: Actually, we almost determine $m(n, 4,6)$ exactly in terms of $\hat{m}(k, 4,2)$ (off only by 4$)$. To see this, replace $k(k-1)(k-2) / 105$ by $\hat{m}(k, 4,2)$ in (7) and get an upper bound following the general construction:

$$
k+\hat{m}(k, 4,2)+k(n-k)+\binom{n-k}{2}-4 \leq|\mathcal{F}| \leq k+\hat{m}(k, 4,2)+k(n-k)+\binom{n-k}{2}
$$

for some $k \geq 0$. The knowledge of $\hat{m}(k, 4,2)$ for small values of k may lead to the final settlement of $m(n, 4,6)$.

Proof of Claim 16.

Part 1: Suppose that there are two vertices $a \in A$ and $b \in B$ such that $\{a, b\} \notin \mathcal{F}$. For a 3-set $T \supset\{a, b\}$, if $|\mathcal{F}(T)|=5$, then $T \in \mathcal{F}$. We may therefore apply Lemma 9 to conclude that $T \notin \mathcal{F}$ for every 3 -set $T \supset\{a, b\}$.
Part 2: We first claim that (3) holds in \mathcal{F}. In fact, when $P \in\binom{B}{2}$, we have $\left\{T \in\binom{[n]}{3}\right.$: $P \subset T,|\mathcal{F}(T)|=5\}=\emptyset$. Then we can apply Lemma 9 to obtain (3).
Next, we show that if there exists a set $T \in(F(B))_{3}$, then we obtain a contradiction. The proof is similar to that of Claim 14 Part 2. First, we claim that $\mathcal{D}=\left\{S \in\binom{n}{4}: T \subset\right.$ $S,|\mathcal{F}(S)|=6\}$ has exactly one member. Suppose instead, for example, that \mathcal{D} contains $S_{1}=\{a\} \cup T$ and $S_{2}=\{b\} \cup T$ for some $a \in A$ and $b \in B$ (other cases are similar). It means that there are exactly two sets from $\mathcal{F}\left(S_{1}\right), \mathcal{F}\left(S_{2}\right)$ which contain a, b, respectively. From Part 1, we know that these two sets in S_{1} must be $\{a\}$ and $\left\{a, b_{1}\right\}$ and the two sets in S_{2} must be $\left\{b, b_{2}\right\}$ and $\left\{b, b_{3}\right\}$, where $b_{1}, b_{2}, b_{3} \in T$. Assume that, for example, b_{1}, b_{2}, b_{3} are all distinct. Consider $S_{3}=\left\{a, b, b_{1}, b_{2}\right\}$. It is easy to see that $\left|\mathcal{F}\left(S_{3}\right)\right| \leq 5$, a contradiction to Property D. Now assume that $\{a\} \cup T$ is the unique member of \mathcal{D}, for example, for some $a \in A$. Let $\mathcal{F}^{\prime}=\mathcal{F}-T+\left\{a, b_{1}, b_{2}\right\}$. It is easy to see that \mathcal{F}^{\prime} is an optimal $(4,6)$-system. However, since $\left\{a, b_{1}, b_{2}\right\} \in \mathcal{F}^{\prime}$ and $\left\{a, b_{2}\right\} \notin \mathcal{F}^{\prime}$, this contradicts Part 1.
Since $(F(B))_{3}=\emptyset,\binom{B}{2} \subset \mathcal{F}$ follows from Property D. Consequently $\mathcal{F}(B)=\binom{B}{2}$.
Part 3: We first show that for every $a \in A$, there is at most one vertex $b \in B$ such that $\{a, b\} \notin \mathcal{F}$. Suppose instead, that $\left\{a, b_{1}\right\},\left\{a, b_{2}\right\} \notin \mathcal{F}$ for some $a \in A$. Consider $S=\left\{a, b_{1}, b_{2}, c\right\}$ for any vertex $c \in B \backslash\left\{b_{1}, b_{2}\right\}$. From Part 1 and 2 we know that
$(\mathcal{F}(S))_{3}=\emptyset$. Consequently $|\mathcal{F}(S)| \leq 5$, a contradiction to Property D. Second, for each $b \in B$, there are at most two vertices $a_{1}, a_{2} \in A$ such that $\left\{a_{i}, b\right\} \notin \mathcal{F}$ for $i=1,2$. Suppose instead, that there are three vertices $a_{1}, a_{2}, a_{3} \in A$ such that $\left\{a_{i}, b\right\} \notin \mathcal{F}$. Since $\mathcal{F}\left(\left\{a_{1}, a_{2}, a_{3}\right\},\{b\}\right)=\emptyset$, we have $\mathcal{F}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)=\mathcal{F}\left(\left\{b, a_{1}, a_{2}, a_{3}\right\}\right)$, which either violates Property D or Property \mathbf{S}.
Now consider the bipartite graph G whose edge set is $(A \times B)-(\mathcal{F}(A, B))_{2}$. By the argument in the previous paragraph, G consists of vertex-disjoint edges or 2-paths whose centers are in B. On the other hand, two independent edges $\left\{a_{i}, b_{i}\right\}, i=1,2$ in G (where $a_{i} \in A$) imply that $\left\{a_{1}, a_{2}\right\} \in \mathcal{F}$ (by Property D). If G contain 3 independent edges $\left\{a_{i}, b_{i}\right\}$, then $\left|\mathcal{F}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)\right|=6$, a contradiction to Property S. Therefore G has at most 4 edges which are from two disjoint 2-paths.
Part 4. Clearly $\mathcal{F}_{\geq 2}(A)$ is a $\widehat{(4,2)}$-system of $[k]$. Let us count the number of triples in a $\widehat{(4,2)}$-system \mathcal{G} of $[k]$. The following lemma implies that every 7 -set of $[k]$ contains at least two triples from \mathcal{G}. We omit its proof because it is an easy case analysis.

Lemma 17. Every $\widehat{(4,2)}$-system of $[7]$ contains at least two triples.
Using Lemma 17 and the averaging argument, we have $\hat{m}(k, 4,2) \geq 2\binom{k}{7} /\binom{k-3}{4}$.

4 Acknowledgements

The authors thank G. Turán for introducing them to the function $m(n, k, t)$ and helpful discussions.

References

[1] D. de Caen, Extension of a theorem of Moon and Moser on complete subgraphs. Ars Combin. 16 (1983), 5-10.
[2] F. Chung, L. Lu, An upper bound for the Turán number $t_{3}(n, 4)$. J. Combin. Theory Ser. A 87 (1999), no. 2, 381-389.
[3] P. Erdős, A. Rényi, On a problem in the theory of graphs. (Hungarian) Magyar Tud. Akad. Mat. Kutat Int. Közl. 71962 623-641 (1963).
[4] P. Erdős, M. Simonovits, Compactness results in extremal graph theory. Combinatorica 2 (1982), no. 3, 275-288.
[5] P. Frankl, Z. Füredi, An exact result for 3-graphs, Discr. Math. 50 (1984), 323-328.
[6] Z. Füredi, R. H. Sloan, K. Takata, Gy. Turán, On set systems with a threshold property, submitted.
[7] Kővari, T.; Sós, V. T.; Turán, P. On a problem of K. Zarankiewicz. Colloquium Math. 3, (1954). 50-57
[8] D. Mubayi, On hypergraphs with every four points spanning at most two triples, Electron. J. Combin. 10 (2003), no. 1, Note 10, 4 pp. (electronic).
[9] D. Mubayi, Y. Zhao, Non-Uniform Turán-Type problems, submitted
[10] S. Jukna, Computing threshold functions by deoth-3 threshold circuits with smaller thresholds of their gates, Inf. Proc. Lett. 56 (1995), 147-150
[11] R. H. Sloan, K. Takata, Gy. Turán, On frequent sets of Boolean matrices, Annals of Mathematics and Artificial Intelligence 24 (1998) 193-209
[12] J. H. Spencer, Maximal consistent families of triples, J. Combin. Theory 5 (1968), 1-8.
[13] T. H. Spencer, On the size of independent sets in hypergraphs. Coding theory, design theory, group theory (Burlington, VT, 1990), 263-273, Wiley-Intersci. Publ., Wiley, New York, 1993.
[14] P. Turán, On an extremal problem in graph theory. Mat. Fiz. Lapok 48 (1941), pp. 436452.

[^0]: *Research supported in part by NSF grant DMS-9970325.
 ${ }^{\dagger}$ Research supported in part by NSF grant DMS-9983703, a VIGRE Postdoctoral Fellowship at University of Illinois at Chicago.

