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Abstract. Given integers r > d ≥ 0 and an r-partite graph, an independent (r−d)-transversal
or (r− d)-IT is an independent set of size r− d that intersects each part in at most one vertex.
We show that every r-partite graph with maximum degree ∆ and parts of size n contains an
(r − d)-IT if n > 2∆(1 − 1

q
), provided q = ⌊ r

d+1
⌋ ≥ 4r

4d+5
. This is tight when q is even and

extends a classical result of Haxell in the d = 0 case. When q = ⌊ r
d+1

⌋ ≥ 6r+6d+7
6d+7

is odd, we

show that n > 2∆(1− 1
q−1

) guarantees an (r − d)-IT in any r-partite graph. This is also tight

and extends a result of Haxell and Szabó in the d = 0 case. In addition, we show that n > 5∆/4
guarantees a 5-IT in any 6-partite graph and this bound is tight, answering a question of Lo,
Treglown and Zhao.

1. Introduction

Let G = (V,E) be a graph with partition V = V1 ∪ · · · ∪ Vr. An independent transversal of
G is an independent set with exactly one vertex in each Vi. Given 0 ≤ d < r, an independent
(r−d)-transversal or (r−d)-IT is an independent set with one vertex in each of r−d parts of G.
We sometimes call an (r − d)-IT with d > 0 a partial IT and an independent transversal a full
IT. Independent transversals have found applications in many areas, including combinatorics
(e.g. [1, 2, 7, 15, 17]), groups and rings (e.g. [6, 8]) and combinatorial optimization (e.g. [3, 9]).

The existence of full independent transversals under maximum degree conditions was first
studied by Bollobás, Erdős, and Szemerédi [5] in 1975 in the complementary form. This problem
was extensively studied and eventually solved by Haxell [11], Haxell and Szabó [14], and Szabó
and Tardos [18], see (2).

Bollobás, Erdős, and Szemerédi also considered the existence of partial independent transver-
sals (again in the complementary form). They [5, Theorem 3.1] determined the maximum
number of edges in r-partite graphs with n vertices in each part and without a copy of Kt

(complete graph on t vertices) for any t ≤ r. The corresponding problem under a minimum
degree condition was studied by Lo, Treglown, and Zhao [16].

Given integers n and 2 ≤ t ≤ r, let f(n, r, t) denote the largest minimum degree δ(G) among
all r-partite graphs G with parts of size n and without a copy of Kt. A result of Bollobás,
Erdős, and Straus [4] implies that f(n, r, 3) = ⌊r/2⌋n for all r ≥ 3 while [5, Theorem 3.1] implies
that f(n, r, t+ 1) = (r − r/t)n whenever t divides r. The authors of [16] observed that Turán’s
theorem implies that

(1)
(
r −

⌈r
t

⌉)
n ≤ f(n, r, t+ 1) ≤

(
r − r

t

)
n.

The main result of [16] determined f(n, r, t+ 1) when t divides r + 1, when r ≥ (3t− 1)(t− 1),
and f(n, r, 4) for all r ̸= 7.

The smallest unknown case (with respect to r) is f(n, 6, 5). In this paper we resolve this
and many other cases of f(n, r, t+ 1) when t > r/2 by studying the complementary problem of
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finding partial independent transversals under maximum degree conditions. Instead of f(n, r, t),
we find it convenient to use another extremal function. For r,D,∆ ∈ N, let n(r,D,∆) be the
largest n ∈ N such that there is an r-partite graph G with at least n vertices in each part,
maximum degree ∆, and without an (r −D + 1)-IT.

The two functions f(n, r, t) and n(r,D,∆) are closely related, as shown in Lemma 2.1. Under
the n(r,D,∆) notation, the results of [11, 14, 18] are as follows: given integers r ≥ 2 and ∆ > 0,
we have

n(r, 1,∆) =

{⌊
2∆

(
1− 1

r

)⌋
, if r is even⌊

2∆
(
1− 1

r−1

)⌋
, if r is odd.

(2)

Given an r-partite graph G, let G′ be obtained from G by adding d vertex-disjoint copies of Kr

with one vertex in each part. Then G has an (r−d)-IT if and only if G′ has a full IT. Using this
standard idea for proving “defect” versions, one can adapt the proof of n(r, 1,∆) ≤ 2∆(1− 1/r)
(e.g. in [12, Section 2]) to obtain that

n(r, d+ 1,∆) ≤ 2∆

(
1− d+ 1

r

)
.(3)

Using multiple copies of [18, Construction 3.3] of Szabó and Tardos, one can easily see that (3)
is tight when r/(d+ 1) is an even integer. This already improves (1) and extends the first case
of (2).

Our first result improves (3) substantially.

Theorem 1.1. Given integers r, d ≥ 0, let q, k be integers such that r = q(d + 1) + k and
0 ≤ k ≤ d. If G is an r-partite graph with maximum degree at most ∆ and with vertex classes
V1, . . . , Vr of size

|Vi| > max

{
2∆

(
1− 4d+ 5

4r

)
, 2∆

(
1− 1

q

)}
,

then G has an (r − d)-IT. In other words,

n(r, d+ 1,∆) ≤ max

{
2∆

(
1− 4d+ 5

4r

)
, 2∆

(
1− 1

q

)}
.

It is easy to see that the maximum in Theorem 1.1 is always less than or equal to 2∆
(
1− d+1

r

)
.

Thus, Theorem 1.1 is an improvement of (3). Furthermore, together with the constructions in
Section 2, Theorem 1.1 gives the value of n(r, d+ 1,∆) whenever q ≥ 4k is even (note that the
maximum in Theorem 1.1 is equal to 2∆(1−1/q) if and only if q ≥ 4k or equivalently q ≥ 4r

4d+5).

Corollary 1.2. Given integers r, d ≥ 0, let q, k be integers such that r = q(d + 1) + k and

0 ≤ k ≤ d. If q is even and q ≥ 4k, then n(r, d + 1,∆) =
⌊
2∆

(
1− 1

q

)⌋
, and equivalently,

f(n, r, r − d) = (r − 1)n−
⌈

qn
2(q−1)

⌉
.

The d = 0 case of Corollary 1.2 says that n(r, 1,∆) = ⌊2∆(1− 1/r)⌋ for all even r, recovering
the first case of (2) given by [11, 18].

When q = ⌊ r
d+1⌋ is odd, we have the following results.

Theorem 1.3. Let r, d, q ≥ 0 be integers such that r = q(d+ 1). If q ≥ 3 is odd, then

n(r, d+ 1,∆) ≤ max

{
2∆

(
1− 4d+ 5

4r

)
, 2∆

(
1− q

q2 − 1

)}
.

Theorem 1.4. Given integers r, d ≥ 0, let q, k be integers such that r = q(d + 1) + k and
0 ≤ k ≤ d. If q ≥ 3 is odd, then

n(r, d+ 1,∆) ≤ max

{
2∆

(
1− 6d+ 7

6r

)
, 2∆

(
1− 1

q − 1

)}
.
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Together with constructions in Section 2, Theorem 1.3 determines f(n, 6, 5), answering a
specific question asked in [16]. Previously, the best bounds were

25

6
n ≤ f(n, 6, 5) ≤ 9

2
n,

where the lower bound was given by [16, Proposition 4.1] and the upper bound follows from (1).
Theorem 1.1 or (3) gives n(6, 2,∆) ≤ 4

3∆, which implies f(n, 6, 5) ≤ 17
4 n by Lemma 2.1.

Corollary 1.5. We have n(6, 2,∆) = ⌊54∆⌋, and thus, f(n, 6, 5) = ⌊215 n⌋.

Let us compare the bounds in Theorems 1.1, 1.3, and 1.4. Since 1− 1
q−1 < 1− q

q2−1
< 1− 1

q ,

the bound in Theorem 1.3 is at most the one in Theorem 1.1. When r = q(d+1)+k and q ≥ 6k,
the bound in Theorem 1.4 is at most the one in Theorem 1.1 because

max

{
2− 6d+ 7

3r
, 2− 2

q − 1

}
≤ 2− 2

q
= max

{
2− 4d+ 5

2r
, 2− 2

q

}
.

Furthermore, when k = 0 and q ≥ 6d+ 7 >
√
4d+ 5, we have

max

{
2− 6d+ 7

3r
, 2− 2

q − 1

}
= 2− 2

q − 1
< 2− 2q

q2 − 1
= max

{
2− 4d+ 5

2r
, 2− 2q

q2 − 1

}
.

and thus, the bound in Theorem 1.4 is smaller than the bound in Theorem 1.3.
Together with the constructions in Section 2, Theorem 1.4 determines the value of n(r, d+1,∆)

whenever q ≥ 6d+ 6k + 7 (or equivalently q ≥ 6r+6d+7
6d+7 ) is odd.

Corollary 1.6. Let r, d ≥ 0 and q, k be integers such that r = q(d + 1) + k and 0 ≤ k ≤ d.

If q is odd and q ≥ 6d + 6k + 7, then n(r, d + 1,∆) =
⌊
2∆

(
1− 1

q−1

)⌋
, and equivalently,

f(n, r, r − d) = (r − 1)n−
⌈
(q−1)n
2(q−2)

⌉
.

When d = 0 (and thus k = 0 and q = r), Corollary 1.6 recovers the second case of (2) derived
from the main result of [14], which assumes that r ≥ 7 is odd.

Recall that f(n, r, t) was determined in [16] for r = Ω(t2). Corollaries 1.2 and 1.6 together
determine n(r, d + 1,∆) and f(n, r, r − d) for r = Ω(d2). Indeed, given integers d ≥ 0 and
r ≥ 12d2+20d+7, we can write r = q(d+1)+ k such that 0 ≤ k ≤ d and q ≥ 6d+6k+7 ≥ 4k.
Then, by Corollaries 1.2 and 1.6,

n(r, d+ 1,∆) =


⌊
2∆

(
1− 1

q

)⌋
, if q is even⌊

2∆
(
1− 1

q−1

)⌋
, if q is odd.

1.1. Notation. Given a graph G, let V (G) and E(G) be the edge and vertex sets of G respec-
tively. For Z ⊆ E(G), we write V (Z) to be the set of vertices incident to Z. Given v ∈ V (G)
and I ⊆ V (G), let N(v, I) = {x ∈ I : {x, v} ∈ E(G)} be the neighborhood of v in I. Suppose
G is r-partite with parts V1, · · · , Vr. Given I ⊆ V (G), let S(I) = {Vi : I ∩ Vi ̸= ∅}. We also let
GI be the multigraph obtained from the induced subgraph G[I] by contracting all the vertices
of Vi ∩ I into a single vertex denoted by Vi (thus, V (GI) = S(I)). For Y ⊆ [r] := {1, 2, . . . , r},
we let GY be G[∪i∈Y Vi].

1.2. Organization. We begin by considering constructions in Section 2, where we prove Propo-
sition 2.2 and Corollary 2.3 and derive Corollaries 1.2, 1.5, and 1.6. We prove Theorem 1.1 in
Section 3 by generalizing the theory of Induced Matching Configurations (IMCs) introduced in
[14]. In Section 4 we prove similar structural results as in [14] and derive Theorems 1.3 and 1.4.
We give concluding remarks in the last section.
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2. Constructions and proofs of corollaries

We first show how the two extremal functions f(n, r, t) and n(r,D,∆) defined earlier are
related. To do so, it will be convenient to define another extremal function ∆(n, r, t) to be
the smallest ∆ ∈ N such that there is an r-partite graph with at least n vertices in each part,
maximum degree ∆, and without a t-IT.

Lemma 2.1. Suppose r, d, n,∆ are integers such that r ≥ 2, 0 ≤ d < r, and n,∆ ≥ 1. Let c ≥ 1
be a real number. Then the following are equivalent:

(i) n(r, d+ 1,∆) = ⌊c∆⌋,
(ii) ∆(n, r, r − d) = ⌈n/c⌉,
(iii) f(n, r, r − d) = (r − 1)n− ⌈n/c⌉.

Proof. We fix integers r, d with r ≥ 2 and 0 ≤ d < r throughout the proof. We first observe that
for n,∆ ∈ N,
(4) n > ⌊c∆⌋ if and only if ∆ < ⌈n/c⌉.
Indeed, as n is an integer, n > ⌊c∆⌋ implies n ≥ ⌊c∆⌋ + 1 > c∆, so ∆ < n/c ≤ ⌈n/c⌉. On the
other hand, ∆ < ⌈n/c⌉ gives ∆ ≤ ⌈n/c⌉ − 1 < n/c, so n > c∆ ≥ ⌊c∆⌋.

(i) =⇒ (ii): We assume that n(r, d+ 1,∆) = ⌊c∆⌋. Suppose n ∈ N and G is r-partite such
that each class has exactly n vertices and ∆(G) = ∆ < ⌈n/c⌉. Then n > ⌊c∆⌋ by (4). Since
n(r, d + 1,∆) = ⌊c∆⌋, it follows that G has an (r − d)-IT. Thus, ∆(n, r, r − d) ≥ ⌈n/c⌉. On
the other hand, the assumption that n(r, d + 1,∆) = ⌊c∆⌋ also implies that, for every ∆ ∈ N,
there exists an r-partite graph G with maximum degree ∆ and at least ⌊c∆⌋ vertices in each
part and without an (r − d)-IT. Now, given n ∈ N, let ∆ = ⌈n/c⌉ and G be an r-partite
graph with maximum degree ∆ = ⌈n/c⌉ and at least ⌊c⌈n/c⌉⌋ vertices in each part, that has
no (r − d)-IT. Note that ⌊c⌈n/c⌉⌋ ≥ n because c⌈n/c⌉ ≥ c(n/c) = n. The existence of G shows
that ∆(n, r, r − d) ≤ ⌈n/c⌉.

(ii) =⇒ (i): Assume that ∆(n, r, r−d) = ⌈n/c⌉. Suppose ∆ ∈ N and G is an r-partite graph
with maximum degree ∆ and parts of size n > ⌊c∆⌋. We know ∆ < ⌈n/c⌉ from (4). Since
∆(n, r, r − d) = ⌈n/c⌉, it follows that G has an (r − d)-IT, establishing n(r, d + 1,∆) ≤ ⌊c∆⌋.
On the other hand, the assumption ∆(n, r, r− d) = ⌈n/c⌉ implies that, for every n, there exists
an r-partite graph G with parts of size at least n, maximum degree ∆(G) = ⌈n/c⌉, with no
(r − d)-IT. Now, given ∆ ∈ N, let n = ⌊c∆⌋ and G be the r-partite graph with parts of size at
least n = ⌊c∆⌋ and maximum degree ⌈⌊c∆⌋/c⌉ and without an (r− d)-IT. Since c ≥ 1, we have

∆− 1 ≤ c∆− 1

c
<

⌊c∆⌋
c

<
c∆

c
= ∆,

and consequently, ⌈⌊c∆⌋/c⌉ = ∆. The existence of G shows that n(r, d+ 1,∆) ≥ ⌊c∆⌋.
(ii) ⇐⇒ (iii): By considering the complements of graphs, we have

∆(n, r, r − d) + f(n, r, r − d) = (r − 1)n.

Hence, ∆(n, r, r − d) = ⌈n/c⌉ if and only if f(n, r, r − d) = (r − 1)n− ⌈n/c⌉. □

Since our results in this paper assume d+1 ≤ r/2, the assumption c ≥ 1 in Lemma 2.1 always
holds. Indeed, given r,∆ ∈ N, let G be the union of ⌊r/2⌋ vertex-disjoint copies of K∆,∆ and
an isolated set of ∆ vertices if r is odd. Then ∆(G) = ∆ and a maximum IT of G has size
⌈r/2⌉ ≤ r − (d+ 1) if d+ 1 ≤ r/2. This implies that n(r, d+ 1,∆) ≥ ∆.

We now give several properties of n(r,D,∆). It is clear that

n(r′, D,∆) ≤ n(r,D,∆) ≤ n(r,D′,∆) if r ≥ r′ and D ≥ D′.(5)

By building new constructions from old ones, we derive the following proposition.

Proposition 2.2. The following holds for any positive integers m, r,D, j, l.

(i) n(r,D − 1,∆) ≥ n(r,D,∆) +
⌊

∆
r−1

⌋
;
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(ii) n(mr,mD,∆) ≥ n(r,D,∆);

(iii) n(mr, (m− j)D,∆) ≥ n(r,D,∆) +
⌊

∆
(l−1)r

⌋
if m = jl;

(iv) n(mr, (m− j − 1)D,∆) ≥ n(r,D,∆) +
⌊

∆
(l−1)r

⌋
+
⌊

∆
(m−1)r

⌋
if m = jl.

Proof. We say that a graph is an (r,D)-construction if it has r classes and its maximum IT has
size at most r−D. Suppose G is an optimal (r,D)-construction with maximum degree ∆ and r
classes of size n = n(r,D,∆). We will construct a (r′, D)-construction G′ with maximum degree
∆ and classes of size n, where r′ = r for (i), r′ = mr for (ii)-(iv), and D′ = D−1,mD, (m−j)D,
and (m− j − 1)D for (i)-(iv) respectively.

We first prove (i). Let G′ be the union of G with Kr(⌊ ∆
r−1⌋) (a at most ∆-regular r-partite

graph) such that each part of G′ has size

n+

⌊
∆

r − 1

⌋
= n(r,D,∆) +

⌊
∆

r − 1

⌋
.

An IT of G′ has at most one vertex from Kr(⌊ ∆
r−1⌋) and thus at most r−D+1 vertices in total.

Thus G′ is an (r,D − 1)-construction giving (i).

For (ii), let G′ be the union of m disjoint copies of G. Then each part of G′ has n(r,D,∆)
vertices, as desired.

To prove (iii), we first show the case when j = 1:

(6) n(mr, (m− 1)D,∆) ≥ n(r,D,∆) +

⌊
∆

(m− 1)r

⌋
.

To see (6), we take a union of m (disjoint) copies of G and a copy of Km

(
r
⌊

∆
(m−1)r

⌋)
such

that each copy of G is attached to an independent set of r
⌊

∆
(m−1)r

⌋
vertices that are evenly

distributed to r classes. The resulting graph G′ has

n+

⌊
∆

(m− 1)r

⌋
= n(r,D,∆) +

⌊
∆

(m− 1)r

⌋
vertices in each class. It remains to show that a maximum IT ofG′ has size at mostmr−(m−1)D.

We regard each copy of G together with r
⌊

∆
(m−1)r

⌋
added vertices a row and call the vertices of

G large and the other vertices small. By definition, an IT of G′ misses at least D large classes
from each row and intersects small classes from at most one row. Thus the IT misses at least
mD −D classes of G′, confirming (6).

We now derive (iii) from (ii) and (6). Since m− j = j(l − 1), we have n(mr, (m− j)D,∆) ≥
n(lr, (l − 1)D,∆) by (ii). By (6), we have n(lr, (l − 1)D,∆) ≥ n(r,D,∆) +

⌊
∆

(l−1)r

⌋
, proving

(iii).

To see (iv), let G′ be the (disjoint) union of the following three graphs:

• m copies of G, arranged in m rows, and we call their vertices large;

• j copies of Kl

(
r
⌊

∆
(l−1)r

⌋)
such that each row has r

⌊
∆

(l−1)r

⌋
independent vertices evenly

distributed into r classes, and we call their vertices medium;

• one copy of Km(r
⌊

∆
(m−1)r

⌋
) such that each row has r

⌊
∆

(m−1)r

⌋
independent vertices

evenly distributed into r classes, and we call their vertices small.

The resulting graph G′ has

n+

⌊
∆

(l − 1)r

⌋
+

⌊
∆

(m− 1)r

⌋
= n(r,D,∆) +

⌊
∆

(l − 1)r

⌋
+

⌊
∆

(m− 1)r

⌋
.

vertices in each class. It remains to show that the largest IT of G′ missed at least (m− j − 1)D
vertices. Each IT of G′ has small vertices from at most one row, medium vertices from at most
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j (additional) rows, and thus must use large vertices in at least m− j − 1 rows. Since an IT of
G′ misses at least D vertices in each row, it thus misses at least (m− j − 1)D vertices in total,
proving (iv). □

Corollary 2.3. Given integers r ≥ 1 and d ≥ 0, let q, i, k be integers such that q ≥ 2 is even,
1 ≤ i ≤ d+ 2, 0 ≤ k < d+ i, r = q(d+ i) + k, and either i = 1 or i− 1 divides d+ i. Then,

n(r, d+ 1,∆) ≥
⌊
2∆

(
1− 1

q

)⌋
+

⌊
(i− 1)∆

(d+ 1)q

⌋
.

Proof. Suppose i = 1. Then we have

n(q(d+ 1) + k, d+ 1,∆)
(5)

≥ n(q(d+ 1), d+ 1,∆)
2.2 (ii)

≥ n(q, 1,∆)
(2)
= ⌊2∆(1− 1/q)⌋.

Now assume i > 1 and d+ i = (i− 1)l for some integer l. Then,

n(r, d+ 1,∆)
(5)

≥ n(q(d+ i), d+ 1,∆)
2.2 (iii)

≥ n(q, 1,∆) +

⌊
∆

(l − 1)q

⌋
(2)
=

⌊
2∆

(
1− 1

q

)⌋
+

 ∆(
d+i
i−1 − 1

)
q

 =

⌊
2∆

(
1− 1

q

)⌋
+

⌊
(i− 1)∆

(d+ 1)q

⌋
. □

Corollaries 1.2, 1.5, and 1.6 follow from Proposition 2.2 and Corollary 2.3 easily (assuming
Theorems 1.1, 1.3, and 1.4).

Proof of Corollary 1.2. Recall that 2− 4d+5
2r ≤ 2− 2

q precisely when 4k ≤ q. Hence

n(r, d+ 1,∆) ≤
⌊
max

{
2∆

(
1− 4d+ 5

4r

)
, 2∆

(
1− 1

q

)}⌋
=

⌊
2∆− 2∆

q

⌋
by Theorem 1.1. On the other hand, applying Corollary 2.3 with i = 1 gives n(r, d + 1,∆) ≥
⌊2∆ − 2∆/q⌋. Thus, n(r, d + 1,∆) = ⌊2∆(1 − 1/q)⌋. By Lemma 2.1, we have f(n, r, r − d) =

(r − 1)n−
⌈

qn
2(q−1)

⌉
. □

Proof of Corollary 1.5. We have n(6, 2,∆) ≤ ⌊5∆/4⌋ by Theorem 1.3 with r = 6 and d = 1. On
the other hand, we have

n(6, 2,∆) ≥ n(2, 1,∆) + ⌊∆/4⌋ = ⌊5∆/4⌋

by Proposition 2.2 (iii) with m = 3, j = 1, and l = 3 (this can also be derived from Corollary 2.3
with q = 2 and i = 2). Hence, n(6, 2,∆) = ⌊5∆/4⌋. Consequently, f(n, 6, 5) = 5n − ⌈4n/5⌉ =
⌊21n/5⌋ by Lemma 2.1. □

Proof of Corollary 1.6. Since q ≥ 6d+ 6k + 7 is odd, Theorem 1.4 gives that

n(r, d+ 1) ≤
⌊
max

{
2∆

(
1− 6d+ 7

6r

)
, 2∆

(
1− 1

q − 1

)}⌋
=

⌊
2∆− 2∆

q − 1

⌋
.

On the other hand, since r = q(d+ 1) + k, we have

n(r, d+ 1,∆)
(5)

≥ n(q(d+ 1), d+ 1,∆)
2.2 (ii)

≥ n(q, 1,∆)
(2)
=

⌊
2∆− 2∆

q − 1

⌋
.

Thus, n(r, d + 1,∆) = ⌊2∆ − 2∆/(q − 1)⌋. By Lemma 2.1, it follows that f(n, r, r − d) =

(r − 1)n−
⌈
(q−1)n
2(q−2)

⌉
, as desired. □
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The proof of Corollary 1.5 shows that Proposition 2.2 (iii) is tight. Proposition 2.2 and
Corollary 1.2 together imply that, for any even q ≥ 2 and 0 ≤ k ≤ q/4,⌊

2∆− 2∆

q

⌋
1.2
= n(q(d+ 1) + k, d+ 1,∆)

(5)

≥ n(q(d+ 1), d+ 1,∆)

2.2 (ii)

≥ n(q, 1,∆)
(2)
=

⌊
2∆− 2∆

q

⌋
.

In particular, this shows that the function n(r,D) is not strictly increasing in r and Proposi-
tion 2.2 (ii) is tight. (Note that, in contrast, Proposition 2.2 (i) shows that n(r,D) is strictly
decreasing in D.)

3. Induced Matching Configurations and proof of Theorem 1.1

Suppose G is an r-partite graph with vertex classes V1, . . . , Vr. Let V = {V1, . . . , Vr}. Fix a
subset I ⊆ V (G). Recall that S(I) is the set of classes that intersect I, and GI is the multigraph
formed by contracting all vertices of G[I] into one vertex, which we still denote by Vi. Note that
V (GI) = S(I) and GI has parallel edges if G[I] has multiple edges between two classes Vi and
Vj .

Definition 3.1. A set of vertices I ⊆ V (G) is an Induced Matching Configuration (IMC) if
G[I] is a perfect matching and GI is a forest. We say that I is an IMC of p components if GI

has p components.

If I is an IMC, then every edge of G[I] corresponds to a (unique) edge of GI (because GI is
a forest and thus has no multiple edges). Therefore, if |I| = 2t and |S(I)| = s, then GI has s
vertices and t edges, thus consisting of s − t components. We remark that IMCs were defined
differently in [14], in which GI is a tree on V.

The forest structure of GI makes it easy to find a partial IT in G[∪Vi∈S(I)Vi] covering all but
one class of every component of GI . The following lemma is essentially [14, Lemma 2.1] but
revised slightly due to our definition of IMCs.

Lemma 3.2 ([14, Lemma 2.1]). Suppose I is an IMC in G and I ′ is a subset of I such that
GI′ is a tree on S ⊆ V. Then, for any Vi ∈ S, there is an (|S| − 1)-IT on S \ {Vi}. Further, if
v ∈ Vi ∈ S is not dominated by I ′, then there is an |S|-IT on S.

We need the concept of feasible pairs introduced in [14] in order to prove Theorem 3.6.

Definition 3.3. Given an r-partite graph G, a pair (I, T ) with I, T ⊆ V (G) is feasible if the
following conditions hold:

(a) T is a partial IT in G of maximum size.
(b) S(I ∩ T ) = S(I) ∩ S(T ), i.e. if v ∈ T and S({v}) ∈ S(I), then v ∈ I.
(c) G[I] is a forest, whose components are stars with centers in W := I \T and at least one

leaf.
(d) GI is a forest on S(I).
(e) Let T be the set of all partial independent transversals of G on S(T ). Then, for every

v ∈ W, there is no T ′ ∈ T such that T ′ ∩W = ∅, |N(v, T ′)| < |N(v, T )|, and N(w, T ′) =
N(w, T ) for all w ∈ W \ {v}.

Note that if T is a partial IT in G of maximum size, then (∅, T ) is a feasible pair.
The following algorithm allows us to construct feasible pairs that dominate all vertex classes

intersecting them. Recall that N(I) is the set of neighbors of I, in other words, the vertices that
are dominated by I.

Algorithm 3.4. Start with a feasible pair (I0, T0) in an r-partite graph G on V1 ∪ · · · ∪ Vr. Let
R = {V1, . . . , Vr} \ S(T0). Initialize I = I0 and T = T0. Throughout the algorithm, we maintain
W = I \ T and T , the set of all maximum partial ITs T ′ on S(T ) such that T ′ ∩ W = ∅,
N(v, T ′) = N(v, T ) for all v ∈ W .
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Step 1 If I dominates all the vertices in S(I) ∪R, then stop and return (I, T )
Step 2 If I dominates VI =

⋃
Vi∈S(I) Vi but not all the vertices in R, go to Step 3.

If VI is not dominated by I, then select a vertex w ∈ VI \N(I) and T ′ ∈ T such that
deg(w, T ′) is minimal. Update I by adding {w} ∪ N(w, T ′), update T = T ′, and go to
Step 1.

Step 3 Select a vertex w ∈
⋃

Vi∈R Vi \N(I) and T ′ ∈ T such that deg(w, T ′) is minimal. Update

I by adding {w} ∪N(w, T ′) and update T = T ′. Go to Step 1.

Lemma 3.5. For any input (I0, T0), Algorithm 3.4 terminates and returns a feasible pair.

As the proof of Lemma 3.5 is very similar to the corresponding part of the proof of [14,
Theorem 2.2], we defer it to Appendix A. Indeed, Algorithm 3.4 is the same as the one given in
the proof of [14, Theorem 2.2], except that in [14] the algorithm terminates when I dominates
S(I), while Algorithm 3.4 terminates when I dominates S(I) ∪R. As a result, the resulting GI

is a forest, instead of a tree as in [14].

Theorem 3.6. Let G be an r-partite graph on V = {V1, . . . , Vr}. Suppose that the largest partial
IT of G has size r− d− 1. Given a feasible pair (I0, T0), there exists a feasible pair (I, T ) in G
such that

(i) I0 ⊆ I, S(I) ≥ 2, S(T ) = S(T0), and T ∩ Vi = T0 ∩ Vi for every Vi ∈ S(I0).
(ii) I dominates all of the vertices in S(I) ∪R, where R = V \ S(T0).
(iii) Let FI = (R ∪ S(I), E(GI)) be the extension of GI to R ∪ S(I) if R ̸⊆ S(I) (otherwise

FI = GI). Then FI is a forest of d + 1 components, where each component contains
exactly one Vi ∈ R (which may be the only Vi in that component).

(iv) Let t = |R ∪ S(I)|. Then |I| ≤ 2(t− d− 1).

If n > 2∆
(
1− 2d+3

2r

)
, then I is an IMC of G and |I| = 2(t− d− 1).

Proof. Let (I, T ) be the feasible pair obtained by applying Algorithm 3.4 to (I0, T0). We now
show that (I, T ) satisfies the conditions in the statement of Theorem 3.6.

Part (i) follows from the definition of feasible pairs and the algorithm.
Part (ii) follows from the algorithm immediately.
To see Part (iii), we note that each tree of GI has exactly one class from R, and |R| = d+ 1

because |T0| = |T | = r − d − 1. It is possible that a class Vi ∈ R contains no vertex of I (if all
the vertices of Vi are dominated by I at some stage of the algorithm).

For Part (iv), since FI is a forest on t vertices with d+1 components, we have |E(F )| = t−d−1
and |I| ≤ 2|E(F )| = 2(t− d− 1).

We now show that if n > 2∆
(
1− 2d+3

2r

)
, then G[I] is a perfect matching, or equivalently

|I| = 2(t − d − 1). Suppose that |I| ≤ 2(t − d − 1) − 1. Since I dominates S(I) ∪ R, we
have |I|∆ ≥ |S(I) ∪ R|n, which gives ∆(2(t − d − 1) − 1) > 2t∆

(
1− 2d+3

2r

)
. This implies

∆(2d+ 3) < ∆ t
r (2d+ 3), contradicting the fact that r ≥ t. □

Since we will make use of it later in this section, we explicitly state the d = 0 case of Theorem
3.6, which is precisely the content of [14, Theorem 2.2]

Lemma 3.7 ([14, Theorem 2.2]). Let G be an r-partite graph on V1 ∪ . . . ∪ Vr. Suppose that
G has no IT. Then, there exists a set of class indices S ⊆ [r] and a nonempty set of edges Z
of the subgraph GS := G[

⋃
i∈S Vi] such that V (Z) dominates GS and |Z| ≤ |S| − 1. Moreover,

Z ∩ Vs ̸= ∅ for every s ∈ S.

When Algorithm 3.4 terminates, the set T \ I must be a partial IT that is independent of I
because if w ∈ T \ I is adjacent to some v ∈ I, then w would have been included in I when v
was added to I. The following proposition strengthens this fact by showing that such a partial
IT exists outside NG(x) for any fixed x ∈ V (G).

Lemma 3.8. Let G be an r-partite graph with parts V1, . . . , Vr of size n > ∆
(
2− 2d+3

r

)
. Let

I ⊂ V (G), d+ 1 ≤ t ≤ r, and U ⊆ {V1, . . . , Vr} be such that |U | = r − t, |I| ≤ 2(t− d− 1), and
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I dominates all the classes not in U . For any vertex x ∈ V (G), there exists an IT T ′ of G[U ]
such that T ′ ∩NG(I ∪ {x}) = ∅.

Proof. Let V ′
i := Vi \NG(I ∪ {x}) for all i and U ′ = {V ′

i : Vi ∈ U}. Note that it is possible for
some V ′

i = ∅. If there is an IT of G[U ′], then we are done. Suppose there is no IT of G[U ′].
If all V ′

i are nonempty, then by Lemma 3.7, there exists a subset U ′′ ⊆ U ′ such that G[U ′′]
is dominated by a set X ⊆

⋃
V ′
i ∈U ′′ V ′

i of most 2(|U ′′| − 1) vertices. If some V ′
i0

= ∅, then let

U ′′ = {Vi0} and X = ∅. In either case, the set I ∪ NG(x) ∪ X dominates
⋃
{Vi : Vi ̸∈ U or

V ′
i ∈ U ′′}. Since |I| ≤ 2(t− d− 1), we have

|I ∪ {x} ∪X| ≤ 2(t− d− 1) + 2(|U ′′| − 1) + 1 = 2(t− d+ |U ′′| − 2) + 1.

Since there are (t+ |U ′′|)n vertices in
⋃
{Vi : Vi ̸∈ U or V ′

i ∈ U ′′}, we derive that

(2(t− d+ |U ′′| − 2) + 1)∆ ≥ n(t+ |U ′′|) > ∆

(
2− 2d+ 3

r

)
(t+ |U ′′|),

which implies 2(−d− 2) + 1 > −2d+3
r (t+ |U ′′|). This is a contradiction because r = t+ |U ′| ≥

t+ |U ′′|. □

Suppose I ⊆ V (G) is a set that dominates all the classes of R∪S(I). For every vertex v ∈ I,
we let Av or Av(I) be the set of all vertices in the classes of R ∪ S(I) that are adjacent to v
but no other vertex in I. For example, if v, w ∈ I are adjacent, then w ∈ Av and v ∈ Aw. By
definition, if x ∈

⋃
{Vi : Vi ∈ R ∪ S(I)} \

⋃
v∈I Av, then x is adjacent to at least two vertices of

I. In this next lemma, we bound the number of vertices in G adjacent to at least two vertices
of I and the number of vertices in a given number of Av’s using similar arguments as the ones
for [14, Lemma 3.1 (iii) and (iv)].

Lemma 3.9. Let G be an r-partite graph with parts V1, . . . , Vr of size n. Suppose I ⊆ V (G) is
a set of size at most 2(t− d− 1) that dominates all the classes of R ∪ S(I) with t = |R ∪ S(I)|.
Then

(i) The number of vertices x ∈ V (G) such that |N(x)∩ I| ≥ 2 is at most 2∆(t− d− 1)− tn,
(ii) For any subset Y ⊆ I, we have |

⋃
v∈Y Av| ≥ (|Y |+ 4d+ 4− 4t)∆ + 2tn,

(iii) If n > 2∆
(
1− 4d+5

4r

)
, then for any Y ⊆ I, we have | ∪v∈Y Av| > (|Y | − 1)∆.

Proof. Let V ′ =
⋃
{Vi : Vi ∈ S(I) ∪R}.

Part (i): LetD be the set of vertices x ∈ V (G) such that |N(x)∩I| ≥ 2. Then V ′\D =
⋃

v∈I Av

consists of the vertices of V ′ that are dominated by I exactly once. Hence

2∆(t− d− 1) ≥ ∆|I| ≥ 2|D|+ (tn− |D|) ≥ tn+ |D|,

which implies that |D| ≤ 2∆(t− d− 1)− tn.

Part (ii): We know
⋃

v∈Y Av = V ′ \ (D ∪
⋃

v∈I\Y Av). Applying Part (i), we obtain that

|
⋃
v∈Y

Av| ≥ tn− (2∆(t− d− 1)− tn)− (2(t− d− 1)− |Y |)∆

= (|Y |+ 4d+ 4− 4t)∆ + 2tn.

Part (iii): By Part (ii), we have

|
⋃
v∈Y

Av| > (|Y |+ 4d+ 4− 4t)∆ + 4t∆

(
1− 4d+ 5

4r

)
=

(
|Y |+ 4d+ 4− t(4d+ 5)

r

)
∆ ≥ (|Y | − 1)∆

as t ≤ r. □
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For convenience, we introduce the following setup for the next few lemmas. Part 3.10 (i)
includes all the properties of an IMC returned by Theorem 3.6 while Part (ii) has a stronger
lower bound for n required by Lemma 3.9 (iii) (iii).

Setup 3.10. We have the following two setups:

(i) Let G be an r-partite graph on V1∪· · ·∪Vr. Let T be a maximum IT of G of size r−d−1.
Assume that ∆(G) ≤ ∆ and |Vi| ≥ n > 2∆

(
1− 2d+3

2r

)
for all i. Let I be an IMC of G

returned by Theorem 3.6, which has the following properties:
• I dominates all the vertices in R ∪ S(I), where R = {V1, . . . , Vr} \ S(T );
• FI = (R∪S(I), E(GI)) is a forest of d+1 components, where each component C is
a subset of R ∪ S(I) such that FI [C] is a tree.

• |R ∪ S(I)| = t and |I| = 2(t− d− 1) for some d+ 1 ≤ t ≤ r.
(ii) Let G be as in Setup 3.10 (i) with the additional assumption n > 2∆

(
1− 4d+5

4r

)
.

Suppose G is as in Setup 3.10 (i). If a vertex x ∈ Vi and Vi ∈ C for some component C of
FI , then we may simply say x is in C. In other words, we partition the vertices G in R ∪ S(I)
based on the components of FI . In particular, we say that I is an IMC of d + 1 components.
For example, any two adjacent vertices v, w ∈ I belong to the same component.

In next few lemmas we may replace the IMC I in Setup 3.10 by another IMC I ′ of G. To
make sure that I ′ satisfies the same conditions in Setup 3.10, we say that I ′ is similar to I if
S(I ′) = S(I), I ′ also dominates R ∪ S(I), and FI′ has the same components as FI . It follows
that |I ′| = |I| = 2(t− d− 1), and, in particular, that I ′ satisfies the assumptions of Lemma 3.8
and Lemma 3.9 (iii).

In the following lemma, Parts (ii) and (iii) resemble [14, Lemma 3.1 (i) and (ii)], respectively.
Their proofs are similar to the ones in [14] but require more work because our IMC has d + 1
components and only dominates t ≤ r classes (in contrast, IMCs in [14] have only one component
and dominate the vertices in all r classes of G). Furthermore, in Lemma 3.11 (iii), we need to
show that the new IMC is similar to I.

Lemma 3.11. Let G be as in Setup 3.10 (i). Suppose v, w ∈ I are adjacent and contained in
the component C of FI . Then the following holds.

(i) All vertices in Av ∪Aw are in C.
(ii) G[Av, Aw] is a complete bipartite graph.
(iii) For any a ∈ Av and b ∈ Aw, (I \ {v, w}) ∪ {a, b} is an IMC in G similar to I.

Proof. For a vertex x ∈ V (G), let V (x) denote the class Vi ∋ x.
(i) Suppose some vertex a ∈ Av is contained in C ′ for some component C ′ ̸= C of FI . By

Lemma 3.2, in every component of FI , we can find a subset of I forming a partial IT covering
all but one arbitrary class. We pick a partial IT in C omitting the class of v, a partial IT in C ′

omitting the class of a, and partial IT’s omitting an arbitrary class in the other components.
Let T1 be the union of these partial IT’s. By Lemma 3.8, there is an IT T2 of the classes not
dominated by I such that T2∩NG(I ∪{a} = ∅. Then T1∪T2∪{a} is an (r−d)-IT of G because
N(a) ∩ (I \ {v}) = ∅.

(ii) Consider a ∈ Av and b ∈ Aw. Part (i) shows that a, b are both in C. Let FI − vw be the
forest obtained by removing the edge vw from FI , and let Cv, Cw be two components of FI −vw
that contain v, w, respectively. We claim that

V (a) ∈ Cw, and V (b) ∈ Cv.(7)

Indeed, suppose that V (a) ̸∈ Cw. Then V (a) ∈ Cv. Let Iv = (I \ {v}) ∩
⋃

Vi∈Cv
Vi. Then

Iv is an IMC of G[
⋃

Vi∈Cv
Vi]. By Lemma 3.2, we can find a set T1 ⊂ I ∩ Cv as a partial IT

avoiding the class of a. Similarly we find a partial IT T2 in Cw avoiding the class of w. The
union T1 ∪ T2 ∪ {a,w} is a full IT of C because N(a) ∩ (I \ {v}) = ∅. We then extend it to an
(r − d)-IT of G by Lemma 3.8, which contradicts our assumption. The same arguments show
that V (b) ∈ Cv.
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Now suppose that ab ̸∈ E(G). Then, we can obtain partial ITs T1 ⊆ Iw and T2 ⊆ Iv such
that T1 covers all classes of Cw except for the class of a and T2 covers all classes of Cv except
for the class of b. Since ab ̸∈ E(G), N(a) ∩ (I \ {v}) = ∅, and N(b) ∩ (I \ {w}) = ∅, the union
T1 ∪ T2 ∪ {a, b} is a full IT of C, which gives an IT of size r− d in G after being extended to U
by Lemma 3.8 , a contradiction. This shows that G[Av, Aw] is a complete bipartite graph.

(iii) We first show that I ′ := (I ∪{a}) \ {w} is an IMC of G similar to I. Indeed, since I is an
IMC and N(a)∩I ′ = {v}, I ′ is an induced matching in G. Recall that V (a) ∈ Cw and V (v) ∈ Cv

by (7), where Cv, Cw are the two components of FI − vw that contain v, w, respectively. Since
the edge av connects Cv and Cw, the graph GI′ is a forest with the same components as GI . We
claim that I ′ dominates all the classes of R ∪ S(I). Indeed, let x ∈

⋃
Vi∈R∪S(I) Vi. If x has a

neighbor in I \ {w}, then x is dominated by I ′. Otherwise x is only adjacent to w in I, giving
x ∈ Aw and thus ax ∈ E(G) by Part (ii). Hence, x is dominated by I ′ as desired.

We now show that S(I ′) = S(I). To see S(I ′) ⊆ S(I), it suffices to show that V (a) ∈ S(I).
By (i), a is in C so V (a) ∩ I ̸= ∅. To see S(I) ⊆ S(I ′), it suffices to have V (w) ∈ S(I ′). If
this is not the case, then V (w) ̸= V (a) and V (w) is a leaf in FI . Then V (a) /∈ Cw = {V (w)},
contradicting (7).

For u ∈ I ′, recall Au(I
′) = {x ∈

⋃
Vi∈R∪S(I) Vi : N(x) ∩ I ′ = {u}}. We have b ∈ Aa(I

′)

because N(b) ∩ I = {w} and ab ∈ E(G). The arguments in the previous paragraph show that
I ′ ∪ {b} \ {v} = (I \ {v, w}) ∪ {a, b} is an IMC in G similar to I. This completes the proof of
(iii). □

Suppose that I is an IMC on 2(t − d + 1) vertices. Let H be the 2(t − d − 1)-partite graph
on {Av : v ∈ I} obtained from G by removing edges in G[Av] for all v ∈ I and edges between
Av and Aw for all vw ∈ E(G[I]). An IT of H is an independent set of H with one vertex from
each Av (not from original classes Vi of G), for example, I is an IT of H.

The following lemma and proof are similar to [14, Lemma 3.3] and its proof.

Lemma 3.12. Let G be as in Setup 3.10 (i). Every IT T of H is an IMC in G similar to I.

Proof. Suppose that I = {vi, wi : 1 ≤ i ≤ t− d− 1} with viwi ∈ E(G) and T = {ai, bi : 1 ≤ i ≤
t− d− 1} with ai ∈ Avi and bi ∈ Awi . For 1 ≤ j ≤ t− d− 1, we claim that

Ij :=

I \
⋃
i≤j

{vi, wi}

 ∪
⋃
i≤j

{ai, bi}

is an IMC in G similar to I. In particular, T = It−d−1 is similar to I, as desired.
We prove the claim by the induction on j. The j = 1 case is Lemma 3.11 (iii). Suppose j ≥ 1

and Ij is similar to I. We note that Ij+1 = (Ij \ {vj+1, wj+1})∪ {aj+1, bj+1}. For simplicity, we
write v, w, a, b by omitting subscripts j + 1. We know a ∈ Av(I) and thus N(a)∩I = {v}. Since
T is an independent set, it follows that N(a)∩ Ij = {v}. Thus a ∈ Av(Ij). Similarly b ∈ Aw(Ij).
We can thus apply Lemma 3.11 (iii) and conclude that Ij+1 is an IMC in G similar to I. □

Lemma 3.13. Suppose that G is as in Setup 3.10 (ii) and let Y ⊆ I. If A′
v ⊆ Av for v ∈ Y

are subsets such that A′
v ̸= ∅ for all v ∈ Y and

∑
v∈Y |Av \ A′

v| ≤ ∆, there exists an IT of
{A′

v : v ∈ Y } in H.

Proof. Suppose that {A′
v : v ∈ Y } contains no IT in H. Then, by Lemma 3.7, there exists a

set S ⊆ Y and an nonempty set Z of edges on VS := {A′
v : v ∈ S} such that (1) X := V (Z)

dominates VS in H, (2) |X| ≤ 2(|S| − 1), and (3) X ∩A′
v ̸= ∅ for every v ∈ S.

Since X dominates VS in H and
∑

v∈Y |Av \A′
v| ≤ ∆, we have

∆|X| −
∑
x∈X

degG\H(x) ≥
∑
x∈X

degH(x) ≥
∑
v∈S

|A′
v| ≥

∑
v∈S

|Av| −∆.(8)
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For every x ∈ X, by the definition of H and Lemma 3.11, we have degG\H(x) ≥ |Awx |, where
wx is the neighbor of v ∈ I in G[I] such that x ∈ Av. Since X ∩ A′

v ̸= ∅ for every v ∈ S, there
exists X ′ ⊆ X such that |X ′ ∩A′

v| = 1 for every v ∈ S. Since each v ∈ S is adjacent to a unique
w ∈ I, we have ∑

x∈X
degG\H(x) ≥

∑
x∈X

|Awx | ≥
∑
x∈X′

|Awx | > (|S| − 1)∆

by Lemma 3.9 (iii). Together with (8) and the assumption |X| ≤ 2(|S| − 1) , we obtain that

∆(2|S| − 1) ≥ ∆(|X|+ 1)| ≥
∑
x∈X

|Awx |+
∑
v∈S

|Av| > 2(|S| − 1)∆(9)

by applying Lemma 3.9 (iii) again.
If |X| < 2(|S| − 1) then ∆(|X| + 1) ≤ (2|S| − 2)∆, giving a contradiction. We thus assume

that |X| = 2(|S| − 1). Let T be the tree obtained from (VS , Z) by contracting each A′
v into a

vertex. We proceed by cases on q := |{v ∈ S : |Av ∩X| ≥ 2}.
Suppose q = 0. Then, |Z| = 1 and |S| = |X| = 2. Suppose S = {v0, v1}. We must have

v0, v1 ̸∈ E(G[I]) as otherwise there would be no edges connecting Av0 and Av1 in H. Thus
v0, w0, v1, w1 are all distinct and we may calculate∑

v∈S
|Av|+

∑
x∈X

|Awx | = |Av0 |+ |Aw0 |+ |Av1 |+ |Aw1 | > 3∆,

where the last inequality follows from Lemma 3.9 (iii).
Now consider the case q = 1. Then T is a star with at least two edges. Moreover, let

s = |S| ≥ 3. Let v1 be the distinct vertex in S with |Av ∩ X| ≥ 2. Suppose x1, x2, . . . , xs1 ∈
X. Then Z = {{x1, y1}, {x2, y2}, . . . , {xs1 , ys−1}}, where y1, . . . , ys1 are in distinct members of
{Av2 , Av3 , . . . , Avs}. As before, v1 is not adjacent to any other vi in I as this would imply that
there are no edges between Av1 and Avi in H. So,

∑
v∈S

|Av|+
∑
x∈X

|Awx | =
∑
v∈S

|Av|+

 ∑
w∈V (I) : N(w)∩S ̸=∅

|Aw|

+ |Aw1 |(s− 2)

>
∑

v∈S∪{w1}

|Av|+
∑

w∈V (I) : N(w)∩S ̸=∅

|Aw|

> s∆+ (s− 1)∆,

where again the last inequality follows from Lemma 3.9 (iii).
Finally, let q ≥ 2. Let v1, v2 be distinct vertices in S such that |Avi ∩ X| ≥ 2 for i = 1, 2.

Then, ∑
v∈S

|Av|+
∑
x∈X

|Awx | ≥
∑
v∈S

|Av|+

 ∑
w∈V (I) : N(w)∩S ̸=∅

|Aw|

+ |Aw1 |+ |Aw2 |

> (s− 1)∆ + (s− 1)∆ +∆. □

In each case we derived that
∑

v∈S |Av|+
∑

x∈X |Awx | > (2|S| − 1)∆, which contradicts (9).

We now derive a key property on the structure of G.

Lemma 3.14. Let G be as in Setup 3.10 (ii). Then, every vertex x ∈
⋃

Vi∈R∪S(I) Vi is completely

joined to some Av where v ∈ I is in the same component as x.

Proof. Fix x ∈
⋃

Vi∈R∪S(I) Vi. If x ∈ Aw for some w ∈ I such that vw ∈ E(G[I]), then by

Lemma 3.11, x is completely joined to Av and all the vertices in Av are the same component as
x.

We thus assume that x ̸∈
⋃

v∈I Av. We first show that x is completely joined to some Av.
Suppose, to the contrary, that Av \N(x) ̸= ∅ for all v ∈ I. Applying Lemma 3.13 with Y = I
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and A′
v = Av \N(x), we obtain an IT I ′ ⊂

⋃
v∈I A

′
v of H that is independent of x. Now, Lemma

3.12 implies that I ′ is an IMC in G that dominates all the vertices of R ∪ S(I), including x.
This contradicts the fact that I ′ ∩N(x) = ∅.

Suppose x is completely joined to Av1 for some v1 ∈ I but x and Av1 are in different com-
ponents. If x is completely joined to Av′ for some v′ ∈ I \ {v1}, then, by Lemma 3.9 (iii),
degG(x) ≥ |Av1 |+ |Av′ | > ∆, a contradiction. Thus, Av \N(x) ̸= ∅ for all v ∈ I \{v1}. Applying
Lemma 3.13 with A′

v1 = Av1 and A′
v = Av − N(x) for v ∈ I \ v1 (thus A′

v ̸= ∅), we obtain an
IT I ′ ⊂

⋃
v∈I A

′
v of H. By Lemma 3.12, I ′ is an IMC in G that dominates all the vertices in

R∪S(I) and has the same components as I. Suppose {u} = I ′ ∩A′
v1 . Then x ∈ Au(I

′) because
N(x) ∩ I ′ = {u}. However, x and u are in different components, contradicting Lemma 3.11
(i). □

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose G has no (r − d)-IT. Add edges if necessary so that the largest
partial IT of G has size r − d − 1. Let I be the IMC given by Theorem 3.6. Let J be the
smallest component of FI with j ≤ q classes. By Lemma 3.14, all the vertices in VJ :=

⋃
Vi∈J Vi

are dominated by some vertex in I ∩ VJ . Since FI [J ] is a tree on j vertices and I is an IMC, it
follows that |I ∩ VJ | = 2(j − 1). However, since

jn− 2∆(j − 1) > 2j∆

(
1− 1

q

)
− 2∆(j − 1) = 2∆

(
1− j

q

)
≥ 0,

2(j − 1) vertices cannot dominate jn vertices in G, giving the desired contradiction. □

4. Proofs of Theorems 1.3 and 1.4

Let G be an r-partite graph, where r = q(d+1)+ k, 0 ≤ k ≤ d, and q is odd. We have a new
setup due to the new lower bounds for n in Theorems 1.3 and 1.4.

Setup 4.1. We have the following two assumptions:

(i) Let G be as in Setup 3.10 (ii) with the additional assumption that n > 2∆
(
1− 1

q−1

)
.

(ii) Let G be as in Setup 4.1 (i) with the additional assumption n > ∆
(
2− 6d+7

3r

)
.

Since 2− 6d+7
3r > 2− 4d+5

2r , Setup 4.1 (ii) has the largest bound for n. Furthermore, when G
is as in Setup 4.1, we can use all the lemmas in Section 3.

We first show that if G is as in Setup 4.1 (i), then every component of FI has at least q
vertices.

Lemma 4.2. Let G be as in Setup 4.1 (i). Then the forest FI has at least q(d+1) vertices and
exactly d+ 1 components, each of which has at least q vertices.

Proof. Since FI has d+ 1 components, it suffices to show that every component J of FI has at
least q vertices. Suppose that J has b vertices. Then |I ∩ J | = 2(b− 1) because GI [J ] is a tree.
By Lemma 3.14, every vertex of G in J is dominated by a vertex in I ∩ J . Thus,

2∆(b− 1) ≥ bn > b2∆

(
1− 1

q − 1

)
,

which implies that b > q − 1. Since b is an integer, it follows that b ≥ q. □

We can now prove Theorem 1.3. The main idea is to find a component of FI with q vertices
and apply (2) to find a full IT in this component by using the vertices of

⋃
v∈I Av.

Proof of Theorem 1.3. Suppose to the contrary, that G has no (r−d)-IT. Since n > ∆(2− 4d+5
2r ),

by Theorem 3.6, G has an IMC I of d + 1 components that dominates S(I) ∪ R. Since n >
2∆(1 − q

q2−1
) > 2∆(1 − 1

q−1), Lemma 4.2 says that FI has at least q(d + 1) vertices and every
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component of FI has at least q classes. Since r = q(d+ 1), FI has exactly r = q(d+ 1) vertices,
and every component of FI has q classes.

Let D denote the set of vertices in V (G) that are not in any Av. By Lemma 3.9 (i), |D| ≤
2∆(r− d− 1)− rn. We know that some component J of I contains at most |D|/(d+1) vertices
of D. Let G′

J = G[VJ \D] be the induced subgraph of G formed by removing the vertices of D
from the vertex classes of J . Then each class of GJ has size at least n′ with

n′ ≥ n− |D|
d+ 1

≥ n− 2∆(r − d− 1)− rn

d+ 1

= n− 2∆(q − 1)(d+ 1)− q(d+ 1)n

d+ 1
= n(q + 1)− 2∆(q − 1)

> 2∆(q + 1)

(
1− q

q2 − 1

)
− 2∆(q − 1) = 2∆

(
1− 1

q − 1

)
.

By (2), since q is odd, the graph GJ has a full IT TJ consisting only of vertices of VJ \ D.
We know VJ \ D =

⋃
v∈J Av from Lemma 3.11. Hence, TJ is independent of I \ J . Since for

each component J ′ ̸= J , we can find in J ′ an IT of all except one class of J ′, these together
with TJ form an (r−d)-IT of G. This contradiction shows that G indeed has an (r−d)-IT, and
completes the proof. □

In order to prove Theorem 1.4, we follow the approach of [14] and obtain the structure of
G. To this end, we prove analogues of [14, Lemma 3.5, Theorem 3.6, Theorem 3.7] under
Setup 4.1 (ii), in which we assume n > ∆

(
2− 6d+7

3r

)
.

Lemma 4.3. [14, Lemma 3.5] Let G be as in Setup 4.1 (ii) and V ′ =
⋃
{Vi : Vi ∈ S(I) ∪ R}.

Suppose a, b ∈ V ′ are completely connected to Aw and Av respectively, where vw ∈ E(G[I]).
Then ab ∈ E(G).

Proof. Suppose that a is not adjacent to b. Then, for u ∈ I − {v, w}, let A′
u = Au \N(a, b). If

there exists u ∈ I −{v, w} such that A′
u is empty, then {a, b} dominates Av, Aw, and Au, which

contains more than 2∆ vertices by Lemma 3.9 (iii), contradicting ∆(G) ≤ ∆.
Now, since {a, b} dominates Av ∪ Aw, which has size more than ∆ by Lemma 3.9 (iii), we

can see that
∑

u∈(I−{v,w}) |Au \ A′
u| ≤ ∆ and thus an IT I ′0 of {A′

u : u ∈ I − {v, w}} exists by

Lemma 3.13. Then I ′ := I ′0 ∪ {v, w} is an IT of {A′
u : u ∈ I}, which is an IMC of G similar to I

by Lemma 3.12.
By definition, we have N(a, b) ∩ I ′ = {v, w}. Also, neither a nor b can individually dominate

both Av(I
′) and Aw(I

′) as they have size more than ∆ combined by Lemma 3.9 (iii). We now
claim that there exist v′ ∈ Av(I

′) and w′ ∈ Aw(I
′) such that v′ is not adjacent to a and w′ is

not adjacent to b. Then, I ′′ := I ′ −{v, w} ∪ {v′, w′} is an IMC similar to I by Lemma 3.12 such
that a ∈ Aw′(I ′′) and b ∈ Av′(I

′′) and therefore ab ∈ E(G) by Lemma 3.11 (ii).
Suppose that this is not possible. Assume a dominatesAv(I

′). By definitions, Av(I
′)∩Aw(I) =

∅, and the vertices in Av(I) \Av(I
′) are dominated twice in I ′. Hence, we have

∆ ≥ deg(a) ≥ |Aw|+ |Av(I
′)| ≥ |Aw|+ |Av| − |Av \Av(I

′)|
≥ 2tn−∆(4t− 4d− 6)− |Av \Av(I

′)| by Lemma 3.9 (ii)

≥ 3tn−∆(6t− 6d− 8) by Lemma 3.9 (i).

This implies n ≤ 2∆− 6d+7
3t ∆ ≤ 2∆− 6d+7

3r ∆, a contradiction. □

Lemma 4.4. [14, Lemma 3.6] Let G be a graph with a vertex partition V1 ∪ · · · ∪ Vr such that
|Vi| > 2∆(1 − 2d+3

2r ). Suppose G has no (r − d)-IT but G − e has an (r − d)-IT for some edge
e ∈ E(G). Then e lies in an IMC of G returned by Theorem 3.6.

Proof. Let e = {v1, v2}. Then, by assumption there exists a transversal T ′ = {v1, v2, . . . , vr−d}
such that T ′ − {vj} is independent for j = 1, 2. Let I0 = {v1, v2} and T0 = T ′ − {v1}. It is
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easy to check that (I0, T0) is a feasible pair in G. Indeed, Conditions (1)–(4) of Definition 3.3
are trivially satisfied, and Condition (5) follows from the observation that W = {v1} so any T
contradicting Condition (5) is an (r − d)-IT in G. Then, Theorem 3.6 with the same (I0, T0)
gives an IMC I in G which contains e by Theorem 3.6 (i). □

Lemma 4.5. [14, Lemma 3.7] Let G be as in Setup 4.1 (ii). Moreover, assume that G− e has
an (r − d)-IT for every e ∈ G. Let V ′ =

⋃
{Vi : Vi ∈ S(I) ∪ R}. Then G[V ′] is a union of

t− d− 1 vertex-dsijoint complete bipartite graphs.

Proof. We label I = {vi, wi : 1 ≤ i ≤ t − d − 1} with viwi ∈ E(G). By Lemma 3.14, every
vertex x ∈ V ′ is completely joined to some Av. By Lemma 3.9 (iii), such Av is unique (otherwise
deg(x) > ∆). By Lemma 4.3, we can write G[V ′] as a disjoint union A1 ∪ · · ·At−d−1 ∪B1 ∪ · · · ∪
Bt−d−1 such that G[Ai, Bi] is complete, Avi ⊆ Ai, and Awi ⊆ Bi for all i. Thus, it remains to
show that there are no edges outside these bipartite subgraphs.

Suppose e = xy /∈
⋃

1≤i≤t−d−1E(G[Ai, Bi]). By Lemma 4.4, there is an IMC I ′ in G re-
turned by Theorem 3.6 containing e. Without loss of generality, let us write x ∈ A1. Then
by assumption, y ̸∈ B1. Suppose that y ∈ A1. Then B1 is dominated by {x, y} ⊆ I ′. Thus
|B1| ≤ 2∆(t− d− 1)− tn by applying Lemma 3.9 (i) with I ′. On the other hand, by applying
Lemma 3.9 (ii) with I, we get |B1| ≥ 2tn−∆(4t− 4d− 5). Together, these two inequalities give
n ≤ 2∆− 6d+7

3t ∆ ≤ 2∆−∆6d+7
3r , a contradiction.

Thus we may assume y ̸∈ A1 ∪ B1. Without loss of generality, assume y ∈ A2. Considering
the IMC I ′, we have that x ∈ Ay(I

′) and y ∈ Ax(I
′). Suppose that Ay(I

′)∩B2 or Ax(I
′)∩B1 is

empty, for example, Ay(I
′)∩B2 = ∅. Since B2 is dominated by y, it follows that B2 is dominated

at least twice in I ′ and the argument in the previous paragraph gives the same contradiction.
We are left with the case that both Ay(I

′) ∩ B2 and Ax(I
′) ∩ B1 are nonempty. Let u ∈

Ay(I
′)∩B2 and w ∈ Ax(I

′)∩B1. By Lemma 3.11, we know Ax(I
′) ⊆ N(u) and Ay(I

′) ⊆ N(w).
Consequently,

2∆ ≥ deg(w) + deg(u) ≥ (|A1|+ |Ay(I
′) ∩B2|) + (|A2|+ |Ax(I

′) ∩B1|)
≥ (|A1|+ |Ay(I

′)|+ |B2| − |Ay(I
′) ∪B2|) + (|A2|+ |Ax(I

′)|+ |B1| − |Ax(I
′) ∪B1|)

≥ (|A1|+ |A2|+ |B1|+ |B2|) + (|Ax(I
′)|+ |Ay(I

′)|)− (|Ay(I
′) ∪B2|+ |Ax(I

′) ∪B1|)
> 3∆ +∆− (|Ay(I

′) ∪B2|+ |Ax(I
′) ∪B1|) (by Lemma 3.9 (iii)).

Since Ax(I
′) ∪ B1 and Ay(I

′) ∪ B2 are dominated by x and y respectively, each has size at
most ∆. Thus, 2∆ > 4∆−∆−∆ = 2∆, a contradiction. □

We are ready to prove Theorem 1.4. The main idea is, due to Lemmas 3.11 and 4.5, the
components of FI give rise to a partition of G[V ′] into d+ 1 components that are independent
of each other. Once we apply (2) and find a full IT in one of the components, we immediately
obtain an (r − d)-IT in G.

Proof of Theorem 1.4. Suppose that G has no (r − d)-IT. After removing edges from G if nec-
essary, we further assume that G− e has an (r − d)-IT for every e ∈ E(G).

Let I be an IMC of t−d+1 edges given by Theorem 3.6. Let V ′ =
⋃
{Vi : Vi ∈ S(I)∪R}. By

Lemma 4.5, G[V ′] is the union of t− d− 1 vertex-disjoint complete bipartite graphs on Ai ∪Bi

for i ≤ t − d − 1. Since G[I] is an induced matching of size t − d + 1, each Ai ∪ Bi contains
exactly one edge of I. Since there is no edge of G between Ai ∪ Bi and Aj ∪ Bj for i ̸= j, we
have Av = Ai and Aw = Bi if v ∈ I ∩Bi and w ∈ I ∩Ai.

By Lemma 3.11 (i), all the vertices of Ai ∪ Bi lie in the same component of the forest FI .
Therefore, each component of FI is independent of other components because there are no edges
between Ai ∪Bi and Aj ∪Bj for i ̸= j.

By Lemma 4.2, every component of FI has at least q classes of G. Since q = ⌊r/(d + 1)⌋,
there exists a component J of FI with exactly q vertices. As q is odd and n > 2∆

(
1− 1

q−1

)
,
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by (2), there is a full IT in J . We can find by Lemma 3.2 an IT in every other component of
FI missing a vertex from at one class in that component. Since each component is independent
of the other components, combining these ITs gives an IT T0 of size t − d in G contained in
S(I)∪R. By Lemma 3.8, there exists an IT in G of size (t− d) + (r− t) = r− d containing T0,
contradicting G having no (r − d)-IT. □

5. Concluding Remarks

Let r, d ≥ 0 and q, k ≥ 0 be integers such that r = q(d + 1) + k, where k ≤ d. In this paper
we have completely determined n(r, d+ 1,∆) when q ≥ 4k is even and when q ≥ 6d+ 6k + 7 is
odd. We have also shown that n(6, 2,∆) = ⌊5∆/4⌋, answering a specific question of [16]. It is
interesting to know the value of n(r, d+ 1,∆) in the remaining cases:

(1) q is even and q < 4k, such as r = 7 and d = 2,
(2) q is odd and q < 6d+ 6k + 7, such as r = 7 or 10 and d = 1.

The aforementioned results of [16] determined n(r, d + 1,∆) in many cases when d > r/2 − 1
(equivalently, q = 1) but there are still unknown ones such as r = 7 and d = 3.

One may also ask in an r-partite graph whether, given an (r − d)-IT T , there exists an
(r − d′)-IT T ′ ⊃ T (provided d′ < d < r). A similar proof to that of [13, Corollary 15], which
uses topological methods, shows that if G is an r-partite graph with n vertices in each part,
0 ≤ d < r, and S is a k-IT in G with k < r − d, then there exists an (r − d)-IT containing S if

n > 2∆

(
1− d+ 1− (k/2)

r − k

)
.

It would be interesting to know if any of the methods used in this paper, in particular, the
results on IMCs developed in Sections 3 and 4, can be used to improve this bound.

Finally, it was shown in [10] that for any ∆, there exists an algorithm that, given a multipartite
graph G with at least 2∆ + 1 vertices in each part, returns an independent transversal in
polynomial time of |V (G)|. One may ask if there is a similar polynomial-time algorithm that
returns (r − d)-ITs under a weaker condition on the size of parts.
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linear group. Journal of Combinatorial Theory, Series A, 115(3):442–465, 2008.
[7] D. W. Cranston and L. Rabern. A note on coloring vertex-transitive graphs. Electronic Journal of Combina-

torics, 22(2), 2015.
[8] E. Crestani. Sets of elements that pairwise generate a matrix ring. Communications in Algebra, 40(4):1570–

1575, 2012.
[9] S. Davies, T. Rothvoss, and Y. Zhang. A tale of Santa Claus, hypergraphs and matroids. In Proceedings of

the 2020 ACM-SIAM Symposium on Discrete Algorithms, pages 2748–2757. SIAM, Philadelphia, PA, 2020.
[10] A. Graf and P. Haxell. Finding independent transversals efficiently. Combinatorics, Probability and Comput-

ing, 29(5):780–806, 2020.
[11] P. Haxell. A note on vertex list colouring. Combinatorics, Probability and Computing, 10(4):345–347, 2001.



PARTIAL INDEPENDENT TRANSVERSALS IN MULTIPARTITE GRAPHS 17

[12] P. Haxell. On forming committees. American Mathematical Monthly, 118, 11 2011.
[13] P. Haxell. Independent transversals and hypergraph matchings - an elementary approach, pages 215–233.

Springer International Publishing, Cham, 2016.
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Appendix A. Proof of Lemma 3.5

We prove Lemma 3.5 in this section using similar arguments to those used in the proof of [14,
Theorem 2.2].

Proof of Lemma 3.5. We will first show that Algorithm 3.4 maintains a feasible pair. Let w, I, T ,
and T ′ be as defined in Step 2 or Step 3 of the algorithm. We will show that (I ∪ {w} ∪
N(w, T ′), T ′) is feasible. For convenience, let I ′ = I ∪ {w} ∪N(w, T ′). Also, we say that a class
Vi is active in I if Vi ∈ S(I), i.e. Vi∩ I ̸= ∅, and we refer to S(I) as the set of active classes of I.
It follows from the algorithm that T ∩ (∪Vi∈S(I)Vi) = T ′ ∩ (∪Vi∈S(I)Vi), so that T and T ′ agree
on active classes of I.

Case 1: We are at Step 2.
Then (a) is satisfied since T ′ ∈ T .
For (b) suppose that v ∈ T ′ and S({v}) ∈ S(I ′) = S(I)∪ S(N(w, T ′)). If S({v}) ∈ S(I) then

v ∈ T as T and T ′ agree on active classes of I. Then since v ∈ T and S({v}) ∈ S(I), we have
v ∈ I ⊆ I ′ because (I, T ) satisfies (b). Now assume that S({v}) ∈ S(N(w, T ′)). Then we must
have v ∈ N(v, T ′) ⊆ I ′ as T ′ is an IT.

We will now verify (c). By definition of T , we haveW ′ = I ′\T ′ = W∪{w} and {v}∪N(v, T ′) =
{v}∪N(v, T ) for all v ∈ W . These stars {v}∪N(v, T ′) for v ∈ W are all disjoint and of order at
least two as (I, T ) is feasible. Also, ({w}∪N(w, T ′))∩ ({v}∪N(v, T )) = ∅ for all v ∈ W . Hence
it only remains to be shown that {w}∪N(w, T ′) is a star with at least one leaf, i.e. N(w, T ′) ̸= ∅.
Suppose for the sake of contradiction that N(w, T ′) = ∅. Then T ′ contains a vertex u in the
class of w as if not, T ′∪{w} is an IT in G of size |T ′|+1. But, since the class containing w and u
intersects I, we have since T and T ′ agree on classes active in I, u ∈ T . Then u ∈ I as well by (b)
applied to (I, T ). Also, u has exactly one neighbor in I by (c) applied to (I, T ) as u ̸∈ W . Let
v0 ∈ W be its neighbor. Then T ′′ = T ′∪{w}\{u} is a partial IT on S(T0) such that T ′′∩W = ∅.
We claim that the existence of T ′′ contradicts (I, T ) satisfying (e), so N(w, T ′) ̸= ∅ and (I ′, T ′)
satisfies (c). We have |N(v0, T

′′)| = |N(v0, T
′) \ {u}| = |N(v0, T

′)| − 1 = |N(v0, T )| − 1 and
N(v, T ′′) = N(v, T ′) = N(v, T ) for v ∈ W \ {v0}, giving us the desired contradiction.

Observe that w ∈ VI and N(w, T ′) ∩ VI = ∅. Hence GI′ is GI with classes containing vertices
in N(w, T ′) added as leaves and is thus also a forest, so (I ′, T ′) satisfies (d).

To show that (I ′, T ′) satisfies (e), suppose for the sake of contradiction that there exists v0 ∈
W ∪{w} and T ′′ ∈ T ′ such that T ′′∩W ′ = ∅, |N(v0, T

′′)| < |N(v0, T
′)|, and N(v, T ′′) = N(v, T ′)

for all v ∈ W ′ \ {v0}. Suppose that v0 ∈ W . Then, since N(v, T ′) = N(v, T ) for all v ∈ W ,
(I, T ) would not satisfy (e), a contradiction. Hence we may assume v0 = w. But then T ′′ ∈ T
and deg(w, T ′′) < deg(w, T ′), which contradicts our choice of T ′.

Case 2: We are at Step 3. In this case, we have S({w}) ̸∈ S(T ).
We have that (a) is satisfied since T ′ ∈ T .
Suppose that v ∈ T ′ and S({v}) ∈ S(I ′) = S(I) ∪ S({w}) ∪ S(N(w, T ′)). Since w ̸∈ T ′ we

have S({v}) ∈ S(I) ∪ S(N(w, T ′)), and the same argument used in Case 1 above shows that
(I ′, T ′) satisfies (b).
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We will now verify (c). By definition of T , we haveW ′ = I ′\T ′ = W∪{w} and {v}∪N(v, T ′) =
{v} ∪N(v, T ) for all v ∈ W . These stars {v} ∪N(v, T ′) for v ∈ W are all disjoint and of order
at least two as (I, T ) is feasible. Also, ({w} ∪ N(w, T ′)) ∩ ({v} ∪ N(v, T )) = ∅ for all v ∈ W .
Hence it only remains to be shown that N(w, T ′) ̸= ∅. Suppose for the sake of contradiction
that N(w, T ′) = ∅. But since w ̸∈ S(T ), this would imply that {w} ∪ T ′ is an IT in G of size
larger than T , a contradiction.

We have that GI′ is GI with possibly a new vertex added for the class containing w (if
S({w}) ̸∈ S(I)), and leaves corresponding to the classes containing vertices in N(w, T ′) added.
So, since GI is a forest, so is GI′ , and (I ′, T ′) hence satisfies (d).

The same argument made in Case 1 above shows that (I ′, T ′) satisfies (e).
We have thus showed that the algorithm maintains a feasible pair throughout. Since the size

of I increases throughout the algorithm, the algorithm must eventually terminate and output a
feasible pair. □
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