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Abstract

In 1975 Bollobás, Erdős, and Szemerédi [4] asked what minimum degree guar-
antees an octahedral subgraph K3(2) in any tripartite graph G with n vertices

in each vertex class. We show that δ(G) ≥ n + 2n
5
6 suffices thus improving

the bound n+ (1 + o(1))n
11
12 of Bhalkikar and Zhao [2] obtained by following

the approach of [4]. Bollobás, Erdős, and Szemerédi conjectured that n+ cn
1
2

suffices and there are many K3(2)-free tripartite graphs G with δ(G) ≥ n+ cn
1
2 .

We confirm this conjecture under the additional assumption that every vertex
in G is adjacent to at least (1/5 + ε)n vertices in any other vertex class.

AMS Subject Classification (2020): 05C15, 05C35

1 Introduction

As a foundation stone of extremal graph theory, the celebrated Turán’s theorem in 1941 [14]
determined the maximum size ex(n,Kt) of graphs G of order n without Kt as a subgraph (the
t = 3 case is also known as Mantel’s theorem [11]). In 1974, Bollobás, Erdős, and Straus [3]
obtained a Turán-type result that determined the maximum size of an r-partite graph not
containing Kt as a subgraph for any r ≥ t. Instead of considering the size, in 1975, Bollobás,
Erdős, and Szemerédi [4] investigated the following minimum degree version of this problem.

Problem 1.1. Given integers n and 3 ≤ t ≤ r, what is the largest minimum degree δ(G)
among all r-partite graphs G with parts of size n and which do not contain a copy of Kt?

The r = t case of Problem 1.1 has received a lot of attention and found applications in
linear arboricity, hypergraph matching, list coloring, etc. Graver (see [4]) answered Problem 1.1
for r = t = 3 and Jin [8] solved it for r = t = 4, 5. The r = t case of Problem 1.1 was
finally settled by Haxell and Szabó [7] and Szabó and Tardos [13]. Recently Lo, Treglown, and
Zhao [10] solved many r > t cases of the problem, including when r ≡ −1 (mod t − 1) and
r ≥ (3t− 4)(t− 2). For more related results, we refer interested readers to [1, 6, 7, 8, 13].

Let Gr(n) be an (arbitrary) balanced r-partite graph with parts of size n, and let Kr(s)
denote the complete r-partite graph with parts of size s. In the same paper Bollobás, Erdős,
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and Szemerédi [4] asked when G3(n) contains K3(2) (known as the octahedral graph) as a
subgraph.

Problem 1.2. What minimum degree δ(G) in a graph G = G3(n) ensures a subgraph K3(2)?

The authors of [4] conjectured that δ(G) ≥ n+ cn
1
2 is sufficient for some constant c. They

also stated that for n ≥ 28, δ(G) ≥ n+ 2−
1
2n

3
4 guarantees a K3(2), which follows from their

result on K3(s) [4, Theorem 2.6]. Unfortunately, Bhalkikar and Zhao [2] found a miscalculation
in the proof of [4, Theorem 2.6]. After correcting this error, they followed the approach in [4]
and obtained the following result.

Theorem 1.3 ([2]). Given s ≥ 2, ε > 0, and sufficiently large n, every graph G = G3(n)
with δ(G) ≥ n + (1 + ε)(s − 1)1/(3s

2)n1−1/(3s2) contains a copy of K3(s). In particular,

δ(G) ≥ n+ (1 + ε)n
11
12 guarantees a K3(2).

In this paper, we establish several results towards Problem 1.2. First we improved
Theorem 1.3 as follows.

Theorem 1.4. Given s ≥ 2, C = 2(s− 1)
1

s+1 , and sufficiently large n, every graph G = G3(n)

with δ(G) ≥ n+ Cn
1− 1

s(s+1) contains a copy of K3(s). In particular, if δ(G) ≥ n+ 2n
5
6 , then

G contains a K3(2).

Note that we can easily replace the constant 2 in C by 1+o(1) but use the current definition
of C for simplicity.

Let V1, V2, V3 be the three vertex classes of a graph G = G3(n). We call min{dG(v, Vi) :
v ∈ V (G) \ Vi, i ∈ [3]} the minimum partial degree of G, where dG(v, Vi) denotes the number
of neighbors of v in Vi. Our next result shows that G = G3(n) contains a copy of K3(2) under

the conjectured condition δ(G) ≥ n+ cn
1
2 if, in addition, the minimum partial degree is at

least (1/5 + ε)n.

Theorem 1.5. For every c ≥ 58, there exists n0 = n0(c) such that every tripartite graph

G = G3(n) with n ≥ n0, δ(G) ≥ n + 305c4n
1
2 , and the minimum partial degree at least

(1/5 + 7/c)n contains a K3(2).

Bhalkikar and Zhao [2] also constructed many non-isomorphic K3(2)-free tripartite graphs

with minimum degree at least n+ n
1
2 . In Section 4 we construct new families of K3(2)-free

tripartite graphs with minimum degree at least n+ cn
1
2 and reasonably large minimum partial

degree. This shows that Problem 1.2 is difficult if δ(G) ≥ n+ cn
1
2 suffices because it is hard

to apply the stability method.
For a graph G, let T (G) denote the number of triangles in G. For n, t ∈ N, let f(n, t)

denote the minimum T (G) over all G = G3(n) of minimum degree δ(G) at least n+ t. Bollobás,
Erdős, and Szemerédi [4] also studied f(n, t). They showed that f(n, 1) = 4 for n ≥ 4, and for
general t, they proved f(n, t) ≥ t3. For t ≤ n/5, they constructed tripartite graphs G = G3(n)
with δ(G) ≥ n + t and T (G) = 4t3, which implies f(n, t) ≤ 4t3. They asked the following
question.

Problem 1.6. For t ≤ n/5, is it true that f(n, t) ≥ 4t3?

We give a simple proof of f(n, t) ≥ n2(3t − n)/2, which improves f(n, t) ≥ t3 when√
3−1
2 n ≤ t ≤ n, and gives the exact value of f(n, t) for even n and t ≥ n/2.

Proposition 1.7. For 1 ≤ t ≤ n, f(n, t) ≥ n2(3t− n)/2 and equality holds if n is even and
t ≥ n/2.
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1.1 Notation

Recall that G = G3(n) is an (arbitrary) balanced tripartite graph with parts V1, V2, V3 such
that |Vi| = n for i = 1, 2, 3. Let V (G) denote the vertex set of G and E(G) denote the edge
set of G. We consider the subscript of Vi to be modulo 3 with values 1, 2, 3, instead of 0, 1, 2.

Given v ∈ V (G) we write N(v) for the neighborhood of v and define dG(v) = |N(v)| as the
degree of v in G. Let δ(G) and e(G) denote the minimum degree and the number of edges of G
respectively. We often view G as an oriented graph with edges directed from Vi to Vi+1. For
v ∈ Vi let N

+
G (v) (resp. N−

G (v)) be the set of vertices in Vi+1 (resp. Vi−1) that are joined to v.
Let d+G(v) = |N+

G (v)| and δ+(G) = min
v∈V (G)

|N+
G (v)|. We define d−G(v) and δ−(G) analogously.

For W ⊆ V (G) we define dG(v,W ) as the number of edges between v and W .
For graphs G,H, G−H is the subgraph of G obtained by deleting edges in E(G) ∩E(H).

For W ⊆ V (G), G[W ] and G \ W are the induced subgraphs of G on W and V (G) \ W ,
respectively. We write G[A,B] for the induced bipartite subgraph of G with parts A and B.
We often write {x, y} as xy; for xy ∈ E(G), let TG(xy) denote the number of triangles in G
that contain x and y.

Finally, let [n] denote the set {1, . . . , n} for n ∈ N. Given a set X and an integer s, we
write

(
X
s

)
for the set of all s-element subsets of X. We omit floors and ceilings whenever this

does not affect the argument.

1.2 Organization of paper

In Sections 2 we prove Theorem 1.4 and Proposition 1.7. In Section 3 we present the proof of
Theorem 1.5. In Section 4 we give multiple constructions of K3(2)-free tripartite graphs with

minimum degree at least n+ cn
1
2 and large minimum partial degree.

2 Proofs of Theorem 1.4 and Proposition 1.7

Let us denote by z(m,n; s, s) the Zarankiewicz number, which is the maximum number of
edges in a bipartite graph G = (U, V ;E) with |U | = m and |V | = n containing no copy of Ks,s.
The following well-known result on z(m,n; s, s) was proved by Kövári, Sós and Turán [9].

Lemma 2.1 ([9]). For s,m, n ∈ N, z(m,n; s, s) ≤ (s− 1)
1
smn1− 1

s + (s− 1)n.

Next we prove Theorem 1.4 by double counting and Lemma 2.1. This approach is similar
to the one used in [4, 2] and our improvement on δ(G) is due to the counting of triangles xyz
with x ∈ T1 and y ∈ Tx instead of x ∈ V1 and y ∈ V3 as in [4, 2].

Proof of Theorem 1.4. Let t = Cn
1− 1

s(s+1) , where C = 2(s−1)
1

s+1 . Let d+G(S) =
∑

x∈S d+G(x)
for any set S ⊆ V (G). Without loss of generality, suppose that there is a subset T1 ⊆ V1 of
size t satisfying

d+G(T1) = max{d+G(T ) : |T | = t, T ⊆ Vi, i ∈ [3]}.

For x ∈ V1, let Tx ⊂ V3 be an arbitrary t-element subset of N−
G (x). Note that δ(G) ≥ n+ t

guarantees that Tx exists. For an edge xy, let T (xy) be the number of triangles containing xy.
Since d+(y) + d−(y) ≥ n+ t for any y ∈ V (G), we have∑

x∈T1,y∈Tx

T (xy) ≥
∑
x∈T1

∑
y∈Tx

(
d+G(x) + d−G(y)− n

)
≥

∑
x∈T1

∑
y∈Tx

(
t+ d+G(x)− d+G(y)

)
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=
∑
x∈T1

(
t2 + td+G(x)− d+G(Tx)

)
= t3 + td+G(T1)−

∑
x∈T1

d+G(Tx).

Using the maximality of d+G(T1), we derive that∑
x∈T1,y∈Tx

T (xy) ≥ t3 + td+G(T1)− td+G(T1) = t3.

For any s distinct vertices z1, . . . , zs ∈ V2, let

T (z1, . . . , zs) = {xy ∈ E(G) : x ∈ T1, y ∈ Tx, G[{x, y, zi}] is an triangle for all i ∈ [s]} .

By double counting and convexity, we have

∑
{z1,...,zs}∈(V2s )

|T (z1, . . . , zs)| =
∑

x∈T1,y∈Tx

(
T (xy)

s

)
≥ t2

( 1
t2

∑
x∈T1,y∈Tx

T (xy)

s

)
≥ t2

(
t

s

)
.

By averaging, there exist s distinct vertices z1, . . . , zs ∈ V2 such that

|T (z1, . . . , zs)| ≥
t2
(
t
s

)(
n
s

) ≥ ts+2

2sns
=

Cs+1

2s
tn1− 1

s >

(
C

2

)s+1 (
tn1− 1

s + n
)

≥ (s− 1)tn1− 1
s + (s− 1)n > z(t, n; s, s)

by Lemma 2.1. Thus, the bipartite graph on T1 ∪ V3 with the edge set T (z1, . . . , zs) contains
a copy of Ks,s. Together with z1, . . . , zs, this gives the desired copy of K3(s) in G.

We next prove Proposition 1.7.

Proof of Proposition 1.7. Let G = G3(n) with δ(G) ≥ n + t. Let G be the tripartite
complement graph of G, that is K3(n) −G, where K3(n) has the same vertex classes as G.
Note that ∆(G) ≤ n− t and e(G) ≤ 3n(n− t)/2. Since each edge is in at most n triangles, so

T (G) ≥ T (K3(n))− ne(G) ≥ n3 − 3n2(n− t)

2
=

1

2
n2(3t− n).

Thus we have f(n, t) ≥ n2(3t− n)/2.
Suppose that n is even and t ≥ n/2. Let A1, B1, A2, B2, A3, B3 be disjoint vertex sets each

of size n/2. For i ∈ [3], let Vi = Ai ∪ Bi. Let H be a tripartite graph with vertex classes
V1, V2, V3 such that H =

⋃
i∈[3]H[Ai+1, Bi] and each H[Ai+1, Bi] is (n− t)-regular. Let G be

the tripartite complement graph of H, so G is (n + t)-regular. Since no triangle in K3(n)
contains two edges of H, by the calculation above we have T (G) = n2(3t− n)/2.

3 Proof of Theorem 1.5

We now sketch the proof of Theorem 1.5. Suppose that G is K3(2)-free with minimum partial
degree βn ≥ (1/5 + 7/c)n. Using the fact that δ+(G) ≥ βn, we show that G contains a
blow-up of C6 with parts of size βn+ o(n) (Lemma 3.2). Moreover, for each vertex v in this
C6-blow-up, we have d

+(v) ≤ βn+ o(n) and d−(v) ≥ n−βn+ o(n). Similarly, by δ−(G) ≥ βn,
we obtain another C6-blow-up with similar properties. If these two C6-blow-ups intersect,
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then it leads to a contradiction immediately. Otherwise, we use Lemma 3.3 to deduce that G
contains a K3(2) and thus complete the proof.

We begin with a definition. Recall that G = G3(n) is viewed as an oriented graph with
edges from Vi to Vi+1 for i ∈ [3]. For v ∈ V (G) and α > 0, let

D̃+
G,α(v) =

{
w ∈ N+

G (v) : T (vw) ≥ αn
}
,

D̃−
G,α(v) =

{
w ∈ N−

G (v) : T (vw) ≥ αn
}
.

The following lemma shows that only a small number of vertices w ∈ V (G) can have large
D̃+

G,α(w) or D̃
−
G,α(w).

Lemma 3.1. Let G = G3(n) and k > 1. Suppose that for some i ∈ [3], there exists a vertex

subset Wi ⊆ Vi of size |Wi| ≥ k2n
1
2 such that either |D̃+

G,2/k(w)| ≥ k2n
1
2 for all w ∈ Wi or

|D̃−
G,2/k(w)| ≥ k2n

1
2 for all w ∈ Wi. Then G contains a K3(2).

Proof. We only prove the |D̃+
G,2/k(w)| ≥ k2n

1
2 case because the proof of the |D̃−

G,2/k(w)| ≥ k2n
1
2

case is similar. Without loss of generality, we can assume |Wi| = k2n
1
2 . For each w ∈ Wi, let

W (w) ⊆ D̃+
G,2/k(w) be of size k2n

1
2 .

Define an auxiliary bipartite graph H with parts Wi and Vi+1 × Vi+2 such that for w ∈ Wi

and (vi+1, vi+2) ∈ Vi+1 × Vi+2, w(vi+1, vi+2) is an edge of H if vi+1 ∈ W (w) and wvi+1vi+2

forms a triangle in G. For all w ∈ Wi, dH(w) ≥ k2n
1
2 · (2/k)n = 2kn

3
2 , so e(H) ≥ 2k3n2. Thus∑

{wi,w′
i}∈(

Wi
2 )

|NH(wi) ∩NH(w′
i)| =

∑
(vi+1,vi+2)∈Vi+1×Vi+2

(
dH ((vi+1, vi+2))

2

)

≥ |Vi+1 × Vi+2|
(
e(H)/|Vi+1 × Vi+2|

2

)
≥ n2

(
2k3

2

)
≥ k6n2.

By averaging, there exists {wi, w
′
i} ∈

(
Wi
2

)
with |NH(wi) ∩ NH(w′

i)| > 2k2n. Note that
NH(wi) ∩NH(w′

i) can be viewed as a subgraph of G[W (wi), Vi+2]. By Lemma 2.1, we have

z
(
k2n

1
2 , n; 2, 2

)
≤ k2n+ n < |NH(wi) ∩NH(w′

i)|,

implying K3(2) ⊆ G.

Now we introduce two lemmas and postpone their proofs to the next two subsections. The
first lemma gives the structure of K3(2)-free tripartite graph with δ(G) ≥ n and linear partial
degree.

Lemma 3.2. Let ε > 0 and n be sufficiently large. Suppose G = G3(n) is a tripartite graph

with δ(G) ≥ n and δ+(G) ≥ 2εn. Further, assume that T (uv) ≤
(

ε
30

)2
n for all edges uv in G.

Then either G contains a K3(2) or there exists a partition P = {W1, . . . ,W6, U1, U2, U3} of
V (G) such that for i ∈ [6] and j ∈ [3],
(a) Wj ,Wj+3, Uj ⊆ Vj;
(b) δ+(G)− εn ≤ |Wi| ≤ δ+(G) + εn;
(c) for all w ∈ Wi, S ∈ {Wi−1,Wi+1, Ui−1} and S′ ∈ P \ {Wi−1,Wi+1, Ui−1} (the subscript

of Wi is modulo 6 with values 1, . . . , 6 while the subscript of Ui is modulo 3 with values
1, 2, 3), we have dG(w, S) ≥ |S| − εn, and dG(w, S

′) ≤ εn;
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(d) for all w ∈ Wi, d
+
G(w) ≤ δ+(G) + εn and d−G(w) ≥ n− δ+(G)− εn.

The second lemma deals with the case when G contains two C6 blow-ups.

Lemma 3.3. Let 1 < c ≤ n
1
6 and n ∈ N. Let G = G3(n) be a tripartite graph with

δ(G) ≥ n + 28c2n
1
2 . Let d = d(c, n) be a non-negative integer such that δ+(G) ≥ d and

3δ+(G)+2d ≥ n+26c−1n. Suppose that there exist disjoint vertex sets W1, . . . ,W6, X1, . . . , X6

(where Xi can be empty for i ∈ [6] and the subscripts of Xi are modulo 6) such that
(i) for all j ∈ [3], Wj ,Wj+3, Xj , Xj+3 ⊆ Vj;
(ii) for all i ∈ [6], δ+(G)− c−1n ≤ |Wi| ≤ δ+(G) + c−1n and d− c−1n ≤ |Xi| ≤ d+ c−1n;
(iii) for all i ∈ [6], w ∈ Wi and x ∈ Xi, we have

d(w, S) ≥ |S| − c−1n if S ∈ {Wi−1,Wi+1, Xi−1, Xi−4},
d(x, S) ≥ |S| − c−1n if S ∈ {Xi−1, Xi+1,Wi+1,Wi+4}.

Then G contains a K3(2).

V1 V2 V3

W1

W4

X1

X4

W2

W5

X2

X5

W3

W6

X3

X6

Figure 1: Graph of Lemma 3.3.

Proof of Theorem 1.5. This proof of the theorem actually proves the following slightly
stronger statement: For every c ≥ 58, there exists n0 = n0(c) such that every tripartite graph

G = G3(n) with n ≥ n0, δ(G) ≥ n+ 305c4n
1
2 and

2δ+(G) + 2δ−(G) + max{δ+(G), δ−(G)} ≥
(
1 + 35c−1

)
n (3.1)

contains a K3(2).
Suppose to the contrary that there exists a K3(2)-free tripartite graph G = G3(n) satisfies

the conditions above. Let α = (35c)−2 and G̃ be the spanning subgraph of G with E(G̃) =
{uv ∈ E(G) : T (uv) ≤ αn}. For i ∈ [3], let S+

i (and S−
i ) be a subset S ⊆ Vi of size 4α−2n1/2

with
∑

v∈S d+
G−G̃

(v) (and
∑

v∈S d−
G−G̃

(v), respectivley) maximal. By Lemma 3.1 with k = 2/α,

we deduce that, for any v ∈ Vi \ (S+
i ∪ S−

i ), we have

d+
G̃
(v) ≥ d+G(v)− 4α−2n1/2 and d−

G̃
(v) ≥ d−G(v)− 4α−2n1/2. (3.2)
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Let G′ = G̃ \
⋃

i∈[3](S
+
i ∪ S−

i ). Clearly, G′ is a tripartite graph with parts of size n′ =

n− 8α−2n1/2. By (3.2),

δ+(G′) ≥ δ+(G̃)− 8α−2n1/2 > δ+(G)− 12α−2n1/2

and analogously δ−(G′) ≥ δ−(G)− 12α−2n1/2. Using (3.2) and α = (35c)−2, we obtain that

δ(G′) ≥ δ(G)− 24α−2n
1
2 ≥ n+ 305c4n

1
2 − 24(35c)4n

1
2 ≥ n′ + 28c2n′ 1

2 .

Without loss of generality, we assume δ+(G′) ≥ δ−(G′) (otherwise we reverse the direction
of G′). We claim that

3δ+(G′) + 2δ−(G′) ≥ n′ + 30c−1n′. (3.3)

Indeed, if δ+(G) ≥ δ−(G), then we have

3δ+(G′) + 2δ−(G′) ≥ 3δ+(G) + 2δ−(G)− 60α−2n
1
2

(3.1)

≥
(
1 + 35c−1

)
n− 60α−2n

1
2 ≥

(
1 + 30c−1

)
n′

as n is sufficiently large. If δ−(G) ≥ δ+(G), then, since δ+(G′) ≥ δ−(G′), we have

3δ+(G′) + 2δ−(G′) ≥ 3δ−(G′) + 2δ+(G′) ≥ 3δ−(G) + 2δ+(G)− 60α−2n
1
2

(3.1)

≥
(
1 + 30c−1

)
n′.

Hence (3.3) holds.
Now we prove that G′ contains a K3(2), which contradicts our assumption that G is

K3(2)-free. Let V
′
1 , V

′
2 , V

′
3 be the three vertex classes of G′. Note that TG′(uv) ≤ T

G̃
(uv) ≤

αn = n/(35c)2 ≤ n′/(30c)2 for all uv ∈ E(G′). By (3.3), δ+(G′) ≥ n′/5. By Lemma 3.2 with
ε = c−1, V (G′) can be partitioned into W1, . . . ,W6, U1, U2, U3 of such that, for i ∈ [6],
(a) Wi, Ui ⊆ V ′

i (mod 3);

(b) δ+(G′)− c−1n′ ≤ |Wi| ≤ δ+(G′) + c−1n′;
(c) for all w ∈ Wi and S ∈ {Wi−1,Wi+1, Ui−1}, dG′(w, S) ≥ |S| − c−1n′;
(d) for all w ∈ Wi, d

+
G′(w) ≤ δ+(G′) + c−1n′ and d−G′(w) ≥ n′ − δ+(G′)− c−1n′.

If δ+(G′) ≥ (n′+26c−1n′)/3, then we apply Lemma 3.3 with d = 0 and Xi = ∅ for all i ∈ [6]
and obtain a K3(2) in G′, a contradiction.

If δ−(G′) ≤ δ+(G′) < (n′ + 26c−1n′)/3, then by (3.3), we have

δ−(G′) ≥ 1

2
(n′ + 30c−1n′ − 3δ+(G′)) ≥ 1

2
(n′ + 30c−1n′ − (n′ + 26c−1n′)) ≥ 2c−1n′.

By reversing the direction of G′ and applying Lemma 3.2 with ε = c−1 and noting δ−(G′) ≥
2c−1n′, we obtain a partition W ′

1, . . . ,W
′
6, U

′
1, U

′
2, U

′
3 of V (G′) such that, for i ∈ [6],

(e) W ′
i , U

′
i ⊆ V ′

5−i (mod 3);

(f) δ−(G′)− c−1n′ ≤ |W ′
i | ≤ δ−(G′) + c−1n′;

(g) for all w′ ∈ W ′
i and S ∈ {W ′

i−1,W
′
i+1, U

′
i−1}, dG′(w′, S) ≥ |S| − c−1n′;

(h) for all w′ ∈ W ′
i , d

−
G′(w′) ≤ δ−(G′) + c−1n′ and d+G′(w′) ≥ n′ − δ−(G′)− c−1n′.
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Let Xi = W ′
8−i (mod 6) for i ∈ [6]. This and (e) together imply that Xi ⊆ V ′

i (mod 3). We
claim that W1, . . . ,W6, X1, . . . , X6 are pairwise disjoint. Indeed, suppose to the contrary that
there exists a vertex v ∈ (Wi ∪Wi+3)∩ (Xi ∪Xi+3) for some i ∈ [3]. Then, by (d) and (h), we
have

n′ − δ−(G′)− c−1n′ ≤ d+G′(v) ≤ δ+(G′) + c−1n′,

which implies that δ+(G′) + δ−(G′) ≥ n′ − 2c−1n′, contradicting δ−(G′) ≤ δ+(G′) < (n′ +
26c−1n′)/3 as c−1 ≤ 58.

Let d = δ−(G′). It is easy to see that all the assumptions of Lemma 3.3 hold, for example,
(iii) holds because of (c) and (g), and fact that Wi ⊆ U ′

i (mod 3) and W ′
i ⊆ Ui (mod 3) for i ∈ [6].

We can thus obtain a K3(2) in G′ by applying Lemma 3.3. This contradicts our assumption
and completes the proof of Theorem 1.5.

3.1 Proof of Lemma 3.2

We begin with a simple proposition.

Proposition 3.4. Let 0 ≤ λ ≤ 1/10 and G be a bipartite graph with vertex classes A and B.
Suppose that for all a ∈ A, dG(a) ≥ (1 − λ)|B|. Then there exists a subset B′ ⊆ B of
size |B′| ≥ (1 − 5λ)|B| such that for all a ∈ A and b ∈ B′, dG(a,B

′) ≥ (1 − 2λ)|B′| and
dG(b, A) ≥ 4|A|/5.

Proof. Let B′ = {b ∈ B : dG(b) ≥ 4|A|/5}. Note that

|A||B′|+ 4

5
|A||B \B′| ≥

∑
b∈B

dG(b) = e(G) =
∑
a∈A

dG(a) ≥ (1− λ)|B||A|.

This implies |B′| ≥ (1− 5λ)|B| ≥ |B|/2. Clearly dG(a,B
′) ≥ |B′| − λ|B| ≥ (1− 2λ)|B′|, and

the result follows.

Proof of Lemma 3.2. Suppose G is K3(2)-free. Let α = ( ε
30)

2. Without loss of generality,
we will assume that there is an a0 ∈ V3 with d+(a0) = δ+(G) = βn. Furthermore, for all
vw ∈ E(G) with v ∈ Vi−1 and w ∈ Vi, we have

αn ≥ T (vw) = |N(w) ∩N(v)| ≥ d+(w) + d−(v)− n = d(w)− d−(w) + d−(v)− n

≥ δ(G)− d−(w) + d−(v)− n ≥ d−(v)− d−(w),

d−(w) ≥ d−(v)− αn. (3.4)

Since we can view G as an oriented graph with direction from Vi to Vi+1 and δ+(G) = βn, we
can find a directed path P = a0a1 . . . a12 of length 12 in G. Let A0 = {a0} and Ai = N+(ai−1)
for i ∈ [12]. Note that ai ∈ Ai.

Claim 3.5. The sets Ai’s satisfy the following properties.
(i) For i ∈ [12], we have |Ai| ≥ βn.
(ii) For i ∈ {0, 1, . . . , 12} and v ∈ Ai, we have d−(v) ≥ (1− β − iα)n.
(iii) For i ∈ {0, . . . , 11} and v ∈ Ai, we have d(v,Ai+1) ≥ |Ai+1|− (i+1)αn ≥ (β− (i+1)α)n

and d+(v) ≤ (β + iα)n. In particular, for i ∈ [12], |Ai| ≤ d+(ai−1) ≤ (β + (i− 1)α)n.
(iv) For i ∈ {0, 1, . . . , 10} and v ∈ Ai, we have d−(v,Ai+2) ≤ (i+ 3)αn.
(v) For i ∈ {0, 1, . . . , 9}, |Ai ∩Ai+3| ≤ 5

√
αn.

(vi) For i ∈ {0, 1, . . . , 10} and v ∈ Ai, we have |Vi−1 \ (Ai+2 ∪N−(v)) | ≤ (2i+ 3)αn.
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(vii) For i ∈ {1, . . . , 6}, |Ai ∩Ai+6| ≥ |Ai| − 8
√
αn ≥ (β − 8

√
α)n.

Proof of claim. We have |Ai| = d+(ai−1) ≥ δ+(G) = βn giving (i).
We prove (ii) by induction on i. If i = 0 then using βn = d+(a0), we have

d−(a0) = d(a0)− d+(a0) ≥ n− βn = (1− β)n.

So we may assume i ∈ [12]. For v ∈ Ai, note that ai−1v ∈ E(G). Together with (3.4), we have

d−(v) ≥ d−(ai−1)− αn ≥ (1− β − (i− 1)α)n− αn = (1− β − iα)n.

Hence (ii) holds.
For i ∈ {0, . . . , 11} and v ∈ Ai, we first show d+(v) ≤ (β + iα)n by using (ii). We

know d+(a0) = βn. For i ∈ [11], since v ∈ Ai = N+(ai−1), we have |N+(v) ∩ N−(ai−1)| =
T (vai−1) ≤ αn. Consequently,

d+(v) ≤ |N+(v) ∩N−(ai−1)|+ |Vi+1 \N−(ai−1)|
(ii)

≤ αn+ (β + (i− 1)α)n = (β + iα)n.

This implies that |Ai| ≤ d+(ai−1) ≤ (β + (i− 1)α)n for i ∈ [12].
Next we show d(v,Ai+1) ≥ |Ai+1|−(i+1)αn ≥ (β−(i+1)α)n for v ∈ Ai and i ∈ {0, . . . , 11}.

First, d(a0, A1) = |A1| > (β − α)n. Note that

|Vi+1 \ (N−(ai−1) ∪N+(v))| = |Vi+1 \N−(ai−1)| − |N+(v) \N−(ai−1))|
(ii)

≤ (β + (i− 1)α)n− d+(v) + T (ai−1v)

≤ (β + (i− 1)α)n− δ+(G) + αn = iαn. (3.5)

It follows that

d(v,Ai+1) ≥ |Ai+1| − |Ai+1 ∩N−(ai−1)| − |Ai+1 \ (N−(ai−1) ∪N+(v))|
≥ |Ai+1| − T (aiai−1)− |Vi+1 \ (N−(ai−1) ∪N+(v))|

(3.5)

≥ |Ai+1| − αn− iαn
(i)

≥ (β − (i+ 1)α)n.

Hence (iii) holds.
Suppose i ∈ {0, 1, . . . , 10} and v ∈ Ai. Let w ∈ N+(v,Ai+1), which exists because (iii)

implies that d+(v,Ai+1) ≥ |Ai+1| − (i+ 1)αn > 0. Then

αn ≥ T (vw) = |N−(v) ∩N+(w)| ≥ |N−(v) ∩N+(w) ∩Ai+2|
≥ d−(v,Ai+2) + d+(w,Ai+2)− |Ai+2|
(iii)

≥ d−(v,Ai+2) + (|Ai+2| − (i+ 2)αn)− |Ai+2| = d−(v,Ai+2)− (i+ 2)αn.

This gives d−(v,Ai+2) ≤ (i+ 3)αn, confirming (iv).
By (i) and (iii), for all v ∈ Ai+2, we have

d+(v,Ai+3) > |Ai+3| − (i+ 3)αn ≥ (1−
√
α)|Ai+3|,
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where use the assumption that α = (ε/30)2 and β ≥ 30
√
α. By applying Proposition 3.4

on G[Ai+2, Ai+3] we have a subset A′
i+3 ⊆ Ai+3 with size (1 − 5

√
α)|Ai+3| such that, for

all w ∈ A′
i+3,

d(w,Ai+2) ≥
4

5
|Ai+2| > (i+ 3)αn.

Since d(v,Ai+2) ≤ (i + 3)αn for all v ∈ Ai by (iv), it follows that Ai ∩ Ai+3 ⊆ Ai+3 \ A′
i+3.

Therefore, |Ai ∩Ai+3| ≤ 5
√
α|Ai+3| ≤ 5

√
αn confirming (v).

For all v ∈ Ai,

d−(v, Vi−1 \Ai+2) = d−(v)− d−(v,Ai+2)
(ii),(iv)

≥ (1− β − iα)n− (i+ 3)αn

= (1− β − (2i+ 3)α)n
(i)

≥ |Vi−1| − |Ai+2| − (2i+ 3)αn

= |Vi−1 \Ai+2| − (2i+ 3)αn.

Hence |Vi−1 \ (Ai+2 ∪N−(v)) | ≤ (2i+ 3)αn and (vi) holds.
Finally, for 0 ≤ i ≤ 6 and v ∈ Ai, we have

d−(v,Ai+5) ≥ d−(v,Ai+5 \Ai+2) ≥ |Ai+5 \Ai+2| − |Vi−1 \
(
Ai+2 ∪N−(v)

)
|

(v),(vi)

≥ |Ai+5| − 5
√
αn− (2i+ 3)αn ≥ |Ai+5| − 6

√
αn.

Hence there exists a vertex w ∈ Ai+5 such that

d+(w,Ai) ≥
e(Ai, Ai+5)

|Ai+5|
≥ |Ai|(|Ai+5| − 6

√
αn)

|Ai+5|
= |Ai| −

|Ai|
|Ai+5|

6
√
αn ≥ |Ai| − 7

√
αn,

where the last inequality holds because |Ai+5| ≥ βn and |Ai| ≤ (β + (i− 1)α)n by (i) and (iii),

and consequently, |Ai|
|Ai+1| ≤

β+5α
β < 7

6 by our assumption on α and β. Therefore,

|Ai ∩Ai+6| ≥ |Ai ∩Ai+6 ∩N+(w)| ≥ d+(w,Ai) + d+(w,Ai+6)− d+(w)

(iii)
> |Ai| − 7

√
αn+ (β − (i+ 6)α)n− (β + (i+ 5)α)n ≥ |Ai| − 8

√
αn

confirming (vii). ■

Now we come back to the proof of the lemma. For i ∈ [6], let Wi = (Ai ∩Ai+6) \ Ai+3.
If there exists some i ∈ [3] such that |Wi| + |Wi+3| > n, then this contradicts the fact
that Wi,Wi+3 ⊆ Vi and implies that G contains a K3(2). Otherwise, for j ∈ [3], let Uj =
Vj \ (Wj ∪Wj+3). Since Wj+3 ⊆ Aj+3 and Wj ∩ Aj+3 = ∅, we have Wj ,Wj+3, and Uj are
pairwise disjoint subsets of Vj , in particular, (a) holds. Hence P = {W1, . . . ,W6, U1, U2, U3} is
a partition of V (G).

By Claim 3.5 (iii), (v) and (vii), for i ∈ [6], we have

(β − 13
√
α)n ≤ |Ai ∩Ai+6| − |Ai ∩Ai+3|

≤ |Wi| ≤ |Ai| ≤ (β + 5α)n. (3.6)

Consequently, (1− 2β − 10α)n ≤ |Uj | ≤ (1− 2β + 26
√
α)n. Since ε = 30

√
α, (b) holds.
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Consider i ∈ [6] and v ∈ Wi. Trivially, d(v,Wi+3) = 0 = d(v, Ui) by (a). By Claim 3.5 (v)
and (vii), we have |Wi+1| ≥ |Ai+1| − 13

√
αn and thus

d(v,Wi+1) ≥ d(v,Ai+1)− 13
√
αn

(iii)
> |Ai+1| − (i+ 1)αn− 13

√
αn

≥ |Wi+1| − 7αn− 13
√
αn ≥ (β − 27

√
α)n. (3.7)

Together with Claim 3.5 (iii), this implies that

d(v,Wi+4) + dG(v, Ui+1) = d+(v)− d(v,Wi+1) ≤ (β + iα)n− (β − 27
√
α)n ≤ 28

√
αn.

By Claim 3.5 (iv),

d(v,Wi+2) ≤ d−(v,Ai+2) ≤ (i+ 3)αn ≤ 9αn.

Together with Claim 3.5 (ii), this implies that

dG(v,Wi−1) + dG(v, Ui−1) = d−G(v)− dG(v,Wi+2) ≥ (1− β − iα)n− 9αn

≥ (1− β − 15α)n
(3.6)

≥ n− |Wi+2| − 14
√
αn

= |Wi−1|+ |Ui−1| − 14
√
αn.

Therefore, (c) holds. Finally, since v ∈ Wi ⊆ Ai, we have d+(v) ≤ (β + iα)n ≤ (β + 6α)n by
Claim 3.5 (iii), and d−(v) ≥ (1− β − iα)n ≥ (1− β − 6α)n by Claim 3.5 (ii). Thus (d) holds.
This completes the proof of the lemma.

3.2 Proof of Lemma 3.3

Proof of Lemma 3.3. For i ∈ [3], let Ri = Vi \ (Wi ∪Wi+3 ∪Xi ∪Xi+3). By (ii), we have
|Ri| ≤ n− 2δ+(G)− 2d+ 4c−1n. Suppose to the contrary that G is K3(2)-free. We first prove
the following claim.

Claim 3.6. There exist disjoint vertex subsets W ∗
1 , . . . ,W

∗
6 , X

∗
1 , . . . , X

∗
6 such that

(i′) for all i ∈ [6], Wi ⊆ W ∗
i ⊆ Vi, Xi ⊆ X∗

i ⊆ Vi;
(ii′) for all v ∈ W ∗

i , i ∈ [6] and j ∈ {i+ 1, i− 1}, d(v,Wj) ≥ 3c−1n. For all v ∈ X∗
i , i ∈ [6]

and j ∈ {i+ 1, i− 2}, d(v,Wj) ≥ 3c−1n;

(iii′) |V (G) \
⋃

i∈[6] (W
∗
i ∪X∗

i ) | ≤ 24c2n
1
2 .

Proof of claim. Let V = {Wi, Xi : i ∈ [6]}. For all v ∈ R1 ∪ R2 ∪ R3, we define Iv ={
A ∈ V : d(v,A) ≥ 3c−1n

}
. Let

E = {{Wi,Wi+1}, {Xi, Xi+1}, {Wi−2, Xi}, {Wi+1, Xi} : i ∈ [6]}

be a family of 24 pairs of V. For every {A,B} ∈ E , we claim that at most c2n
1
2 vertices

v ∈ R1∪R2∪R3 satisfy {A,B} ⊆ Iv and call such vertices bad. Indeed, for i ∈ [6], let Yi be the
set of vertices v ∈ R1∪R2∪R3 such that {Wi,Wi+1} ⊆ Iv (the argument for other pairs of E is
similar). Note that Yi ⊆ Vi+2. For all v ∈ Yi, by the definition of Iv we have d(v,Wi) ≥ 3c−1n
and d(v,Wi+1) ≥ 3c−1n. Then at least 3c−1n vertices w ∈ NG(v,Wi) ⊆ N+

G (v) satisfy

T (vw) ≥ |NG(v,Wi+1) ∩NG(w,Wi+1)|
(iii)

≥ 3c−1n− c−1n = 2c−1n
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implying that |D̃+
G,2c−1(v)| ≥ 3c−1n. By Lemma 3.1, we have |Yi| ≤ c2n

1
2 , as claimed.

Now we delete all bad vertices and denote the remaining set by R′
1 ∪ R′

2 ∪ R′
3 (and call

their vertices good vertices). For i ∈ [6], define

W ∗
i = Wi ∪

{
v ∈ R′

1 ∪R′
2 ∪R′

3 : {Wi−1,Wi+1} ⊆ Iv
}

and

X∗
i =

{
Xi ∪ {v ∈ R′

1 ∪R′
2 ∪R′

3 : {Wi+1,Wi−2} ⊆ Iv} , i ∈ {1, 2, 3};
Xi, i ∈ {4, 5, 6}.

As before, the subscripts of W ∗
i and X∗

i in these definitions are modulo 6 with values 1, . . . , 6.
Observe that for i ∈ [6], W ∗

i and X∗
i are disjoint because if v ∈ W ∗

i ∩X∗
i , then {Wj ,Wj+1} ∈ Iv

for some j ∈ [6], contradicting v ∈ R′
1∪R′

2∪R′
3. Next we show that every vertex in R′

1∪R′
2∪R′

3

belongs to some W ∗
i or X∗

i , which completes the proof.
Suppose to the contrary that there is a vertex v ∈ R′

1∪R′
2∪R′

3 which does not belong to any
W ∗

i and X∗
i for i ∈ [6]. We will show that |Iv ∩ {Wi : i ∈ [6]}| ≤ 1 and |Iv ∩ {Xi : i ∈ [6]}| ≤ 2.

By (ii), it follows that

δ(G) ≤ d(v) < δ+(G) + c−1n+ 2(d+ c−1n) + 5 · 3c−1n+ 2
(
n− 2δ+(G)− 2d+ 4c−1n

)
= 2n+ 26c−1n−

(
3δ+(G) + 2d

)
≤ n,

contradicting our assumption.
Without loss of generality, assume that v ∈ R′

2 ⊆ V2. Trivially Iv ⊆ {W1,W3,W4,W6,
X1, X3, X4, X6}. Since v is a good vertex, if |Iv ∩ {Wi : i ∈ [6]}| ≥ 2, then Iv contains either
{W1,W4} or {W3,W6} or {W1,W3} or {W4,W6}. If {W1,W4} ⊆ Iv, then by the definition of
good vertices, we have {W3,W6, X3, X6} ∩ Iv = ∅, and thus

δ+(G) ≤ d+(v) ≤ 4 · 3c−1n+ |R3| ≤ n− 2δ+(G)− 2d+ 16c−1n,

implying 3δ+(G)+2d < n+16c−1n, a contradiction. If {W3,W6}, {W1,W3} or {W4,W6} ⊆ Iv,
then v belongs to X∗

2 , W
∗
2 or W ∗

5 respectively, contradicting our assumption on v. Thus
|Iv ∩ {Wi : i ∈ [6]}| ≤ 1. Furthermore, since {X3, X4} ̸⊆ Iv and {X1, X6} ̸⊆ Iv, we have
|Iv ∩ {Xi : i ∈ [6]}| ≤ 2, as claimed. ■

Now we go back to the proof of the lemma. Firstly, we have

∑
i∈[6]

|W ∗
i+1 ∪W ∗

i−1 ∪X∗
i+2 ∪X∗

i−1| = 2

∑
i∈[6]

(|W ∗
i |+ |X∗

i |)

 ≤ 6n.

Hence there exists an i ∈ [6] such that |W ∗
i+1 ∪ W ∗

i−1 ∪ X∗
i+2 ∪ X∗

i−1| ≤ n. Without loss of
generality we assume |W ∗

2 ∪W ∗
6 ∪X∗

3 ∪X∗
6 | ≤ n, and thus we have

δ(G)
(iii′)
≥ |W ∗

2 ∪W ∗
6 ∪X∗

3 ∪X∗
6 |+ |V (G) \

⋃
i∈[6]

(W ∗
i ∪X∗

i )|+ 4c2n
1
2 .

So for all v ∈ W1 ⊆ V1, we have |NG(v) ∩ (W ∗
3 ∪W ∗

5 ∪X∗
2 ∪X∗

5 )| ≥ 4c2n
1
2 . Therefore, there

must exist a set A ∈ {W ∗
3 ,W

∗
5 , X

∗
2 , X

∗
5} and a subset W̃1 ⊆ W1 with |W̃1| ≥ |W1|

4 ≥ c2n
1
2 such
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that for all w ∈ W̃1, d(w,A) ≥ c2n
1
2 . If A is one of W ∗

5 , X
∗
2 and X∗

5 , then for all w′ ∈ NG(w,A)
we have d(w′,W6) ≥ 3c−1n by (ii′), which implies that

T (ww′) ≥ |NG(w
′,W6) ∩NG(w,W6)|

(iii)

≥ 3c−1n− c−1n = 2c−1n.

Thus for all w ∈ W̃1, we have |D̃+
G,2c−1(w)| ≥ |NG(w,A)| ≥ c2n

1
2 . By Lemma 3.1, G contains

a K3(2), a contradiction. If A = W ∗
3 , then for all w′ ∈ NG(w,A) we have d(w′,W2) ≥ 3c−1n.

A similar argument shows that G contains a K3(2), this contradicts our assumption and
completes the proof of Lemma 3.3.

4 New constructions of K3(2)-free tripartite graphs

For n = q2+ q+1 where q is a prime power, it is well known (see [12]) that there is a K2,2-free
(q + 1)-regular bipartite graph G0 = G2(n) (note that q + 1 >

√
n). Using G0 as a building

block, Bhalkikar and Zhao [2] constructed many non-isomorphic K3(2)-free tripartite graphs

with minimum degree at least n+ n
1
2 . However, all their constructions have minimum partial

degree about
√
n. In this section we construct K3(2)-free tripartite graphs with minimum

degree n+ cn
1
2 and linear minimum partial degree.

Our first construction is based on two blow-ups of C6. It provides a K3(2)-free tripartite

graph G = G3(n) with δ(G) ≥ n+ 1
2n

1
2 and the minimum partial degree at least n

4 + 1
2n

1
2 .

Construction 4.1. Let H be the edge-colored tripartite graph such that
• V (H) = {aj , bj : j ∈ [6]};
• a1a2 . . . a6 and b1b2 . . . b6 forms two blue C6’s;
• for i ∈ [3], all four pairs between {ai, ai+3} and {bi+1, bi+4} are blue edges;
• for j ∈ [6], ajbj−1 are red edges.

a1 a4 b1 b4

a2 a5 b2 b5

a3 a6 b3 b6

Figure 2: Graph in Construction 4.1.

Note that H is tripartite vertices classes {ai, ai+3, bi, bi+3}.
Let G be the graph with vertex subsets Wv (for v ∈ V (H)) such that |Wv| = m such that

the following holds. If uv is a blue edge in H, then G[Wu,Wv] is a complete bipartite graph.
If uv is a red edge in H, then G[Wu,Wv] is isomorphic to G0. If uv is not an edge in H, then
G[Wu,Wv] is empty.
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Let n = 4m. It is easy to see that G = G3(n), δ(G) = 4m + m
1
2 = n + 1

2n
1
2 and the

minimum partial degree at least m +m
1
2 = n

4 + 1
2n

1
2 . Note that H is K2,2,1-free, each pair

of triangles do not share a blue edge and every triangle in H contains at least one red edge.
Hence G is K3(2)-free.

Note that in Construction 4.1, if we let |Wai | = αn and |Wbi | = βn for all i, where

α+ β = 1/2, then δ+(G) = βn+ (αn)
1
2 and δ−(G) = αn+ (βn)

1
2 .

One may wonder whether a linear minimum partial degree guarantees a unique extremal
structure. Using the following gluing operation, we show that the answer is negative.

Construction 4.2. Let G and G′ be two K3(2)-free tripartite graphs on disjoint vertex classes
V1, V2, V3 and V ′

1 , V
′
2 , V

′
3 of size n. Define G⊙G′ to be tripartite graph obtained from G ∪G′

by adding all edges between Vi and V ′
i+1 for all i ∈ [3]. Then δ(G⊙G′) = n+min{δ(G), δ(G′)}

and the minimum partial degree of G ⊙ G′ is min{δ+(G′), δ−(G)}. Since all new edges in
G⊙G′ does not lie in a triangle, G⊙G′ is K3(2)-free.

This construction allows us to create many new K3(2)-free tripartite graphs. For example,
let G1 be the graph of Construction 4.1. Then G = G1⊙G1 is a K3(2)-free tripartite graph with

2n vertices in each part, δ(G) ≥ 2n+ 1
2n

1
2 and the minimum partial degree at least n

4 + 1
2n

1
2 .

Recall that Bollobás, Erdős, and Szemerédi [4] conjectued there exists c such that every
G = G3(n) with δ(G) ≥ n+cn1/2 contains K3(2). If δ

+(G) = βn, then Lemma 3.2 implies that
G essentially contains a blow-up of C6 with vertex classes of size about βn. After removing
this blow-up of C6, we believe that one should be able to reduce to the case when both δ+(G)
and δ−(G) are sublinear in n. However, we do not know how to handle this case.
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