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Abstract—The complete area coverage problem in Wireless Sensor Networks (WSNs) has been extensively studied in the literature.

However, many applications do not require complete coverage all the time. For such applications, one effective method to save energy

and prolong network lifetime is to partially cover the area. This method for prolonging network lifetime recently attracts much attention.

However, due to the hardness of verifying the coverage ratio, all the existing centralized or distributed but nonparallel algorithms for

partial coverage have very high time complexities. In this work, we propose a framework which can transform almost any existing

complete coverage algorithm to a partial coverage one with any coverage ratio by running a complete coverage algorithm to find full

coverage sets with virtual radii and converting the coverage sets to partial coverage sets via adjusting sensing radii. Our framework

can preserve the characteristics of the original algorithms and the conversion process has low time complexity. The framework also

guarantees some degree of uniform partial coverage of the monitored area.

Index Terms—Partial coverage, wireless sensor networks, energy efficiency.
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1 INTRODUCTION

RESEARCHERS have spent lots of effort to design algorithms
to completely cover an area—complete coverage problem.

Most of the coverage-related works concern how to prolong
network lifetime through different techniques. One of the
techniques which recently attract researchers’ attention is to
reduce the coverage quality to trade for network lifetime. In
some applications, the required coverage quality may even
be different at different points of time. For example, forest fire
monitoring applications [13], [14], and [15] may require
complete coverage in dried seasons, while they only require
80 percent of the area to be covered in rainy seasons. Thus, to
extend network lifetime, we can lower the coverage quality if
it is acceptable. The problem to cover only a portion of an
area is referred as the “partial coverage” problem. The
requirement for the partial coverage problem is that the
ratio of the covered area over the whole monitored area is no
less than a predefined value. This value is a user-specified
parameter. In this work, we use the notation � to refer to this
parameter. Consequently, the partial coverage problem
is also referred as �-coverage problem of which the objective
is to cover only �-portion of the area (the formal definition of
this problem is given in Definition 2). Moreover, it is always

desirable to schedule the sensors such that the area is
uniformly covered. It is clearly undesired if the network only
covers some particular subregions of the area while uncovers
the other large and continuous subregions. To evaluate
coverage quality, a metric named as Sensing Void Distance
(SVD) [11], [18] is used (the formal definition of this metric is
given in Definition 6).

In this work, we solve the �-coverage problem by
transforming various well-known complete coverage algo-
rithms to partial coverage algorithms. Our framework has
four strategies: two general strategies and two extended
strategies. The two general strategies are designed for
networks where sensors have fixed sensing ranges (fixed-
sensing-range network) and the other two are for networks
where sensors can adjust their sensing ranges (adjustable-
sensing-range network). For any particular �, the two
general strategies also guarantee a constant bound of SVD.

2 RELATED WORK

The problem of partial coverage is recently investigated in
the literature under many alias such as “�-lifetime” [8], [9],
“p-percentage coverage” [10], [18], “�-coverage” [11], or “q-
portion coverage” [16]. The problem requires the network
to cover at least “p percent,” “� portion,” or “q portion” of
an area. In other words, if � ¼ � ¼ q ¼ p

100 , those problems
are actually the same. To be consistent with the name when
this problem was first proposed [8], [9] and to make the
term self-explaining, we use the name “�-coverage” (which
will be formally defined later in Definition 2) to refer to this
problem and � is referred as coverage ratio.

The work in [8] shows the upper bound of network
lifetime when only �-portion of the whole area is covered. It
shows that network lifetime may increase up to 15 percent for
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99 percent coverage and 25 percent for 95 percent coverage.
Then, in [9], the authors proposed a centralized algorithm to
solve the �-coverage problem of which the increment of
network lifetime is close to the upper bound derived in [8]. In
[16], a centralized algorithm based on the Garg-Könemann
method for q-portion coverage is proposed. The algorithm
has a performance ratio of ð1þ �Þð1þ ln 1

1�qÞ, for any � > 0.
In [12], percentage coverage instead of complete coverage

is selected as the design goal, and a location-based Percentage
Coverage Configuration Protocol (PCCP) is developed to
assure that the proportion of the area after configuration to
the original area is no less than a desired percentage.

Liu and Liang [11] presented a centralized algorithm
which takes both coverage and connectivity into account.
Their work is the first one to analyze partial coverage
properties in order to prolong network lifetime. Initially,
active sensors are randomly selected. In each iteration,
nodes on a chosen candidate path with the maximum gain
are chosen. The algorithm continues until the whole area is
�-covered. This method is also employed by [10]. The work
in [10] proposed two algorithms, one centralized and one
distributed, for the same problem. To provide different
coverage qualities at different locations of the monitored
area, the area is partitioned into a number of clusters and
the algorithms partially cover the clusters one by one.

For the �-coverage problem, we always want to know
how uniformly the subregions are covered. To evaluate this,
adapted from [11], the work in [18] uses SVD which is the
distance from an uncovered point to a nearest covered
point. The authors in [18] also claimed that their CDS-based
distributed algorithm CpPCA-CDS can provide a constant-
bounded SVD. However, the value of p is too small that
even a subset of a CDS can provide p-percentage coverage;
thus, coverage redundancy is high to guarantee a bounded
SVD. In other words, in [18], the coverage redundancy is the
price paid for a bounded SVD.

To the best of our knowledge, most proposed algorithms
for �-coverage are centralized ones. There are distributed
algorithms discussed in [10], [18]. However, those algo-
rithms work in a distributed manner but not a parallel
fashion, i.e., each sensor has to wait for the value of � to be
calculated by its neighbors to decide whether to be active or
to sleep. So, the time complexity may be very high. In the
worst case, the time complexity of a nonparallel (consequen-
tial) algorithm may be of the order of the network size.

The rest of the paper is organized as follows: Section 3
states the motivation of our work. Section 4 introduces
some preliminary concepts and supporting knowledge. In
Section 5, we explain our framework in details. We then
evaluate the effectiveness of the proposed framework in
Section Simulation of Supplementary File, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2010.124. We
conclude our work in Section 6.

3 MOTIVATION

Most of the existing algorithms for the �-coverage problem
are greedy on a so-called contribution (or gain). Contribution
of a set X of sensors is a parameter that mainly depends on
the current uncovered area that can be covered by X. For

the simplest case where sensors’ sensing regions are
assumed to be perfect disks, that region usually is the part
of union of disks that is not covered by some other
overlapping disks (neighbors). However, calculating the
area of this union region is not trivial even for the case that
all the sensors have the same sensing range. The previous
works usually ignore to explain how to do that calculation.
To the best of our knowledge, there is no existing method to
calculate the exact area for such region.

Besides, most of the current works directly solve the
partial coverage problem. The common method is to greedily
(on contribution) add sensors until at least � portion of the
area is covered. As a result, most of the existing algorithms
are centralized. The rest, few distributed algorithms have
high time complexity due to the fact that they have to scan
through all the sensors one by one until �-portion of the area
is covered. That means the sensors cannot work in a parallel
manner. In a sense, we claim that the �-coverage problem is
an impossible-to-directly-solve problem in a distributed and
parallel manner due to the fact that � is a global parameter
which cannot be acquired in a parallel manner.

Moreover, there are a great deal of existing algorithms
designed for complete coverage which motivate us to find a
way to utilize them for partial coverage. In the literature,
there do exist many fully distributed and parallel algo-
rithms which do not depend on contribution such as the
algorithms in [2], [3], [4], [5], [6], [7]. It is a significant
contribution if we somehow convert those algorithms to
solve partially (instead of completely) area cover problems.
The resulting algorithms have to guarantee some level of
coverage quality as required by users. The conversion
should preserve the characteristics of the original algo-
rithms. Moreover, the conversion should be simple and fast
enough to not increase time complexity too much. Im-
portantly, the conversion process should work with most of
the existing complete coverage algorithms.

In this work, we propose a framework that satisfies all
the requirements of an algorithm conversion framework we
just mentioned above. The framework consists of four
strategies (two general strategies and the other two
extended strategies) which are designed for different kinds
of networks. Two (one general and one extended strategy)
are designed for fixed-sensing-range WSNs and the other
two are for adjustable-sensing-range WSNs. Amazingly, for
any certain desired coverage ratio � and a particular WSN,
the resulting algorithm of two general strategies for partial
coverage can guarantee a constant-bounded SVD for all the
original algorithms for complete coverage. In other words,
the resulting algorithms of two general strategies uniformly
cover the area. Also, the general strategies work for almost
all complete coverage algorithms.

4 PRELIMINARY

We dedicate this section to introduce some concepts and
definitions.

Definition 1 (�-cover). Given a real number � where
0 < � < 1, a two-dimensional region A and set S of n sensors
si for i ¼ 1 . . .n. Sensor si’s sensing region is Si. kAk denotes
the area of region A. A subset C � S �-covers area A (C is an
�-set-cover of A) if:
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By this definition, the traditional set cover is also called
1-set-cover in this work. Now, we define the �-coverage
problem as following:

Definition 2 (�-coverage problem). Given a real number �
where 0 < � < 1, a two-dimensional region A and set S of n
sensors si for i ¼ 1 . . .n. Find a set of �-set-covers C1; . . . ; Cl
of S for region A.

Definition 3 (�-virtual network). For a particular real number
� where 0 < � and a WSN S with n sensors s1; . . . ; sn.

. If S is a fixed-sensing-range WSN where sensor si
ði ¼ 1 . . .nÞ has a sensing range Ri, then the �-virtual
network of S, denoted by S� , is the network where
sensor si has a sensing range Riffiffi

�
p . This sensing range is

called the virtual sensing range.
. If S is an adjustable-sensing-range WSN where sensor

si ði ¼ 1 . . .nÞ has the maximum sensing range of
MaxRi, then:

- The �-virtual network of S, denoted by S� , is the
adjustable-sensing-range network where sensor si
has maximum sensing range of MaxRiffiffi

�
p for

i ¼ 1 . . .n. This maximum sensing range is called
virtual maximum sensing range.

- The fixed-�-virtual network of S, denoted by
S�fixed, is the fixed-sensing-range network where
sensor si has sensing range of MaxRiffiffi

�
p . This sensing

range is called the virtual sensing range.

Because we have to deal with two types of networks in
this paper (real and virtual networks), it is necessary to
distinguish two types of set covers corresponding to the two
types of networks as follows:

Definition 4 (V SC� : �-virtual-set-cover). Given a real number
� (0 < �) and set S of n sensors si (i ¼ 1 . . .n), the �-virtual
network of S is S� . A 1-set-cover of S� is called �-virtual-set-
cover, denoted by V SC� .

Definition 5 (�-RSC: �-real-set-cover). Given a real number �
(0 < �) and set S of n sensors si (i ¼ 1 . . .n). The �-real-set-
cover, denoted by �-RSC, of a virtual set cover Cj (Cj is not
necessarily a V SC�) is the set cover where every sensor has a
sensing range of

ffiffiffi
�
p

times of its sensing range in Cj.
Furthermore, a �-RSC is feasible if either of the following
conditions is true:

. If the network is a fixed-sensing-range network, then
every sensor of �-RSC must have its predefined
sensing range.

. If the network is an adjustable-sensing-range network,
then every sensor of �-RSC must have its sensing range
no larger than its predefined maximum sensing range.

5 A FRAMEWORK FOR �-COVERAGE ALGORITHMS

The framework requires three inputs: 1) the coverage ratio
�, 2) a complete coverage algorithm AA (sometimes referred
as “original algorithm”), and 3) the network S consisting of n
sensors S ¼ fs1; ::; sng. Our framework transforms the input

original algorithms to the ones that can generate a set of �-
set-covers. We sometimes refer the obtained algorithms as
“�-coverage algorithms.”

5.1 Assumptions and Notations

We assume that the sensing region of a sensor si is a disk
centered at si. If si has a sensing range of Ri, denoted by
siðRiÞ, then that disk has a radius of Ri.

For an input algorithm AA, conventionally, the result of AA
to completely cover a sensor networkS is a set of fCj; tjgpairs
where each Cj is a 1-set-cover and tj is its working schedule.
Each set coverCj is a set of sensors (with their sensing ranges)
that will be turned on to provide complete coverage. The
schedule tj of set coverCj may include the starting time points
and the durations that the set cover Cj will be activated. It is
worth emphasizing that an algorithm AA does not always
explicitly create a set of all desired set covers and return them
as an output. For instance, the family of scheduling algo-
rithms that work in rounden, of which the network working
time is divided into equal length rounds and the algorithms
create a set cover for each round, they just create one set cover
at a time for each round. We make the assumption about the
result of the original algorithms only for clear and easier
explanation of our framework.

For an adjustable-sensing-range WSN S ¼ fs1; ::; sng, we
assume that each sensor si is able to smoothly adjust its
sensing range under some upper cut-off range. This
assumption is employed by most works concerning
adjustable-sensing-range WSNs such as [3] and [4].

Our framework has no restriction on the type of WSNs. In
terms of sensors’ sensing ranges and initial energy, the WSNs
may be heterogeneous or homogeneous, and the network
may be fixed-sensing-range or adjustable-sensing-range
networks. However, the algorithms generated by our frame-
work have the same restriction as the original algorithms.

5.2 Basic Idea of the Framework

Before explaining our strategies in detail, it is necessary to
emphasize the essences of our framework. Our framework
essentially converts a complete coverage algorithm to a
resulting algorithm for the �-coverage problem. The frame-
work first makes the original algorithm to be executed on a
virtual network. The result of that execution is a set of
virtual set covers Cj and their schedules tj. These set covers
are for the virtual network, so the sensors of those set covers
may have virtual sensing ranges which might be bigger
than their real maximum sensing ranges. The framework
then modifies the original algorithm so that the final result
is a set of real set covers Cj, where each set cover Cj is �-
RSC of Cj. Though in Section 5.3.1, Section 5.3.2, and Section
Extended strategies of Supplementary File, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2010.124, our
strategies are actually the general guidelines on how to
modify an original algorithm (for complete coverage) to
obtain a desired algorithm for �-coverage. When modifying
an original algorithm, every step does not have to be exactly
the same as shown in the pseudocodes:

. The process to modify the algorithm AA is not always
the same. For example, instead of creating a new
virtual network, our framework suggests that the
original algorithm should be modified in the way
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that anytime sensors’ sensing ranges are referenced
by the algorithm AA, and the strategies just have to
replace the original sensing ranges with the corre-
sponding virtual sensing ranges.

. Since there exist complete coverage algorithms that
do not generate all set covers at once, their resulting
algorithms for the �-coverage problem do not have to
explicitly identify all �-set-covers. Most of the time,
when the algorithm AA generates a set cover for the
virtual network, the algorithm AA will be modified in
the way that right before a virtual set cover is
returned, it will be converted to a real set cover.

5.3 General Strategies

5.3.1 General Strategy for Fixed-Sensing-Range

WSNs—Strategy G-1

Assume that a sensor si (i ¼ 1; . . . ; n) has a fixed sensing
range Ri. Strategy G-1 is given in Algorithm 1 of
Supplementary File, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2010.124.

This strategy works for both types of original algo-
rithms AA:

. Type 1: Algorithm AA is designed for fixed-sensing-

range WSNs. Strategy G-1 first runs the original

algorithm AA on �-virtual network S� where sensor si
has a sensing range of Riffiffiffi

�
p to get a set of virtual set

covers Cj and their schedules tj. For a sensor si 2 Cj,
its virtual sensing range in Cj is Riffiffiffi

�
p . From virtual set

cover Cj, the set cover Cj is created of which each

sensor si has a sensing range of Ri, which is si’s real
sensing range. It can be seen that each set coverCj is a

V SC� and set cover Cj is an �-RSC of Cj. The final

result is a set of set covers Cj where sensors use their

real sensing ranges Ri and their schedule tj for

j ¼ 1 . . . l.
. Type 2: Algorithm AA is designed for adjustable-

sensing-range WSNs. Strategy G-1 runs the original

algorithm AA on �-virtual network S� where sensor si
has the maximum sensing range of Riffiffiffi

�
p to get a set of

fCj; tjgpairs. Denote the sensing range of a sensor si in

Cj as Rj
i and Rj

i � Riffiffiffi
�
p . In the final resulting set covers

Cj, sensor si 2 Cj uses its real sensing rangeRi (i.e., we

intentionally ignore the virtual sensing ranges as-

signed by the algorithm AA) and schedule tj. Usually, it

is not practical to execute Type 2 algorithms on fixed-

sensing-range WSNs. We just list this case here to

illustrate the universality of our framework. We do

not recommend Strategy G-1 to be applied for

adjustable-sensing-range algorithms on fixed-sen-

sing-range WSNs.

Since Strategy G-1 forces sensors of the final resulting set
covers Cj to use their original sensing ranges (without
considering the sensors’ sensing ranges in the virtual set
cover Cj), the following lemmas are directly derived:

Lemma 1. Given a real number � (0 < � < 1) and a fixed-
sensing-range WSN, for any original (complete coverage)

algorithm as an input, the �-coverage algorithm derived by

Strategy G-1 generates feasible set covers whose sensors’

sensing ranges are their original sensing ranges.

Lemma 2. The sensing range of a sensor in a final result’s set

cover Cj is no smaller than
ffiffiffiffi
�
p

times of its sensing range in

the corresponding virtual set cover Cj.

5.3.2 General Strategy for Adjustable-Sensing-Range

WSNs—Strategy G-2

We assume that each sensor si’s sensing range has a

predefined upper bound MaxRi. Strategy G-2 is given in

Algorithm 2 of Supplementary File, which can be found on

the Computer Society Digital Library at http://doi.

ieeecomputersociety.org/10.1109/TPDS.2010.124, and

works for both types of original algorithms.

. Type 1: The original algorithm AA is designed for

fixed-sensing-range WSNs. Strategy G-2 runs the

original algorithm AA on fixed-�-virtual network

S�fixed where � � �. That is, execute algorithms AA on

a virtual network where a sensor si has a fixed

sensing range of MaxRiffiffi
�
p . The result of this execution is

a set of virtual set covers Cj, and each Cj is a V SC�.

Then, it adjusts each sensor’s the sensing range from
MaxRiffiffi

�
p in V SC�Cj to

Ri ¼
ffiffiffiffi
�
p
�MaxRiffiffiffi

�
p ¼

ffiffiffiffi
�
pffiffiffi
�
p �MaxRi

in �-RSC Cj. Since � � �, Ri �MaxRi, which

makes the final resulting set covers Cj feasible. If

we choose � ¼ �, then this strategy is similar as

Strategy G-1.
. Type 2: The original algorithm AA is designed for

adjustable-sensing-range WSNs. Strategy G-2 runs

the original algorithm AA on �-virtual network S�,

where � � � to decide sensors’ sensing ranges and

their schedules. Let Rj
i be the sensing range that AA

decides for sensor si in a virtual set cover Cj, clearly

Rj
i � MaxRiffiffi

�
p . Then, each sensor’s sensing range is

adjusted to
ffiffiffiffi
�
p

Rj
i in the final resulting set cover Cj.

Because

� � �;
ffiffiffiffi
�
p

Rj
i �

ffiffiffiffi
�
p
�MaxRiffiffiffi

�
p �MaxRi:

Thus, the set cover Cj is a feasible set cover.

Based on the explanation above, the following lemmas

hold:

Lemma 3. Given a real number � where 0 < � < 1 and an

adjustable-sensing-range WSN, for any original complete

coverage algorithm, Strategy G-2 generates feasible set covers

whose sensors’ sensing ranges are no larger than their

predefined upper bound.

Lemma 4. In a final resulting set cover Cj, each sensor’s sensing

range is exactly
ffiffiffiffi
�
p

times of its sensing range in the

corresponding virtual set cover Cj.
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5.3.3 Analysis

Before showing the correctness of the two general strate-
gies, we first introduce a supporting lemma:

Lemma 5. Given a real number � (0 < � < 1), an infinite
monitored area, and a WSN where sensors’ sensing regions are
disks, assume that the network can completely cover the
monitored area. If the sensing ranges of all the active sensors
shrink down with the ratio

ffiffiffiffi
�
p

, then the network with the new
sensing range assignment can �-cover the monitored area.

Proof. Let � ¼ ffiffiffiffi
�
p

, then this lemma is a direct result of the �-
compression theorem (Theorem 11 in Section 5.3.4). tu

Theorem 6 (Correctness). Given a real number � (0 < � < 1)
and an infinite monitored area, the proposed two general
strategies work correctly.

Proof. To prove the correctness of the two general
strategies, we need to prove the following:

. The final resulting set covers are feasible: Accord-
ing to Lemma 1 and Lemma 3, the resulting set
covers of both strategies are feasible.

. The final resulting set covers can �-cover the
area: According to Lemma 2 and Lemma 4, the
sensing ranges of sensors of final real set covers
are no smaller than

ffiffiffiffi
�
p

times of those of the
corresponding virtual set covers. Since the virtual
set covers can completely cover the area, accord-
ing to Lemma 5, the final set covers can �-cover
the area.

The resulting set covers of �-coverage algorithms of
the both strategies are feasible and can �-cover the
monitored area, which proves the correctness of both
strategies. tu

For the partial coverage problem, it is always desirable to
evaluate how uniformly the network �-covers the area. A
good metric for such an evaluation is Sensing Void Distance
defined in [11] and [18] as follows:

Definition 6 (SVD). Sensing Void Distance is the maximum
distance from a point that is not covered by any active sensor
to the nearest point that is covered by an active sensor.

Based on the definition of SVD, the upper bound of SVD
of any �-coverage derived by the two general strategies is
given in the following theorem:

Theorem 7. Let Rmax be the maximum sensing range a sensor
may have. That is, for fixed-sensing-range WSNs, Rmax is the
largest sensing range of all the sensors and for adjustable-
sensing-range WSNs, Rmax is the largest one among all the
possible maximum sensing ranges of all the sensors. For any
original algorithm, the SVD of �-coverage derived by the two
general strategies is bounded by the following values:

.

SVD � 1�
ffiffiffiffi
�
pffiffiffiffi
�
p Rmax

for Strategy G-1.

.

SVD � 1�
ffiffiffiffi
�
pffiffiffi
�
p Rmax

for Strategy G-2.

Proof. Assume that P is the uncovered point whose
distance to the nearest covered point is SVD. Since P is
covered by a virtual network (�-virtual network for
Strategy G-1, �-virtual network, or fixed-�-virtual net-
work for Strategy G-2), there exists a sensor s such that P
is covered by sðRvirÞ, where Rvir is the virtual sensing
range of s in the virtual network. In Fig. 1a, the inner
solid circle is s’s actual sensing region, i.e., s works with
its real sensing range Rreal. The outer dashed circle with
radius of Rvir is s’s sensing region in the virtual network.
We have Rreal ¼

ffiffiffiffi
�
p

Rvir.
Denote jsP j as the euclidean distance from sensor s to

point P , then jsP j � Rvir. Assume that the line sP
intersects with the inner circle at point N , clearly,
jsN j ¼ Rreal. Because of the way we choose P , we have

SVD � jNP j ¼ jsP j � jsN j ¼ jsP j �Rreal � Rvir �Rreal

¼ Rvir �
ffiffiffiffi
�
p

Rvir ¼ Rvirð1�
ffiffiffiffi
�
p
Þ:

For Strategy G-1, the original algorithms work with �-

virtual-network; thus, Rvir � Rmaxffiffiffi
�
p . Therefore, SVD �

1�
ffiffiffi
�
pffiffiffi
�
p Rmax.

For Strategy G-2, the original algorithms work with �-
virtual-network; thus, Rvir � Rmaxffiffi

�
p . Therefore,

SVD � 1� ffiffiffiffi
�
pffiffiffi
�
p Rmax:

ut

For complete coverage (� ¼ 1), we have SVD ¼ 0.
Clearly, our SVD bound is more meaningful than the one
given in [18] which is rtmax þ rsmax � rsmin (this bound is
the same for any �) where rtmax; rsmax, and rsmin are the
maximum communication range, the maximum sensing
range, and the minimum sensing range, respectively. For
Strategy G-2, the larger the value of �, the smaller the value
of SVD. Thus, users may use a large � to get a better
coverage uniformity. However, if � is too large, the virtual
network might not be able to completely cover the
monitored area, since the sensors’ sensing ranges in the
virtual network are too small.
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Theorem 8. The time complexity of any resulting �-coverage
algorithm derived by the two general strategies is the same as
that of the original algorithm.

Proof. The proposed general strategies essentially adjust the
source code of an original algorithm in a way that
the resulting algorithm can �-cover the area. Basically,
the general strategies carry out two tasks:

1. Let the original algorithm work with a virtual
network where every sensor s has its virtual
sensing range. In this step, the framework (which
also includes two extended strategies discussed in
Section 5.3) only considers any reference to s’s
sensing range and merely changes s’s real sensing
range to a virtual sensing range. Thus, our
framework does not change the time complexities
of the original algorithms since it just conducts a
simple calculation operation (a division) to the
original algorithms.

2. Convert the virtual set covers to real set covers.
Essentially, before returning the results, i.e., set
covers with schedules, the two general strategies
simply modify a piece of code in the original
algorithm such that instead of returning the
virtual sensing ranges, it returns real sensing
ranges which are usually

ffiffiffiffi
�
p

times of the virtual
sensing ranges. Understanding the general stra-
tegies in this way, the time complexity of an
original algorithm is not changed.

Thus, the time complexity of the resulting algorithm
derived by the two proposed general strategies is the
same as that of the original algorithm. tu

5.3.4 �-Compression Theorem

We dedicate this section to prove an important theorem
showing the correctness of our framework. We first
introduce some notations and definitions.

Notations:
CðO;RÞ denotes a circle C with radius R centered at

point O. The region enclosed by C is denoted by DðCÞ (D
stands for disk). We use kAk to denote the area of region A.
For a line XY , jXY j is its length.

For 2 two-dimensional regions A and B, we say A � B if
for every point P 2 A, we also have P 2 B. In other words,
A is fully covered by B. We say A 6� B if there exists a point
P 2 A, but P 62 B. For example, as shown in Fig. 2a, we
have DðC5Þ � DðC4Þ, DðC5Þ 6� DðCÞ. A� B includes any
point P such that P 2 A, but P 62 B.

Definitions:

Definition 7 (Neighbors). In the plane, given a circle C and l
other circles C1; C2; . . . ; Cl, a circle Ci (i ¼ 1 . . . l) is said to be
a neighbor of C if C and Ci overlap.

For example, in Fig. 2a, C1; C3; C4; C5 are all the
neighbors of C, while C2 is not.

Definition 8 (Private region). The region of disk DðCÞ that is
not covered by any of its neighbors is called a private region.

For example, the shaded region A in Fig. 2a is a private

region of DðCÞ. A ¼ DðCÞ �
S5
i¼1 DðCiÞ.

Definition 9 (ðO; �Þ-compression). Given a real number �
(0 < � < 1) and a point O, a curve L, and a convex region A
in the plane, we define:

. ðO; �Þ-compression of curve L is the curve L consist-
ing of every point P such that jOP jjOQj ¼ � for all a point
Q 2 L.

. ðO; �Þ-compression of region A is the region A
consisting of every point P such that jOP jjOQj ¼ � for a
point Q 2 A.

As shown in Fig. 2b, L is ðO; �Þ-compression of L. In Fig. 2c,
A is ðO; �Þ-compression ofA. The following lemma can then be
easily proved:

Lemma 9. Given a real number � (0 < � < 1), a point O and two
convex regions A and A in the plane, A and A are enclosed by
curves L and L, respectively. A is ðO; �Þ-compression of A if
and only if L is ðO; �Þ-compression of L.

Lemma 10. If A is ðO; �Þ-compression of A, then kAk ¼ �2kAk.
Proof. We have two cases:

Case 1. O is outside of A, i.e., O 62 A. We partition L
enclosing A into two curves l1 and l2, as shown in Fig. 2c.
Similarly, we partition L enclosing A into two curves l1
and l2. Clearly, l1 and l2 are ðO; �Þ-compression of l1 and
l2, respectively.

If we consider regions under the polar coordinate,
then from [1], we have

kAk ¼ 1

2

Z !2

!1

�
l1

2 � l2
2�
d! ¼ 1

2

Z !2

!1

ðð�l1Þ2 � ð�l2Þ2Þd!

¼ 1

2
�2

Z !2

!1

�
l21 � l22

�
d! ¼ �2kAk:

Case 2. O is inside of A, i.e., O 2 A. Let l and l be the
curves enclosing A and A, respectively. We have

lkAk ¼ 1

2

Z 2	

0

ðl2Þd! ¼ 1

2

Z 2	

0

ð�lÞ2d! ¼ 1

2
�2

Z 2	

0

l2d!

¼ �2kAk:
ut

The �-compression theorem:

Theorem 11 (�-compression theorem). In the plane, given n
circles CiðOi;RiÞ (i ¼ 1 . . .n), the n corresponding disks
DðCiÞ (i ¼ 1 . . .n) may overlap. If we “shrink” all the radius
of the n circles by ratio � (0 < � < 1), we will have n new circles
C�i ðOi;R

�
i Þ, where R�i ¼ �Ri for i ¼ 1 . . .n. If we denote A ¼Sn

i¼1 DðCiÞ and A� ¼
Sn
i¼1 DðC�i Þ, then kA�k � �2kAk.
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Fig. 2. Private region and ðO; �Þ-compression. (a) Private region of disk
C. (b) ðO; �Þ-compression for a curve. (c) ðO; �Þ-compression for a
region.



Proof. We prove this theorem by induction on the number

of the disks:
Basic step: n ¼ 1 : Trivial.
Inductive hypothesis: Assume that the theorem holds

for k ¼ n� 1 for some n � 2.
Inductive step: Prove for k ¼ n. Among the n circles,

assume that circle CðO;RÞ is the one with the smallest
radius. Denote other n� 1 circles as CiðOi;RiÞ
(i ¼ 1 . . .n� 1). We have R � Ri for i ¼ 1 . . .n� 1.

Let

An�1 ¼
[n�1

i¼1

DðCiÞ; ð2Þ

A ¼
[n�1

i¼1

DðCiÞ
" #[

DðCÞ ¼ An�1

[
DðCÞ: ð3Þ

Intuitively, A is the union region of n disks DðCÞ and
DðCiÞ (i ¼ 1 . . .n� 1), while An�1 is the union region of
n� 1 disks DðCiÞ (i ¼ 1 . . .n� 1) not including DðCÞ.

After n circles shrink with ratio �, we have n new
circles C�i ðOi;R

�
i Þ (i ¼ 1 . . .n� 1) and C�ðO;R�Þ, where

R�i ¼ �Ri and R� ¼ �R.
Let

A�n�1 ¼
[n�1

i¼1

DðC�i Þ; ð4Þ

A� ¼
[n�1

i¼1

DðC�i Þ
" #[

DðC�Þ ¼ A�n�1

[
DðC�Þ: ð5Þ

Intuitively, A� is the union region of n disks, while
A�n�1 is the union region of n� 1 disks not including
DðC�Þ.

With all those notations, the inductive hypothesis can be
rewritten as kA�n�1k � �2kAn�1k. We need to prove
kA�k � �2kAk. There are two cases:

Case 1. Before shrinking, ifDðCÞ is completely covered
by all of its neighbors, i.e., DðCÞ �

Sn�1
i¼1 DðCiÞ ¼

An�1 ) A ¼ An�1

S
DðCÞ ¼ An�1, then we are done

because kA�k � kA�n�1k � �2kAn�1k ¼ �2kAk.
Case 2. Otherwise, DðCÞ is not fully covered by all of

its neighbors.
Without loss of generality, assume that before shrink-

ing C intersects with l other circles CiðOi;RiÞ (i ¼ 1 . . . l).
For example, in Fig. 3a, we have l ¼ 3. By assumption,
we have R � Ri for i ¼ 1 . . . l.

Let A be the private region of DðCÞ. The region that can
be covered by all the n disks is A ¼ An�1 þA. Hence,
kAk ¼ kAn�1k þ kAk.

After all the disks shrink as shown in Fig. 3b, let A� be
the new private region of DðC�Þ. After shrinking, the
region that can be covered by all the n disks is
A� ¼ A�n�1 þA�. Hence, kA�k ¼ kA�n�1k þ kA�k.

We need to prove kA�k � �2kAk , kA�n�1k þ kA�k �
�2ðkAn�1k þ kAkÞ. From inductive hypotheses, we have

kA�n�1k � �2kAn�1k. So, we only need to prove kA�k �
�2kAk.

In Fig. 3c, we introduce a new concept which is
compressed private region. We create ðO; �Þ-compression Ci
of circles Ci (original circles before shrinking shown in
Fig. 3a) for i ¼ 1 . . . l , where O is the center of C and C�.
It is necessary to emphasize that C� � C, i.e., C� and C
are the same circle. We only consider the border portions
of Ci which are inside disk DðCÞ. From now on, we also
use Ci to denote those portions. The new private region,
denoted by A, created by DðCÞ and curves Ci is called a
compressed private region.

Each curve Ci partitions disk DðC�Þ into two
subregions (halves). We use Ai to denote the subregion
that contains the compressed private region A. That is,
Ai ¼ DðC�Þ �DðCiÞ. We always have A � Ai � DðC�Þ.

Similarly, we define A�i ¼ DðC�Þ �DðC�i Þ. If DðC�i Þ
overlaps DðC�Þ, circle C�i also partitions disk DðC�Þ into
two halves, A�i is the half that contains the private
subregion A�. Otherwise, if DðC�i Þ does not overlap
DðC�Þ, then A�i ¼ DðC�Þ. Then, we have

A ¼
\l
i¼1

Ai and A� ¼
\l
i¼1

A�i : ð6Þ

It is easy to see that A is ðO; �Þ-compression of A. By
Lemma 10, we have kAk ¼ �2kAk. Thus, instead of
proving kA�k � �2kAk, we are going to prove kA�k � kAk.

We claim that for i ¼ 1 . . . l, Ai � A�i . In other words,
Ai is completely inside of A�i . This and (6) lead to the
consequence that A � A�, i.e., A is also completely inside
of A�. Hence, we have kAk � kA�k. Thus, if the claim is
proved, our theorem is consequently proved.

Now, we prove our claim. It is easy to see that if DðCiÞ
overlaps DðCÞ, then Ci 6¼ ;. Thus, for all i ¼ 1 . . . l, we
have Ci 6¼ ;. Based on that fact and since C� has the
smallest radius among all the disks, for a particular i
(1 � i � l), there exist only two cases:

. Case 2.1: C�i does not intersect DðC�Þ. Then,
Ai � DðC�Þ ¼ A�i . Hence, Ai � A�i .

. Case 2.2: C�i does intersect DðC�Þ. We will prove
that Ai � A�i , i.e., in Fig. 1b, the shaded region (Ai)
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Fig. 3. Private regions. (a) The private region before shrinking. (b) The private region after shrinking. (c) Compressed private region.



is completely inside of the thickened region (A�i ).
To prove this, we only have to prove that Ci is
completely inside of A�i .

Consider an arbitrary point M 2 Ci. We will

prove that M 2 A�i . Line OM intersects Ci at Q,

and line OiQ intersects C�i at N . We denote

ffMNOi as the angle formed by two rays NM and

NOi. We have jOMjjOQj ¼ � ¼
jOiNj
jOiQj . Thus, line MN is

parallel with line OOi. Consequently, ffMNOi þ
ffNOiO ¼ 	.

Since Ci is inside of DðC�Þ and M 2 Ci; thus,

M 2 DðC�Þ ) jOMj � �R. Hence, jOQj ¼ jOMj� �
R � Ri ¼ jOiQj. Consider triangle QOOi. Since

OQ � OiQ a n d ffQOiO � ffQOOi, w e h a v e

ffQOiO � 	
2 . It means that ffMNOi � 	

2 . Since

ffMNOi þ ffNMOi þ ffNOiM ¼ 	;

we have ffNMOi <
	
2 � ffMNOi. Thus, jOiMj >

jOiN j ¼ �Ri.
jOiMj > �Ri means that point M is outside of

disk DðC�i Þ, i.e., M 62 DðC�i Þ. Also, M 2 DðC�Þ, so

M 2 ½DðC�Þ �DðC�i Þ
 ¼ A�i . Since M is an arbi-

trary point in Ci, from Ci � A�i , we have Ai � A�i .
For all the cases, we have Ai � A�i , which proves our

claim, and consequently, completes our proof. tu

Section Extended Strategies, Advantages of Our Framework,

and Simulation are shown in Supplementary File, which can be

found on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TPDS.2010.124.

6 CONCLUSION

In this work, we propose a framework with strategies that

can transform almost any existing complete coverage

algorithm with any coverage ratio � to an algorithm that

can �-cover the area to trade for network lifetime.

Theoretical analysis and solid proof show the efficiency

and the many advantages of our proposed framework. The

simulation results further validate the efficiency of the four

proposed strategies. As future work, we may conduct

more simulations to characterize the pattern for “good”

values of �.
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