Improved bounds on the Ramsey number of fans

Guantao Chen^a* * Xiaowei Yu^b; Yi Zhao^{a‡}

^a Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA

 b Department of Mathematics and Statistics, Jiangsu Normal University,</sup> Xuzhou, 221116, P. R. China

Abstract

For a given graph H, the Ramsey number $r(H)$ is the minimum N such that any 2-edge-coloring of the complete graph K_N yields a monochromatic copy of H. Given a positive integer n, a fan F_n is a graph formed by n triangles that share one common vertex. We show that $9n/2 - 5 \le r(F_n) \le 11n/2 + 6$ for any n. This improves previous best bounds $r(F_n) \leq 6n$ of Lin and Li and $r(F_n) \geq 4n + 2$ of Zhang, Broersma and Chen.

Keywords: Ramsey numbers; fans; books.

1 Introduction

Let H_1 and H_2 be two graphs. The Ramsey number $r(H_1, H_2)$ is the minimum N such that any red-blue coloring of the edges of the complete graph K_N yields a red copy of H_1 or a blue copy of H_2 . Let $r(H) = r(H, H)$ be the diagonal Ramsey number. Graph Ramsey theory is a central topic in graph theory and combinatorics. For related results, see surveys [\[3,](#page-8-0) [10\]](#page-8-1).

In 1975, Burr, Erdős and Spencer [\[1\]](#page-8-2) investigated Ramsey numbers for disjoint union of small graphs. Given a graph G and a positive integer n, let nG denote n vertex-disjoint copies of G. It was shown in [\[1\]](#page-8-2) that $r(nK_3) = 5n$ for $n \geq 2$. A book B_n is the union of n distinct triangles having exactly one edge in common. In 1978, Rousseau and Sheehan [\[11\]](#page-8-3) showed that the Ramsey number $r(B_n) \leq 4n+2$ for all n and the bound is tight for infinitely many values of n (e.g., when $4n+1$ is a prime power). A more general *book* $B_n^{(k)}$ is the union of n distinct copies of complete graphs K_{k+1} , all sharing a common K_k (thus $B_n = B_n^{(2)}$. Conlon [\[2\]](#page-8-4) recently proved that for every $k, r(B_n^{(k)}) = 2^k n + o_k(n)$, answering

[∗]Email: gchen@gsu.edu, partially supported by NSF grant DMS-1855716.

[†]Email: xwyu@jsnu.edu.cn, partially supported by grants 11901252, 19KJB110010 and 12031018.

[‡]Email: yzhao6@gsu.edu, partially supported by NSF grant DMS-1700622 and Simons Collaboration Grant 710094.

a question of Erdős, Faudree, Rousseau, and Schelp [\[6\]](#page-8-5) and asymptotically confirming a conjecture of Thomason [\[12\]](#page-8-6). More recently, Conlon, Fox, and Wigderson [\[4\]](#page-8-7) provided another proof of Conlon's result.

Inspired by these old and recent results on $r(nK_3)$ and $r(B_n^{(k)})$, in this paper we study the Ramsey number of fans. A fan F_n is a union of n triangles sharing exactly one common vertex, named the *center*, and all other vertices are distinct. Therefore, nK_3 , F_n and B_n are three graphs formed by n triangles that share zero, one, and two common vertices, respectively. Since nK_3 has more vertices than F_n and F_n has more vertices and edges than B_n , it is reasonable to believe that $r(B_n) \le r(F_n) \le r(nK_3)$ for sufficiently large n. We obtain the following bounds for $r(F_n)$ confirming $r(B_n) < r(F_n)$ for sufficiently large $n.¹$ $n.¹$ $n.¹$

Theorem 1.1. For every positive integer n ,

$$
9n/2 - 5 \le r(F_n) \le 11n/2 + 6.
$$

Theorem [1.1](#page-1-1) improves previously best known bounds

$$
4n + 2 \le r(F_n) \le 6n. \tag{1}
$$

Indeed, Li and Rousseau [\[7\]](#page-8-8) first studied off-diagonal Ramsey numbers of fans. They showed that $r(F_1, F_n) = 4n + 1$ for $n \geq 2$ and $4n + 1 \leq r(F_m, F_n) \leq 4n + 4m - 2$ for $n \geq m \geq 1$. Lin and Li [\[8\]](#page-8-9) proved that $r(F_2, F_n) = 4n + 1$ for $n \geq 2$ and improved the general upper bound as

$$
r(F_m, F_n) \le 4n + 2m \quad \text{for} \quad n \ge m \ge 2. \tag{2}
$$

Lin, Li and Dong [\[9\]](#page-8-10) showed that $r(F_m, F_n) = 4n + 1$ if n is sufficiently larger than m. The latest result for $r(F_m, F_n)$ is due to Zhang, Broersma and Chen [\[13\]](#page-8-11), who proved that $r(F_m, F_n) = 4n + 1$ if $n \ge \max\{(m^2 - m)/2, 11m/2 - 4\}$. They also showed that $r(F_n, F_m) \ge 4n + 2$ for $m \le n < (m^2 - m)/2$. This and [\(2\)](#page-1-2) together give [\(1\)](#page-1-3).

The lower bound given in Theorem [1.1](#page-1-1) is obtained from constructing a regular 3 partite graph with about $3n/2$ vertices in each part such that every vertex has less than n neighbors in one of the other parts. To prove the upper bound given in Theorem [1.1,](#page-1-1) we first find a large monochromatic clique in any 2-edge-colored $K_{11n/2+6}$ and then use this clique to find the desired copy of F_n . This approach is summarized in the following two lemmas.

Lemma 1.2. Let m, n, N be positive integers such that $N = 4n + m + \left\lfloor \frac{6n}{m} \right\rfloor$ $\frac{6n}{m}\rfloor + 1$. Then every 2-coloring of $E(K_N)$ yields a monochromatic copy of F_n or K_m .

Lemma 1.3. Let n be a positive integer. If a graph G contains a clique V_0 with $|V_0| \ge$ $3n/2 + 1$ such that every vertex $v \in V_0$ has at least n neighbors in $V \setminus V_0$, then G or its complement G contains a copy of F_n with center in V_0 .

We prove Lemmas [1.2](#page-1-4) and [1.3](#page-1-5) by using the theorems of Hall and Tutte on matchings along with a result on $r(nK_2, F_m)$ from [\[8\]](#page-8-9). Unfortunately our approach (of finding a large monochromatic clique) cannot prove $r(F_n) < 11n/2$ because Lemma [1.3](#page-1-5) is tight with respect to the size of V_0 , see Section [5](#page-6-0) for details.

¹These inequalities fail when $n = 2$ because $r(B_2) = r(2K_3) = 10$ [\[1,](#page-8-2) [11\]](#page-8-3) while $r(F_2) = 9$ [\[8\]](#page-8-9).

We organize our paper as follows. We give notation and preliminary results in Section 2. After proving Lemmas [1.2](#page-1-4) and [1.3](#page-1-5) in Section 3, we complete the proof of Theorem [1.1](#page-1-1) in Section 4. We give concluding remarks, including a lower bound for $r(F_n, F_m)$, in the last section.

2 Notation and preliminaries

We start this section with some notation and terminologies. Given a positive integer n , let $[n] := \{1, 2, \ldots, n\}$. All graphs considered are simple and finite. Given a graph G, we denote by $V(G)$ and $E(G)$ the vertex and edge sets of G, respectively. $|G| := |V(G)|$ and $|E(G)|$ are the *order* and the *size* of G, respectively. Let \overline{G} denote the complement graph of G.

Given a graph G, let v be a vertex and H be a subgraph. Denote by $N_H(v)$ the set of neighbors of v in H. For a subset $S \subseteq V(G)$, define $N_H(S) = \bigcup_{v \in S} N_H(v)$. The *degree* of v in H is denoted by $d_H(v)$, that is, $d_H(v) = |N_H(v)|$. When all the vertices of G have the same degree d, we call G a d-regular graph. The subgraph induced by the vertices of S is denoted by G[S]. We simply write $G[V(G)\backslash S]$ as $G - S$. A component of G is odd if it consists of an odd number of vertices. We denote by $o(G)$ the number of odd components of G.

Given a graph G, we denote by $\nu(G)$ the size of a largest matching of G. We will use the following defect versions of Hall's and Tutte's theorems (see, $e.g., [5]$ $e.g., [5]$).

Theorem 2.1 (Hall). Let G be a bipartite graph on parts X and Y. For any non-negative integer d, $\nu(G) \geq |X| - d$ if and only if $|N_G(S)| \geq |S| - d$ for every $S \subseteq X$.

Theorem 2.2 (Tutte). Let G be a graph on order n. For any non-negative integer d , $\nu(G) \ge (n-d)/2$ if and only if $o(G-S) \le |S|+d$ for every subset S of $V(G)$.

The aforementioned result $r(F_n, F_m) \leq 4n + 2m$ for $n \geq m$ follows from the following lemma, in which nK_2 is a matching of size n. Note that the $n = m$ case of this lemma was proved in the same way as our Lemma [1.2.](#page-1-4)

Lemma 2.3 (Lin and Li [\[8\]](#page-8-9)). Let m, n be two positive integers with $n \geq m$. Then $r(nK_2, F_m) = 2n + m.$

We will use the following corollary.

Corollary 2.4. Let G be a graph with maximum degree $\Delta(G)$. If $\Delta(G) \geq 3n$, then G or G contains a copy of F_n .

Proof. Assume v is a vertex such that $d_G(v) \ge 3n$. By Lemma [2.3,](#page-2-0) there is a copy of nK_2 in $G[N_G(v)]$ or a copy of F_n in $\overline{G}[N_G(v)]$. So, G has a copy of F_n centered at v or \overline{G} contains a copy of F_n . \Box

3 Proofs of Lemmas [1.2](#page-1-4) and [1.3](#page-1-5)

Proof of Lemma [1.2.](#page-1-4) Let $c := \left\lfloor \frac{6n}{m} \right\rfloor$ $\left[\frac{6n}{m}\right] + 1$ for convenience, and so $N = 4n + m + c$. Fix a red-blue edge coloring of K_N and let R, B be the graphs induced by red and blue edges, respectively. Assuming there is no monochromatic K_m , we will find a monochromatic F_n .

Fix a vertex w. Assume, without loss of generality, that $d_B(w) \geq \frac{N-1}{2} = 2n + \frac{m+c-1}{2}$ $\frac{c-1}{2}$. Let $G := B[N_B(w)]$. If $\nu(G) \geq n$, we get a blue F_n with center w. So, we assume $\nu(G) \leq n-1$. Applying Theorem [2.2](#page-2-1) with $d := d_B(w) - 2n \geq \frac{m+c-1}{2}$ $\frac{c-1}{2}$, we get a subset $S \subseteq N_B(w)$ such that $o(G-S) \geq |S| + d + 1 \geq |S| + \frac{m+c+1}{2}$ $rac{c+1}{2}$.

Let C_1, C_2, \ldots, C_ℓ be the vertex sets of the components of $G-S$. We have the following observations.

- (a) $\ell \ge o(G-S) \ge |S| + \frac{m+c+1}{2}$ $\frac{c+1}{2}$.
- (b) For any distinct $i, j \in [\ell]$, all edges between C_i and C_j are red.

We further assume that $|C_1| := \min\{|C_i| : i \in [\ell]\}\$ and let $D = \bigcup_{i=2}^{\ell} C_i$. By (b), \overline{G} contains a red K_{ℓ} , which in turn shows $\ell \leq m - 1$.

If $d_B(w) \geq 3n$, then by Corollary [2.4,](#page-2-2) $N_B(w)$ spans a blue nK_2 or a red F_n , which in turn shows that there is a monochromatic F_n . So we assume $d_B(w) \leq 3n - 1$. By the minimality of $|C_1|$, we have the following.

$$
|C_1| \le \frac{d_B(w) - |S|}{\ell} \le \frac{3n - 1}{(m + c + 1)/2} < \frac{3n}{m/2} = \frac{6n}{m}.
$$

Thus, $|C_1| \leq |\frac{6n}{m}|$ and

$$
|D| = d_B(w) - |S| - |C_1|
$$

\n
$$
\ge 2n + \frac{m+c-1}{2} - \left(\ell - \frac{m+c+1}{2}\right) - \left\lfloor \frac{6n}{m} \right\rfloor
$$

\n
$$
= m + 2n - \ell + 1 \quad \text{(as } c = \lfloor 6n/m \rfloor + 1)
$$

\n
$$
\ge 2n + 2.
$$
 (3)

For every $i \in [\ell]$, fix an arbitrary vertex $v_i \in C_i$. Let $X = \{v_2, v_3, \ldots, v_\ell\}$. Note that $X \subseteq D$ and its vertices form a red clique, and v_1 is red-adjacent to all vertices in D.

Let $D^* := D \setminus X$. Then $|D^*| = |D| - (\ell - 1) \ge m + 2n - 2\ell + 2$. We claim that D^* contains a red matching of size at least $n-\ell+2$. Otherwise, by removing the vertices of a largest red matching in D^{*}, we get a blue clique Z in $G[D^*]$ with $|Z| \ge |D^*| - 2\nu(\overline{G}[D^*]) \ge$ $m + 2n - 2\ell + 2 - 2(n - \ell + 1) = m$. So, Z induces a blue K_m , giving a contradiction. Let M be a red matching in $\overline{G}[D^*]$ with $|M| \ge n - \ell + 2$ and let $Y := D^* - V(M)$.

Recall from (b) that v_1 is red-adjacent to all vertices in D. We will show that there is a red matching of size at least n in D, which gives a red F_n with center v_1 . Since v_2, v_3, \ldots, v_ℓ are in different components of $G - S$, every vertex in Y is red-adjacent to at least $|X| - 1$ vertices in X. Hence we can greedily find a red matching M' of size at least $\min\{|Y|, |X| - 1\}$ between X and Y. If $|M'| = |Y|$, then $M' \cup M$ saturates all the vertices in D^* . Since $R[X]$ is a red complete graph, the vertices in $D = D^* \cup X$ contains a red matching of size at least $||D|/2| \ge n$ by [\(3\)](#page-3-0). If $|M'| \ge |X|-1$, then $|M' \cup M| \ge |X| - 1 + (n - \ell + 2) = \ell - 2 + (n - \ell + 2) = n$. In either case, we find a red matching of size at least n in D , as desired. \Box

Proof of Lemma [1.3.](#page-1-5) Suppose to the contrary that neither G nor \overline{G} contains a copy of F_n . We make the following observation:

For every $v \in V_0$, there is no matching M in $G[N(v)]$ such that $|V(M)\setminus V_0| \geq \left\lfloor \frac{n}{2} \right\rfloor$ $\left| \frac{\cdot}{\cdot} \right|$

Otherwise, there are $v \in V_0$ and a matching M in $G[N(v)]$ such that $|V(M)\setminus V_0| \ge$ $\lfloor n/2 \rfloor$. Since V_0 is a clique, M can be extended to a matching M[∗] containing all vertices in $V(M) \cup V_0 \setminus \{v\}$ if $|V(M) \cup V_0 \setminus \{v\}|$ is even and all but one vertex in $V(M) \cup V_0 \setminus \{v\}$ if $|V(M) \cup V_0 \setminus \{v\}|$ is odd. Since $|V_0| \geq \lceil 3n/2 \rceil + 1$, it follows that M^* is a matching M in $G[N(v)]$ of size

$$
\left\lfloor \frac{|V(M) \cup V_0 \setminus \{v\}|}{2} \right\rfloor \ge \left\lfloor \frac{\lfloor n/2 \rfloor + \lceil 3n/2 \rceil}{2} \right\rfloor = n,
$$

which in turn gives an F_n centered at v, a contradiction.

In the rest of the proof, we will find disjoint subsets $S_{v_1}, S_{v_2}, \ldots, S_{v_t}$ of $V \setminus V_0$ for some $t > 3$ and a vertex $w \in V_0$ such that $G[\cup_{1 \leq i \leq t} S_{v_i} \cup \{w\}]$ contains a subgraph isomorphic to F_n . For this goal, we first prove the following claim.

Claim 3.1. For every vertex $v \in V_0$, there exists an independent set $S_v \subseteq N(v) \backslash V_0$ such that $|S_v| \ge |N(S_v) \cap V_0| + n/2$ and $|N(S_v) \cap V_0| \le n/2$.

Proof. Let v be a vertex in V_0 and M_v be a largest matching in $G[N(v) \setminus V_0]$. Let $m :=$ $|M_v|$. Then $N(v) \setminus (V_0 \cup V(M_v))$ is an independent set. Since v has at least n neighbors in $V \setminus V_0$, we have $|N(v) \setminus (V_0 \cup V(M_v))| \geq n-2m$. Let $Z_v \subseteq N(v) \setminus (V_0 \cup V(M_v))$ with $|Z_v| = n - 2m$. If there is a matching M' between Z_v and $V_0 \setminus \{v\}$ with $|M'| \geq \lfloor n/2 \rfloor - 2m$, then $M := M' \cup M_v$ is a matching with $|V(M)\setminus V_0| \ge |n/2|$, contradicting [\(4\)](#page-3-1). Thus there is no matching of size $\lfloor n/2 \rfloor -2m = |Z_v| - \lfloor n/2 \rfloor$ between Z_v and $V_0 \setminus \{v\}$. Applying Theorem [2.1](#page-2-3) on $G[Z_v, V_0 \setminus \{v\}]$ by taking

$$
X := Z_v, \quad Y := V_0 \backslash \{v\} \quad \text{and} \quad d := \lceil n/2 \rceil,
$$

we get a subset $S_v \subseteq Z_v$ (thus S_v is independent) such that

$$
|N(S_v) \cap V_0 \backslash \{v\}| \le |S_v| - d - 1.
$$

This implies that $|S_v| \ge |N(S_v) \cap V_0 \setminus \{v\}| + 1 + d \ge |N(S_v) \cap V_0| + n/2$ and

$$
|N(S_v) \cap V_0| = |N(S_v) \cap V_0 \setminus \{v\}| + 1 \leq |S_v| - d \leq |Z_v| - d \leq n/2.
$$

This proves the claim.

For every $v \in V_0$, let S_v be the subset of $N(v)\backslash V_0$ defined in Claim [3.1.](#page-4-0)

- Let $v_1 \in V_0$ such that $|N(S_{v_1}) \cap V_0|$ is the maximum among all vertices in V_0 . Let $V_1 := V_0 \setminus N(S_{v_1})$. By definition, every vertex in V_1 is not adjacent to any vertex in S_{v_1} .
- For each $i \geq 1$, if $V_{i-1} \setminus N(S_{v_i}) \neq \emptyset$, then define $V_i := V_{i-1} \setminus N(S_{v_i})$ and choose $v_{i+1} \in V_i$ such that $|N(S_{v_{i+1}}) \cap V_i|$ is the maximum among all vertices in V_i . Note that $N(S_{v_{i+1}}) \cap V_i \neq \emptyset$ because $v_{i+1} \in N(S_{v_{i+1}}) \cap V_i$. Together with the choice of v_i , we derive that

$$
0 < |N(S_{v_{i+1}}) \cap V_i| \leq |N(S_{v_{i+1}}) \cap V_{i-1}| \leq |N(S_{v_i}) \cap V_{i-1}|. \tag{5}
$$

 \Box

For simplicity, let $N'(S_{v_{i+1}}) := N(S_{v_{i+1}}) \cap V_i$. By definition, $N'(S_{v_1})$, $N'(S_{v_2})$, ... are nonempty and pairwise disjoint. Suppose the above process stops when $i = t$ due to $V_{t-1}\backslash N(S_{v_t})=\emptyset$. Then

$$
\bigcup_{1 \le i \le t} N'(S_{v_i}) = V_0 \quad \text{and} \quad \bigcup_{1 \le i < t} N'(S_{v_i}) \subsetneq V_0. \tag{6}
$$

By Claim [3.1,](#page-4-0) (5) , and the choice of v_i , we have

- (i) $|N'(S_{v_t})| \leq |N'(S_{v_{t-1}})| \leq \cdots \leq |N'(S_{v_1})| \leq n/2;$
- (ii) $S_{v_1}, S_{v_2}, \ldots, S_{v_t}$ are disjoint independent sets such that $|S_{v_i}| \geq |N'(S_{v_i})| + n/2$ for all $i \in [t]$;
- (iii) every vertex in V_i is not adjacent to any vertex in $\bigcup_{1 \leq j \leq i} S_{v_j}$ for all $i \in [t]$.
- By [\(6\)](#page-5-0) and (i), we have

$$
\frac{\sum_{i=1}^{t-1} |N'(S_{v_i})|}{t-1} \ge \frac{\sum_{i=1}^{t} |N'(S_{v_i})|}{t} = \frac{|V_0|}{t} \text{ and } t \ge \frac{|V_0|}{|N'(S_{v_1})|} > \frac{3n/2}{n/2} = 3.
$$

It follows that

$$
\sum_{i=1}^{t-1} |N'(S_{v_i})| \ge |V_0| \cdot \frac{t-1}{t} \ge \frac{3n}{2} \cdot \frac{2}{3} = n.
$$

By (ii) and the fact that $t \geq 3$, we have

$$
\sum_{i=1}^{t-1} |S_{v_i}| \ge \sum_{i=1}^{t-1} (|N'(S_{v_i})| + \frac{n}{2}) \ge n + \frac{n}{2} \cdot 2 = 2n.
$$

Since all S_{v_i} are independent sets, we obtain a matching M' of size n in $\overline{G} \left[\bigcup_{i=1}^{t-1} S_{v_i} \right]$. Since $\bigcup_{i=1}^{t-1} N(S_{v_i}) \subsetneq V_0$, there is a vertex $w \in V_0 \setminus \bigcup_{i=1}^{t-1} N(S_{v_i})$. By (iii), w is not adjacent to any vertex in $\bigcup_{i=1}^{t-1} S_{v_i}$. Therefore, $V(M') \cup \{w\}$ spans a fan F_n in \overline{G} . \Box

4 Proof of Theorem [1.1](#page-1-1)

4.1 Lower bound

Let n be a positive integer and let t be the largest even number less than $3n/2$. Thus $t \geq 3n/2 - 2$. We construct a graph $G = (V, E)$ on 3t vertices as follows. Let $V_1 \cup V_2 \cup V_3$ be a partition of V such that $|V_1| = |V_2| = |V_3| = t$ and all $G[V_i]$ are complete graphs. For each $i \in [3]$, further partition V_i into two subsets X_i and Y_i with $|X_i| = |Y_i| = t/2$, and add edges between X_i and Y_{i+1} such that $G[X_i, Y_{i+1}]$ is an $\lceil \frac{n}{2} \rceil$ $\frac{n}{2}$ -regular bipartite graph, where we assume $Y_4 = Y_1$. The graph G is depicted in Figure [1.](#page-6-1)

Observe that G does not contain a copy of F_n because every vertex has degree $\lceil n/2 \rceil +$ $t-1 < 2n$. To see that \overline{G} contains no copy of F_n , we note that \overline{G} is 3-partite because V_1, V_2, V_3 induce cliques in G. Thus \overline{G} induces a bipartite graph on $N_{\overline{G}}(v)$ for every vertex $v \in V$. Furthermore, two parts of this bipartite graph have sizes t and $t - \lfloor n/2 \rfloor < n$ and thus there is no matching of size n in $\overline{G}[N_{\overline{G}}(v)]$. Consequently \overline{G} contains no copy of F_n .

Since neither G nor \overline{G} contains a copy of F_n , we have $r(F_n) \geq |V| + 1 = 3t + 1 \geq$ $9n/2-5$.

Figure 1: Illustration of G

4.2 Upper bound

Given a red-blue edge coloring of a complete graph on $N = \lfloor 11n/2 \rfloor + 5$, let R, B be the graphs induced by the red and blue edges, respectively. If there is a vertex v with $|N_R(v)| \geq 3n$ or $|N_B(v)| \geq 3n$, then there is a monochromatic F_n by Corollary [2.4.](#page-2-2) We thus assume that $|N_R(v)| \leq 3n-1$ and $|N_B(v)| \leq 3n-1$ for all vertices v. Because R and B are complementary to each other, it follows that $d_R(v)$, $d_B(v) \ge (N-1)-(3n-1) = N-3n$. Define $m := N - 4n - 4 = \lceil 3n/2 \rceil + 1$. Since

$$
\frac{6n}{m} = \frac{6n}{\lceil 3n/2 \rceil + 1} < \frac{6n}{3n/2} = 4,
$$

we have $\left\lfloor \frac{6n}{m} \right\rfloor$ $\left\lfloor \frac{6n}{m} \right\rfloor \leq 3$. So $4n+m+\left\lfloor \frac{6n}{m} \right\rfloor$ $\frac{6n}{m}$ $+1 \leq N$. By Lemma [1.2,](#page-1-4) there exists a monochromatic F_n or a monochromatic K_m in K_N . If there exists a monochromatic F_n , we are done. Otherwise, assume there is a monochromatic K_m . Without loss of generality, suppose that K_m is blue. Let V_0 be the blue clique of order m. For every $v \in V_0$, v has at least $d_B(v) - (m-1) \ge (N-3n) - (N-4n-5) = n+5 > n$ neighbors in $V(B)\backslash V_0$. Applying Lemma [1.3](#page-1-5) with $G := B$, we get a monochromatic F_n . Thus $r(F_n) \le N \le 11n/2 + 6$. \Box

5 Concluding remarks

Theorem [1.1](#page-1-1) contains upper and lower bounds for $r(F_n)$ that differ by about n. We do not have a conjecture on the value of $r(F_n)$ but speculate that the lower bound is closer to the truth.

As mentioned in Section 1, we believe that $r(F_n) \le r(nK_3) = 5n$. Although we are unable to verify this, there is some evidence for this assertion. First, $r(F_2) = 9 < 10 =$ $r(2K_3)$. Second, let t, n be positive integers such that t divides n. One way of proving $r(F_n) \le r(nK_3)$ is showing that $r(\frac{n}{t})$ $t_t^{\frac{n}{t}}F_t$ $\leq r(nK_3)$ for all such t. Indeed, Burr, Erdős and Spencer [\[1\]](#page-8-2) proved the following theorem.

Theorem 5.1. (1, Theorem 1) Let n be a positive integer and G be a graph of order k and independence number i. Then there exists a constant $C = C_G$ such that

$$
(2k - i)n - 1 \le r(nG) \le (2k - i)n + C.
$$

We can apply Theorem [5.1](#page-6-2) with $G = F_t$ (thus $k = 2t + 1$ and $i = t$) and obtain that $(3t+2)\frac{n}{t} - 1 \leq r(\frac{n}{t})$ $\frac{n}{t}F_t$) $\leq (3t+2)\frac{n}{t}+C$ for some C depending only on F_t . For fixed $t \geq 2$, this implies that $r(\frac{n}{t})$ $t_t^{\frac{n}{t}}F_t$ = $\left(3+\frac{2}{t}\right)n + O(1)$ $\left(3+\frac{2}{t}\right)n + O(1)$ $\left(3+\frac{2}{t}\right)n + O(1)$, much smaller than $r(nK_3)^{2}$.

²The proof of [\[1,](#page-8-2) Theorem 1] shows that C is double exponential in t and thus $r(\frac{n}{t}F_t) = (3 + \frac{2}{t})n + o(n)$ whenever $t = o(\log \log n)$.

We now give a construction that shows Lemma [1.3](#page-1-5) is best possible with respect to $|V_0|$. Suppose n is even. Let $G = (V, E)$ be a graph on $9n/2 - 2$ vertices that contains a clique V_0 of order $3n/2$, and V_0 is partitioned into $V_1 \cup V_2 \cup V_3$ such that $|V_1| = |V_2| = |V_3| = n/2$. The set $V \setminus V_0$ is independent and is partitioned into $U_1 \cup U_2 \cup U_3 \cup \{x_0\}$ with $|U_1| = |U_2|$ $|U_3| = n - 1$. For every $i \in [3], G[V_i, U_i]$ is complete but $G[V_i, U_j]$ is empty for distinct $i, j \in [3]$. In addition, all the vertices of V_0 are adjacent to x_0 . Then each $v \in V_0$ has exactly n neighbors in $V \setminus V_0$. But neither G or \overline{G} contains an F_n centered in V_0 (there are copies of F_n whose centers are outside V_0 in \overline{G}). Indeed, for $v \in V_0$, every matching M in $G[N_G(v)]$ contains at most $n/2$ vertices in $V \setminus V_0$ and thus $|V(M)| \leq |V_0| - 1 + n/2 < 2n$. In G, every $v \in V_0$ has exactly $2n-2$ neighbors so there is no matching of order $2n$ in $G[N_{\overline{G}}(v)].$

We can generalize the construction that gives the lower bound of Theorem [1.1](#page-1-1) and obtain a new lower bound for $r(F_n, F_m)$. When $m \leq n < 3m/2 - 7$, our bound is better than $r(F_n, F_m) \geq 4n + 2$ given in [\[13\]](#page-8-11).

Theorem 5.2. Let m, n be positive integers with $m \leq n \leq \frac{3m}{2} - 3$. We have

$$
r(F_n, F_m) \ge \frac{3m}{2} + 3n - 5.
$$

Proof. We construct a graph $G = (V, E)$ on 3t vertices, where t is the largest even number less than $\frac{m}{2} + n$. Thus $t \ge \frac{m}{2} + n - 2$. Our goal is to show that neither G contains F_n nor G contains F_m . This will imply that $r(F_n, F_m) \geq 3t + 1 \geq 3m/2 + 3n - 5$ as desired.

Let $V_1 \cup V_2 \cup V_3$ be a partition of V such that $|V_1| = |V_2| = |V_3| = t$ and all $G[V_i]$ are complete graphs. For every $i \in [3]$, partition V_i into two subsets X_i and Y_i with $|X_i| = |Y_i| = t/2$. Observe that

$$
\frac{t}{2} - \left\lceil n - \frac{m}{2} \right\rceil \ge \frac{m}{4} + \frac{n}{2} - 1 - \left(n - \frac{m}{2} + \frac{1}{2}\right) = \frac{3m}{4} - \frac{n}{2} - \frac{3}{2} \ge 0 \quad \text{as } n \le \frac{3m}{2} - 3.
$$

For every $i \in [3]$, we add edges between X_i and Y_{i+1} (assuming $Y_4 = Y_1$) such that $G[X_i, Y_{i+1}]$ is an $\lceil n - \frac{m}{2} \rceil$ $\frac{m}{2}$ -regular bipartite graph.

The graph G contains no F_n because for every vertex $v \in V$,

$$
d_G(v) \le t - 1 + \left\lceil n - \frac{m}{2} \right\rceil < \frac{m}{2} + n - 1 + n - \frac{m}{2} + \frac{1}{2} < 2n
$$
 as $t < \frac{m}{2} + n$.

For every $v \in V$, \overline{G} induces a bipartite graph on $N_{\overline{G}}(v)$ with one part of size

$$
t - \left\lceil n - \frac{m}{2} \right\rceil < \frac{m}{2} + n - \left(n - \frac{m}{2} \right) = m.
$$

It follows that \overline{G} contains no F_m .

Acknowledgement

We thank anonymous referees for their comments that improved the presentation of this paper.

 \Box

References

- [1] S. A. Burr, P. Erdős, and J. H. Spencer. Ramsey theorems for multiple copies of graphs. Trans. Amer. Math. Soc., 209:87–99, 1975.
- [2] D. Conlon. The Ramsey number of books. Adv. Comb., pages Paper No. 3, 12, 2019.
- [3] D. Conlon, J. Fox, and B. Sudakov. Recent developments in graph Ramsey theory. In Surveys in combinatorics 2015, volume 424 of London Math. Soc. Lecture Note Ser., pages 49–118. Cambridge Univ. Press, Cambridge, 2015.
- [4] D. Conlon, J. Fox, and Y. Wigderson. Ramsey numbers of books and quasirandomness. arXiv:2001.00407v2, 2020.
- [5] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Berlin, fifth edition, 2017.
- [6] P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp. The size Ramsey number. Period. Math. Hungar., 9(1-2):145–161, 1978.
- [7] Y. Li and C. C. Rousseau. Fan-complete graph Ramsey numbers. J. Graph Theory, 23(4):413–420, 1996.
- [8] Q. Lin and Y. Li. On Ramsey numbers of fans. Discrete Appl. Math., 157(1):191–194, 2009.
- [9] Q. Lin, Y. Li, and L. Dong. Ramsey goodness and generalized stars. European J. Combin., 31(5):1228–1234, 2010.
- [10] S. P. Radziszowski. Small Ramsey numbers. Electron. J. Combin., 1:Dynamic Survey 1, 30, 1994.
- [11] C. C. Rousseau and J. Sheehan. On Ramsey numbers for books. J. Graph Theory, 2(1):77–87, 1978.
- [12] A. Thomason. On finite Ramsey numbers. European J. Combin., 3(3):263–273, 1982.
- [13] Y. Zhang, H. Broersma, and Y. Chen. A note on Ramsey numbers for fans. Bull. Aust. Math. Soc., 92(1):19–23, 2015.