ON SUBGRAPHS OF TRIPARTITE GRAPHS

ABHIJEET BHALKIKAR AND YI ZHAO

Abstract

Bollobás, Erdős, and Szemerédi [Discrete Math 13 (1975), 97-107] investigated a tripartite generalization of the Zarankiewicz problem: what minimum degree forces a tripartite graph with n vertices in each part to contain an octahedral graph $K_{3}(2)$? They proved that $n+2^{-1 / 2} n^{3 / 4}$ suffices and suggested it could be weakened to $n+c n^{1 / 2}$ for some constant $c>0$. In this note we show that their method only gives $n+(1+o(1)) n^{11 / 12}$ and provide many constructions that show that if true, $n+c n^{1 / 2}$ is best possible.

1. Introduction

Let K_{t} denote the complete graph on t vertices. As a foundation stone of extremal graph theory, Turán's theorem in 1941 [10] determines the maximum number of edges in graphs of a given order not containing K_{t} as a subgraph (the $t=3$ case was proven by Mantel in 1907 [6]). In 1975 Bollobás, Erdős, and Szemerédi [1] investigated the following Turán-type problem for multipartite graphs.
Problem 1. Given integers n and $3 \leq t \leq r$, what is the largest minimum degree $\delta(G)$ among all r-partite graphs G with parts of size n and which do not contain a copy of K_{t} ?

The $r=t$ case of Problem 1 had been a central topic in Combinatorics until it was finally settled by Haxell and Szabó [4, and Szabó and Tardos [8]. Recently Lo, Treglown, and Zhao [9] solved many $r>t$ cases of the problem, including when $r \equiv-1(\bmod t-1)$ and $r=\Omega\left(t^{2}\right)$.

For simplicity, let $G_{r}(n)$ denote an (arbitrary) r-partite graph with parts of size n. Let $K_{r}(s)$ denote the complete r-partite graph with parts of size s. In particular, $K_{2}(2)=K_{2,2}$ is a 4 -cycle C_{4} and $K_{3}(2)=K_{2,2,2}$ is known as the octahedral graph. In the same paper Bollobás, Erdős, and Szemerédi [1] also asked the following question.
Problem 2. Given a tripartite graph $G=G_{3}(n)$, what $\delta(G)$ guarantees a copy of $K_{3}(2)$?
Problem 2 is a natural generalization of the well-known Zarankiewicz problem [11, whose symmetric version asks for the largest number of edges in a bipartite graph $G_{2}(n)$ that contains no $K_{s, s}$ as a subgraph (in other words, $K_{s, s}$-free).

In [1, Corollary 2.7] the authors stated that $\delta(G) \geq n+2^{-1 / 2} n^{3 / 4}$ guarantees a copy of $K_{3}(2)$. This follows from [1, Theorem 2.6], which handles the general case of $K_{3}(s)$ for arbitrary s. Unfortunately, there is a miscalculation in the proof of [1, Theorem 2.6] and thus the bound $\delta(G) \geq n+2^{-1 / 2} n^{3 / 4}$ is unjustified. We follow the approach of [1, Theorem 2.6] and obtain the following result.

Theorem 3. Given an integer $s \geq 2$ and $\varepsilon>0$, let n be sufficiently large. If $G=G_{3}(n)$ satisfies $\delta(G) \geq n+(1+\varepsilon)(s-1)^{1 /\left(3 s^{2}\right)} n^{1-1 /\left(3 s^{2}\right)}$, then G contains a copy of $K_{3}(s)$.

In particular, Theorem 3 implies that every $G=G_{3}(n)$ with $\delta(G) \geq n+(1+o(1)) n^{11 / 12}$ contains a copy of $K_{3}(2)$. Using a result of Erdős on hypergraphs [3], we give a different proof of Theorem 3] under a slightly stronger condition $\delta(G) \geq n+(3 n)^{1-1 /\left(3 s^{2}\right)}$. Thus $c n^{11 / 12}$ is a natural additive term for Problem 2 under typical approaches for extremal problems.

On the other hand, the authors of [1 conjectured that $\delta(G) \geq n+c n^{1 / 2}$ suffices for Problem 2. Although not explained in [1], they probably thought of Construction 10, a natural construction based on the one for the Zarankiewicz problem. We indeed find many non-isomorphic constructions, Construction 11, with the same minimum degree.

Proposition 4. For any $n=q^{2}+q+1$ where q is a prime power, there are many tripartite graphs $G=G_{3}(n)$ such that $\delta(G) \geq n+n^{1 / 2}$ and G contains no $K_{3}(2)$.

[^0]Theorem 3 and Proposition 4 together show that the answer for Problem 2 lies between $n+n^{1 / 2}$ and $n+n^{11 / 12}$. The truth may be closer to the lower bound. If this is the case, then verifying it may be hard given the presence of many non-isomorphic constructions.

We know less about the minimum degree of $G_{3}(n)$ that forces a copy of $K_{3}(s)$. Theorem 3 shows that $\delta\left(G_{3}(n)\right) \geq n+c n^{1-1 /\left(3 s^{2}\right)}$ suffices. As shown in Remark 12 if there is a $K_{s, s}$-free bipartite graph $B=G_{2}(n)$ with $\delta(B)=\Omega\left(n^{1-1 / s}\right)$, then our constructions for Proposition 4 provide a tripartite $K_{3}(s)$-free graph $G=G_{3}(n)$ with $\delta(G)=n+\Omega\left(n^{1-1 / s}\right)$.

2. Proof of Theorem 3

In order to prove Theorem 3, we need the following results from [1].
Lemma 5. 1, Theorem 2.3] Suppose every vertex of $G=G_{3}(n)$ has degree at least $n+t$ for some integer $t \leq n$. Then there are at least t^{3} triangles in G.

Lemma 6. [1, Lemma 2.4] Let $X=\{1, \ldots, N\}$ and $Y=\{1, \ldots, p\}$. Suppose A_{1}, \ldots, A_{p} are subsets of X such that $\sum_{i=1}^{p}\left|A_{i}\right| \geq p w N$ and $(1-\alpha) w p \geq q$, where $0<\alpha<1$ and N, p and q are natural numbers. Then there are q subsets $A_{i_{1}}, \ldots, A_{i_{q}}$ such that $\left|\bigcap_{j=1}^{q} A_{i_{j}}\right| \geq N(\alpha w)^{q}$.

Let $z(n, s)$ denote the largest number of edges in a bipartite $K_{s, s}$-free graph with n vertices in each part. Kővári, Sós, and Turán [5] gave the following upper bound for $z(n, s){ }^{1}$
Lemma 7. [5] $z(n, s) \leq(s-1)^{1 / s} n^{2-1 / s}+s n$.
We are ready to prove Theorem 3 .
Proof of Theorem 3. Let G be a tripartite graph with three parts V_{1}, V_{2}, V_{3} of size n each. Suppose $\delta(G) \geq n+t$, where $t=(1+\varepsilon)(s-1)^{\frac{1}{3 s^{2}}} n^{1-\frac{1}{3 s^{2}}}>n^{1-\frac{1}{3 s^{2}}}$. By Lemma 5, G contains at least t^{3} triangles.

We apply Lemma 6 in the following setting. Let $Y=V_{1}=\{1, \ldots, n\}$ and $X=V_{2} \times V_{3}$ be the set of n^{2} pairs $(x, y), x \in V_{2}, y \in V_{3}$. For $1 \leq i \leq n$, let A_{i} be the set of pairs $(x, y) \in X$ for which $\{i, x, y\}$ spans a triangle of G. Then $\sum_{i=1}^{n}\left|A_{i}\right|$ is the number of triangles in G so $\sum_{i=1}^{n}\left|A_{i}\right| \geq t^{3}$. Let $N=n^{2}$, $p=n, q=s, w=t^{3} / n^{3}$, and $\alpha=1 /(1+\varepsilon)$. The assumptions of Lemma 6 hold because $p w N=t^{3}$ and

$$
(1-\alpha) w p=\frac{\varepsilon}{1+\varepsilon}\left(\frac{t}{n}\right)^{3} n>\frac{\varepsilon}{1+\varepsilon} n^{-1 / s^{2}} n>s
$$

as n is sufficiently large. By Lemma 6, there are $i_{1}, \ldots, i_{s} \in V_{1}$ such that

$$
\left|\bigcap_{j=1}^{s} A_{i_{j}}\right| \geq N(\alpha w)^{q}=n^{2}\left(\frac{t^{3}}{(1+\varepsilon) \cdot n^{3}}\right)^{s}
$$

Since

$$
t>(1+\varepsilon)^{\frac{2}{3}}(s-1)^{\frac{1}{3 s^{2}}} n^{1-\frac{1}{3 s^{2}}} \quad \text { and } \quad \frac{t^{3}}{(1+\varepsilon) n^{3}}>(1+\varepsilon)(s-1)^{1 / s^{2}} n^{-1 / s^{2}}
$$

we have

$$
\begin{equation*}
\left|\bigcap_{j=1}^{s} A_{i_{j}}\right|>(1+\varepsilon)^{s}(s-1)^{1 / s} n^{2-1 / s} \geq(s-1)^{1 / s} n^{2-1 / s}+s n . \tag{1}
\end{equation*}
$$

Let B denote the bipartite graph between V_{2} and V_{3} with $E(B)=\bigcap_{j=1}^{s} A_{i_{j}}$. By (1) and Lemma 7 , B contains a copy of $K_{s, s}$. Since every edge of B forms a triangle with each of $i_{1}, \ldots, i_{s} \in V_{1}$, this copy of $K_{s, s}$ together with i_{1}, \ldots, i_{s} span a desired copy of $K_{3}(s)$ in G.

We now give another proof of Theorem 3 with slightly larger $\delta(G)$ by a classical result of Erdős on hypergraphs 3]. An r-uniform hypergraph or r-graph is a hypergraph such that all its edges contain exactly r vertices. Let $K_{r}^{r}(s)$ denote the complete r-partite r-graph with s vertices in each part, namely, its vertex set consists of disjoint parts V_{1}, \ldots, V_{r} of size s, and edges set consists of all r-sets $\left\{v_{1}, \ldots, v_{r}\right\}$ with $v_{i} \in V_{i}$ for all i.

Lemma 8. [3, Theorem 1] Given integers $r, s \geq 2$, let n be sufficiently large. Then every r-graph on n vertices with at least $n^{r-s^{1-r}}$ edges contains a copy of $K_{r}^{r}(s)$.

[^1]Proposition 9. Let $s \geq 2$ and n be sufficiently large. Every tripartite graph $G=G_{3}(n)$ with $\delta(G) \geq$ $n+(3 n)^{1-1 /\left(3 s^{2}\right)}$ contains a copy of $K_{3}(s)$.
Proof. Suppose $G=G_{3}(n)$ satisfies $\delta(G) \geq n+(3 n)^{1-1 /\left(3 s^{2}\right)}$. By Lemma 5 . G contains at least $(3 n)^{3-1 / s^{2}}$ triangles. Let H be the 3 -graph on $V(G)$, whose edges are triangles of G. Then H has $3 n$ vertices and at least $(3 n)^{3-s^{-2}}$ edges. By Lemma 8 with $r=3, H$ contains a copy of $K_{3}^{3}(s)$, which gives a copy of $K_{3}(s)$ in G.

3. Proof of Proposition 4

In this section we prove Proposition 4 by constructing many tripartite $K_{3}(2)$-free graphs $G_{3}(n)$ with $\delta\left(G_{3}(n)\right) \geq n+n^{1 / 2}$.

One main building block is a bipartite $K_{2,2}$-free graph $G_{0}=G_{2}(n)$ with $\delta\left(G_{0}\right) \geq \sqrt{n}$. First shown in [7], such a graph exists when $n=q^{2}+q+1$ and a projective plane of order q exists. Indeed, two parts of $V(G)$ correspond to the points and lines of the projective plane and a point is adjacent to a line if and only if the point lies on the line. It is easy to see that such graph contains no $K_{2,2}$ and is regular with degree $q+1>\sqrt{n}$.

Construction 10. Suppose $G=G_{3}(n)$ has parts V_{1}, V_{2} and V_{3} each of size n. Let the bipartite graphs between V_{1} and V_{2} and between V_{1} and V_{3} be complete, while the bipartite graph between V_{2} and V_{3} is G_{0} defined above.

Since $\operatorname{deg}_{G_{0}}(v) \geq \sqrt{n}$ for $v \in V_{2} \cup V_{3}$, we have $\delta(G) \geq n+\sqrt{n}$. Furthermore, G contains no $K_{3}(2)$ because by the definition of G_{0}, there is no $K_{2}(2)$ between V_{2} and V_{3}.

We now provide a family of constructions with the same properties.

Figure 1. Graph from Construction 11
Construction 11. Let $G=G_{3}(n)$ be a tripartite graph with parts V_{1}, V_{2}, and V_{3} of size n each. Partition $V_{2}=X_{2} \cup Y_{2}$ arbitrarily such that $\alpha n \leq\left|X_{2}\right| \leq\left|Y_{2}\right|$ for some $\alpha \in(0,1 / 2)$. Partition $V_{3}=X_{3} \cup Y_{3}$ arbitrarily such that $\left|X_{3}\right|=\left|Y_{2}\right|$ and $\left|Y_{3}\right|=\left|X_{2}\right|$.

The bipartite graphs $\left(V_{1}, X_{2}\right),\left(X_{2}, Y_{3}\right),\left(Y_{3}, Y_{2}\right),\left(Y_{2}, X_{3}\right)$, and $\left(X_{3}, V_{1}\right)$ are complete, in other words, $V_{1}, X_{2}, Y_{3}, Y_{2}, X_{3}$ form a blowup of C_{5}. Let the bipartite graph between V_{1} and $Y_{2} \cup Y_{3}$ be isomorphic to G_{0} (note that $\left|X_{2}\right|+\left|Y_{2}\right|=\left|X_{3}\right|+\left|Y_{3}\right|=n$).

For any vertex $v \in X_{2}, \operatorname{deg}(v)=\left|V_{1}\right|+\left|Y_{3}\right| \geq n+\alpha n$. The vertices $v \in X_{3}$ satisfy $\operatorname{deg}(v)=\left|V_{1}\right|+\left|Y_{2}\right| \geq$ $n+n / 2$. For any $v \in Y_{2}, \operatorname{deg}(v) \geq\left|V_{3}\right|+\delta\left(G_{0}\right) \geq n+\sqrt{n}$. The same holds for the vertices of Y_{3}. At last, every vertex $v \in V_{1}$ satisfies $\operatorname{deg}(v) \geq\left|X_{2}\right|+\left|X_{3}\right|+\delta\left(G_{0}\right) \geq n+\sqrt{n}$. These together show that $\delta(G) \geq n+\sqrt{n}$.

Suppose G contains a copy of $K_{3}(2)$ with vertex set S. Then $\left|S \cap V_{i}\right|=2$ for $i=1,2,3$. Since there is no edge between X_{2} and X_{3}, either $S \cap X_{2}=\emptyset$ or $S \cap X_{3}=\emptyset$. Suppose, say, $S \cap X_{2}=\emptyset$, which forces $\left|S \cap Y_{2}\right|=2$. Hence $S \cap Y_{2}$ and $S \cap V_{1}$ span a copy of $K_{2,2}$, contradicting the definition of G_{0}.

If letting $X_{2}=\emptyset=Y_{3}$ in Construction 11, then we obtain Construction 10. Nevertheless, we prefer viewing Constructions 10 and 11 as different constructions because after removing $o\left(n^{2}\right)$ edges, Construction 11 contains many 5 -cycles while Construction 10 does not.

Remark 12. If we replace G_{0} by a $K_{s, s}$-free bipartite graph with n vertices in each part in Constructions 10 and 11, then we obtain a $K_{3}(s)$-free tripartite graph $G_{3}(n)$. It has been conjectured that there exist a $K_{s, s}$-free bipartite graph with n vertices in each part and $\Omega\left(n^{2-1 / s}\right)$ edges (this is known for $s=2,3$ [2, 7]). If there exists such a bipartite graph which is regular, then (revised) Constructions 10 and 11 provide a $K_{3}(s)$-free tripartite graph $G=G_{3}(n)$ with $\delta(G)=n+\Omega\left(n^{1-1 / s}\right)$.

References

[1] B. Bollobás, P. Erdős, A. Szemerédi. On complete subgraphs of r-chromatic graphs. Discrete Math, 13:97-107, 1975.
[2] W. G. Brown. On graphs that do not contain a Thomsen graph. Canada Math. Bull. 9, 281-285, 1966.
[3] P. Erdős. On extremal problems of graphs and generalized graphs. Israel Journal of Mathematics, 2, 3:183-190, 1964.
[4] P. Haxell and T. Szabó. Odd independent transversals are odd. Combin. Probab. Comput., 15(1-2):193-211, 2006.
[5] T. Kővári, V. Sós, P. Turán. On a problem of K. Zarankiewicz, Colloquium Math., 3:50-57, 1954.
[6] W. Mantel. Problem 28 (Solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff), Wiskundige Opgaven, 10:60-61, 1907.
[7] I. Rieman. Uber ein Problem von K. Zarankiewicz. Acta Math. Acad. Sci. Hungar. 9, 3-4:269-273, 1958.
[8] T. Szabó and G. Tardos. Extremal problems for transversals in graphs with bounded degree. Combinatorica, 26(3):333351, 2006.
[9] A. Lo, A. Treglown and Y. Zhao. Complete subgraphs in a multipartite graph Combin. Probab. Comput., to appear.
[10] P. Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48:436-452, 1941.
[11] K. Zarankiewicz. Problem P 101. Colloq. Math., 2:301, 1951.
Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303
E-mail address: abhalkikar1@student.gsu.edu
Department of Mathematics and Statistics, Georgia State University, Atlanta, Ga 30303
E-mail address: yzhao6@gsu.edu

[^0]: Key words and phrases. Turn-type problems, tripartite graphs, Zarankiewicz problem.
 This paper is a result of the Undergraduate Research Initiations in Mathematics, Mathematics Education and Statistics (RIMMES) at Georgia State University, in which the first author participated during 2021-2022 under the guidance of the second author. The second author is partially supported by a Simons Collaboration Grant 710094.

[^1]: ${ }^{1}$ In [1] the authors instead used the Turán number $\operatorname{ex}\left(2 n, K_{s, s}\right)$, which gives a slightly worse constant here.

