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Abstract

We determine the exact minimum `-degree threshold for perfect matchings in k-
uniform hypergraphs when the corresponding threshold for perfect fractional match-
ings is significantly less than 1

2

(
n
k−`
)
. This extends our previous results that deter-

mine the minimum `-degree thresholds for perfect matchings in k-uniform hyper-
graphs for all ` > k/2 and provides two new (exact) thresholds: (k, `) = (5, 2) and
(7, 3).

Keywords: perfect matchings, hypergraphs, absorbing method

1 Introduction

A perfect matching in a hypergraph H is a collection of vertex-disjoint edges of H which
cover the vertex set V (H) of H. Given a k-uniform hypergraph H with an `-element
vertex set S (where 0 6 ` 6 k− 1) we define dH(S) to be the number of edges containing
S. The minimum `-degree δ`(H) of H is the minimum of dH(S) over all `-element sets of
vertices in H. In recent years the problem of determining the minimum `-degree threshold
that ensures a perfect matching in a k-uniform hypergraph has received much attention
(see e.g. [9, 17, 15, 18, 5, 14, 12, 7, 8, 1, 19, 2, 20, 6, 11, 3]). See [16] for a survey on
matchings (and Hamilton cycles) in hypergraphs.

Suppose that `, k, n ∈ N such that k > 3, ` 6 k − 1 and k divides n. Let m`(k, n)
denote the smallest integer m such that every k-uniform hypergraph H on n vertices with
δ`(H) > m contains a perfect matching. The conjectured value of m`(k, n) comes from
two types of constructions. The first type of constructions are referred to as divisibility
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barriers. Given a set V of n vertices with a partition A,B, let Eodd(A,B) (Eeven(A,B))
denote the family of all k-element subsets of V that intersect A in an odd (even) number
of vertices. Define Bn,k(A,B) to be the k-uniform hypergraph with vertex set V and
edge set Eodd(A,B). Note that the complement Bn,k(A,B) of Bn,k(A,B) has edge set
Eeven(A,B). Define Hext(n, k) to be the collection of the following hypergraphs. First,
Hext(n, k) contains all hypergraphs Bn,k(A,B) where |A| is odd. Second, if n/k is odd
then Hext(n, k) also contains all hypergraphs Bn,k(A,B) where |A| is even; if n/k is even
then Hext(n, k) also contains all hypergraphs Bn,k(A,B) where |A| is odd. It is easy to
see that no hypergraph in Hext(n, k) contains a perfect matching. Define δ(n, k, `) to be
the maximum of the minimum `-degrees among all the hypergraphs in Hext(n, k). Note
that δ(n, k, `) = (1/2 + o(1))

(
n−`
k−`

)
but the general formula of δ(n, k, `) is unknown (see

more discussion in [19]).
The other type of extremal constructions are referred to as space barriers. Let H∗(n, k)

be the k-uniform hypergraph on n vertices whose vertex set is partitioned into two vertex
classes A and B of sizes n/k−1 and (1−1/k)n+1 respectively and whose edge set consists
precisely of all those edges with at least one endpoint in A. Then H∗(n, k) does not have

a perfect matching and δ`(H
∗(n, k)) =

(
n−`
k−`

)
−
(
(1−1/k)n−`+1

k−`

)
≈
(

1−
(
k−1
k

)k−`) (n−`
k−`

)
.

An asymptotic version of the following conjecture appeared in [5, 10] and the minimum
vertex degree version was stated in [12].

Conjecture 1. Let k, ` ∈ N such that ` 6 k − 1. Then for sufficiently large n ∈ kN,

m`(k, n) = max

{
δ(n, k, `),

(
n− `
k − `

)
−
(

(1− 1/k)n− `+ 1

k − `

)}
+ 1.

Note that for all 1 6 ` 6 k − 1,(
k − 1

k

)k−`
<

(
1

e

)1− `
k

and 1−
(
k − 1

k

)k ln 2

→ 1

2
as k →∞,

where ln denotes the natural logarithm function. Thus, for 1� k � n, if ` is significantly
bigger than (1 − ln 2)k ≈ 0.307k then δ(n, k, `) >

(
n−`
k−`

)
−
(
(1−1/k)n−`+1

k−`

)
. On the other

hand, if ` is smaller than (1− ln 2)k then δ(n, k, `) <
(
n−`
k−`

)
−
(
(1−1/k)n−`+1

k−`

)
for sufficiently

large n.
Conjecture 1 has been proven in a number of special cases. Indeed, Rödl, Ruciński and

Szemerédi [18] proved the conjecture for ` = k − 1. The authors [19, 20] generalized this
result by showingm`(k, n) = δ(n, k, `)+1 for all k/2 6 ` 6 k−1 (independently Czygrinow
and Kamat [2] proved this for (k, `) = (4, 2)). In the case when (k, `) = (3, 1), Conjecture 1
was confirmed by Kühn, Osthus and Treglown [12] and independently Khan [7]. Khan [8]
also resolved the case when (k, `) = (4, 1). Alon, Frankl, Huang, Rödl, Ruciński and
Sudakov [1] determined m`(k, n) asymptotically in the case when (k, `) = (5, 1), (5, 2),
(6, 2), and (7, 3). Other than these results, no other asymptotic or exact results are known
(the best known general bounds are due to Kühn, Osthus and Townsend [11]).

A connection between m`(k, n) and the minimum `-degree that forces a perfect frac-
tional matching was discovered in [1]. Let H be a k-uniform hypergraph on n vertices. A
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fractional matching in H is a function w : E(H)→ [0, 1] such that for each v ∈ V (H) we
have that

∑
e3v w(e) 6 1. Then

∑
e∈E(H)w(e) is the size of w. If the size of the largest

fractional matching w in H is n/k then we say that w is a perfect fractional matching.
Given k, ` ∈ N such that ` 6 k−1, define c∗k,` to be the smallest number c such that every

k-uniform hypergraph H on n vertices with δ`(H) > (c + o(1))
(
n−`
k−`

)
contains a perfect

fractional matching. It is easy to see that the hypergraph H∗(n, k) defined earlier contains

no perfect fractional matching. Thus c∗k,` > 1 −
(
k−1
k

)k−`
. Alon et al. [1, Theorem 1.1]

showed that for fixed k, `, as n ∈ kN tends to infinity,

m`(k, n) =

(
max

{
1

2
, c∗k,`

}
+ o(1)

)(
n− `
k − `

)
. (1)

Furthermore, in [1] the authors conjectured that c∗k,` = 1 −
(
k−1
k

)k−`
and confirmed this

for ` > k − 4. Together with (1), this gives the aforementioned (asymptotic) results on
m`(k, n) for (k, `) = (5, 1), (5, 2), (6, 2) and (7, 3).

In this note we prove the following refinement of (1).

Theorem 2. Fix k, ` ∈ N with ` 6 k − 1 and let n ∈ kN. Then

m`(k, n) = max

{
δ(n, k, `) + 1, (c∗k,` + o(1))

(
n− `
k − `

)}
.

Although it looks like a small improvement, Theorem 2 enables us to determine
m`(k, n) exactly whenever c∗k,` < 1/2. A recent result of Kühn, Osthus and Townsend [11,
Theorem 1.9] showed that

c∗k,` 6
k − `
k
− k − `− 1

kk−`

for all ` 6 k− 2. Together with c∗k,k−1 = 1/k (see [17]), this implies that c∗k,` < 1/2 for all
k/2 6 ` 6 k − 1. Consequently Theorem 2 implies the aforementioned results of [19, 20]:
m`(k, n) = δ(n, k, `) + 1 for all k/2 6 ` 6 k − 1.

Furthermore, in [1] it was shown that c∗5,2 = 61/125 < 1/2 and c∗7,3 = 1105/2401 < 1/2.
Therefore an immediate consequence of Theorem 2 is the following corollary.

Corollary 3. Suppose that (k, `) = (5, 2) or (7, 3). Then m`(k, n) = δ(n, k, `) + 1 for
sufficiently large n.

After this paper was submitted, Han [4] showed that c∗k,` < 1/2 in the case when
0.42k 6 ` < k/2 or (k, `) = (12, 5), (17, 7). Thus, together with Theorem 2 this resolves
Conjecture 1 in these cases.

Let us highlight the ideas behind the proof of Theorem 2. It is informative to first
recall the proof of (1), which is an application of the absorbing method. The authors of [1]
first applied a lemma of Hàn, Person and Schacht [5, Lemma 2.4], which states that every
k-uniform hypergraph H with δ`(H) > (1/2+o(1))

(
n
k−`

)
contains a small matching M that

can absorb any vertex set W ⊂ V (H) \V (M) of size much smaller than M (that is, there
is matching in H on V (M)∪W exactly). Next they found an almost perfect matching in
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H[V (H)\V (M)] by first finding a fractional matching and then converting it to an integer
matching. This immediately provides the desired perfect matching of H because M can
absorb all uncovered vertices in V (H) \ V (M). In order to prove Theorem 2, we prove
a result stronger than [5, Lemma 2.4], Theorem 5, which implies that every k-uniform
hypergraph H with δ`(H) > (1/2 − o(1))

(
n
k−`

)
either contains the aforementioned M or

looks like a hypergraph in Hext(n, k). If H contains M , then we proceed as in [1] (except
that we apply a lemma from [11] when converting a fractional matching to an integer
matching); if H looks like a hypergraph in Hext(n, k) and δ`(H) > δ(n, k, `) + 1, then we
obtain a perfect matching by applying [19, Theorem 4.1].

Theorem 5 is the main contribution of this note – it is stronger than two absorbing
theorems in our previous papers [19, Theorem 3.1] and [20, Theorem 3.1], in which we
assume that ` > k/2. The proof of Theorem 5 is actually shorter than those of the
two previous absorbing theorems because 1) we use a different absorbing structure which
allows us to apply a lemma from [13]; 2) when proving Lemma 10, we avoid using auxil-
iary hypergraphs and obtain the structure of H by considering the neighborhoods of the
vertices of H directly.

Notation: Given a set X and r ∈ N, we write
(
X
r

)
for the set of all r-element subsets of

X. Let H be a k-uniform hypergraph. We write V (H) for the vertex set and E(H) for
the edge set of H. Define e(H) := |E(H)|. Given v ∈ V (H), we write NH(v) to denote
the neighborhood of v, that is, the family of those (k−1)-subsets of V (H) which, together
with v, form an edge in H. Given X ⊆ V (H), we write H[X] for the subhypergraph of
H induced by X, namely, H[X] := (X,E(H)∩

(
X
k

)
). We denote the complement of H by

H. That is, H := (V (H),
(
V (H)
k

)
\E(H)). Suppose that n, k ∈ N. When |A| = bn/2c and

|B| = dn/2e, we define Bn,k := Bn,k(A,B) and Bn,k := Bn,k(A,B).
We will often write 0 < a1 � a2 � a3 to mean that we can choose the constants

a1, a2, a3 from right to left. More precisely, there are increasing functions f and g such
that, given a3, whenever we choose some a2 6 f(a3) and a1 6 g(a2), all calculations
needed in our proof are valid. Hierarchies with more constants are defined in the obvious
way.

2 Proof of Theorem 2

The lower bound for m`(k, n) in Theorem 2 follows from the definitions of δ(n, k, `) and
c∗k,` immediately. The following (more general) result provides the desired upper bound
for m`(k, n).

Theorem 4. Given any θ > 0, k, `, `′ ∈ N where 1 6 `, `′ 6 k−1 there is an n0 ∈ N such
that the following holds. Let n > n0 where k divides n. If H is a k-uniform hypergraph
on n vertices with

δ`(H) > δ(n, k, `) and δ`′(H) > (c∗k,`′ + θ)

(
n− `′

k − `′

)
, (2)

then H contains a perfect matching.
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The proof of Theorem 4 splits into extremal and non-extremal cases, the former case
being when H looks like an element of Hext(n, k). To make this precise we introduce more
notation. Let ε > 0. Suppose that H and H ′ are k-uniform hypergraphs on n vertices.
We say that H is ε-close to H ′ if H becomes a copy of H ′ after adding and deleting at
most εnk edges. More precisely, H is ε-close to H ′ if there is an isomorphic copy H̃ of H
such that V (H̃) = V (H ′) and |E(H̃)4E(H ′)| 6 εnk.

Our proof of the non-extremal case uses the absorbing method. Given a k-uniform
hypergraph H, a set S ⊆ V (H) is called an absorbing set for Q ⊆ V (H), if both H[S]
and H[S ∪ Q] contain perfect matchings. In this case, if the matching covering S is M ,
we also say M absorbs Q.

Our main result, Theorem 5, extends [20, Theorem 3.1]. It ensures that if H is as in
Theorem 4 then H contains a small absorbing matching or H is close to one of Bn,k and
Bn,k. We postpone its proof to the next subsection.

Theorem 5. Given any ε > 0 and integer k > 2, there exist 0 < α, ξ < ε and n0 ∈ N such
that the following holds. Suppose that H is a k-uniform hypergraph on n > n0 vertices. If

δ1(H) >

(
1

2
− α

)(
n− 1

k − 1

)
then H is ε-close to Bn,k or Bn,k, or H contains a matching M of size |M | 6 ξn/k that
absorbs any set W ⊆ V (H) \ V (M) such that |W | ∈ kN with |W | 6 ξ2n.

The next result from [19] ensures a perfect matching when our hypergraph H is close
to one of the extremal hypergraphs Bn,k and Bn,k.

Theorem 6. [19, Theorem 4.1] Given 1 6 ` 6 k − 1, there exist ε > 0 and n0 ∈ N such
that the following holds. Suppose that H is a k-uniform hypergraph on n > n0 vertices
such that n is divisible by k. If δ`(H) > δ(n, k, `) and H is ε-close to Bn,k or Bn,k, then
H contains a perfect matching.

The final tool required for the proof of Theorem 4 is a weaker version of Lemma 5.6
in [11].

Lemma 7. [11] Let k > 2 and 1 6 ` 6 k − 1 be integers, and let ε > 0. Suppose that for
some b, c ∈ (0, 1) and some n0 ∈ N, every k-uniform hypergraph H on n > n0 vertices with
δ`(H) > cnk−` has a fractional matching of size (b+ε)n. Then there exists an n′0 ∈ N such
that any k-uniform hypergraph H on n > n′0 vertices with δ`(H) > (c+ ε)nk−` contains a
matching of size at least bn.

Proof of Theorem 4. Choose ε > 0 from Theorem 6. We may additionally assume
that ε � θ, 1/k. Let 0 < α, ξ < ε be as in Theorem 5. Let n be sufficiently large and
divisible by k. Assume that H is a k-uniform hypergraph on n vertices satisfying (2).
Since δ`(H) > δ(n, k, `) = (1/2 − o(1))

(
n−`
k−`

)
, it follows that δ1(H) > (1/2 − α)

(
n−1
k−1

)
. By

Theorem 5, H is ε-close to Bn,k or Bn,k, or H contains a matching M of size |M | 6 ξn/k
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that absorbs any set W ⊆ V (H) \ V (M) satisfying |W | ∈ kN with |W | 6 ξ2n. In the
former case, since δ`(H) > δ(n, k, `), Theorem 6 provides a perfect matching in H. In the
latter case, set c∗ := c∗k,`′ , H

′ := H[V (H)\V (M)] and n1 := |V (H ′)|. Since |V (M)| 6 ξn,

δ`′(H
′) > δ`′(H)−|V (M)|

(
n− `′ − 1

k − `′ − 1

)
> (c∗+θ−ξk)

(
n− `′

k − `′

)
> (c∗/(k−`′)!+2ξ2)nk−`

′

1 ,

where the last inequality follows since ξ � θ, 1/k. Let c := c∗/(k − `′)! + ξ2. By the
definition of c∗, for sufficiently large ñ, every k-uniform hypergraph F on ñ vertices with
δ`′(F ) > cñk−`

′
contains a perfect fractional matching. Applying Lemma 7 with ξ2/k

and (1 − ξ2)/k playing the roles of ε and b respectively, we conclude that H ′ contains a
matching M ′ of size at least (1− ξ2)n1/k. Let W be the uncovered vertices of H ′. Then
|W | 6 ξ2n. We finally absorb W using the absorbing property of M . �

2.1 Proof of Theorem 5

The proof of Theorem 5 follows from the following three lemmas. Lemma 8 is a special
case of [13, Lemma 1.1] and gives a sufficient condition for a hypergraph H to contain a
small matching that absorbs any much smaller set of vertices from H.

Lemma 8. [13] Let k ∈ N and γ′ > 0. Then there exists an n0 ∈ N such that the
following holds. Suppose that H is a k-uniform hypergraph on n > n0 vertices so that,
for any x, y ∈ V (H), there are at least γ′n2k−1 (2k − 1)-sets X ⊆ V (H) such that both
H[X ∪ {x}] and H[X ∪ {y}] contain perfect matchings. Then H contains a matching M
so that

• |M | 6 (γ′/2)kn/(8k2(k − 1));

• M absorbs any W ⊆ V (G)\M such that |W | ∈ kN and |W | 6 (γ′/2)2kn/(128k(k−
1)2).

Lemma 9. Let k ∈ N and 0 < γ′ � γ � 1/k. There exists an n0 ∈ N such that the
following holds. Let H = (V,E) be a k-uniform hypergraph on n > n0 vertices. Suppose
that for every x, y ∈ V at least one of the following conditions holds.

(i) |NH(x) ∩NH(y)| > γnk−1;

(ii) There exists at least γn vertices z ∈ V such that |NH(x) ∩ NH(z)| > γnk−1 and
|NH(y) ∩NH(z)| > γnk−1.

There there are at least γ′n2k−1 (2k − 1)-sets X ⊆ V such that both H[X ∪ {x}] and
H[X ∪ {y}] contain perfect matchings.

Lemma 10. Let k ∈ N and 0 < α� γ � ε, 1/k. Then there exists an n0 ∈ N such that
the following holds. Let H = (V,E) be a k-uniform hypergraph on n > n0 vertices such
that δ1(H) > (1/2− α)

(
n−1
k−1

)
. Suppose that there exists x0, y0 ∈ V such that
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(i) |NH(x0) ∩NH(y0)| < γnk−1;

(ii) at most γn vertices z ∈ V satisfy |NH(z)∩NH(x0)| > γnk−1 and |NH(z)∩NH(y0)| >
γnk−1.

Then H is ε-close to Bn,k or Bn,k.

We postpone the proof of Lemmas 9 and 10 and prove Theorem 5 first.

Proof of Theorem 5. Given ε > 0 and k > 2, choose constants α, γ′, γ so that 0 < α�
γ′ � γ � ε, 1/k. Set ξ := (γ′/2)k/

√
128k(k − 1)2. Let n be sufficiently large and H be

a k-uniform hypergraph as in the statement of the theorem.
By Lemmas 9 and 10, H is ε-close to Bn,k or Bn,k or for every x, y ∈ V (H) there are at

least γ′n2k−1 (2k− 1)-sets X ⊆ V (H) such that both H[X ∪{x}] and H[X ∪{y}] contain
perfect matchings. In the former case we are done. In the latter case, Lemma 8 implies
that H contains a matching M so that

• |M | 6 (γ′/2)kn/(8k2(k − 1)) 6 ξn/k;

• M absorbs any W ⊆ V (H)\M such that |W | ∈ kN and |W | 6 (γ′/2)2kn/(128k(k−
1)2) = ξ2n,

as required. �

Proof of Lemma 9. Note that (i) and (ii) imply that δ1(H) > γnk−1 and so e(H) >
γnk/k. Consider any x, y ∈ V . First assume that (i) holds. Fix any X ′ ⊆ V where
|X ′| = k − 1 and X ′ ∪ {x}, X ′ ∪ {y} ∈ E. By (i) there are at least γnk−1 choices for X ′.
Next choose some X ′′ ⊆ V \ (X ′ ∪ {x, y}) such that |X ′′| = k and X ′′ ∈ E. There are
at least γnk/k − (k + 1)

(
n
k−1

)
> γnk/(2k) choices for X ′′. Set X := X ′ ∪X ′′. Note that

both H[X ∪ {x}] and H[X ∪ {y}] contain perfect matchings. Further, since there are at
least γnk−1 choices for X ′, at least γnk/(2k) choices for X ′′ and each (2k− 1)-set may be
counted at most

(
2k−1
k−1

)
times, there are at least

γnk−1 × γnk

2k
× 1(

2k−1
k−1

) > γ′n2k−1

choices for X (as γ′ � γ � 1/k), as desired.
Now suppose that (ii) holds. Fix any z ∈ V such that |NH(x) ∩ NH(z)| > γnk−1

and |NH(y) ∩ NH(z)| > γnk−1. There are at least γn choices for z. Next fix some
X ′ ∈ NH(x) ∩NH(z) that is disjoint from y. There are at least γnk−1 −

(
n
k−2

)
> γnk−1/2

choices for X ′. Finally, fix some X ′′ ∈ NH(y)∩NH(z) so that X ′′ is disjoint from X ′∪{x}.
There are at least γnk−1− k

(
n
k−2

)
> γnk−1/2 choices for X ′′. Set X := X ′ ∪X ′′ ∪ {z}. So

|X| = 2k − 1 and both H[X ∪ {x}] and H[X ∪ {y}] contain perfect matchings. Further,
there are at least

γn× γnk−1

2
× γnk−1

2
× 1

(2k − 1)
(
2k−2
k−1

) > γ′n2k−1

choices for X (as γ′ � γ � 1/k), as desired. �

the electronic journal of combinatorics 22 (2015), #P00 7



The rest of this section is devoted to the proof of Lemma 10. We draw on ideas used
in the proof of Lemma 5.4 in [20]. We need two results from [20]. The first one implies
that if any two vertices in a hypergraph have roughly the same neighborhood, then the
hypergraph is near complete or empty.

Lemma 11. [20, Lemma 2.2] Given any k ∈ N and ρ > 0 there exists an n0 ∈ N such
that the following holds. Let F = (V,E) be a k-uniform hypergraph on n > n0 vertices
with edge density |E|/

(
n
k

)
∈ [ρ, 1 − ρ]. Then there exist two vertices v, v′ ∈ V such that

|NF (v)4NF (v′)| > ρ(1− ρ)nk−1/(k + 1)!.

Proposition 12. [20, Proposition 2.3] For r ∈ N, 0 6 c 6 1 and n→∞,∑
06i6r, i even

(
cn

r − i

)(
(1− c)n

i

)
=
nr

2r!
(1 + (2c− 1)r)−O(nr−1),

∑
06i6r, i odd

(
cn

r − i

)(
(1− c)n

i

)
=
nr

2r!
(1− (2c− 1)r)−O(nr−1).

Proof of Lemma 10. Define

X := {v ∈ V : |NH(y0)∩NH(v)| < γnk−1} and Y := {v ∈ V : |NH(x0)∩NH(v)| < γnk−1}.

Then by Lemma 10 (i), x0 ∈ X and y0 ∈ Y . Let V0 := V \ (X ∪ Y ). We have |V0| 6 γn
by Lemma 10 (ii). Roughly speaking, our goal is to show that |X| ≈ |Y | ≈ n/2 and
H ≈ Bn,k(X, Y ) or H ≈ Bn,k(X, Y ).

We first provide several properties of X and Y , for example, X ∩Y = ∅, and NH(v) ≈
NH(v′) whenever v, v′ ∈ X or v, v′ ∈ Y .

Claim 13. The following conditions hold.

(i) For all v ∈ X ∪ Y , we have dH(v) 6 (1/2 + α)
(
n−1
k−1

)
+ γnk−1.

(ii) X ∩ Y = ∅.

(iii) For any two vertices x, x′ ∈ X, we have |NH(x)4NH(x′)| < 5γnk−1. The same holds
for all y, y′ ∈ Y .

(iv) For any x ∈ X and y ∈ Y , we have |NH(x) ∩ NH(y)| 6 4γnk−1 and |NH(x) ∩
NH(y)| 6 4γnk−1, where NH(x) :=

(
V \{x}
k−1

)
\NH(x) consists of non-neighbors of x.

Proof. To see (i), suppose x ∈ X and y ∈ Y . Since dH(x0), dH(y0) > (1/2 − α)
(
n−1
k−1

)
,

by the definition of X and Y ,

|NH(y0) \NH(x)|, |NH(x0) \NH(y)| >
(

1

2
− α

)(
n− 1

k − 1

)
− γnk−1. (3)

Consequently, we have dH(x), dH(y) 6 (1/2 + α)
(
n−1
k−1

)
+ γnk−1.
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To see (ii), suppose that there exists v ∈ X ∩ Y . Then by (3),

|(NH(x0) ∪NH(y0)) \NH(v)| > |NH(x0) \NH(v)|+ |NH(y0) \NH(v)| − |NH(x0) ∩NH(y0)|

> 2

(
1

2
− α

)(
n− 1

k − 1

)
− 3γnk−1 >

(
n− 1

k − 1

)
− 4γnk−1,

which implies that |NH(v)| 6 4γnk−1, contradicting the minimum degree condition of H.

To see (iii), consider x ∈ X. By the definition of X and the minimum degree condition
of H, we have |NH(x) ∪NH(y0)| > 2

(
1
2
− α

) (
n−1
k−1

)
− γnk−1. Let x′ ∈ X \ {x}. Then

|NH(x′) \NH(x)| = |(NH(x′) \NH(x)) \NH(y0))|+ |(NH(x′) \NH(x)) ∩NH(y0)|

6

∣∣∣∣(V \ {x′}k − 1

)
\ (NH(x) ∪NH(y0))

∣∣∣∣+ |NH(x′) ∩NH(y0)|

6

(
n− 1

k − 1

)
− 2

(
1

2
− α

)(
n− 1

k − 1

)
+ γnk−1 + γnk−1

= 2α

(
n− 1

k − 1

)
+ 2γnk−1. (4)

The same bound holds for |NH(x) \NH(x′)|. Hence

|NH(x)4NH(x′)| = |NH(x′) \NH(x)|+ |NH(x) \NH(x′)|

6 2

(
2α

(
n− 1

k − 1

)
+ 2γnk−1

)
< 5γnk−1.

Analogously we can derive that |NH(y)4NH(y′)| < 5γnk−1 for any y, y′ ∈ Y .

To see (iv), consider x ∈ X and y ∈ Y . By (4), we have |NH(x) \ NH(x0)| 6
2α
(
n−1
k−1

)
+ 2γnk−1. By the definition of Y , we have |NH(y) ∩NH(x0)| < γnk−1. Thus

|NH(x) ∩NH(y)| 6 |NH(y) ∩NH(x0)|+ |NH(x) \NH(x0)|

6 2α

(
n− 1

k − 1

)
+ 3γnk−1 6 4γnk−1, (5)

which proves the first assertion of (iv). By the minimum degree condition and (5), we
have

|NH(x) ∪NH(y)| > 2

(
1

2
− α

)(
n− 1

k − 1

)
− 3γnk−1 − 2α

(
n− 1

k − 1

)
.

It follows that

|NH(x) ∩NH(y)| 6
(
|V \ {x, y}|
k − 1

)
− |NH(x) ∪NH(y)|

6

(
n− 2

k − 1

)
− (1− 2α)

(
n− 1

k − 1

)
+ 3γnk−1 + 2α

(
n− 1

k − 1

)
6 4γnk−1,

which proves the second assertion of (iv). �
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Since |V0| 6 γn and X∩Y = ∅ we have |X| > (1−γ)n/2 or |Y | > (1−γ)n/2. Without
loss of generality we may assume that |X| > (1 − γ)n/2 > n/3. Let 0 < γ0 < 1/2 such

that γ0(1−γ0)
(k+1)!

= 5γ · 3k−1. We apply Lemma 11 to F = H[X] with ρ = γ0. Since

|NF (v)4NF (v′)| 6 |NH(v)4NH(v′)| < 5γnk−1 6
γ0(1− γ0)
(k + 1)!

|X|k−1

for any v, v′ ∈ X (Claim 13 (iii)), there are two possible cases:

Case 1 e(H[X]) 6 γ0
(|X|
k

)
,

Case 2 e(H[X]) > (1− γ0)
(|X|
k

)
.

In the rest of the proof we assume that one of the two cases holds. Once we have obtained
more information we will prove that |X| and |Y | are close to n/2. At present we require
the following weaker lower bounds on |X| and |Y |.

Claim 14. |X|, |Y | > (1− (1
2

+ 2γ0)
1

k−1 − γ)n.

Proof. The bound on |X| follows since |X| > (1 − γ)n/2. Since |X| + |Y | + |V0| = n

and |V0| 6 γn, to prove the bound on |Y |, it suffices to show that |X| 6 (1
2

+ 2γ0)
1

k−1n.

In Case 1, there exists a vertex x ∈ X such that dH[X](x) 6 γ0
(|X|−1
k−1

)
and consequently,

|NH[X](x)| > (1− γ0)
(|X|−1
k−1

)
. Together with the minimum degree condition, this gives(

1

2
− α

)(
n− 1

k − 1

)
6 dH(x) 6

(
n− 1

k − 1

)
− (1− γ0)

(
|X| − 1

k − 1

)
.

In Case 2, there exists a vertex x ∈ X such that dH[X](x) > (1− γ0)
(|X|−1
k−1

)
. By Claim 13

(i),

(1− γ0)
(
|X| − 1

k − 1

)
6 dH[X](x) 6

(
1

2
+ α

)(
n− 1

k − 1

)
+ γnk−1.

In either case we have (1−γ0)
(|X|−1
k−1

)
6 (1

2
+α)

(
n−1
k−1

)
+γnk−1, which implies that

(|X|−1
k−1

)
6

(1 + 2γ0)((1/2 + α)
(
n−1
k−1

)
+ γnk−1). Letting |X| = cn, it follows that

ck−1
(
n− 1

k − 1

)
−O(nk−2) 6

(
1

2
+ γ0 + 2α

)(
n− 1

k − 1

)
+ 2γnk−1

Since γnk−1 6 γ0
5

(
n−1
k−1

)
, we conclude that c 6 (1

2
+ 2γ0)

1
k−1 . �

Given two disjoint subsets A,B ⊂ V and two integers i, j > 0, we call an (i + j)-set
S ⊆ V an AiBj-set if |S ∩ A| = i and |S ∩ B| = j, and let AiBj denote the family of all

AiBj-sets. Let c0 := 1− (1
2

+ 2γ0)
1

k−1 − γ, and γi := γi−1 + 5γk!/ck−10 for i = 1, . . . , k.

Claim 15. (i) In Case 1, for 1 6 i 6 k, for any y ∈ Y , at least (1 − γi)
( |X|
k−i

)( |Y |
i−1

)
Xk−iY i−1-sets are neighbors (respectively, non-neighbors) of y if i is odd (respec-
tively, even).
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(ii) In Case 2, for 1 6 i 6 k, for any y ∈ Y , at least (1 − γi)
( |X|
k−i

)( |Y |
i−1

)
Xk−iY i−1-sets

are neighbors (respectively, non-neighbors) of y if i is even (respectively, odd).

Proof. We prove both cases by induction on i. In Case 1 there exists a vertex x1 ∈ X
such that dH[X](x1) 6 γ0

(|X|−1
k−1

)
and consequently |NH(x1) ∩

(
X
k−1

)
| > (1 − γ0)

(|X|−1
k−1

)
.

Fix a vertex y ∈ Y . By Claim 13 (iv), |NH(x1) ∩ NH(y)| 6 4γnk−1. Thus at least
(1− γ0)

(|X|−1
k−1

)
− 4γnk−1 Xk−1-sets are neighbors of y. By Claim 14, |X|, |Y | > c0n. Then

for any 0 6 i 6 k − 1,(
|X|

k − i− 1

)(
|Y |
i

)
>

(c0n)k−1

(k − 1)!
−O(nk−2) >

ck−10 nk−1

k!
. (6)

Together with the definition of γ1, we conclude that at least

(1−γ0)
(
|X| − 1

k − 1

)
−4γnk−1 > (1−γ0)

(
|X|
k − 1

)
−O(nk−2)−4γk!

ck−10

(
|X|
k − 1

)
> (1−γ1)

(
|X|
k − 1

)
Xk−1-sets are neighbors of y. This confirms (i) for i = 1. In Case 2, by averaging, there
exists a vertex x1 ∈ X such that dH[X](x1) > (1 − γ0)

(|X|−1
k−1

)
. Fix a vertex y ∈ Y . By

Claim 13 (iv), |NH(x1) ∩ NH(y)| 6 4γnk−1. Thus at least (1 − γ0)
(|X|−1
k−1

)
− 4γnk−1 >

(1− γ1)
( |X|
k−1

)
Xk−1-sets are non-neighbors of y. This confirms (ii) for i = 1.

For the induction step, we first assume that for some 1 6 i 6 k, every y ∈ Y
has at least (1 − γi)

( |X|
k−i

)( |Y |
i−1

)
Xk−iY i−1-sets in its neighborhood. Consequently at least

(1 − γi)
( |X|
k−i

)(|Y |
i

)
Xk−iY i-sets are edges of H. By averaging, there exists xi ∈ X whose

neighborhood contains at least (1−γi)
( |X|−1
k−i−1

)(|Y |
i

)
Xk−i−1Y i-sets. Fix y ∈ Y . By Claim 13

(iv),

|(NH(xi) ∩Xk−i−1Y i) \NH(y)| > (1− γi)
(
|X| − 1

k − i− 1

)(
|Y |
i

)
− 4γnk−1.

Since |NH(y)∩Xk−i−1Y i| > |(NH(xi)∩Xk−i−1Y i) \NH(y)| −O(nk−2), we conclude that
at least

(1− γi)
(
|X| − 1

k − i− 1

)(
|Y |
i

)
− 4γnk−1 −O(nk−2) > (1− γi+1)

(
|X|

k − i− 1

)(
|Y |
i

)
Xk−i−1Y i-sets are non-neighbors of y, where we use (6) and the definition of γi+1. Analo-
gously we can show that if for some 1 6 i 6 k, every y ∈ Y has at least (1− γi)

( |X|
k−i

)( |Y |
i−1

)
Xk−iY i−1-sets as non-neighbors, then at least (1 − γi+1)

( |X|
k−i−1

)(|Y |
i

)
Xk−i−1Y i-sets are

neighbors of y. This completes our induction proof. �

Claim 16. |X|, |Y | > (1− η)n/2, where η := (2γk)
1/(k−1) + γ.
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Proof. Suppose that Claim 15 (i) holds (the proof when Claim 15 (ii) holds is analogous).
Let ñ := |X ∪ Y |. Note that ñ > (1 − γ)n because |V0| 6 γn. Let c := |X|/ñ. It

suffices to show that (1 − (2γk)
1/(k−1))/2 6 c 6 (1 + (2γk)

1/(k−1))/2 because this implies
that

|X| = cñ >
1

2

(
1− (2γk)

1/(k−1))(1− γ)n > (1− η)
n

2

and |Y | = (1− c)ñ > 1
2
(1− (2γk)

1/(k−1))(1− γ)n > (1− η)n/2.
For any y ∈ Y , by Claim 15 (i),

dH(y) >
∑

16i6k, i odd

(1− γi)
(
|X|
k − i

)(
|Y |
i− 1

)
> (1− γk)

∑
06j6k−1, j even

(
|X|

k − 1− j

)(
|Y |
j

)
.

Hence, by Proposition 12, dH(y) > (1−γk) ñk−1

2(k−1)!(1+(2c−1)k−1)−O(nk−2). If (2c−1)k−1 >
2γk, then

dH(y) > (1− γk)
(1− γ)k−1nk−1

2(k − 1)!
(1 + 2γk)−O(nk−2) >

(
1 +

γk
2

) nk−1

2(k − 1)!
,

as 5γ(k−1)! < γk � 1. This contradicts Claim 13 (i). Thus (2c−1)k−1 < 2γk. If c > 1/2,
then c < (1+(2γk)

1/(k−1))/2; if c < 1/2 and k−1 is even, then (1−2c)k−1 = (2c−1)k−1 <
2γk and thus c > (1− (2γk)

1/(k−1))/2. In either case we are done. Otherwise assume that
c < 1/2 and k − 1 is odd. By Claim 15 (i),

dH(y) >
∑

16i6k, i even

(1− γi)
(
|X|
k − i

)(
|Y |
i− 1

)
> (1− γk)

∑
06j6k−1, j odd

(
|X|

k − 1− j

)(
|Y |
j

)
,

where dH(y) := |NH(y)|. By Proposition 12, we have dH(y) > (1 − γk) ñk−1

2(k−1)!(1 − (2c −
1)k−1) − O(nk−2). If 1 − (2c − 1)k−1 = 1 + (1 − 2c)k−1 > 1 + 2γk, then we obtain a
contradiction as before because dH(y) 6 (1

2
+ α)

(
n−1
k−1

)
. Hence, (1 − 2c)k−1 < 2γk and

consequently c > (1− (2γk)
1/(k−1))/2, as desired. �

By Claim 16, there exists a partition X ′, Y ′ of V such that |X ′| = dn/2e, |Y ′| =
bn/2c and |X ∩ X ′|, |Y ∩ Y ′| > (1 − η)n/2. We claim that H is ε-close to Bn,k(Y ′, X ′)
in Case 1 and ε-close to Bn,k(Y ′, X ′) in Case 2. Indeed, set B := Bñ,k(Y,X), where
ñ := |X ∪ Y |, and H ′ := H[X ∪ Y ]. By definition, E(B) consists of all Xk−iY i-sets for
all odd 0 6 i 6 k. If Claim 15 (i) holds, then |E(B) ∩ E(H ′)| > (1 − γk)|E(B)| and
|E(B) ∩ E(H ′)| > (1− γk)|E(B)|. Thus

|E(B)4E(H ′)| = |E(B) \ E(H ′)|+ |E(B) \ E(H ′)| 6 γk|E(B)|+ γk|E(B)| 6 γk

(
n

k

)
.

Let V ′ := (X ∩X ′) ∪ (Y ∩ Y ′). Then |V ′| > (1− η)n and∣∣∣∣(E(Bn,k(Y ′, X ′))4E(H)
)
\
(
V ′

k

)∣∣∣∣ 6 ηn

(
n− 1

k − 1

)
.
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Since γ � ε, 1/k, we have that γk, η � ε. Therefore,

|E(Bn,k(Y ′, X ′))4E(H)| 6 ηn

(
n− 1

k − 1

)
+|E(B)4E(H ′)| 6 ηn

(
n− 1

k − 1

)
+γk

(
n

k

)
6 ε

(
n

k

)
.

which implies that H is ε-close to Bn,k(Y ′, X ′). Analogously we can show that H is ε-close
to Bn,k(Y ′, X ′) in Case 2. This completes the proof of Lemma 10. �

3 An application of Lemma 9

The following simple application of Lemma 9 implies that the minimum `-degree condition
that forces a perfect fractional matching also forces a perfect matching in a k-uniform
hypergraph H, if we additionally assume that H has a small number of vertices of large
degree.

Theorem 17. Given any 0 < ε 6 δ′ and k, ` ∈ N where ` < k, there is an n0 ∈ N
such that the following holds. Let H be a k-uniform hypergraph on n > n0 vertices where
k divides n. Suppose that δ1(H) > δ′

(
n−1
k−1

)
and δ`(H) > (c∗k,` + ε)

(
n−`
k−`

)
. If there are at

least εn vertices x ∈ V (H) so that dH(x) > (1 − δ′ + ε)
(
n−1
k−1

)
then H contains a perfect

matching.

Sketch proof. It is easy to see that H satisfies Lemma 9 (ii) (where we choose 0 < γ � ε)
and so by Lemma 8, H contains a small absorbing matching M . Let H ′ := H \ V (M).
Then δ`(H

′) > (c∗k,` + ε/2)
(
n−`
k−`

)
and so by Lemma 7, H ′ contains a matching covering all

but a very small set of vertices. After absorbing the uncovered vertices by M , we obtain
a perfect matching in H. �
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[9] D. Kühn and D. Osthus, Matchings in hypergraphs of large minimum degree, J.
Graph Theory 51 (2006), 269–280.
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[12] D. Kühn, D. Osthus and A. Treglown, Matchings in 3-uniform hypergraphs, J. Com-
bin. Theory B 103 (2013) 291–305.

[13] A. Lo and K. Markström, F -factors in hypergraphs via absorption, Graphs Combin.
31 (2015), 679–712.
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