Hamiltonian cycles with all small even chords

Guantao Chen ${ }^{\text {a }}$, Katsuhiro Ota ${ }^{\text {b }}$, Akira Saito ${ }^{\text {c }}$, Yi Zhao ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, United States
${ }^{\mathrm{b}}$ Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan
${ }^{\text {c }}$ Department of Computer Science, Nihon University, Sakurajosui 3-25-40, Setagaya-Ku, Tokyo 156-8550, Japan

ARTICLE INFO

Article history:

Received 7 December 2010
Received in revised form 8 December 2011
Accepted 9 December 2011
Available online 3 January 2012

Keywords:

Hamiltonian cycle
Dirac theorem
Posa's conjecture

Abstract

Let G be a graph of order $n \geq 3$. An even squared Hamiltonian cycle (ESHC) of G is a Hamiltonian cycle $C=v_{1} v_{2} \ldots v_{n} v_{1}$ of G with chords $v_{i} v_{i+3}$ for all $1 \leq i \leq n$ (where $v_{n+j}=v_{j}$ for $j \geq 1$). When n is even, an ESHC contains all bipartite 2-regular graphs of order n. We prove that there is a positive integer N such that for every graph G of even order $n \geq N$, if the minimum degree is $\delta(G) \geq \frac{n}{2}+92$, then G contains an ESHC. We show that the condition of n being even cannot be dropped and the constant 92 cannot be replaced by 1 . Our results can be easily extended to even kth powered Hamiltonian cycles for all $k \geq 2$.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we will only consider simple graphs - finite graphs without loops or multiple edges. The notations and definitions not defined here can be found in [7]. Let $G=(V, E)$ be a graph with vertex set V and edge set E. For a vertex $v \in V$ and a subset $S \subseteq V$, let $\Gamma(v, S)$ denote the set of neighbors of v in S, and $\operatorname{deg}(v, S)=|\Gamma(v, S)|$. Given another set $U \subseteq V$, define $\Gamma(U, S)=\cap_{u \in U} \Gamma(u, S)$ and $\operatorname{deg}(U, S)=|\Gamma(U, S)|$. When $U=\left\{v_{1}, \ldots, v_{k}\right\}$, we simply write $\Gamma(U, S)$ and $\operatorname{deg}(U, S)$ as $\Gamma\left(v_{1}, \ldots, v_{k}, S\right)$ and $\operatorname{deg}\left(v_{1}, \ldots, v_{k}, S\right)$, respectively. When $S=V$, we only write $\Gamma(U)$ and $\operatorname{deg}(U)$.

A graph G is called Hamiltonian if it contains a spanning cycle. The Hamiltonian problem, determining whether a graph has a Hamiltonian cycle, has long been one of few fundamental problems in graph theory. In this paper, we fix G to be a graph of order $n \geq 3$. Dirac [8] proved that, if the minimum degree $\delta(G) \geq n / 2$ then G is Hamiltonian. Ore [23] extended Dirac's result by replacing the minimum degree condition with that of $\operatorname{deg}(u)+\operatorname{deg}(v) \geq n$ for all nonadjacent vertices u and v. Many results have been obtained on generalizing these two classic results (see [13] for a recent survey in this area).

A 2-regular subgraph (2-factor) of G consists of disjoint cycles of G. Aigner and Brandt [2] proved that if the minimum degree $\delta(G) \geq \frac{2 n-1}{3}$ then G contains all 2-factors as subgraphs (Alon and Fischer [3] proved this for sufficiently large n). If to-be-embedded 2 -factors have at most k odd components, then by a conjecture of El-Zahar [9], the minimum degree condition can be reduced to $\delta(G) \geq(n+k) / 2$ (Abbasi [1] announced a proof of El-Zahar's conjecture for large n). Another way to generalize Aigner and Brandt's result is to find one specific subgraph of G that contains all 2-factors of G. A squared Hamiltonian cycle of G is a Hamiltonian cycle $v_{1} v_{2} \cdots v_{n} v_{1}$ together with edges $v_{i} v_{i+2}$ for all $1 \leq i \leq n$. Note that we always assume that $v_{n+i}=v_{i}$ for $i \geq 1$. It is easy to see that a squared Hamiltonian cycle contains all 2-factors of G. Pósa (see [10]) conjectured that every graph G of order $n \geq 3$ with $\delta(G) \geq \frac{2}{3} n$ contains a squared Hamiltonian cycle. Fan and Kierstead [12] proved this conjecture approximately; Komlós et al. [15] proved the conjecture for sufficiently large n. More generally, the k-th powered Hamiltonian cycle is a Hamiltonian cycle $v_{1} v_{2} \cdots v_{n} v_{1}$ with chords $v_{i} v_{i+j}$ for all $1 \leq i \leq n$ and $1 \leq j \leq k$.

[^0]Komlós et al. [17,18] proved a conjecture of Seymour for sufficiently large n : every n-vertex graph G with $\delta(G) \geq(k-1) n / k$ contains a k th powered Hamiltonian cycle.

Böttcher et al. [4] recently proved a conjecture of Bollobás and Komlós (see [14]), which asymptotically includes all the results mentioned above. Given an integer b, a graph H is said to have bandwidth at most b, if there exists a labeling of the vertices by $v_{1}, v_{2}, \ldots, v_{n}$, such that $|j-i| \leq b$ whenever $v_{i} v_{j} \in E(H)$. It is shown in [4] that for any $\varepsilon>0$ and integers r, Δ, there exists $\beta>0$ with the following property. Let G and H be n-vertex graphs for sufficiently large n. If $\delta(G) \geq((r-1) / r+\varepsilon) n$ and H is r-chromatic with maximum degree Δ and bandwidth at most βn, then G contains a copy of H. Note that the k th powered Hamiltonian cycle of order n has chromatic number $k+1$ or $k+2$ depending on the value of n. The authors of [4] make their result applicable even when H is $r+1$-chromatic but one of its color classes is fairly small, e.g., the k th powered Hamiltonian cycle.

We are interested in the situation when the error term εn in the conjecture of Bollobás and Komlós can be reduced to a constant. According to the El-Zahar Conjecture, every n-vertex graph G with the minimum degree $\delta(G) \geq n / 2$ contains all 2-factors with even components. Given a graph G, we define an Even Squared Hamiltonian Cycle (ESHC) as a Hamiltonian cycle $C=v_{1} v_{2} \cdots v_{n} v_{1}$ of G with chords $v_{i} v_{i+3}$ for all $1 \leq i \leq n$. When $n \geq 7$, an ESHC is 4-regular with chromatic number $\chi=2$ for even n and $\chi=3$ for odd n. It is not hard to check that an n-vertex ESHC contains all bipartite graphs of order n with maximum degree at most 2 (e.g., by using the fact that every ESHC of even order contains a ladder graph defined below). Below is our main result.

Theorem 1.1. There exists $N>0$ such that for all even integers $n \geq N$, if G is a graph of order n with $\delta(G) \geq \frac{n}{2}+92$, then G contains an ESHC.

We show that the constant 92 in Theorem 1.1 cannot be replaced by 1.
Proposition 1.2. Suppose that $n \geq 10$. Let G be the union of two copies of $K_{\frac{n}{2}+2}$ sharing 4 vertices. Then $\delta(G)=\frac{n}{2}+1$ but G contains no ESHC.

We also show that the condition of n being even is necessary for Theorem 1.1 -even if we replace 92 by $\sqrt{n / 8}-1 / 2$.
Proposition 1.3. There are infinitely many odd n and graphs G of order n such that $\delta(G) \geq \frac{n}{2}+\sqrt{n / 8}-1 / 2$ but G contains no ESHC.

More generally, an Even k th powered Hamiltonian Cycle (EkHC) of a graph G is a Hamiltonian cycle $v_{1} v_{2} \cdots v_{n} v_{1}$ with edges $v_{i} v_{i+2 j-1}$ for all $1 \leq i \leq n$ and $1 \leq j \leq k$. Then an E1HC is simply a Hamiltonian cycle while an E2HC is an ESHC. Using the same proof techniques for Theorem 1.1, we can derive the following result, whose proof is omitted.

Theorem 1.4. For any positive integer k, there exist a constant $c=c(k)$ and a positive integer N such that if G is a graph of even order $n \geq N$ and $\delta(G) \geq \frac{n}{2}+c$ then G contains an EkHC.

One may view an $E k H C$ of order $n=2 N$ as the following bipartite graph. Let $B^{k}(N)$ be the bipartite graph $(X \cup Y, E)$ with $X=\left\{x_{1}, \ldots, x_{N}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{N}\right\}$ such that $x_{i} y_{j} \in E$ if and only if
$i-j(\bmod N) \in\{-k+1, \ldots,-1,0,1, \ldots, k\}$.
In particular, $B^{2}(N)$, or ESHC, contains the ladder graph defined by Czygrinow and Kierstead [6], which has the same vertex sets X and Y but x_{i} is adjacent to y_{j} if and only if $i-j(\bmod N) \in\{-1,0,1\}$. Note that the ladder graph contains all 2-factors with bipartite components.

The structure of the paper is as follows. We prove two (easy) Propositions 1.2 and 1.3 in the next section. Following the approach of [15] on squared Hamiltonian cycles, we prove Theorem 1.1 by the regularity method. In Section 3 we state the Regularity Lemma and the Blow-up Lemma. In Section 4 we prove Theorem 1.1 by proving the non-extremal case and two extremal cases separately. It seems harder to handle the extremal cases here than in [15]; this is also the reason why we need a large constant 92 in Theorem 1.1. The last section gathers open problems with a remark.

2. Proofs of Propositions 1.2 and 1.3

Given a graph G, a pair (A, B) of vertex subsets is called a separator of G if $V(G)=A \cup B$, both $A-B$ and $B-A$ are non-empty and $E(A-B, B-A)=\emptyset$. It is easy to see that Proposition 1.2 follows from the following claim, which can be proved by a simple case analysis.

Claim 2.1. Suppose that G is a graph with an ESHC. If (A, B) is a separator of G with $|A-B| \geq 3$ and $|B-A| \geq 3$, then $|A \cap B| \geq 6$.
Proof of Claim 2.1. Let H be an ESHC of G with Hamiltonian cycle C. Assign C an orientation. A segment $P_{1}=x P_{1} z$ of C is called an $A B$-path if $x \in A-B$ and $z \in B-A$. Now let $x_{1} P_{1} z_{1}$ be an $A B$-path such that $V\left(P_{1}\right)-\left\{x_{1}, z_{1}\right\} \subseteq A \cap B$ (this can be done by letting P_{1} be minimal). Since $|A-B| \geq 3,|B-A| \geq 3$, there is an $A B$-path $x_{2} P_{2} z_{2}$ contained in $C-V\left(P_{1}\right)$ such that $V\left(P_{2}\right)-\left\{x_{2}, z_{2}\right\} \subseteq A \cap B$. If $e\left(P_{i}\right) \geq 4$ for $i=1,2$, then $|A \cap B| \geq e\left(P_{1}\right)+e\left(P_{2}\right)-2 \geq 6$ and we are done. On the other hand, we know that $e\left(P_{i}\right) \notin\{1,3\}$ for $i=1,2$ because $x_{i} z_{i} \notin E(G)$, which follows from $e(A-B, B-A)=\emptyset$. Without loss of generality, assume that $e\left(P_{1}\right)=2$, or $P_{1}=x_{1} y_{1} z_{1}$. By following the orientation of C, let x_{1}^{-}be the predecessor of x_{1} and z_{1}^{+} be the successor of z_{1}. Since $x_{1}^{-} z_{1}, x_{1} z_{1}^{+} \in E(G)$, we have $x_{1}^{-}, z_{1}^{+} \in A \cap B$ (see Fig. 1).

Fig. 1. A segment connecting A and B.
Since P_{1} and P_{2} are vertex disjoint $A B$-paths, we have $V\left(P_{2}\right) \cap\left\{x_{1}^{-}, y_{1}, z_{1}^{+}\right\}=\emptyset$. If P_{2} contains at least three internal vertices, then $|A \cap B| \geq 6$ and we are done. So we may assume that $P_{2}=x_{2} y_{2} z_{2}$, and consequently $\left\{x_{2}^{-}, y_{2}, z_{2}^{+}\right\} \subseteq A \cap B$.

If $z_{1}^{+} \neq x_{2}^{-}$and $z_{2}^{+} \neq x_{1}^{-}$, then all $x_{1}^{-}, y_{1}, z_{1}^{+}, x_{2}^{-}, y_{2}, z_{2}^{+}$are distinct, and consequently $|A \cap B| \geq 6$. Otherwise, without loss of generality, assume that $z_{1}^{+}=x_{2}^{-}$. Then $P_{1}^{\prime}=P_{1} z_{1}^{+} P_{2}$ is an $A B$-path with two vertices in each of $A-B$ and $B-A$. Since $|A-B| \geq 3$ and $|B-A| \geq 3$, there is an $A B$-path $x_{3} P_{3} z_{3}$ which is vertex-disjoint from P_{1}^{\prime} such that $V\left(P_{3}\right)-\left\{x_{3}, z_{3}\right\} \subseteq A \cap B$. If $e\left(P_{3}\right) \geq 4$, then $|A \cap B| \geq 6$ because P_{1}^{\prime}, P_{3} are disjoint and P_{1}^{\prime} contains three vertices y_{1}, z_{1}^{+}, y_{2} from $A \cap B$. Otherwise $P_{3}=x_{3} y_{3} z_{3}$ for some $y_{3} \in A \cap B$, then $\left\{x_{3}^{-}, y_{3}, z_{3}^{+}\right\} \subseteq A \cap B$. Since six vertices $y_{1}, z_{1}^{+}, y_{2}, x_{3}^{-}, y_{3}, z_{3}^{+}$are contained in $A \cap B$, we have $|A \cap B| \geq 6$.
Proof of Proposition 1.3. Let q be an odd prime power, by using projective planes, one can construct (e.g., [11]) C_{4}-free graphs H of order $h=q^{2}+q+1$ with $\delta(H) \geq q$. Let $G:=H+\bar{K}_{h-q}$, i.e., a graph obtained from H by adding $h-q$ vertices such that each new vertex is adjacent to all vertices of H. Let $X:=V(G)-V(H)$ and $n:=|V(G)|=2 h-q$. Then n is odd and

$$
\delta(G) \geq h=\frac{n+q}{2} \geq \frac{n}{2}+\sqrt{\frac{n}{8}}-\frac{1}{2}
$$

because $n=2 q^{2}+q+2<2(q+1)^{2}$. To see that G does not have any ESHC, consider an arbitrary Hamiltonian cycle C of G (if it exists). Since X is an independent vertex set and n is odd, we conclude that $C-X$ is the union of vertex-disjoint paths such that $e(C-X)$ is odd. In particular, one path $P[x, y]$ of $C-X$ has odd length. If $|V(P)| \geq 4$, then $x x^{+++} \notin E(G)$, where $x^{+++}=\left(\left(x^{+}\right)^{+}\right)^{+}$, since H contains no C_{4}. Otherwise $|V(P)|=2$, which in turn shows that $x^{-}, y^{+} \in X$. Since X is independent, $x^{-} y^{+} \notin E(G)$. In all cases G does not have an ESHC based on C.

3. The Regularity Lemma and Blow-up Lemma

As in [15,18], the Regularity Lemma of Szemerédi [24] and Blow-up Lemma of Komlós et al. [16] are main tools in our proof of Theorem 1.1. For any two disjoint vertex-sets A and B of a graph G, the density of A and B is the ratio $d(A, B):=$ $e(A, B) /(|A| \cdot|B|)$, where $e(A, B)$ is the number of edges with one end vertex in A and the other in B. Let ε and δ be two positive real numbers. The pair (A, B) is called ε-regular if for every $X \subseteq A$ and $Y \subseteq B$ satisfying $|X|>\varepsilon|A|,|Y|>\varepsilon|B|$, we have $|d(X, Y)-d(A, B)|<\varepsilon$. Moreover, the pair (A, B) is called (ε, δ)-super-regular if (A, B) is ε-regular and $\operatorname{deg}_{B}(a)>\delta|B|$ for all $a \in A$ and $\operatorname{deg}_{A}(b)>\delta|A|$ for all $b \in B$.

Lemma 3.1 (Regularity Lemma-Degree Form). For every $\varepsilon>0$ there is an $M=M(\varepsilon)$ such that, for any graph $G=(V, E)$ and any real number $d \in[0,1]$, there is a partition of the vertex set V into $\ell+1$ clusters $V_{0}, V_{1}, \ldots, V_{\ell}$, and there is a subgraph G^{\prime} of G with the following properties:

- $\ell \leq M$,
- $\left|V_{i}\right| \leq \varepsilon|V|$ for $0 \leq i \leq \ell,\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{\ell}\right|$,
- $\operatorname{deg}_{G^{\prime}}(v)>\operatorname{deg}_{G}(v)-(d+\varepsilon)|V|$ for all $v \in V$,
- $G^{\prime}\left[V_{i}\right]=\emptyset$ (i.e. V_{i} is an independent set in $\left.G^{\prime}\right)$, for all i,
- each pair $\left(V_{i}, V_{j}\right), 1 \leq i<j \leq \ell$, is ε-regular with $d\left(V_{i}, V_{j}\right)=0$ or $d\left(V_{i}, V_{j}\right) \geq d$ in G^{\prime}.

The Blow-up Lemma allows us to regard a super-regular pair as a complete bipartite graph when embedding a graph with bounded degree. We need a bipartite version of this lemma which also restricts the mappings of a small number of vertices.

Lemma 3.2 (Blow-Up Lemma-Bipartite Version). For every $\delta, \Delta, c>0$, there exists an $\varepsilon=\varepsilon(\delta, \Delta, c)>0$ and $\alpha=$ $\alpha(\delta, \Delta, c)>0$ such that the following holds. Let (X, Y) be an (ε, δ)-super-regular pair with $|X|=|Y|=N$. If a bipartite graph H with $\Delta(H) \leq \Delta$ can be embedded in $K_{N, N}$ by a function ϕ, then H can be embedded in (X, Y). Moreover, in each $\phi^{-1}(X)$ and $\phi^{-1}(Y)$, fix at most αN special vertices z, each of which is equipped with a subset S_{z} of X or Y of size at least $c N$. The embedding of H into (X, Y) exists even if we restrict the image of z to be S_{z} for all special vertices z.

4. Proof of Theorem 1.1

Let V be the vertex set of a graph G of order n for some even n. A partition $V_{1} \cup \cdots \cup V_{k}$ of V is called balanced if $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$ for all $i \neq j$. In particular, a balanced bipartition $V_{1} \cup V_{2}$ satisfies $\left|V_{1}\right|=\left|V_{2}\right|=n / 2$. Given $0 \leq \alpha \leq 1$, we define two extremal cases with parameter α as follows.

Extremal Case 1: There exists a balanced partition of V into V_{1} and V_{2} such that the density $d\left(V_{1}, V_{2}\right) \geq 1-\alpha$.
Extremal Case 2: There exists a balanced partition of V into V_{1} and V_{2} such that the density $d\left(V_{1}, V_{2}\right) \leq \alpha$.
The following three theorems deal with the non-extremal case and two extremal cases separately.
Theorem 4.1. For every $\alpha>0$, there exist $\beta>0$ and a positive integer n_{0} such that the following holds for every even integer $n \geq n_{0}$. For every graph G of order n with $\delta(G) \geq\left(\frac{1}{2}-\beta\right) n$, either G contains an ESHC or G is in one of the extremal cases with parameter α.

Theorem 4.2. Suppose that $0<\alpha \ll 1$ and n is a sufficiently large even integer. Let G be a graph on n vertices with $\delta(G) \geq \frac{n}{2}+3$. If G is in Extremal Case 1 with parameter α, then G contains an ESHC.

Theorem 4.3. Suppose that $0<\alpha \ll 1$ and n is a sufficiently large even integer. Let G be a graph on n vertices with $\delta(G) \geq \frac{n}{2}+92$. If G is in Extremal Case 2 with parameter α, then G contains an ESHC.

It is easy to see that Theorem 1.1 follows from Theorems 4.1-4.3. For this purpose we can even use a weaker version of Theorem 4.1 with $\beta=0$, but the current Theorem 4.1 may have other applications.

If G is in Extremal Case 2 with parameter α, then there exists $x \in V$ such that $\operatorname{deg}(x)<(1+\alpha) n / 2$ and in turn $\delta(G)<(1+\alpha) n / 2$. Theorems 4.1 and 4.2 together imply the following remark, which is a special case of the theorem of Böttcher et al. [4].

Remark 4.4. For any $\alpha>0$, there exists a positive integer n_{0} such that every graph G of even order $n \geq n_{0}$ with $\delta(G) \geq\left(\frac{1}{2}+\alpha\right) n$ contains an ESHC.

This remark will be used in the proof of Theorem 4.3.

4.1. Non-extremal case

In this section we prove Theorem 4.1.
Proof. We fix the following sequence of parameters

$$
\begin{equation*}
0<\varepsilon \ll d \ll \beta \ll \alpha<1 \tag{1}
\end{equation*}
$$

and specify their dependence as the proof proceeds. Actually we let α be the minimum of the two parameters defined in the extremal cases. Then we choose $d \ll \beta$ such that they are much smaller than α. Finally we choose $\varepsilon=\frac{1}{2} \varepsilon\left(d, 4, \frac{d^{2}}{4}\right)$ following the definition of ε in the Blow-up Lemma.

Choose n to be sufficiently large. In the proof we omit ceiling and floor functions if they are not crucial.
Let G be a graph of order n such that $\delta(G) \geq\left(\frac{1}{2}-\beta\right) n$ and G is not in either of the extremal cases. Applying the Regularity Lemma (Lemma 3.1) to G with parameters ε and d, we obtain a partition of $V(G)$ into $\ell+1$ clusters $V_{0}, V_{1}, \ldots, V_{\ell}$ for some $\ell \leq M=M(\varepsilon)$, and a subgraph G^{\prime} of G with all described properties in Lemma 3.1. In particular, for all $v \in V$,

$$
\operatorname{deg}_{G^{\prime}}(v)>\operatorname{deg}_{G}(v)-(d+\varepsilon) n \geq\left(\frac{1}{2}-\beta-\varepsilon-d\right) n \geq\left(\frac{1}{2}-2 \beta\right) n,
$$

provided that $\varepsilon+d \leq \beta$. On the other hand, $e\left(G^{\prime}\right) \geq e(G)-\frac{(d+\varepsilon)}{2} n^{2} \geq e(G)-d n^{2}$ by using $\varepsilon<d$.
We further assume that $\ell=2 k$ is even; otherwise we eliminate the last cluster V_{ℓ} by removing all the vertices in this cluster to V_{0}. As a result, $\left|V_{0}\right| \leq 2 \varepsilon n$ and

$$
\begin{equation*}
(1-2 \varepsilon) n \leq \ell N=2 k N \leq n \tag{2}
\end{equation*}
$$

For each pair i and j with $1 \leq i \neq j \leq \ell$, we write $V_{i} \sim V_{j}$ if $d\left(V_{i}, V_{j}\right) \geq d$. As in other applications of the Regularity Lemma, we consider the reduced graph G_{r}, whose vertex set is $\{1, \ldots, \ell\}$, and two vertices i and j are adjacent if and only if $V_{i} \sim V_{j}$. From $\delta\left(G^{\prime}\right)>\left(\frac{1}{2}-2 \beta\right) n$, a standard argument shows that $\delta\left(G_{r}\right) \geq\left(\frac{1}{2}-2 \beta\right) \ell$.

The rest of the proof consists of the following five steps.
Step 1: Show that G_{r} contains a Hamiltonian cycle $X_{1} Y_{1} \cdots X_{k} Y_{k}$.
Step 2: For each $1 \leq i \leq k$, initiate a connecting ESP (even squared path) P_{i} between Y_{i-1} and X_{i} (where $Y_{0}=Y_{k}$) with two vertices from each Y_{i-1} and X_{i}.
Step 3: For each $1 \leq i \leq k$, move at most $2 \varepsilon N$ vertices from $X_{i} \cup Y_{i}$ to V_{0} such that the resulting graph $G^{\prime}\left[X_{i} \cup Y_{i}\right]$ has the minimum degree at least $(d-2 \varepsilon) N$.

Step 4: Extend P_{1}, \ldots, P_{k} to include all the vertices in V_{0} and some vertices in $V \backslash V_{0}$ such that $\left|X_{i} \cap\left(V\left(P_{1}\right) \cup \cdots \cup V\left(P_{k}\right)\right)\right|=$ $\left|Y_{i} \cap\left(V\left(P_{1}\right) \cup \cdots \cup V\left(P_{k}\right)\right)\right| \leq \frac{d^{2}}{2} N$ for all $1 \leq i \leq k$.
Step 5: Apply the Blow-up Lemma to each $\left(X_{i}, Y_{i}\right)$ and obtain an ESP consisting of all the remaining vertices of $X_{i} \cup Y_{i}$. Concatenating these ESP's with P_{1}, \ldots, P_{k}, we obtain the desired ESHC of G.

We now give details of each step.
The assumption that G is not in either of the extremal cases leads to the following claim, which will be used in Step 1 and Step 4.

Claim 4.5. (a) G_{r} contains no independent set U_{1} of size at least $\left(\frac{1}{2}-8 \beta\right) \ell$.
(b) G_{r} contains no two disjoint subsets U_{1}, U_{2} of size at least $\left(\frac{1}{2}-6 \beta\right) \ell$ such that $e_{G_{r}}\left(U_{1}, U_{2}\right)=0$.

Proof. (a) Suppose instead, that G_{r} contains an independent set U_{1} of size $\left(\frac{1}{2}-8 \beta\right) \ell$. We will show that G is in the Extremal Case 1 with parameter α. Let $A=\bigcup_{i \in U_{1}} V_{i}$ and $B=V(G)-A$. By (2),

$$
\left(\frac{1}{2}-9 \beta\right) n \leq\left(\frac{1}{2}-8 \beta\right) N \ell=\left|U_{1}\right| N=|A|<\left(\frac{1}{2}-2 \beta\right) n .
$$

For each $x \in A$, since $\operatorname{deg}_{G}(x, A) \leq \operatorname{deg}_{G^{\prime}}(x, A)+(d+\varepsilon) n<\beta n$, we have $\operatorname{deg}_{G}(x, B)>\left(\frac{1}{2}-\beta\right) n-\beta n \geq\left(\frac{1}{2}-2 \beta\right) n$. Hence $e_{G}(A, B) \geq\left(\frac{1}{2}-9 \beta\right) n\left(\frac{1}{2}-2 \beta\right) n>\left(\frac{1}{4}-\frac{11}{2} \beta\right) n^{2}$. Now move at most $9 \beta n$ vertices from B to A such that A and B are of size $n / 2$. We still have

$$
e_{G}(A, B)>\left(\frac{1}{4}-\frac{11}{2} \beta\right) n^{2}-9 \beta n \frac{n}{2}=\left(\frac{1}{4}-10 \beta\right) n^{2}=(1-40 \beta)\left(\frac{n}{2}\right)^{2} .
$$

By specializing $40 \beta \leq \alpha$ in (1), we see that G is in the Extremal Case 1 with parameter α.
(b) Suppose instead, that G_{r} contains two disjoint subsets U_{1}, U_{2} of $\operatorname{size}\left(\frac{1}{2}-6 \beta\right) \ell$ such that $e_{G_{r}}\left(U_{1}, U_{2}\right)=0$. We will show that G is in the Extremal Case 2 with parameter α. Let $A=\bigcup_{i \in U_{1}} V_{i}$ and $B=\bigcup_{i \in U_{2}} V_{i}$. Since $e_{G r}\left(U_{1}, U_{2}\right)=0$, we have $e_{G^{\prime}}(A, B)=0$. Since $e(G) \leq e\left(G^{\prime}\right)+d n^{2}$, we have $e_{G}(A, B) \leq e_{G^{\prime}}(A, B)+d n^{2}=d n^{2}$. Note that $|A|=\left|U_{1}\right| N=\left(\frac{1}{2}-6 \beta\right) \ell N>$ $\left(\frac{1}{2}-7 \beta\right) n$. Similarly, $|B|>\left(\frac{1}{2}-7 \beta\right) n$. By adding at most $7 \beta n$ vertices to each of A and B, we obtain two subsets of size $n / 2$ and still name them as A and B, respectively. Then, $e(A, B) \leq d n^{2}+2 \cdot(7 \beta n)(n / 2)=8 \beta n^{2}$, which in turn shows the density $d(A, B)=e(A, B) /\left(\frac{n}{2}\right)^{2} \leq 32 \beta$. Since $\alpha>32 \beta$, we obtain that G is in the Extremal Case 2 with parameter α.

Step 1. To show that G_{r} is Hamiltonian, we need the following theorem of Nash-Williams.
Theorem 4.6 (Nash-Williams [22]). Let G be a 2-connected graph of order n. If minimum degree $\delta(G) \geq \max \{(n+2) / 3, \alpha(G)\}$, then G contains a Hamiltonian cycle.

We first show that G_{r} is $\beta \ell$-connected. Suppose, to the contrary, let S be a cut of G_{r} such that $|S|<\beta \ell$ and let U_{1} and U_{2} be two components of $G_{r}-S$. Since $\delta\left(G_{r}\right) \geq\left(\frac{1}{2}-2 \beta\right) \ell$, we have $\left|U_{i}\right| \geq\left(\frac{1}{2}-3 \beta\right) \ell$ for $i=1$, 2 . Since $e\left(U_{1}, U_{2}\right)=0$, we obtain a contradiction to Claim 4.5(b). Since $n=N \ell+\left|V_{0}\right| \leq(\ell+2) \varepsilon n$, we have $\ell \geq 1 / \varepsilon-2 \geq 3 / \beta$, provided that $\beta \geq 5 \varepsilon$. Then $\beta \ell \geq 3$, and G_{r} is 3-connected.

By Claim 4.5(a), we have $\alpha(G) \leq\left(\frac{1}{2}-8 \beta\right) \ell<\delta\left(G_{r}\right)$. By Theorem 4.6, G_{r} is Hamiltonian.
Following the order of a Hamiltonian cycle of G_{r}, we denote all the clusters of G except for V_{0} by $X_{1}, Y_{1}, \ldots, X_{k}, Y_{k}$ (recall that $\ell=2 k$ is even). We call X_{i}, Y_{i} partners of each other and write $P\left(X_{i}\right)=Y_{i}$ and $P\left(Y_{i}\right)=X_{i}$.
Step 2. For each $i=1, \ldots, k$, we initiate an ESP P_{i} of G connecting X_{i} and Y_{i-1} (with $Y_{0}=Y_{k}$) as follows.
Given an ε-regular pair (X, Y) of clusters and a subset $Y^{\prime} \subseteq Y$, we call a vertex $x \in X$ typical to Y^{\prime} if deg $\left(x, Y^{\prime}\right) \geq(d-\varepsilon)\left|Y^{\prime}\right|$. By the regularity of (X, Y), at most εN vertices of X are not typical to Y^{\prime} whenever $\left|Y^{\prime}\right|>\varepsilon N$. Fix $1 \leq i \leq k$. First let $a_{i} \in X_{i}$ be a vertex typical to both Y_{i-1} and Y_{i} and let $b_{i} \in X_{i}$ be a vertex typical to both $\Gamma\left(a_{i}, Y_{i-1}\right)$ and $\Gamma\left(a_{i}, Y_{i}\right)$. Since both pairs $\left(Y_{i-1}, X_{i}\right)$ and $\left(X_{i}, Y_{i}\right)$ are ε-regularity with density at least d, all but $2 \varepsilon N$ vertices of X can be chosen as a_{i}. Since $\left|\Gamma\left(a_{i}, Y_{i-1}\right)\right|,\left|\Gamma\left(a_{i}, Y_{i}\right)\right| \geq(d-\varepsilon) N>\varepsilon N$, all but at most $2 \varepsilon N+1$ vertices of X can be chosen as b_{i} (note that $b_{i} \neq a_{i}$). Recall that $\Gamma\left(a_{i} b_{i}, Y_{i-1}\right)=\Gamma\left(a_{i}, Y_{i-1}\right) \cap \Gamma\left(b_{i}, Y_{i-1}\right)$. The way we select a_{i} and b_{i} guarantees that

$$
\left|\Gamma\left(a_{i} b_{i}, Y_{i-1}\right)\right| \geq(d-\varepsilon)^{2} N \geq 2 \varepsilon N+2
$$

Now let $c_{i-1}, d_{i-1} \in \Gamma\left(a_{i} b_{i}, Y_{i-1}\right)$ be two (distinct) vertices of Y_{i-1} such that c_{i-1} is typical to both X_{i-1} and X_{i}, and d_{i-1} is typical to both $\Gamma\left(c_{i-1}, X_{i-1}\right)$ and $\Gamma\left(c_{i-1}, X_{i}\right)$. All but at most $2 \varepsilon N$ vertices of $\Gamma\left(a_{i} b_{i}, Y_{i-1}\right)$ can be chosen as c_{i-1} and d_{i-1}.

In summary $P_{i}=c_{i-1} a_{i} d_{i-1} b_{i}$ is an ESP with $c_{i-1}, d_{i-1} \in Y_{i-1}, a_{i}, b_{i} \in X_{i}$ such that

$$
\begin{align*}
& \operatorname{deg}\left(c_{i-1} d_{i-1}, X_{i-1}\right) \geq(d-\varepsilon)^{2} N, \quad \operatorname{deg}\left(a_{i}, Y_{i-1}\right) \geq(d-\varepsilon) N, \\
& \operatorname{deg}\left(a_{i} b_{i}, Y_{i}\right) \geq(d-\varepsilon)^{2} N, \quad \operatorname{deg}\left(d_{i-1}, X_{i}\right) \geq(d-\varepsilon) N \tag{3}
\end{align*}
$$

Step 3. For each $i \geq 1$, let

$$
\begin{aligned}
X_{i}^{\prime} & :=\left\{x \in X_{i}, \operatorname{deg}\left(x, Y_{i}\right) \geq(d-\varepsilon) N\right\} \quad \text { and } \\
Y_{i}^{\prime} & :=\left\{y \in Y_{i}, \operatorname{deg}\left(y, X_{i}\right) \geq(d-\varepsilon) N\right\} .
\end{aligned}
$$

Since $\left(X_{i}, Y_{i}\right)$ is ε-regular, we have $\left|X_{i}^{\prime}\right|,\left|Y_{i}^{\prime}\right| \geq(1-\varepsilon) N$. If $\left|X_{i}^{\prime}\right| \neq\left|Y_{i}^{\prime}\right|$, say $\left|X_{i}^{\prime}\right|>\left|Y_{i}^{\prime}\right|$, then we pick an arbitrary subset of X_{i}^{\prime} of size $\left|Y_{i}^{\prime}\right|$ and still name it X_{i}^{\prime}. As a result, we have $\left|X_{i}^{\prime}\right|=\left|Y_{i}^{\prime}\right|$. Let $V_{0}^{\prime}:=V_{0} \cup \bigcup_{i=1}^{k}\left(X_{i}-X_{i}^{\prime}\right) \cup\left(Y_{i}-Y_{i}^{\prime}\right)$. From $\left|X_{i}-X_{i}^{\prime}\right|+\left|Y_{i}-Y_{i}^{\prime}\right| \leq 2 \varepsilon N$, we derive that $\left|V_{0}\right| \leq 2 \varepsilon n+(2 \varepsilon N) k=3 \varepsilon n$ by using $2 N k \leq n$ from (2). In addition, the minimum degree $\delta\left(G\left[X_{i}^{\prime}, Y_{i}^{\prime}\right]\right) \geq(d-\varepsilon) N-\varepsilon N$. It is easy to see that $\left(X_{i}^{\prime}, Y_{i}^{\prime}\right)$ is 2ε-regular [19, Slicing Lemma].
Step 4. Consider a vertex $x \in V(G)$ and an original cluster $A\left(X_{i}\right.$ or Y_{i} for some i, we say that x is adjacent to A, denoted by $x \sim A$, if $\operatorname{deg}(x, A) \geq(d-\varepsilon) N$. Given two vertices u, w, we define a u, w-chain of length $2 t$ as distinct clusters $A_{1}, B_{1}, \ldots, A_{t}, B_{t}$ such that $u \sim A_{1} \sim B_{1} \sim \cdots A_{t} \sim B_{t} \sim w$ and each A_{j} and B_{j} are partners, in other words, $\left\{A_{j}, B_{j}\right\}=\left\{X_{i j}, Y_{i_{j}}\right\}$ for some i_{j}.

Claim 4.7. Let L be a list of at most $2 \varepsilon n$ pairs of vertices of G. For each $\{u, w\} \in L$, we can find u, w-chains of length at most four such that every cluster is used in at most $d^{2} N / 20$ chains.

Proof. Suppose that we have found chains of length at most four for the first $m<2 \varepsilon n$ pairs such that no cluster is contained in more than $d^{2} N / 20$ chains. Let Ω be the set of all clusters that are used in exactly $d^{2} N / 20$ chains. Since each chain uses at most four clusters, we have

$$
\frac{d^{2}}{20} N|\Omega| \leq 4 m \leq 8 \varepsilon n \leq 8 \varepsilon \frac{2 k N}{1-2 \varepsilon}
$$

where the last inequality follows from (2). Therefore $|\Omega| \leq \frac{320 \varepsilon}{(1-2 \varepsilon) d^{2}} k \leq \frac{320 \varepsilon}{d^{2}} \ell \leq \beta \ell$ provided that $1-2 \varepsilon \geq \frac{1}{2}$ and $320 \varepsilon \leq d^{2} \beta$.

Now consider a pair $\{u, w\} \in L$. Our goal is to find a u, w-chain of length at most four by using clusters not in Ω. Let U be the set of all clusters adjacent to u but not in Ω, and \mathcal{W} be the set of all clusters adjacent to w but not in Ω. Let $P(U)$ and $P(\mathcal{W})$ be the set of the partners of clusters in U and \mathcal{W}, respectively. The definition of chains implies that a cluster $A \in \Omega$ if and only if its partner $P(A)$ is in Ω. Therefore $(P(\mathcal{U}) \cup P(\mathcal{W})) \cap \Omega=\emptyset$.

We claim that $|P(U)|=|U| \geq\left(\frac{1}{2}-3 \beta\right) \ell$. To see it, we first observe that any vertex $v \in V$ is adjacent to at least $\left(\frac{1}{2}-2 \beta\right) \ell$ clusters. For instead,

$$
\left(\frac{1}{2}-\beta\right) n \leq \underset{G}{\operatorname{deg}}(v) \leq\left(\frac{1}{2}-2 \beta\right) \ell N+d N \ell+3 \varepsilon n<\left(\frac{1}{2}-\frac{3}{2} \beta\right) n,
$$

a contradiction, provided that $\frac{\beta}{2} \geq d+3 \varepsilon$. Since $|\Omega| \leq \beta \ell$, we thus have $|u| \geq\left(\frac{1}{2}-3 \beta\right) \ell$. Similarly $|P(\mathcal{W})|=|\mathcal{W}| \geq$ $\left(\frac{1}{2}-3 \beta\right) \ell$.

If $E_{G_{r}}(P(U), P(\mathcal{W})) \neq \emptyset$, then there exist two adjacent clusters $B_{1} \in P(U), A_{2} \in P(\mathcal{W})$. If B_{1}, A_{2} are partners of each other, then $u \sim A_{2} \sim B_{1} \sim w$ gives a u, w-chain of length two. Otherwise assume that $A_{1}=P\left(B_{1}\right)$ and $B_{2}=P\left(A_{2}\right)$. Then $u \sim A_{1} \sim B_{1} \sim A_{2} \sim B_{2} \sim w$ gives a u, w-chain of length four. Note that all $A_{i}, B_{i} \notin \Omega$. We may thus assume that

$$
\begin{equation*}
E_{G_{r}}(P(\mathcal{U}), P(\mathcal{W}))=\emptyset . \tag{4}
\end{equation*}
$$

If $P(U) \cap P(W)=\emptyset$, then (4) contradicts with Claim 4.5(b) because $|P(U)| \geq\left(\frac{1}{2}-3 \beta\right) \ell$ and $|P(\mathcal{W})| \geq\left(\frac{1}{2}-3 \beta\right) \ell$. Otherwise assume that $A \in P(U) \cap P(\mathcal{W})$. Then by (4), A is not adjacent to any cluster in $P(U) \cup P(\mathcal{W})$. Since $\operatorname{deg}_{G_{r}}(A) \geq$ $\left(\frac{1}{2}-2 \beta\right) \ell$, we derive that $|P(U) \cup P(\mathcal{W})| \leq\left(\frac{1}{2}+2 \beta\right) \ell$. Since $|P(U)| \geq\left(\frac{1}{2}-3 \beta\right) \ell$ and $|P(\mathcal{W})| \geq\left(\frac{1}{2}-3 \beta\right) \ell$, then $|P(U) \cap P(\mathcal{W})| \geq\left(\frac{1}{2}-8 \beta\right) \ell$. By (4), $P(U) \cap P(\mathcal{W})$ is an independent set in G_{r}, which contradicts with Claim 4.5(a).

We arbitrarily partition V_{0} into at most $2 \varepsilon n$ pairs (note that $\left|V_{0}\right|$ is even because $\left|X_{i}^{\prime}\right|=\left|Y_{i}^{\prime}\right|$ for all i). Applying Claim 4.7, we construct chains of length at most four for each pair such that every cluster is used in at most $d^{2} N / 20$ chains. For each i let m_{i} denote the number of chains containing X_{i} and Y_{i}.

Claim 4.8. We can extend connecting ESP's to include all the vertices in V_{0} such that the following holds for all i. The resulting ESP's $P_{i}=u_{1} v_{1} \cdots u_{t} v_{t}$ satisfies $u_{1}, u_{2} \in Y_{i-1}, v_{t-1}, v_{t} \in X_{i}$ and

$$
\begin{array}{ll}
\operatorname{deg}\left(u_{1} u_{2}, X_{i-1}\right) \geq(d-\varepsilon)^{2} N, & \operatorname{deg}\left(v_{1}, Y_{i-1}\right) \geq(d-\varepsilon) N, \\
\operatorname{deg}\left(v_{t} v_{t-1}, Y_{i}\right) \geq(d-\varepsilon)^{2} N, & \operatorname{deg}\left(u_{t}, X_{i}\right) \geq(d-\varepsilon) N . \tag{5}
\end{array}
$$

The sets $X_{i}^{*}=X_{i}^{\prime}-\cup_{j} V\left(P_{j}\right)$ and $Y_{i}^{*}=Y_{i}^{\prime}-\cup_{j} V\left(P_{j}\right)$ satisfy

$$
\begin{equation*}
\left|X_{i}^{*}\right|=\left|Y_{i}^{*}\right| \geq(1-\varepsilon) N-2-7 m_{i} . \tag{6}
\end{equation*}
$$

Proof. We prove by induction on $m:=\left|V_{0}\right| / 2$. When $m=0$, by (3), the initial $P_{i}=c_{i-1} a_{i} d_{i-1} b_{i}$ satisfies (5). The initial $X_{i}^{*}=X_{i}^{\prime}-\left\{a_{i}, b_{i}\right\}$ and $\left.Y_{i}^{*}:=Y_{i}^{\prime}-\left\{c_{i}, d_{i}\right\}\right)$ satisfy (6).

Suppose that $m \geq 1$ and we have extended the connecting ESP's to include $m-1$ pairs from V_{0} such that (5) and (6) hold for all i. Let $\{x, y\}$ be the last pair from V_{0}. We first consider the case when the x, y-chain has length two.

Without loss of generality, assume that $x \sim Y_{i} \sim X_{i} \sim y$ for some i. Let $P_{i}=u_{1} v_{1} \cdots u_{t} v_{t}$ be the current connecting ESP between Y_{i-1} and X_{i} and $Y_{i}^{*}:=Y_{i}^{\prime}-\cup_{j} V\left(P_{j}\right)$ and $X_{i}^{*}:=X_{i}^{\prime}-\cup_{j} V\left(P_{j}\right)$. To include x, we extend P_{i} to $P_{i}^{\prime}=P_{i} y_{1} x_{1} y_{2} x_{2} y_{3} x_{3} y_{4} x$ with four vertices $y_{1}, y_{2}, y_{3}, y_{4} \in Y_{i}^{*}$ and three vertices $x_{1}, x_{2}, x_{3} \in X_{i}^{*}$ such that in addition

$$
\begin{align*}
& y_{1} \in \Gamma\left(v_{t-1} v_{t}\right), \quad y_{2} \in \Gamma\left(v_{t}\right), \quad y_{3}, y_{4} \in \Gamma(x), \quad x_{1} \in \Gamma\left(u_{t}\right), \\
& y_{4} \text { is typical to } X_{i}, \tag{7}
\end{align*}
$$

This is possible by using Lemma 3.2 (actually we only need the regularity between X_{i} and Y_{i}; but applying the Blow-up Lemma makes our proof shorter). To see it, first note that (6) implies that $\left|X_{i}^{*}\right|,\left|Y_{i}^{*}\right|>\left(1-d^{2} / 2\right) N$ because $m_{i} \leq d^{2} N / 20$ by Claim 4.7. Then, by (5),

$$
\left|\Gamma\left(v_{t-1} v_{t}, Y_{i}^{*}\right)\right| \geq \operatorname{deg}\left(v_{t-1} v_{t}, Y_{i}\right)-\frac{d^{2}}{2} N \geq(d-\varepsilon)^{2} N-\frac{d^{2}}{2} N>\frac{d^{2}}{4} N .
$$

Similarly we can show that $\left|\Gamma\left(v_{t}, Y_{i}^{*}\right)\right|,\left|\Gamma\left(u_{t}, X_{i}^{*}\right)\right| \geq\left(d-d^{2}\right) N$. The definition of $x \sim Y_{i}$ also guarantees that $\left|\Gamma\left(x, Y_{i}^{*}\right)\right| \geq$ ($d-d^{2}$)N. Finally (7) only forbids additional εN vertices when choosing y_{4} and x_{3}. Therefore we can apply Lemma 3.2 to find such an P_{i}^{\prime}. By (7), we have $\operatorname{deg}\left(y_{4}, X_{i}\right) \geq(d-\varepsilon) N$ and $\operatorname{deg}\left(x_{3} x, Y_{i}\right) \geq(d-\varepsilon)^{2} N$. Consequently P_{i}^{\prime} satisfies (5).

Since x behaves like a vertex of X_{i} in P_{i}^{\prime}, we call such a procedure inserting x into X_{i} (by extending P_{i}). Since $y \sim X_{i}$, we can similarly insert y to Y_{i} by extending P_{i+1} to $P_{i+1}^{\prime}=y x_{4} y_{5} x_{5} y_{6} x_{6} y_{7} x_{7} P_{i+1}$ with $x_{j} \in X_{i}^{*}$ and $y_{j} \in Y_{i}^{*}$. Since each X_{i}^{*} and Y_{i}^{*} lose seven vertices totally, (6) holds.

Now consider the case when the x, y-chain has length four. Assume that $x \sim A_{1} \sim B_{1} \sim A_{2} \sim B_{2} \sim y$. We first insert x to B_{1}, then pick any (available) vertex in B_{1} that is typical to A_{2} and insert it to B_{2}, and finally insert y to A_{2}. As a result, A_{1}, B_{1} each loses four vertices to some connecting paths while A_{2}, B_{2} each loses seven vertices to some connecting paths. Thus (6) holds.

Step 5. Fix $1 \leq i \leq k$. Suppose that at present $P_{i}=u_{1} v_{1} \cdots u_{t} v_{t}$ and $P_{i+1}=w_{1} z_{1} \cdots w_{s} z_{s}$ for some integers $s, t \geq 2$, and $X_{i}^{*}=X_{i}^{\prime}-\cup_{j} V\left(P_{j}\right)$ and $Y_{i}^{*}=Y_{i}^{\prime}-\cup_{j} V\left(P_{j}\right)$. By Claim 4.8, P_{i} and P_{i+1} satisfy (5) and $\left|X_{i}^{*}\right|,\left|Y_{i}^{*}\right| \geq\left(1-d^{2} / 2\right) N$. Since ($\left.X_{i}, Y_{i}\right)$ is ε-regular, the Slicing Lemma of [19] says that (X_{i}^{*}, Y_{i}^{*}) is ($2 \varepsilon, d / 2$)-super-regular (note that $(d-\varepsilon) N-d^{2} N / 2>d N / 2$).

We now apply the Blow-up Lemma to each $G^{\prime}\left[X_{i}^{*}, Y_{i}^{*}\right]$ to obtain an spanning ESP $y_{1} x_{1} y_{2} \cdots x_{N_{i}-1}, y_{N_{i}}, x_{N_{i}}$ (see Fig. 2), where $N_{i}=\left|X_{i}^{*}\right|=\left|Y_{i}^{*}\right|$ such that

Fig. 2. An ESP covering X_{i}^{*} and Y_{i}^{*}.

$$
\begin{array}{lcl}
y_{1} \in \Gamma\left(v_{t} v_{t-1}, Y_{i}^{*}\right), & x_{1} \in \Gamma\left(u_{t}, X_{i}^{*}\right), & y_{2} \in \Gamma\left(v_{t}, Y_{i}^{*}\right), \\
x_{N_{i}-1} \in \Gamma\left(w_{1}, X_{i}^{*}\right), & y_{N_{i}} \in \Gamma\left(z_{1}, Y_{i}^{*}\right), & x_{N_{i}} \in \Gamma\left(w_{1} w_{2}, X_{i}^{*}\right) .
\end{array}
$$

The restrictive mapping of $y_{1}, x_{1}, y_{2}, x_{N_{i}-1}, y_{N_{i}}, x_{N_{i}}$ is possible because by (5), all the targeting sets are of size at least $(d-\varepsilon)^{2} N-d^{2} N / 2>d^{2} N / 4$.

We now complete the proof of the non-extremal case.

4.2. Extremal Case 1

In this subsection we prove Theorem 4.2.
We start with a lemma which gives a balanced spanning bipartite subgraph that we will use throughout the section.

Lemma 4.9. Suppose that $0 \leq \alpha \leq(1 / 9)^{3}$. Let $G=(V, E)$ be a graph on n vertices with $\delta(G) \geq \frac{n}{2}+3$ and a balanced partition $V_{1} \cup V_{2}$ such that $d\left(V_{1}, V_{2}\right) \geq 1-\alpha$. Then G contains a balanced spanning bipartite subgraph G^{\prime} with parts U_{1}, U_{2} such that

- There is a set W of at most $\alpha^{2 / 3} n$ vertices such that we can find vertex disjoint 4 -stars (stars with four edges) in G^{\prime} with the vertices of W as their centers.
- $\operatorname{deg}_{G^{\prime}}(x) \geq\left(1-\alpha^{1 / 3}-2 \alpha^{2 / 3}\right) n / 2$ for all $x \notin W$.

Proof. For simplicity, let $\alpha_{1}=\alpha^{1 / 3}$ and $\alpha_{2}=\alpha^{2 / 3}$. For each $i=1$, 2 , we define

$$
V_{i}^{\prime}=\left\{x \in V: \operatorname{deg}\left(x, V_{3-i}\right) \geq\left(1-\alpha_{1}\right) \frac{n}{2}\right\}
$$

Since $d\left(V_{1}, V_{2}\right) \geq 1-\alpha$, we have $\left|V_{i}-V_{i}^{\prime}\right| \leq \alpha_{2} n / 2$ and consequently $\left|V_{i}^{\prime}\right| \geq\left(1-\alpha_{2}\right) n / 2$ for $i=1,2$. For any $x \in V_{i}^{\prime}$,

$$
\begin{equation*}
\operatorname{deg}\left(x, V_{3-i}^{\prime}\right)>\left(1-\alpha_{1}\right) \frac{n}{2}-\alpha_{2} \frac{n}{2} \tag{8}
\end{equation*}
$$

Let $V_{0}=V-V_{1}^{\prime}-V_{2}^{\prime}$. Then $\left|V_{0}\right| \leq \alpha_{2} n$. For each $v \in V_{0}$ and $i=1,2$, we have $\operatorname{deg}\left(v, V_{i}\right) \leq\left(1-\alpha_{1}\right) \frac{n}{2}$, which implies that $\operatorname{deg}\left(v, V_{i}\right) \geq \alpha_{1} \frac{n}{2}$ and

$$
\begin{equation*}
\operatorname{deg}\left(v, V_{i}^{\prime}\right) \geq\left(\alpha_{1}-\alpha_{2}\right) \frac{n}{2} \tag{9}
\end{equation*}
$$

We now separate cases based on $\left|V_{1}^{\prime}\right|$ and $\left|V_{2}^{\prime}\right|$.
Case 1: $\left|V_{1}^{\prime}\right|,\left|V_{2}^{\prime}\right| \leq n / 2$. In this case we partition V_{0} into $W_{1} \cup W_{2}$ such that $\left|W_{i}\right|=n / 2-\left|V_{i}^{\prime}\right|$ for $i=1$, 2. For each vertex $w \in W_{i}$, we greedily find four neighbors from V_{3-i}^{\prime} such that the neighbors for all the vertices of W_{i} are distinct. This is possible for $i=1,2$ because of (9) and

$$
\left(\alpha_{1}-\alpha_{2}\right) \frac{n}{2} \geq 4 \alpha_{2} n \geq 4\left|V_{0}\right|
$$

provided that $\alpha_{1} \geq 9 \alpha_{2}$ or $\alpha_{1} \leq 1 / 9$. Define $U_{i}=V_{i}^{\prime} \cup W_{i}$ for $i=1$, 2 . Then $\left|U_{1}\right|=\left|U_{2}\right|=n / 2$. With $W=V_{0}$, the second assertion of Lemma 4.9 follows from (8).
Case 2: one of $\left|V_{1}^{\prime}\right|,\left|V_{2}^{\prime}\right|$, say, $\left|V_{1}^{\prime}\right|$ is greater than $n / 2$. Let V_{1}^{0} be the set of vertices $v \in V_{1}^{\prime}$ such that $\operatorname{deg}\left(v, V_{1}^{\prime}\right) \geq \alpha_{1} n / 2$. First assume that $\left|V_{1}^{0}\right| \geq\left|V_{1}^{\prime}\right|-n / 2$. Then we form a set W with $\left|V_{1}^{\prime}\right|-n / 2$ vertices of V_{1}^{0} and all the vertices of V_{0}. Let $U_{1}=V_{1}^{\prime}-W$ and $U_{2}=V_{2}^{\prime} \cup W$. Then $\left|U_{1}\right|=\left|U_{2}\right|=n / 2$. Since $\left(1-\alpha_{2}\right) n / 2 \leq\left|V_{2}^{\prime}\right| \leq n / 2$, we have $|W| \leq \alpha_{2} n / 2$. Then $\left|V_{1}^{\prime}-U_{1}\right| \leq \alpha_{2} n / 2$, by (9) and the definition of V_{1}^{0}, we have

$$
\begin{equation*}
\operatorname{deg}\left(v, U_{1}\right) \geq \operatorname{deg}\left(v, V_{1}^{\prime}\right)-\alpha_{2} n / 2 \geq\left(\alpha_{1}-\alpha_{2}\right) n / 2-\alpha_{2} n / 2 \tag{10}
\end{equation*}
$$

for all $v \in W$. With $\alpha_{1} \geq 6 \alpha_{2}$, we have $\left(\alpha_{1}-2 \alpha_{2}\right) n / 2 \geq 4 \alpha_{2} n / 2 \geq 4|W|$. Therefore we can greedily find four neighbors for each vertex $v \in W$ such that the neighbors for all the vertices of W are distinct. The second assertion of Lemma 4.9 follows from (8) and $\left|V_{1}^{\prime}-U_{1}\right| \leq \alpha_{2} n / 2$.

Otherwise assume that $\left|V_{1}^{0}\right|<\left|V_{1}^{\prime}\right|-n / 2$. In this case let $U_{1}=V_{1}^{\prime}-V_{1}^{0}$ and $U_{2}=V_{2}^{\prime} \cup V_{1}^{0} \cup V_{0}$. Then $\left|U_{1}\right|=\frac{n}{2}+t_{1}$ for some positive integer $t_{1} \leq \alpha_{2} n / 2$. Since $\operatorname{deg}\left(v, V_{1}^{\prime}\right)<\alpha_{1} n / 2$ for every $v \in U_{1}$, the induced graph $G\left[U_{1}\right]$ has the maximum degree $\Delta \leq \alpha_{1} n / 2$. By the minimum degree condition $\delta(G) \geq n / 2+3, G\left[U_{1}\right]$ has the minimum degree at least

$$
\delta(G)-\left|U_{2}\right| \geq\left(\frac{n}{2}+3\right)-\left(\frac{n}{2}-t_{1}\right) \geq t_{1}+3
$$

We now need the following simple fact.
Fact 4.10. In a graph G_{1} of order n_{1} with the maximum degree $\Delta\left(G_{1}\right) \leq \Delta$ and the minimum degree $\delta\left(G_{1}\right) \geq t$, the number of disjoint 4 -stars is at least $\frac{(t-3) n_{1}}{5(\Delta+t-3)}$.

To see it, suppose G_{1} has a largest family of disjoint 4-stars on some vertex set M of size m. Then $(t-3)\left(n_{1}-5 m\right) \leq$ $e(M, V(G)-M) \leq 5 m \Delta$ and the fact follows.

Applying Fact 4.10, there are at least

$$
\frac{\left(t_{1}+3-3\right)\left|U_{1}\right|}{5\left(\Delta+t_{1}+3-3\right)} \geq \frac{t_{1}\left|U_{1}\right|}{5\left(\alpha_{1} \frac{n}{2}+t_{1}\right)} \geq \frac{t_{1} \frac{n}{2}}{5\left(\alpha_{1}+\alpha_{2}\right) \frac{n}{2}} \geq t_{1}
$$

vertex disjoint 4-starts in $G\left[U_{1}\right]$. Pick t_{1} such 4-stars and move their centers to U_{2}. As a result, $\left|U_{1}\right|=\left|U_{2}\right|=n / 2$. Let $W_{0}=V_{1}^{0} \cup V_{0}$ and W be the union of W_{0} with the new vertices of U_{2}.

Since $\left|V_{1}^{\prime}-U_{1}\right|=\left|V_{1}^{\prime}\right|-n / 2 \leq \alpha_{2} n / 2$, we have (10) for all $v \in W_{0}$. Since $|W|=n / 2-\left|V_{2}^{\prime}\right| \leq \alpha_{2} n / 2$, we can find disjoint 4-stars in $G\left[U_{1}, W_{0}\right]$ with all the vertices of W_{0} as centers such that these 4 -stars are also disjoint from the existing 4 -stars. In addition, the second assertion of Lemma 4.9 holds as before.

Proposition 4.11 shows that if G is a graph or a bipartite graph with a large minimum degree and it contains not many vertex disjoint 4-stars, then we can find an ESC or ESP containing all the vertices in these stars. We need its part (2) for this subsection, and part (1) for Extremal Case 2.

Proposition 4.11. Fix $0<\varepsilon_{1} \leq 1 / 5$.
(a) Let G be a graph of order N with a subset W of size $t \leq \varepsilon_{1} N / 8$. Suppose that G contains t vertex-disjoint 4 -stars with the vertices of W as centers, and $\operatorname{deg}(x) \geq\left(1-\varepsilon_{1}\right) N$ for every vertex $x \notin W$. Then G contains an ESC C of length $8 t$ which contains all the vertices of W such that any two nearest vertices of W are separated by exactly seven vertices not in W.
(b) Let G be a bipartite graph on two parts U_{1}, U_{2} of size N. Let W be a vertex subset of size $t \leq \varepsilon_{1} N / 5$. Suppose that G contains t vertex-disjoint 4 -stars with the vertices of W as centers, and $\operatorname{deg}(x) \geq\left(1-\varepsilon_{1}\right) N$ for every vertex $x \notin W$. Then G contains an ESP of length $8 t+4$ which contains all the vertices of W and whose first and last three vertices are not from W.

Proof. (a) Suppose that $W=\left\{w_{1}, \ldots, w_{t}\right\}$, and denote the four leaves under w_{i} by $a_{i}, b_{i}, c_{i}, d_{i}$. For each i, we greedily choose three new vertices u_{i}, v_{i}, x_{i} that are not contained in any existing star such that

$$
u_{i} \in \Gamma\left(c_{i-1} d_{i-1} a_{i} b_{i}\right), \quad v_{i} \in \Gamma\left(d_{i-1} a_{i} b_{i} c_{i}\right), \quad x_{i} \in \Gamma\left(b_{i} c_{i} d_{i} a_{i+1}\right)
$$

in which the indices are modulo t. This is possible because each $a_{i}, b_{i}, c_{i}, d_{i}, 1 \leq i \leq t$, has at least $\left(1-\varepsilon_{1}\right) N$ neighbors and any four of them have at least $\left(1-4 \varepsilon_{1}\right) N \geq \varepsilon_{1} N \geq 8 t$ common neighbors (where $8 t$ is the total number of vertices used at the end of this greedy algorithm). We thus obtain an ESC $u_{i} a_{i} v_{i} b_{i} w_{i} c_{i} x_{i} d_{i}: i=1, \ldots, t$, in which the vertices of W are distributed evenly.
(b) Partition $W=W_{1} \cup W_{2}$ with $W_{1}=U_{1} \cap W$ and $W_{2}=U_{2} \cap W$. For each W_{i}, we follow the procedure in (1) to find two vertex disjoint ESC's C_{1} and C_{2} of length $8\left|W_{1}\right|$ and $8\left|W_{2}\right|$ in which the vertices of W are distributed evenly. The calculation is similar except that any four vertices in $U_{1}-W$ (or $U_{2}-W$) have at least $\left(1-4 \varepsilon_{1}\right) N \geq \varepsilon_{1} N>4 t$ common neighbors in U_{2} (or U_{1}), where $4 t$ is the total number of the vertices used in one partition set.

We next break C_{1} into $P_{1}=x_{1} x_{2} x_{3} \cdots u_{3} u_{2} u_{1}$ and break C_{2} into $P_{1}=v_{1} v_{2} v_{3} \cdots y_{3} y_{2} y_{1}$ such that $x_{i}, u_{i}, v_{i}, y_{i} \notin W$ for $i=1,2,3$ and $u_{1}, u_{3}, v_{2} \in U_{1}, u_{2}, v_{1}, v_{3} \in U_{2}$. Assume that $t \geq 2$ otherwise we are done. Choose four new vertices not in W (in this order) $z_{1} \in \Gamma\left(u_{1} u_{3}\right), z_{3} \in \Gamma\left(u_{1} v_{2}\right)$ and $z_{2} \in \Gamma\left(u_{2} z_{1} z_{3} v_{1}\right), z_{4} \in \Gamma\left(z_{1} z_{3} v_{1} v_{3}\right)$. This is possible because the number of common neighbors of any four vertices not in W is at least $\left(1-4 \varepsilon_{1}\right) N \geq 5 t \geq 4 t+2$, where $4 t+2$ is the total number of the vertices used in one partition set. As a result, $P_{1} z_{1} z_{2} z_{3} z_{4} P_{2}$ is an ESP which contains all the vertices of W and whose first and last three vertices are not from W.

We finally observe that a bipartite graph with very large minimum degree is super-regular.
Proposition 4.12. Given $0<\rho<1$, let G be a bipartite graph on $X \cup Y$ such that

$$
\begin{equation*}
\delta(X, Y) \geq(1-\rho)|Y|, \quad \delta(Y, X) \geq(1-\rho)|X| \tag{11}
\end{equation*}
$$

Then G is $(\sqrt{\rho}, 1-\rho)$-super-regular.
Proof. It suffices to show that G is $\sqrt{\rho}$-regular. Consider subsets $A \subseteq X, B \subseteq Y$ with $|A|=\varepsilon_{1}|X|$ and $|B|=\varepsilon_{2}|Y|$ for some $\varepsilon_{1}, \varepsilon_{2}>\sqrt{\rho}$. By (11), we have $\delta(A, Y) \geq|Y|-\rho|Y|$ and consequently $\delta(A, B) \geq|B|-\rho|Y|=\left(\varepsilon_{2}-\rho\right)|Y|$. The density between A and B satisfies

$$
d(A, B) \geq \frac{\delta(A, B)|A|}{|A||B|} \geq \frac{\left(\varepsilon_{2}-\rho\right)|Y|}{|B|}=\frac{\varepsilon_{2}-\rho}{\varepsilon_{2}}>1-\frac{\rho}{\sqrt{\rho}}=1-\sqrt{\rho}
$$

Since $1-\sqrt{\rho}<d(A, B) \leq 1$ and in particular, $1-\sqrt{\rho}<d(X, Y) \leq 1$, we have $|d(A, B)-d(X, Y)|<\sqrt{\rho}$.
We are ready to prove Theorem 4.2 now.
Proof of Theorem 4.2. Let $0 \leq \alpha \ll 1$, in particular $\alpha \leq(1 / 9)^{3}$. Write $\alpha_{1}=\alpha^{1 / 3}$ and $\alpha_{2}=\alpha^{2 / 3}$. Let $G=(V, E)$ be a graph on n vertices with $\delta(G) \geq \frac{n}{2}+3$. Suppose G is in Extremal Case 1 with parameter α. We first apply Lemma 4.9 to G and obtain a bipartite subgraph G^{\prime} with two partition sets U_{1}, U_{2} of size $n / 2$ which contains at most $\alpha^{2 / 3} n$ vertex disjoint 4 -stars. Denote by W the set of the centers of the 4 -stars. We also have

$$
\begin{equation*}
\underset{G^{\prime}}{\operatorname{deg}}(x) \geq\left(1-\alpha_{1}-2 \alpha_{2}\right) n / 2 \quad \text { for all } x \notin W \tag{12}
\end{equation*}
$$

Since $\alpha_{1}+2 \alpha_{2} \leq 1 / 5$ and $\alpha_{2} n \leq \frac{\alpha_{1}+\alpha_{2}}{5} \frac{n}{2}$, we may apply Proposition $4.11(\mathrm{~b})$ to G^{\prime} with $\varepsilon_{1}=\alpha_{1}+2 \alpha_{2}$ and $N=n / 2$. We thus obtain an ESP $P_{0}=x_{1} x_{2} x_{3} \cdots y_{3} y_{2} y_{1}$ of length $8|W|+4$ which contains all the vertices of W such that $x_{i}, y_{i} \in V_{1}^{\prime} \cup V_{2}^{\prime}$ for $1 \leq i \leq 3$. In order to find an ESHC of G, it suffices to find an ESP $P=u_{1} u_{2} u_{3} \cdots v_{3} v_{2} v_{1}$ on $V(G)-V\left(P_{0}\right)$ such that

$$
x_{3} x_{2} x_{1} P y_{1} y_{2} y_{3}=x_{3} x_{2} x_{1} u_{1} u_{2} u_{3} \cdots v_{3} v_{2} v_{1} y_{1} y_{2} y_{3}
$$

is also an ESP.

Let $U_{i}^{\prime}=U_{i}-V\left(P_{0}\right)$ for $i=1,2$, and $n^{\prime}=\left|U_{1}^{\prime}\right|=\left|U_{2}^{\prime}\right|$. Then $n^{\prime}=n / 2-\left(4\left|V_{0}\right|+2\right) \geq n / 2-\left(4 \alpha_{2} n+2\right)$. By (12), the bipartite subgraph $G\left[U_{1}^{\prime}, U_{2}^{\prime}\right]$ has its minimum degree at least

$$
\left(1-\alpha_{1}-2 \alpha_{2}\right) \frac{n}{2}-\left(4 \alpha_{2} n+2\right) \geq\left(1-3 \alpha_{1}\right) \frac{n}{2} \geq\left(1-3 \alpha_{1}\right) n^{\prime}
$$

by using $\alpha_{1} \geq 9 \alpha_{2}$. Similarly the degree from x_{i} or $y_{i}, i=1,2,3$, to U_{1}^{\prime} or U_{2}^{\prime} is at least $\left(1-3 \alpha_{1}\right) n^{\prime}$. By Proposition 4.12 , $\left(U_{1}^{\prime}, U_{2}^{\prime}\right)$ is $\left(\sqrt{3 \alpha_{1}}, \frac{2}{3}\right)$-super-regular (using $\alpha_{1} \leq 1 / 9$ again). Since $\sqrt{3 \alpha_{1}} \ll 1$, we can apply the Blow-up Lemma to obtain an ESHP $u_{1} u_{2} u_{3} \cdots v_{3} v_{2} v_{1}$ of $G\left[U_{1}^{\prime}, U_{2}^{\prime}\right]$ such that

$$
\begin{array}{lcc}
u_{1} \in \Gamma\left(x_{1}, x_{3}\right), & u_{2} \in \Gamma\left(x_{2}\right), & u_{3} \in \Gamma\left(x_{1}\right) \\
v_{1} \in \Gamma\left(y_{1}, y_{3}\right), & v_{2} \in \Gamma\left(y_{2}\right), & v_{3} \in \Gamma\left(y_{1}\right) .
\end{array}
$$

Since $\left|\Gamma\left(x_{i}\right)\right|,\left|\Gamma\left(y_{i}\right)\right| \geq\left(1-3 \alpha_{1}\right) n^{\prime}$ for $i=1,2,3$ and $\left|\Gamma\left(x_{1}, x_{3}\right)\right|,\left|\Gamma\left(y_{1}, y_{3}\right)\right| \geq\left(1-6 \alpha_{1}\right) n^{\prime}$, the restrictive mapping of u_{1}, u_{2}, u_{3} and v_{1}, v_{2}, v_{3} is possible.

4.3. Extremal Case 2

In this subsection we prove Theorem 4.3.
In Extremal Case 1, we used the Blow-up Lemma to find an ESHP with certain properties in a bipartite graph with very large minimum degree. In this subsection we first prove such a lemma for arbitrary graphs.

Lemma 4.13. Let $k \geq 3$ and n_{1} be sufficiently large. Let G be a graph of order $k+n_{1}+6$. Suppose that G contains an ESP $P_{0}=u_{1} \cdots u_{k}$. Let $X=V(G)-V\left(P_{0}\right)$. Suppose that $x_{1} x_{2} x_{3}$ and $y_{1} y_{2} y_{3}$ are two paths in X and let X^{\prime} be the set of the remaining vertices of X (then $\left|X^{\prime}\right|=n_{1}$). If $\operatorname{deg}\left(x, X^{\prime}\right) \geq \frac{7}{8} n_{1}+1$ for all vertices $x \in X$ and $\operatorname{deg}\left(u_{j}, X\right) \geq \frac{7}{8}|X|+1$ for $j=1,2,3, k-2, k-1, k$, then G contains an ESHP that starts with $x_{3} x_{2} x_{1}$, finishes with $y_{1} y_{2} y_{3}$ and contains P_{0} as an internal path.
Proof. Our proof consists of three steps.
Step 1: we find an ESC on X^{\prime}. Let $G_{1}=G\left[X^{\prime}\right]$. Since $\delta\left(G_{1}\right) \geq \frac{7}{8} n_{1}$ and n_{1} is sufficiently large, by Remark 4.4, G_{1} contains an ESHC.
Step 2: we find an ESP on X such that it starts with $x_{3} x_{2} x_{1}$ and finishes with $y_{1} y_{2} y_{3}$. Let $v_{1}, \ldots, v_{n_{1}}$ be the ESC given by
Step 1. We will form an ESP

$$
x_{3} x_{2} x_{1} v_{i} \cdots v_{1} v_{n_{1}} v_{n_{1}-1} \cdots v_{i+1} y_{1} y_{2} y_{3}
$$

for some $1 \leq i \leq n_{1}$. It suffices to have the following adjacencies.

$$
\begin{align*}
& x_{3} \sim v_{i}, \quad x_{2} \sim v_{i-1}, \quad x_{1} \sim v_{i}, \quad x_{1} \sim v_{i-2}, \tag{13}\\
& y_{1} \sim v_{i+1}, \quad y_{1} \sim v_{i+3}, \quad y_{2} \sim v_{i+2}, \quad y_{3} \sim v_{i+1},
\end{align*}
$$

in which we assume that $v_{j}=v_{j+n_{1}}$ for all integers j. Since $\operatorname{deg}\left(x, X^{\prime}\right) \geq 7 n_{1} / 8+1$ for any vertex $x \in\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$, the number of $1 \leq i \leq n_{1}$ satisfying (13) is at least $n_{1}-8\left(n_{1} / 8-1\right)=8$. Thus (13) holds for some $1 \leq i \leq n_{1}$.
Step 3: we find an ESHP of G that starts with $x_{3} x_{2} x_{1}$, finishes with $y_{1} y_{2} y_{3}$ and contains P_{0} as an internal path. Let $n_{2}=|X|=$ $n_{1}+6$. Denote the ESP found in Step 2 by $v_{1}, \ldots, v_{n_{2}}$, where

$$
v_{1}=x_{3}, \quad v_{2}=x_{2}, \quad v_{3}=x_{1}, \quad v_{n_{2}-2}=y_{1}, \quad v_{n_{2}-1}=y_{2}, \quad v_{n_{2}}=y_{3}
$$

Our goal is to find an index $3 \leq i \leq n_{2}-3$ such that $v_{1} \cdots v_{i} P_{0} v_{i+1} \cdots v_{n_{2}}$ is an ESP. Since $P_{0}=u_{1} \cdots u_{k}$, it suffices to have the following adjacencies.

$$
\begin{array}{lrr}
u_{1} \sim v_{i}, & u_{2} \sim v_{i-1}, & u_{3} \sim v_{i}, \quad u_{1} \sim v_{i-2}, \\
u_{k} \sim v_{i+1}, & u_{k} \sim v_{i+3}, & u_{k-1} \sim v_{i+2}, \quad u_{k-2} \sim v_{i+1} \tag{14}
\end{array}
$$

for some $3 \leq i \leq n_{2}-3$. Since $\operatorname{deg}\left(u_{j}, X\right) \geq 7 n_{2} / 8+1$ for $j=1,2,3, k-2, k-1$, k, the number of $1 \leq i \leq n_{2}$ satisfying (13) is at least $n_{2}-8\left(n_{2} / 8-1\right)=8$. Thus (13) holds for some $3 \leq i \leq n_{2}-3$.

Proof of Theorem 4.3. We start with defining two new sets, which are variants of V_{1} and V_{2}. Let $\alpha_{1}=\alpha^{1 / 3}$ and $\alpha_{2}=\alpha^{2 / 3}$. We define

$$
V_{i}^{\prime}=\left\{x \in V: \operatorname{deg}\left(x, V_{3-i}\right)<\alpha_{1} \frac{n}{2}\right\}
$$

for $i=1$, 2. Since $\delta(G)>n / 2$, we have $\operatorname{deg}\left(x, V_{i}\right)>\left(1-\alpha_{1}\right) n / 2$ for every $x \in V_{i}^{\prime}$. Since $d\left(V_{1}, V_{2}\right) \leq \alpha$, we have $\left|V_{i}-V_{i}^{\prime}\right| \leq \alpha_{2} n / 2$ and $\left|V_{i}^{\prime}\right| \geq\left(1-\alpha_{2}\right) n / 2$ for $i=1$, 2. Consequently,

$$
\begin{equation*}
\operatorname{deg}\left(x, V_{i}^{\prime}\right)>\operatorname{deg}\left(x, V_{i}\right)-\alpha_{1} \frac{n}{2} \geq\left(1-\alpha_{1}-\alpha_{2}\right) \frac{n}{2} \quad \text { for all } x \in V_{i}^{\prime} . \tag{15}
\end{equation*}
$$

Let $V_{0}=V-V_{1}^{\prime}-V_{2}^{\prime}$. Then $\left|V_{0}\right| \leq \alpha_{2} n$ and $\operatorname{deg}\left(x, V_{i}^{\prime}\right) \geq\left(\alpha_{1}-\alpha_{2}\right) n / 2$ for all $x \in V_{0}$.

Our proof consists of the following two steps which together provide an ESHC of G.
Step 1. Find two disjoint ESP's $x_{1} \cdots x_{p}$ and $y_{1} \cdots y_{p}$ of length $6 \leq p \leq 14$ such that $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \in V_{1}^{\prime}$ and $x_{p-2}, x_{p-1}, x_{p}, y_{p-2}, y_{p-1}, y_{p} \in V_{2}^{\prime}$.
Step 2. Find two ESP's P_{1} and P_{2} consisting of all the remaining vertices in V_{1}^{\prime} and $V_{2}^{\prime} \cup V_{0}$, respectively, such that $x_{3} x_{2} x_{1} P_{1} y_{1} y_{2} y_{3}$, and $x_{p-2} x_{p-1} x_{p} P_{2} y_{p} y_{p-1} y_{p-2}$ are also ESP's.

While Step 2 follows from Proposition 4.11 and Lemma 4.13 easily, Step 1 is much harder (at least from our point of view)-it is where we need the large constant 92 in the min-degree condition. Below we present Step 2 first.

4.3.1. Step 2: Find two ESP's covering the remaining vertices

Let $P^{1}=x_{1} \cdots x_{p}$ and $P^{2}=y_{1} \cdots y_{p}$ be the two ESP's of length $6 \leq p \leq 14$ provided by Step 1 . Let $S=V\left(P^{1}\right) \cup V\left(P^{2}\right)$.
Let $U_{1}^{\prime}=V_{1}^{\prime}-S$ and $U_{1}=U_{1}^{\prime} \cup\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}$. Fix $x \in U_{1}$, by (15), we have

$$
\begin{equation*}
\operatorname{deg}\left(x, U_{1}^{\prime}\right) \geq\left(1-\alpha_{1}-\alpha_{2}\right) n / 2-2 p \geq\left(1-\alpha_{1}-2 \alpha_{2}\right) n / 2+1 \tag{16}
\end{equation*}
$$

where the second inequality follows from $\alpha_{2} n / 2 \geq 29 \geq 2 p+1$. Using $\left|U_{1}^{\prime}\right| \leq\left(1+\alpha_{2}\right) n / 2$ and $\alpha_{1} \geq 3 \alpha_{2}$, we derive that $\operatorname{deg}\left(x, U_{1}^{\prime}\right) \geq\left(1-2 \alpha_{1}\right)\left|U_{1}^{\prime}\right|+1$. Using $\alpha_{1} \leq \frac{1}{16}$, we have $\operatorname{deg}\left(x, U_{1}^{\prime}\right) \geq \frac{7}{8}\left|U_{1}^{\prime}\right|+1$. We then apply Lemma 4.13 to $G\left[U_{1}\right]$ with $P_{0}=\emptyset$ and obtain an ESP $x_{3} x_{2} x_{1} \cdots y_{1} y_{2} y_{3}$ on U_{1}.

Let $U_{2}^{\prime}=V_{2}^{\prime} \cup V_{0}-S$ and $U_{2}=U_{2}^{\prime} \cup\left\{x_{p-2}, x_{p-1}, x_{p}, y_{p-2}, y_{p-1}, y_{p}\right\}$. Partition U_{2}^{\prime} into $V_{2}^{\prime \prime}=V_{2}^{\prime}-S$ and $V_{0}^{\prime}=V_{0}-S$. We have $\left|V_{0}^{\prime}\right| \leq \alpha_{2} n$ and for each $x \in V_{0}^{\prime}$,

$$
\operatorname{deg}\left(x, V_{2}^{\prime \prime}\right) \geq\left(\alpha_{1}-\alpha_{2}\right) \frac{n}{2}-2 p \geq \frac{\alpha_{1}}{2} \frac{n}{2} \geq 4\left|V_{0}^{\prime}\right|
$$

by using $\alpha_{2} n / 2 \geq 2 p$ and $\alpha_{1} \geq 16 \alpha_{2}$. We then greedily find $\left|V_{0}^{\prime}\right|$ disjoint 4 -stars with the vertices of V_{0}^{\prime} as centers and vertices in $V_{2}^{\prime \prime}$ as leaves. Let $N=\left(1+\alpha_{2}\right) n / 2$. Then $\left|U_{2}^{\prime}\right| \leq\left|V_{2}^{\prime} \cup V_{0}\right|=n-\left|V_{1}^{\prime}\right| \leq N$. For any vertex $x \in V_{2}^{\prime}$, the arguments above for $G\left[U_{1}\right]$ give that

$$
\begin{equation*}
\operatorname{deg}\left(x, V_{2}^{\prime \prime}\right) \geq\left(1-2 \alpha_{1}\right) N+1 \tag{17}
\end{equation*}
$$

We then apply Proposition $4.11(\mathrm{a})$ to $G\left[U_{2}^{\prime}\right]$ and obtain an ESC C_{0} of length $k=8\left|V_{0}^{\prime}\right| \leq 8 \alpha_{2} n$ such that it contains all the vertices of V_{0}^{\prime} in a way that every two nearest vertices of V_{0}^{\prime} are separated by exactly seven vertices of $V_{2}^{\prime \prime}$. We then break C_{0} into an ESP $P_{0}=u_{1} \cdots u_{k}$ such that $u_{1}, u_{2}, u_{3}, u_{k-2}, u_{k-1}, u_{k} \in V_{2}^{\prime \prime}$.

Let $X^{\prime}=U_{2}^{\prime}-V\left(P_{0}\right)$ and $X=X^{\prime} \cup\left\{x_{p-2}, x_{p-1}, x_{p}, y_{p-2}, y_{p-1}, y_{p}\right\}$. For any vertex $x \in V_{2}^{\prime}$, by (17) and using $8 \alpha_{2} n \leq \alpha_{1} \frac{n}{2} \leq \alpha_{1} N$,

$$
\operatorname{deg}\left(x, X^{\prime}\right) \geq\left(1-2 \alpha_{1}\right) N+1-8 \alpha_{2} n \geq\left(1-3 \alpha_{1}\right) N+1
$$

Since $X \subset V_{2}^{\prime}, u_{1}, u_{2}, u_{3}, u_{k-2}, u_{k-1}, u_{k} \in V_{2}^{\prime}$ and $\left|X^{\prime}\right|<|X| \leq N$, by letting $\alpha_{1} \leq \frac{1}{24}$, the degree conditions in Lemma 4.13 hold. We then apply Lemma 4.13 to $G\left[U_{2}\right]$ and obtain the desired ESHP

$$
x_{p-2} x_{p-1} x_{p} \cdots P_{0} \cdots y_{p} y_{p-1} y_{p-2}
$$

4.3.2. Step 1: Connect V_{1}^{\prime} and V_{2}^{\prime}

Given two disjoint sets A and B, an ESP on $A \cup B$ is called an (A, B)-connector if its first three vertices are from A, and the last three vertices are from B. Our goal is to find two disjoint $\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$-connectors of length at most 14 . The simplest connector is an ESP $x_{1} \cdots x_{6}$ with $x_{1}, x_{2}, x_{3} \in V_{1}^{\prime}$ and $x_{4}, x_{5}, x_{6} \in V_{2}^{\prime}$. Unfortunately such a simple connector may not exist if $e\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$ is very small but $e\left(V_{i}^{\prime}, V_{0}\right)$ is relatively large.

Let us sketch our proof. We first separate the vertices of V_{0} with large degree to both V_{1}^{\prime} and V_{2}^{\prime} :

$$
V_{0}^{\prime}=\left\{x \in V_{0}: \operatorname{deg}\left(x, V_{1}^{\prime}\right), \operatorname{deg}\left(x, V_{2}^{\prime}\right) \geq n / 6-2 \alpha_{2} n\right\}
$$

The reason why we choose $n / 6$ can be seen from (20), in which we use $n / 2=3(n / 6)$. If $\left|V_{0}^{\prime}\right|>165$, then we can find two disjoint copies of $T_{2,3,2}$ from the 3-partite subgraph $G\left[V_{1}^{\prime}, V_{0}^{\prime}, V_{2}^{\prime}\right]$, where $T_{2,3,2}$ is the union of two copies $K_{2,3}$ sharing the three vertices in one partition set. Each copy of $T_{2,3,2}$ can be easily extended to an $\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$-connector. If $\left|V_{0}^{\prime}\right| \leq 165$, then V_{0}^{\prime} will not be used any more. We add the vertices of $V_{0}-V_{0}^{\prime}$ into V_{1}^{\prime} or V_{2}^{\prime} forming two new (disjoint) sets U_{1}, U_{2} such that any three vertices in $U_{i}, i=1$, 2, have many common neighbors. What remains is to find two disjoint $\left(U_{1}, U_{2}\right)$-connectors by using the minimum degree condition $\delta(G) \geq\left(n+\left|V_{0}^{\prime}\right|\right) / 2+9$. One way to construct such a connector is to find two adjacent vertices $x \in U_{1}, y \in U_{2}$ such that there is 4 -vertex path between $\Gamma\left(x, U_{1}\right)$ and $\Gamma\left(y, U_{2}\right)$. If this cannot be done, then we find six vertices $x_{1}, x_{2}, x_{3} \in U_{1}$ and $x_{4}, x_{5}, x_{6} \in U_{2}$ such that $x_{1} x_{4}$ and $x_{3} x_{6}$ are edges and $x_{2}, x_{3}, x_{4}, x_{5}$ form a copy of $K_{2,2}$ in $G\left[U_{1}, U_{2}\right]$. After finding one connector, we remove all or some of its vertices and repeat the procedure above. Note that ignoring V_{0}^{\prime} of size at most 165 is the major reason for the large constant 92 in $\delta(G)$; for example, when $V_{0}^{\prime}=\emptyset$, then $\delta(G) \geq n / 2+9$ suffices.

We need the following propositions on the existence of $T_{2,3,2}$ and $K_{2,2}$, whose proofs are standard counting arguments. Given two disjoint vertex sets A, B in a graph H, we write $K_{s, t} \subseteq(A, B)$ if $H[A, B]$ contains a copy of $K_{s, t}$ with s vertices from A and t vertices from B. Similarly $T_{2,3,2} \subseteq(A, B, C)$ means that there are subsets $X \subseteq A, Y \subseteq B$ and $Z \subseteq C$ such that $H[X, Y] \cong H[Z, Y] \cong K_{2,3}$.

We denote by $\delta(A, B)$ the minimum degree $\operatorname{deg}(a, B)$ over all $a \in A$.

Proposition 4.14. (a) Given any integer $t>0$, there exist $\varepsilon_{0}>0$ and n_{0} such that the following holds for any $\varepsilon \leq \varepsilon_{0}$ and $n \geq n_{0}$. Let A, B be two disjoint vertex sets in a graph such that $\delta(B, A) \geq n / 6-3 \varepsilon n,|A| \leq(1+\varepsilon) n / 2$ and $|B|>9(t-1)$. Then $K_{2, t} \subseteq(A, B)$.
(b) There exist $\varepsilon_{0}>0$ and n_{0} such that the following holds for any $\varepsilon \leq \varepsilon_{0}$ and $n \geq n_{0}$. Let A, B, C be three disjoint vertex set in a graph such that $\delta(B, A), \delta(B, C) \geq n / 6-3 \varepsilon n,|A|,|C| \leq(1+\varepsilon) n / 2$ and $|B|>162$. Then $T_{2,3,2} \subseteq(A, B, C)$.

Proof. (a) If the graph contains no $K_{2, t}$ with 2 vertices in A and t vertices in B, then

$$
\begin{equation*}
\sum_{x \in B}\binom{\operatorname{deg}(x, A)}{2} \leq(t-1)\binom{|A|}{2} \tag{18}
\end{equation*}
$$

Since $\delta(B, A) \geq n / 6-3 \varepsilon n$ and $|A| \leq(1+\varepsilon) n / 2$,

$$
|B|\binom{n / 6-3 \varepsilon n}{2} \leq(t-1)\binom{(1+\varepsilon) n / 2}{2}
$$

As $n \rightarrow \infty$ and $\varepsilon \rightarrow 0$, we obtain $|B| \leq 9(t-1)$, contradiction.
(b) Since $|B|>9(19-1)$, we can apply (1) with $t=19$ to (A, B) and obtain a copy of $K_{2,19}$ on $X \subset A$ of size 2 and $Y^{\prime} \subset B$ of size 19. Then since $\left|Y^{\prime}\right|=19>9(3-1)$, we can apply (1) again with $t=3$ to $\left(C, Y^{\prime}\right)$ and obtain a copy of $K_{2,3}$ on $Z \subset C$ of size 2 and $Y \subset Y^{\prime}$ of size 3 .

The next proposition easily follows from a classical result of Kővári et al. [20].
Proposition 4.15. Let $H=(A \cup B, E)$ be a bipartite graph such that $|A|=n,|B|=m$. Then H contains a copy of $K_{2,2}$ if either of the following holds.
(a) $\operatorname{deg}(x) \geq \sqrt{m}$ for all $x \in A$ and $n>m+\sqrt{m}$,
(b) $e:=|E| \geq \max \left\{3 n, m^{2} / 2\right\}$.

Now we start our proof. First assume that $\left|V_{0}^{\prime}\right|>165$. Since $\delta\left(V_{0}^{\prime}, V_{i}^{\prime}\right) \geq n / 6-2 \alpha_{2} n$ and $\left|V_{i}^{\prime}\right| \leq\left(1+\alpha_{2}\right) n / 2$, we can apply Proposition 4.14(b) to the 3-partite subgraph on $V_{1}^{\prime} \cup V_{0} \cup V_{2}^{\prime}$ and find a copy of $T_{2,3,2}$ on $X \subset V_{1}^{\prime}, Y \subset V_{0}^{\prime}$ and $Z \subset V_{2}^{\prime}$ such that $|X|=|Z|=2,|Y|=3$. Let $V_{2}^{\prime \prime}=V_{1}^{\prime}-X, V_{0}^{\prime \prime}=V_{0}^{\prime}-Y$, and $V_{2}^{\prime \prime}=V_{2}^{\prime}-Z$. Then $\left|V_{0}^{\prime \prime}\right|>162$ and $\delta\left(V_{0}^{\prime \prime}, V_{i}^{\prime \prime}\right) \geq n / 6-2 \alpha_{2} n-2$. We apply Proposition $4.14(\mathrm{~b})$ again to 3-partite subgraph on $V_{1}^{\prime \prime} \cup V_{0}^{\prime \prime} \cup V_{2}^{\prime \prime}$ and find another copy of $T_{2,3,2}$. We next extend each copy of $T_{2,3,2}$ to a $\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$-connector of length 11 as follows. Assume $X=\left\{x_{3}, x_{5}\right\}, Y=\left\{x_{4}, x_{6}, x_{8}\right\}$, and $Z=\left\{x_{7}, x_{9}\right\}$. Then $x_{3}, x_{4}, \ldots, x_{8}, x_{9}$ is an ESP but it is not a $\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$-connector because $x_{4} \notin V_{1}^{\prime}$ and $x_{8} \notin V_{2}^{\prime}$. We extend this ESP by adding two vertices from V_{1}^{\prime} in the beginning and two vertices from V_{2}^{\prime} at the end. Since $x_{3}, x_{5} \in V_{1}^{\prime}$, by (15), we can find a vertex $x_{2} \in \Gamma\left(x_{3} x_{5}, V_{1}^{\prime}\right)$. Since $\operatorname{deg}\left(x_{2}, V_{1}^{\prime}\right)>\left|V_{1}^{\prime}\right|-\alpha_{1} n / 2$ and $\operatorname{deg}\left(x_{4}, V_{1}^{\prime}\right)>n / 6-2 \alpha_{2} n$, we can find a vertex $x_{1} \in \Gamma\left(x_{2} x_{4}, V_{1}^{\prime}\right)$, which is different from x_{3}, x_{5}. Therefore $x_{1} x_{2} \cdots x_{9}$ is an ESP. Similarly we find $x_{10}, x_{11} \in V_{2}^{\prime}$ such that $x_{1} x_{2}, \ldots, x_{10} x_{11}$ is an ESP, which is a $\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$-connector.

Now assume that $c_{0}:=\left|V_{0}^{\prime}\right| \leq 165$. We will not use the vertices of V_{0}^{\prime} any more. Since $\left|V_{0}\right| \leq \alpha_{2} n$, all vertices $x \in V_{0}$ satisfy $\operatorname{deg}\left(x, V_{1}^{\prime} \cup V_{2}^{\prime}\right)>n / 2-\alpha_{2} n$. If $x \in V_{0}-V_{0}^{\prime}$, then exactly one of $\operatorname{deg}\left(x, V_{1}\right)$ and $\operatorname{deg}\left(x, V_{2}\right)$ is less than $n / 6-2 \alpha_{2} n$. We thus partition $V_{0}-V_{0}^{\prime}$ into W_{1} and W_{2} such that $W_{i}=\left\{x \in V_{0}-V_{0}^{\prime}: \operatorname{deg}\left(x, V_{3-i}^{\prime}\right)<n / 6-2 \alpha_{2} n\right\}$. For $i=1$, 2, we have

$$
\delta\left(W_{i}, V_{i}^{\prime}\right) \geq \delta\left(W_{i}, V_{1}^{\prime} \cup V_{2}^{\prime}\right)-\frac{n}{6}+2 \alpha_{2} n \geq \frac{n}{2}-\alpha_{2} n-\frac{n}{6}+2 \alpha_{2} n=\frac{n}{3}+\alpha_{2} n
$$

Let $U_{i}=V_{i}^{\prime} \cup W_{i}$ for $i=1,2$. The above bound for $\delta\left(W_{i}, V_{i}^{\prime}\right)$ and (15) together imply that

$$
\begin{equation*}
\delta\left(U_{i}, V_{i}^{\prime}\right) \geq \frac{n}{3}+\alpha_{2} n \tag{19}
\end{equation*}
$$

Since $\left|V_{i}^{\prime}\right| \leq\left(1+\alpha_{2}\right) n / 2$, for any three vertices $x_{1}, x_{2}, x_{3} \in U_{i}$, we have

$$
\begin{equation*}
\operatorname{deg}\left(x_{1} x_{2} x_{3}, V_{i}^{\prime}\right) \geq 3\left(\frac{n}{3}+\alpha_{2} n\right)-2\left|V_{i}^{\prime}\right| \geq 2 \alpha_{2} n \tag{20}
\end{equation*}
$$

Without loss of generality, assume that $\left|U_{1}\right| \leq\left|U_{2}\right|$. Since $\left|U_{1}\right| \geq\left(1-\alpha_{2}\right) n / 2$, we have $\left|U_{2}\right| \leq\left(1+\alpha_{2}\right) n / 2$. It suffices to find two disjoint (U_{1}, U_{2})-connectors $u_{1} \cdots u_{q}$ and $v_{1} \cdots v_{q}$ for some $q \leq 8$. In fact, if any of u_{1}, u_{2}, u_{3} is not from V_{1}^{\prime} (note that $u_{1}, u_{2}, u_{3} \in U_{1}$ by the definition of (U_{1}, U_{2})-connectors), then we find at most three new vertices $x_{1}, x_{2}, x_{3} \in V_{1}^{\prime}$ such that $x_{1} x_{2} x_{3} u_{1} u_{2} u_{3}$ is an ESP. For example, assume that $u_{1} \notin V_{1}^{\prime}$. Then we first find $x_{3} \in \Gamma\left(u_{1} u_{3}, V_{1}^{\prime}\right)$, then $x_{2} \in \Gamma\left(x_{3} u_{2}, V_{1}^{\prime}\right)$, and finally $x_{1} \in \Gamma\left(x_{2} u_{1}, V_{1}^{\prime}\right)$ by applying (20) three times. Similar we add at most three new vertices $x_{q+1}, x_{q+2}, x_{q+3}$ from V_{2}^{\prime} such that $u_{q-2} u_{q-1} u_{q} x_{q+1} x_{q+2} x_{q+3}$ is an ESP. The resulting ESP $x_{1} x_{2} x_{3} u_{1} \cdots u_{q} x_{q+1} x_{q+2} x_{q+3}$ is a $\left(V_{1}^{\prime}, V_{2}^{\prime}\right)$-connector of length at most 14 . We obtain the other connector similarly.

The following technical lemma is the main step in our proof, we postpone its proof to the end.
Lemma 4.16. Let $\varepsilon \ll 1$ and n be sufficiently large. Suppose that G is a graph of order n with a vertex partition $U_{0} \cup U_{1} \cup U_{2}$ such that

- $\left|U_{0}\right|=c_{0} \ll n ;\left|U_{1}\right| \leq\left|U_{2}\right| \leq(1+\varepsilon) n / 2$;
- U_{1} contains a subset $\overline{V_{1}^{\prime}}$ such that $\delta\left(V_{1}^{\prime}, V_{1}^{\prime}\right) \geq(1-\varepsilon) n / 2$;
- $\delta\left(U_{2}, U_{2}\right) \geq n / 3$.

If $\delta(G) \geq \frac{n+c_{0}}{2}+6$, then $G\left[U_{1}, U_{2}\right]$ contain either of the following 6-vertex subgraphs.
H_{1} : Two vertices $x_{2} \in U_{1}, x_{5} \in U_{2}$ are adjacent; two vertices $x_{1}, x_{3} \in \Gamma\left(x_{2}, V_{1}^{\prime}\right)$ and two vertices $x_{4}, x_{6} \in \Gamma\left(x_{5}, U_{2}\right)$ form a path $x_{1} x_{4} x_{3} x_{6}$.
H_{2} : Four vertices $x_{2}, x_{3} \in U_{1}$ and $x_{4}, x_{5} \in U_{2}$ form a copy of $K_{2,2}$; a vertex $x_{1} \in \Gamma\left(x_{4}, U_{1}\right)$, and a vertex $x_{6} \in \Gamma\left(x_{3}, U_{2}\right)$.
We observe that subgraphs H_{1} and H_{2} given by Lemma 4.16 can be easily converted to $\left(U_{1}, U_{2}\right)$-connectors. In the case of $\mathrm{H}_{1}, x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}$ is an ESP and thus a (U_{1}, U_{2})-connector. In the case of H_{2}, by (20), x_{1}, x_{2}, x_{3} have a common neighbor $x_{7} \in V_{1}^{\prime}$, and x_{4}, x_{5}, x_{6} have a common neighbor $x_{8} \in V_{2}^{\prime}$. The $x_{1} x_{7} x_{2} x_{4} x_{3} x_{5} x_{8} x_{6}$ is an ESP and thus a (U_{1}, U_{2})-connector (see Fig. 3).

Fig. 3. Convert H_{1} and H_{2} to ESP's.
Recall that $\delta(G) \geq n / 2+92 \geq\left(n+\left|V_{0}^{\prime}\right|\right) / 2+9$. With $\varepsilon=\alpha_{1}+\alpha_{2}$, the partition $V_{0}^{\prime} \cup U_{1} \cup U_{2}$ satisfies the condition of Lemma 4.16 because of (15) and (19). Applying Lemma 4.16, we obtain either H_{1} or H_{2} with vertex set $\left\{x_{1}, \ldots, x_{6}\right\}$. Now let $V_{0}^{\prime \prime}=V_{0}^{\prime} \cup\left\{x_{1}, \ldots, x_{6}\right\}, U_{1}^{\prime}=U_{1}-\left\{x_{1}, x_{2}, x_{3}\right\}$, and $U_{2}^{\prime}=U_{2}-\left\{x_{4}, x_{5}, x_{6}\right\}$. Then $\delta(G) \geq\left(n+\left|V_{0}^{\prime \prime}\right|\right) / 2+6$ and the new partition $V_{0}^{\prime \prime} \cup U_{1}^{\prime} \cup U_{2}^{\prime}$ still satisfies the condition of Lemma 4.16. By Lemma 4.16, we can find a copy of H_{1} or H_{2} from $G\left[U_{1}^{\prime}, U_{2}^{\prime}\right]$. We finally convert the two copies of H_{1} or H_{2} to two disjoint $\left(U_{1}, U_{2}\right)$-connectors.

This complete the proof of Theorem 4.3 and the main theorem.
Proof of Lemma 4.16. Define $k:=c_{0} / 2+6$. By assumption $\delta(G) \geq n / 2+k$. Let $\left|U_{1}\right|=n / 2-b$. Since $\left|U_{1}\right| \leq\left(n-c_{0}\right) / 2$, we have $b \geq c_{0} / 2$.

$$
\begin{equation*}
\delta\left(U_{1}, U_{2}\right) \geq \frac{n}{2}+k-\left(\frac{n}{2}-b\right)-c_{0}=k+b-c_{0} \geq k-\frac{c_{0}}{2}=6 . \tag{21}
\end{equation*}
$$

However, we do not have a nontrivial lower bound for $\delta\left(U_{2}, U_{1}\right)$ because it may be the case that $k \leq b$. Define $U_{2}^{*}=\{u \in$ $U_{2}: u \sim x$ for some $\left.x \in V_{1}^{\prime}\right\}$. Note that $U_{2}^{*} \neq \emptyset$ because of (21). Select $x_{5} \in U_{2}^{*}$ such that $\operatorname{deg}\left(x_{5}, U_{2}\right)=\max _{u \in U_{2}^{*}} \operatorname{deg}\left(u, U_{2}\right)$. Pick an arbitrary vertex $x_{2} \in \Gamma\left(x_{5}, V_{1}^{\prime}\right)$. Let $B_{1}=\Gamma\left(x_{2}, V_{1}^{\prime}\right)$ and $B_{2}=\Gamma\left(x_{5}, U_{2}\right)$. By assumptions, $\left|B_{1}\right| \geq(1-\varepsilon) n / 2$ and $\left|B_{2}\right| \geq n / 3$. If the bipartite graph $G\left[B_{1}, B_{2}\right]$ contains a 4 -vertex path $x_{1} x_{4} x_{3} x_{6}$, then we immediately obtain the desired graph H_{1}.

We may therefore assume that $G\left[B_{1}, B_{2}\right]$ contains no 4 -vertex path. This implies $G\left[B_{1}, B_{2}\right]$ consists of disjoint stars, in particular, $e\left(B_{1}, B_{2}\right)<\left|B_{1}\right|+\left|B_{2}\right|$. Let $B_{1}^{\prime}=\left\{x \in B_{1}: \operatorname{deg}\left(x, B_{2}\right) \leq 1\right\}$. The vertices in $B_{1}-B_{1}^{\prime}$ thus have disjoint neighborhoods in B_{2} of size at least 2. Consequently $\left|B_{1}-B_{1}^{\prime}\right| \leq\left|B_{2}\right| / 2 \leq\left|U_{2}\right| / 2 \leq(1+\varepsilon) n / 4$. Therefore $\left|B_{1}^{\prime}\right| \geq n / 4-\varepsilon n$ (in particular $B_{1}^{\prime} \neq \emptyset$).

Let $A_{2}=U_{2}-B_{2}$ and set $m=\left|A_{2}\right|$. Since $\left|B_{2}\right| \geq n / 3$, then $m \leq(1+\varepsilon) n / 2-n / 3 \leq n / 6+\varepsilon n / 2$. By (21) and the definition of B_{1}^{\prime}, we have

$$
\begin{equation*}
\delta\left(B_{1}^{\prime}, A_{2}\right) \geq k+b-c_{0}-1 \tag{22}
\end{equation*}
$$

In particular, $m \geq k+b-c_{0}-1$. On the other hand, the definition of x_{5} says that $\operatorname{deg}\left(u, U_{2}\right) \leq \operatorname{deg}\left(x_{5}, U_{2}\right)=n / 2+b-c_{0}-m$ for every $u \in U_{2}^{*}$. By using $m \geq k+b-c_{0}-1$, we obtain

$$
\begin{align*}
\delta\left(U_{2}^{*}, U_{1}\right) & \geq \frac{n}{2}+k-\left(\frac{n}{2}+b-c_{0}-m\right)-c_{0}=k-b+m \tag{23}\\
& \geq 2 k-c_{0}-1=11 . \tag{24}
\end{align*}
$$

We observe that it suffices to find a copy of $K_{2,2}$ from $G\left[U_{1}, U_{2}^{*}\right]$. In fact, assume that $x_{2}, x_{3} \in U_{1}$ and $x_{4}, x_{5} \in U_{2}^{*}$ are the four vertices of $K_{2,2}$. By (21), x_{3} has a neighbor x_{6} in $U_{2}-\left\{x_{4}, x_{5}\right\}$; by (24), x_{4} has a neighbor $x_{1} \in U_{1}-\left\{x_{2}, x_{3}\right\}$. This gives the desired graph H_{2}.

We now separate cases by whether $b \geq \sqrt{m}+\frac{c_{0}}{2}$.
Case 1: $b \geq \sqrt{m}+\frac{c_{0}}{2}$.
By (22), $\delta\left(B_{1}^{\prime}, A_{2}\right) \geq k+\sqrt{m}+\frac{c_{0}}{2}-c_{0}-1>\sqrt{m}$ as $k>c_{0} / 2+1$. Since $\left|B_{1}^{\prime}\right| \geq n / 4-\varepsilon n$ and $m \leq n / 6-\varepsilon n / 2$, we have $\left|B_{1}^{\prime}\right|>\left|A_{2}\right|+\sqrt{\left|A_{2}\right|}$. By Proposition 4.15, $G\left[B_{1}^{\prime}, A_{2}\right]$ contains a copy of $K_{2,2}$. Note that the two vertices of this $K_{2,2}$ in A_{2} belong to U_{2}^{*} because they have neighbors in $B_{1}^{\prime} \subseteq V_{1}^{\prime}$.
Case 2: $b<\sqrt{m}+\frac{c_{0}}{2}$. Let $A_{2}^{*}=U_{2}^{*} \cap A_{2}$. By (23), $\delta\left(A_{2}^{*}, U_{1}\right)>k-\left(\sqrt{m}+\frac{c_{0}}{2}\right)+m \geq 1+m-\sqrt{m} \geq m / 2$, where the last inequality holds for any $m \geq 0$. This implies $e\left(A_{2}^{*}, U_{1}\right) \geq\left|A_{2}^{*}\right|^{2} / 2$. On the other hand, (21) implies that $e\left(B_{1}, U_{2}\right) \geq 6\left|B_{1}\right|$ because $k-\frac{c_{0}}{2} \geq 6$. Recall that $e\left(B_{1}, B_{2}\right)<\left|B_{1}\right|+\left|B_{2}\right|$. By the definition of A_{2}^{*},

$$
\begin{aligned}
e\left(B_{1}, A_{2}^{*}\right) & =e\left(B_{1}, A_{2}\right)>6\left|B_{1}\right|-\left(\left|B_{1}\right|+\left|B_{2}\right|\right) \\
& >5(1-\varepsilon) \frac{n}{2}-(1+\varepsilon) \frac{n}{2}>\frac{3 n}{2} .
\end{aligned}
$$

Consequently $e\left(U_{1}, A_{2}^{*}\right) \geq e\left(B_{1}, A_{2}^{*}\right)>3 n / 2 \geq 3\left|U_{1}\right|$. We can apply Proposition 4.15 and obtain a copy of $K_{2,2}$ in $G\left[U_{1}, A_{2}^{*}\right]$.

5. Open problems

- What is the smallest integer C such that every graph of even order n with $\delta(G) \geq n / 2+C$ contains an ESHC? Theorem 1.1 and Proposition 1.2 together show that $2 \leq C \leq 92$. We think the lower bound is closer to the truth. To justify it, one needs to improve the constants in Theorems 4.2 and 4.3.
- What is the minimum degree threshold $\delta(n)$ for ESHC's of odd order? The (general) theorem of Böttcher, Schacht and Taraz (see the footnote on page 2) implies that $\delta(n) \leq n / 2+\varepsilon n$ for any $\varepsilon>0$; our Proposition 1.3 shows that $\delta(n) \geq(n+\sqrt{n / 2}-1) / 2$. Probably $\delta(n)=n / 2+c \sqrt{n}$ for some constant c. It seems that Theorem 4.1 for the non-extremal case remains valid when n is odd; the difficulty again is on the extremal cases.
- Can one find a proof of Theorem 1.1 (in fact, only Theorem 4.1) without using the Regularity Lemma? Recently Pósa's conjecture has been (re)proved [5,21] without the Regularity Lemma (thus it holds for all $n \geq n_{0}$ with some modest n_{0}). However, it is not clear if similar approaches work on Theorem 1.1 or Theorem 1.4.

Acknowledgments

The authors thank the referees for their valuable comments that improved the presentation.
Saito's research is partially supported by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C), 15540140, 2004, and The Research Grant of Nihon University, College of Humanities and Sciences. Zhao's research is partially supported by the NSA H98230-05-1-0140 and H98230-07-1-0019.

References

[1] S. Abbasi, Spanning subgraphs of dense graphs and a combinatorial problem on strings, Ph.D. Thesis, Rutgers University, 1998.
[2] M. Aigner, S. Brandt, Embedding arbitrary graphs of maximum degree two, J. Lond. Math. Soc. (2) 48 (1) (1993) 39-51. MR MR1223891 (94g:05063).
3] N. Alon, E. Fischer, 2-factors in dense graphs, Discrete Math. 152 (1-3) (1996) 13-23. MR MR1388628 (97d:05216).
[4] J. Böttcher, M. Schacht, A. Taraz, Proof of the bandwidth conjecture of Bollobás and Komlós, Math. Ann. 343 (1) (2009) 175-205. MR MR2448444.
[5] P. Châu, L. DeBiasio, H. Kierstead, Pósa's conjecture for graphs of order at least 2×10^{8}, Random Structures Algorithms 39 (4) (2011) $509-527$.
[6] A. Czygrinow, H.A. Kierstead, 2-factors in dense bipartite graphs, Discrete Math. 257 (2-3)(2002)357-369. Kleitman and Combinatorics: A Celebration, Cambridge, MA, 1999. MR MR1935733 (2003h:05150).
[7] R. Diestel, Graph Theory, third ed., in: Graduate Texts in Mathematics, vol. 173, Springer-Verlag, Berlin, 2005, MR MR2159259 (2006e:05001).
[8] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. (3) 2 (1952) 69-81. MR MR0047308 (13,856e).
[9] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (2-3) (1984) 227-230. MR MR753712 (85g:05092).
[10] P. Erdős, Problem 9, in: M. Fielder (Ed.), Theory of Graphs and its Applications, in: Acad. Sci., Publ. House Czech, 1964 (in Prague).
[11] P. Erdős, A. Rényi, V.T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar. 1 (1966) 215-235. MR MR0223262 (36 \#6310).
[12] G. Fan, H.A. Kierstead, The square of paths and cycles, J. Combin. Theory Ser. B 63 (1) (1995) 55-64. MR MR1309357 (95k:05112).
[13] R.J. Gould, Advances on the Hamiltonian problem-a survey, Graphs Combin. 19 (1) (2003) 7-52. MR MR1974368 (2004a:05092).
[14] J. Komlós, The blow-up lemma, Combin. Probab. Comput. 8 (1-2) (1999) 161-176, Recent trends in combinatorics (Mátraháza, 1995) MR MR1684627 (2000b:05081).
[15] J. Komlós, G.N. Sárközy, E. Szemerédi, On the square of a Hamiltonian cycle in dense graphs, in: Proceedings of the Seventh International Conference on Random Structures and Algorithms, Atlanta, GA, 1995, vol. 9, 1996, pp. 193-211. MR MR1611764 (99f:05073).
[16] J. Komlós, G.N. Sárközy, E. Szemerédi, Blow-up lemma, Combinatorica 17 (1) (1997) 109-123. MR MR1466579 (99b:05083).
[17] J. Komlós, G.N. Sárközy, E. Szemerédi, On the Pósa-Seymour conjecture, J. Graph Theory 29 (3) (1998) 167-176. MR MR1647806 (99g:05125).
[18] J. Komlós, G.N. Sárközy, E. Szemerédi, Proof of the Seymour conjecture for large graphs, Ann. Comb. 2 (1) (1998) 43-60. MR MR1682919 (2000h:05144).
[19] J. Komlós, M. Simonovits, Szemerédi's regularity lemma and its applications in graph theory, in: Combinatorics, Paul Erdős is Eighty, Vol. 2, Keszthely, 1993, in: Bolyai Soc. Math. Stud., vol. 2, János Bolyai Math. Soc., Budapest, 1996, pp. 295-352. MR MR1395865 (97d:05172).
[20] T. Kövari, V.T. Sós, P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1954) 50-57. MR MR0065617 (16,456a).
[21] I. Levitt, G.N. Sárközy, E. Szemerédi, How to avoid using the regularity lemma: Pósa's conjecture revisited, Discrete Math. 310 (2010) 630-641.
[22] C.St.J.A. Nash-Williams, Edge-disjoint Hamiltonian circuits in graphs with vertices of large valency, in: Studies in Pure Mathematics (Presented to Richard Rado), Academic Press, London, 1971, pp. 157-183. MR MR0284366 (44 \#1594).
[23] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55. MR MR0118683 (22 \#9454).
[24] E. Szemerédi, Regular partitions of graphs, in: Problèmes Combinatoires et Théorie des Graphes, Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976, in: Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, pp. 399-401. MR MR540024 (81i:05095).

[^0]: * Corresponding author.

 E-mail addresses: gchen@gsu.edu (G. Chen), yzhao6@gsu.edu, matyxz@langate.gsu.edu (Y. Zhao).

