Vertex degree sums for perfect matchings in 3 -uniform hypergraphs

Yi Zhang
School of Sciences
Beijing University of Posts and Telecommunications
Beijing, China
shouwangmm@sina.com

Yi Zhao *
Department of Mathematics and Statistics
Georgia State University
Atlanta, U.S.A
yzhao6@gsu.edu
Mei Lu ${ }^{\dagger}$
Department of Mathematical Sciences
Tsinghua University
Beijing, China
mlu@math.tsinghua.edu.cn

Submitted: Feb 7, 2018; Accepted: Jul 19, 2018; Published: TBD
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We determine the minimum degree sum of two adjacent vertices that ensures a perfect matching in a 3 -uniform hypergraph without isolated vertex. Suppose that H is a 3 -uniform hypergraph whose order n is sufficiently large and divisible by 3 . If H contains no isolated vertex and $\operatorname{deg}(u)+\operatorname{deg}(v)>\frac{2}{3} n^{2}-\frac{8}{3} n+2$ for any two vertices u and v that are contained in some edge of H, then H contains a perfect matching. This bound is tight and the (unique) extremal hyergraph is a different space barrier from the one for the corresponding Dirac problem.

Keywords: Perfect matchings; Hypergraphs; Dirac's theorem; Ore's condition Mathematics Subject Classifications: 05C70,05C65

1 Introduction

A k-uniform hypergraph (in short, k-graph) H is a pair (V, E), where $V=V(H)$ is a finite set of vertices and $E=E(H)$ is a family of k-element subsets of V. A matching of size s in H is a family of s pairwise disjoint edges of H. If the matching covers all

[^0]the vertices of H, then we call it a perfect matching. Given a set $S \subseteq V(H)$, the degree $\operatorname{deg}_{H}(S)$ of S is the number of the edges of H containing S. We omit the subscript when the underlying hypergraph is obvious from the context, and simply write $\operatorname{deg}(v)$ when $S=\{v\}$. The minimum ℓ-degree of H, denoted by $\delta_{\ell}(H)$, is the minimum $\operatorname{deg}(S)$ over all ℓ-subsets S of $V(H)$.

Given integers $\ell<k \leqslant n$ such that k divides n, we define the minimum ℓ-degree threshold $m_{\ell}(k, n)$ as the smallest integer m such that every k-graph H on n vertices with $\delta_{\ell}(H) \geqslant m$ contains a perfect matching. In recent years the problem of determining $m_{\ell}(k, n)$ has received much attention, see, e.g., $[2,4,5,6,7,8,9,11,12,13,15,16,17$, 19, 20, 21]. For example, Rödl, Ruciński, and Szemerédi [17] determined $m_{k-1}(k, n)$ for all $k \geqslant 3$ and sufficiently large n. For more Dirac-type results on hypergraphs, we refer readers to surveys [14, 25].

In this paper we focus on 3-graphs. Hàn, Person and Schacht [4] showed that

$$
\begin{equation*}
m_{1}(3, n)=\left(\frac{5}{9}+o(1)\right)\binom{n}{2} . \tag{1}
\end{equation*}
$$

Kühn, Osthus and Treglown [10] and independently Khan [6] later proved that $m_{1}(3, n)=$ $\binom{n-1}{2}-\binom{2 n / 3}{2}+1$ for sufficiently large n.

Motivated by the relation between Dirac's condition and Ore's condition for Hamilton cycles, Tang and Yan [18] studied the degree sum of two $(k-1)$-sets that guarantees a tight Hamilton cycle in k-graphs. Zhang and Lu [22] studied the degree sum of two ($k-1$)-sets that guarantees a perfect matching in k-graphs.

Our objective is to find an Ore's condition that guarantees a perfect matching in 3graphs. As Ore's theorem concerns the degree sum of two non-adjacent vertices in graphs, we consider the degree sum of two vertices in 3 -graphs. In a hypergraph, two distinct vertices are adjacent if there exists an edge containing both of them. The following are three possible ways of defining the minimum degree sum of a 3-graph H. Let $\sigma_{2}(H)=$ $\min \{\operatorname{deg}(u)+\operatorname{deg}(v): u, v \in V(H)$ are adjacent $\}, \sigma_{2}^{\prime}(H)=\min \{\operatorname{deg}(u)+\operatorname{deg}(v): u, v \in$ $V(H)\}$, and $\sigma_{2}^{\prime \prime}(H)=\min \{\operatorname{deg}(u)+\operatorname{deg}(v): u, v \in V(H)$ are not adjacent $\}$.

The parameter σ_{2}^{\prime} is closely related to the Dirac threshold $m_{1}(3, n)$ - we can prove that when n is divisible by 3 and sufficiently large, every 3-graph H on n vertices with $\sigma_{2}^{\prime}(H) \geqslant 2\left(\binom{n-1}{2}-\binom{2 n / 3}{2}\right)+1$ contains a perfect matching. Indeed, such H contains at most one vertex u with $\operatorname{deg}(u) \leqslant\binom{ n-1}{2}-\binom{2 n / 3}{2}$. If $\operatorname{deg}(u) \leqslant(5 / 9-\varepsilon)\binom{n}{2}$ for some $\varepsilon>0$, then we choose an edge containing u and find a perfect matching in the remaining 3 -graph by (1) immediately. Otherwise, $\delta_{1}(H) \geqslant(5 / 9-\varepsilon)\binom{n}{2}$. We can prove that H contains a perfect matching by following the same approach as in [10]. ${ }^{1}$

On the other hand, no condition on $\sigma_{2}^{\prime \prime}$ alone guarantees a perfect matching. In fact, let H be the 3-graph whose edge set consists of all triples that contain a fixed vertex. This H contains no two disjoint edges even though it satisfies all conditions on $\sigma_{2}^{\prime \prime}$ (because any two vertices of H are adjacent).

Therefore we focus on σ_{2}. More precisely, we determine the largest $\sigma_{2}(H)$ among all 3 -graphs H of order n without isolated vertex such that H contains no perfect matching.

[^1](Trivially H contains no perfect matching if it contains an isolated vertex.) Let us define a 3 -graph H_{n}^{*}, which is one of the so-called space barriers for perfect matchings (see Section 5 for their definitions and a connection to a well-known conjecture of Erdős [3]). The vertex set of H_{n}^{*} is partitioned into two vertex classes S and T of size $n / 3+1$ and $2 n / 3-1$,

Figure 1: H_{n}^{*} : every edge intersects T in two or three vertices.
respectively, and whose edge set consists of all triples containing at least two vertices of T (see Figure 1). For any two vertices $u \in T$ and $v \in S$,

$$
\operatorname{deg}(u)=\binom{2 n / 3-2}{2}+\left(\frac{n}{3}+1\right)\left(\frac{2 n}{3}-2\right)>\binom{2 n / 3-1}{2}=\operatorname{deg}(v)
$$

Hence $\sigma_{2}\left(H_{n}^{*}\right)=\binom{2 n / 3-2}{2}+(n / 3+1)(2 n / 3-2)+\binom{2 n / 3-1}{2}=2 n^{2} / 3-8 n / 3+2$. Obviously, H_{n}^{*} contains no perfect matching. The following is our main result.

Theorem 1. There exists $n_{0} \in \mathbb{N}$ such that the following holds for all integers $n \geqslant n_{0}$ that are divisible by 3 . Let H be a 3 -graph of order $n \geqslant n_{0}$ without isolated vertex. If $\sigma_{2}(H)>\sigma_{2}\left(H_{n}^{*}\right)=\frac{2}{3} n^{2}-\frac{8}{3} n+2$, then H contains a perfect matching.

Theorem 1 actually follows from the following stability result. For two hypergraphs H_{1} and H_{2}, we write $H_{1} \subseteq H_{2}$ if H_{1} is a subgraph of H_{2}.

Theorem 2. There exist $\varepsilon>0$ and $n_{0} \in \mathbb{N}$ such that the following holds for all integers $n \geqslant n_{0}$ that are divisible by 3. Suppose that H is a 3 -graph of order $n \geqslant n_{0}$ without isolated vertex and $\sigma_{2}(H)>2 n^{2} / 3-\varepsilon n^{2}$, then $H \subseteq H_{n}^{*}$ or H contains a perfect matching.

Indeed, if $\sigma_{2}(H)>2 n^{2} / 3-8 n / 3+2$, then $H \nsubseteq H_{n}^{*}$ and by Theorem $2, H$ contains a perfect matching. Furthermore, Theorem 2 implies that H_{n}^{*} is the unique extremal 3-graph for Theorem 1 because all proper subgraphs H of H_{n}^{*} satisfy $\sigma_{2}(H)<\sigma_{2}\left(H_{n}^{*}\right)$.

This paper is organized as follows. In Section 2, we provide preliminary results and an outline of our proof. We prove an important lemma in Section 3 and we complete the proof of Theorem 2 in Section 4. Section 5 contains concluding remarks and open problems.

Notation: Given vertices v_{1}, \ldots, v_{t}, we often write $v_{1} \cdots v_{t}$ for $\left\{v_{1}, \ldots, v_{t}\right\}$. The neighborhood $N(u, v)$ is the set of the vertices w such that $u v w \in E(H)$. Let V_{1}, V_{2}, V_{3} be three vertex subsets of $V(H)$, we say that an edge $e \in E(H)$ is of type $V_{1} V_{2} V_{3}$ if $e=\left\{v_{1}, v_{2}, v_{3}\right\}$ such that $v_{1} \in V_{1}, v_{2} \in V_{2}$ and $v_{3} \in V_{3}$.

Given a vertex $v \in V(H)$ and a set $A \subseteq V(H)$, we define the $\operatorname{link} L_{v}(A)$ to be the set of all pairs $u w$ such that $u, w \in A$ and $u v w \in E(H)$. When A and B are two disjoint sets of $V(H)$, we define $L_{v}(A, B)$ as the set of all pairs $u w$ such that $u \in A, w \in B$ and $u v w \in E(H)$.

We write $0<a_{1} \ll a_{2} \ll a_{3}$ if we can choose the constants a_{1}, a_{2}, a_{3} from right to left. More precisely there are increasing functions f and g such that given a_{3}, whenever we choose some $a_{2} \leqslant f\left(a_{3}\right)$ and $a_{1} \leqslant g\left(a_{2}\right)$, all calculations needed in our proof are valid.

2 Preliminaries and proof outline

We will need small constants

$$
0<\varepsilon \ll \eta \ll \gamma \ll \gamma^{\prime} \ll \rho \ll \tau \ll 1
$$

Suppose H is a 3-graph such that $\sigma_{2}(H)>2 n^{2} / 3-\varepsilon n^{2}$. Let $W=\{v \in V(H): \operatorname{deg}(v) \leqslant$ $\left.n^{2} / 3-\varepsilon n^{2} / 2\right\}, U=V \backslash W$. If $W=\emptyset$, then (1) implies that H contains a perfect matching. We thus assume that $|W| \geqslant 1$. Any two vertices of W are not adjacent otherwise $\sigma_{2}(H) \leqslant 2 n^{2} / 3-\varepsilon n^{2}$, a contradiction. If $|W| \geqslant n / 3+1$, then $H \subseteq H_{n}^{*}$ and we are done. We thus assume $|W| \leqslant n / 3$ for the rest of the proof.

Our proof will use the following claim.
Claim 3. If $|W| \geqslant n / 4$, then every vertex of U is adjacent to some vertex of W.
Proof. To the contrary, assume that some vertex $u_{0} \in U$ is not adjacent to any vertex in W. Then we have $\operatorname{deg}\left(u_{0}\right) \leqslant\binom{|U|-1}{2}=\binom{n-|W|-1}{2}$. Since $|W| \geqslant n / 4$ and n is sufficiently large,

$$
\operatorname{deg}\left(u_{0}\right) \leqslant\binom{ n-n / 4-1}{2}=\frac{9}{32} n^{2}-\frac{9}{8} n+1<\frac{n^{2}}{3}-\frac{\varepsilon}{2} n^{2},
$$

which contradicts the definition of U.
By Claim 3, when $|W| \geqslant \frac{n}{4}$, we have $\operatorname{deg}(u) \geqslant\left(2 n^{2} / 3-\varepsilon n^{2}\right)-\binom{n-|W|}{2}$ for every $u \in U$. This is stronger than the bound given by the definition of U because

$$
\left(\frac{2}{3} n^{2}-\varepsilon n^{2}\right)-\binom{n-|W|}{2} \geqslant\left(\frac{2}{3} n^{2}-\varepsilon n^{2}\right)-\binom{n-\frac{n}{4}}{2}=\left(\frac{37}{96}-\varepsilon\right) n^{2}+\frac{3}{8} n>\frac{n^{2}}{3}-\frac{\varepsilon}{2} n^{2} .
$$

Our proof consists of two steps.
Step 1. We prove that H contains a matching that covers all the vertices of W.
Lemma 4. There exist $\varepsilon>0$ and $n_{0} \in \mathbb{N}$ such that the following holds. Suppose that H is a 3-graph of order $n \geqslant n_{0}$ without isolated vertex and $\sigma_{2}(H)>2 n^{2} / 3-\varepsilon n^{2}$. Let $W=\left\{v \in V(H): \operatorname{deg}(v) \leqslant n^{2} / 3-\varepsilon n^{2} / 2\right\}$. If $|W| \leqslant n / 3$, then H contains a matching that covers every vertex of W.

We will prove Lemma 4 in Section 3. The following is an outline of the proof. Consider a largest matching M in H such that every edge of M contains one vertex from W and assume $|M|<|W|$. If $|W| \leqslant(1 / 3-\gamma) n$, then we choose two adjacent vertices, one from W and the other from $V \backslash W$ to derive a contradiction with $\sigma_{2}(H)$. If $|W|>(1 / 3-\gamma) n$, we use three unmatched vertices, one from W and two from $V \backslash W$ to derive a contradiction.
Step 2. We show that H contains a perfect matching.
Because of Lemma 4, we begin by considering a largest matching M such that M covers every vertex of W and suppose that $|M|<n / 3$. We distinguish the cases when $|M| \leqslant n / 3-\eta n$ and when $|M|>n / 3-\eta n$. In both cases we derive a contradiction by comparing upper and lower bounds for the degree sum of three fixed vertices from $V \backslash V(M)$. When $|M|>n / 3-\eta n$, we need the Dirac threshold (1).

In Step 2 we will apply three simple extremal results. The first lemma is Observation 1.8 of Aharoni and Howard [1]. A k-graph H is k-partite if $V(H)$ can be partitioned into V_{1}, \cdots, V_{k}, such that each edge of H meets every V_{i} in precisely one vertex. If all parts are of the same size n, we say H is n-balanced.

Lemma 5. [1] Let F be the edge set of an n-balanced k-partite k-graph. If F does not contain s disjoint edges, then $|F| \leqslant(s-1) n^{k-1}$.

The bound in the following lemma is tight because we may let G_{1} be the empty graph and $G_{2}=G_{3}=K_{n}$.

Lemma 6. Let G_{1}, G_{2}, G_{3} be three graphs on the same set V of $n \geqslant 4$ vertices such that every edge of G_{1} intersects every edge of G_{i} for both $i=2,3$. Then $\sum_{i=1}^{3} \sum_{v \in A} \operatorname{deg}_{G_{i}}(v) \leqslant$ $6(n-1)$ for any set $A \subset V$ of size 3 .

Proof. Assume $A=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $b:=n-3 \geqslant 1$. Our goal is to show that

$$
\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 6 b+12 .
$$

Let ℓ_{i} denote the number of the vertices in A of degree at least 3 in G_{i}. We distinguish the following two cases:
Case 1: $\ell_{1} \geqslant 1$.
If $\ell_{1} \geqslant 2$, say, $\operatorname{deg}_{G_{1}}\left(u_{j}\right) \geqslant 3$ for $j=1,2$, then $E\left(G_{i}\right) \subseteq\left\{u_{1} u_{2}\right\}$ for $i=2,3-$ otherwise we can find two disjoint edges, one from G_{1} and the other from G_{2} or G_{3}. Therefore, $\sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 2$ for $i=2$, 3. Moreover, $\sum_{j=1}^{3} \operatorname{deg}_{G_{1}}\left(u_{j}\right) \leqslant 3 b+6$. We have $\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 3 b+10<6 b+12$.

If $\ell_{1}=1$, say, $\operatorname{deg}_{G_{1}}\left(u_{1}\right) \geqslant 3$, then G_{i} is a star centered at u_{1} for $i=2,3$ - otherwise one edge of G_{1} must be disjoint from one edge of G_{2} or G_{3}. In this case we have $\sum_{j=1}^{3} \operatorname{deg}_{G_{1}}\left(u_{j}\right) \leqslant b+2+4$ and $\sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant b+4$ for $i=2,3$. Therefore, $\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 3 b+14<6 b+12$ as $b \geqslant 1$.
Case 2: $\quad \ell_{1}=0$.

Let us consider the value of $\max \left\{\ell_{2}, \ell_{3}\right\}$. First, if $\max \left\{\ell_{2}, \ell_{3}\right\}=3$, then $E\left(G_{1}\right)=\emptyset$. Consequently, $\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 2(3 b+6)=6 b+12$.

Second, assume $\max \left\{\ell_{2}, \ell_{3}\right\}=2$. Without loss of generality, we assume $\ell_{2}=2$ and $\operatorname{deg}_{G_{2}}\left(u_{j}\right) \geqslant 3$ for $j=1,2$. Then $E\left(G_{1}\right) \subseteq\left\{u_{1} u_{2}\right\}$. In this case $\sum_{j=1}^{3} \operatorname{deg}_{G_{1}}\left(u_{j}\right) \leqslant 2$ and $\sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 2 b+4+2$ for $i=2,3$. Hence $\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 4 b+14 \leqslant 6 b+12$ as $b \geqslant 1$.

Third, assume $\max \left\{\ell_{2}, \ell_{3}\right\}=1$. Without loss of generality, assume $\ell_{2}=1$ and $\operatorname{deg}_{G_{2}}\left(u_{1}\right) \geqslant 3$. Then G_{1} is a star centered at u_{1}. We have $\sum_{j=1}^{3} \operatorname{deg}_{G_{1}}\left(u_{j}\right) \leqslant 4$ and $\sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant b+2+4$ for $i=2,3$. So $\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 2 b+16 \leqslant 6 b+12$ as $b \geqslant 1$.

At last, assume $\max \left\{\ell_{2}, \ell_{3}\right\}=0$. Then $\operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 2$ for all $i, j \in\{1,2,3\}$. Hence $\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 18 \leqslant 6 b+12$ as $b \geqslant 1$.

The bound in the following lemma is tight because we may let $G_{1}=G_{2}=G_{3}$ be a star of order n centered at a vertex of A.

Lemma 7. Let G_{1}, G_{2}, G_{3} be three graphs on the same set V of $n \geqslant 5$ vertices such that for any $i \neq j$, every edge of G_{i} intersects every edge from G_{j}. Then $\sum_{i=1}^{3} \sum_{v \in A} \operatorname{deg}_{G_{i}}(v) \leqslant$ $3(n+1)$ for any set $A \subset V$ of size 3 .

Proof. Assume $A=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $b:=n-3 \geqslant 2$. Our goal is to show that

$$
\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 3 b+12 .
$$

Let ℓ_{i} denote the number of the vertices in A of degree at least 3 in G_{i}. We distinguish the following two cases:
Case 1: $\ell_{i} \geqslant 1$ for some $i \in[3]$.
Without loss of generality, $\ell_{1} \geqslant 1$ and $\operatorname{deg}_{G_{1}}\left(u_{1}\right) \geqslant 3$. If $\operatorname{deg}_{G_{1}}\left(u_{2}\right) \geqslant 3$ or $\operatorname{deg}_{G_{1}}\left(u_{3}\right) \geqslant$ 3, say, $\operatorname{deg}_{G_{1}}\left(u_{2}\right) \geqslant 3$, then $E\left(G_{i}\right) \subseteq\left\{u_{1} u_{2}\right\}$ for $i=2,3$ - otherwise we can find two disjoint edges e_{1} and e_{2} from two distinct graphs of G_{1}, G_{2}, G_{3}. In this case $\sum_{j=1}^{3} \operatorname{deg}_{G_{1}}\left(u_{j}\right) \leqslant 3 b+6$ and $\sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 2$ for $i=2,3$, which implies that $\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 3 b+10$.

Assume $\operatorname{deg}_{G_{1}}\left(u_{j}\right) \leqslant 2$ for $j=2,3$. We know that $G_{i}, i=2,3$ is a star centered at $u_{1}-$ otherwise one edge of G_{1} must be disjoint from one edge of $G_{i}, i \in\{2,3\}$. If $\operatorname{deg}_{G_{2}}\left(u_{1}\right) \geqslant 3$ or $\operatorname{deg}_{G_{3}}\left(u_{1}\right) \geqslant 3$, then G_{1} is also a star centered at u_{1}. In this case $\sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant$ $b+4$ for $i \in[3]$, so $\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 3 b+12$. Otherwise $\operatorname{deg}_{G_{i}}\left(u_{1}\right) \leqslant 2$ for $i=2,3$, hence $\sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 4$ for $i=2$, 3. Since $\sum_{j=1}^{3} \operatorname{deg}_{G_{1}}\left(u_{j}\right) \leqslant b+6$, we have $\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant b+14 \leqslant 3 b+12$.
Case 2: $\ell_{i}=0$ for $i \in[3]$.
In this case $\sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 6$ for $i=1,2,3$. Hence $\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 18 \leqslant$ $3 b+12$ as $b \geqslant 2$.

3 Proof of Lemma 4

Choose a largest matching of H, denoted by M, such that every edge of M is of type $U U W$. To the contrary, assume that $|M| \leqslant|W|-1$. Let $U_{1}=V(M) \cap U, U_{2}=U \backslash U_{1}$, $W_{1}=V(M) \cap W$, and $W_{2}=W \backslash W_{1}$. Then $\left|U_{1}\right|=2|M|$, and $\left|U_{2}\right|=n-|W|-2|M|$. We distinguish the following two cases.
Case 1: $0<|W| \leqslant\left(\frac{1}{3}-\gamma\right) n$.
We further distinguish the following two sub-cases:
Case 1.1: A vertex $v_{0} \in W_{2}$ is adjacent to a vertex $u_{0} \in U_{2}$.
Let $M^{\prime}=\left\{e \in M: \exists u^{\prime} \in e,\left|N\left(v_{0}, u^{\prime}\right) \cap U_{2}\right| \geqslant 3\right\}$. Assume $\left\{u_{1}, u_{2}, v_{1}\right\} \in M^{\prime}$ such that $u_{1}, u_{2} \in U_{1}, v_{1} \in W_{1}$, and $\left|N\left(v_{0}, u_{1}\right) \cap U_{2}\right| \geqslant 3$. We claim that

$$
\begin{equation*}
N\left(u_{0}, v_{1}\right) \cap\left(U_{2} \cup\left\{u_{2}\right\}\right)=\emptyset . \tag{2}
\end{equation*}
$$

Indeed, if $\left\{u_{0}, v_{1}, u_{3}\right\} \in E(H)$ for some $u_{3} \in U_{2}$, then we can find $u_{4} \in U_{2} \backslash\left\{u_{0}, u_{3}\right\}$ such that $\left\{v_{0}, u_{1}, u_{4}\right\} \in E(H)$. Replacing $\left\{u_{1}, u_{2}, v_{1}\right\}$ by $\left\{u_{0}, v_{1}, u_{3}\right\}$ and $\left\{v_{0}, u_{1}, u_{4}\right\}$ gives a larger matching than M, a contradiction. The case when $\left\{u_{0}, v_{1}, u_{2}\right\} \in E(H)$ is similar.

By the definition of M^{\prime}, there are at most $2\left(\left|U_{1}\right|-2\left|M^{\prime}\right|\right)$ edges containing v_{0} with one vertex in $U_{1} \backslash V\left(M^{\prime}\right)$ and one vertex in U_{2}. This implies that

$$
\operatorname{deg}\left(v_{0}\right) \leqslant\binom{\left|U_{1}\right|}{2}+2\left|M^{\prime}\right|\left|U_{2}\right|+2\left(\left|U_{1}\right|-2\left|M^{\prime}\right|\right)=\binom{\left|U_{1}\right|}{2}+2\left|U_{1}\right|+\left|M^{\prime}\right|\left(2\left|U_{2}\right|-4\right) .
$$

By (2), there are at most $\left|U_{1}\right|\left|W_{1}\right|-\left|M^{\prime}\right|$ edges consisting of u_{0}, one vertex in U_{1}, and one vertex in W_{1}, and at most $\left(\left|U_{2}\right|-1\right)\left(\left|W_{1}\right|-\left|M^{\prime}\right|\right)$ edges consisting of u_{0}, one additional vertex in U_{2}, and one vertex in W_{1}. Therefore,

$$
\begin{aligned}
\operatorname{deg}\left(u_{0}\right) & \leqslant\binom{|U|-1}{2}+\left|U_{1}\right|\left|W_{2}\right|+\left|U_{1}\right|\left|W_{1}\right|-\left|M^{\prime}\right|+\left(\left|U_{2}\right|-1\right)\left(\left|W_{1}\right|-\left|M^{\prime}\right|\right) \\
& =\binom{|U|-1}{2}+\left|U_{1}\right||W|+\left(\left|U_{2}\right|-1\right)\left|W_{1}\right|-\left|U_{2}\right|\left|M^{\prime}\right|,
\end{aligned}
$$

and consequently,
$\operatorname{deg}\left(v_{0}\right)+\operatorname{deg}\left(u_{0}\right) \leqslant\binom{\left|U_{1}\right|}{2}+2\left|U_{1}\right|+\binom{|U|-1}{2}+\left|U_{1}\right||W|+\left(\left|U_{2}\right|-1\right)\left|W_{1}\right|+\left|M^{\prime}\right|\left(\left|U_{2}\right|-4\right)$.
Since $|W| \leqslant\left(\frac{1}{3}-\gamma\right) n$, we have $\left|U_{2}\right|>3 \gamma n>4$. As $\left|M^{\prime}\right| \leqslant|M|=\left|W_{1}\right|=\frac{\left|U_{1}\right|}{2}$, it follows that

$$
\begin{aligned}
\operatorname{deg}\left(v_{0}\right)+\operatorname{deg}\left(u_{0}\right) \leqslant & \binom{\left|U_{1}\right|}{2}+2\left|U_{1}\right|+\binom{|U|-1}{2}+\left|U_{1}\right||W| \\
& +\left(\left|U_{2}\right|-1\right) \frac{\left|U_{1}\right|}{2}+\frac{\left|U_{1}\right|}{2}\left(\left|U_{2}\right|-4\right) \\
= & \left(\binom{|U|}{2}-\binom{\left|U_{2}\right|}{2}\right)+\binom{|U|-1}{2}+\left(|W|-\frac{1}{2}\right)\left|U_{1}\right| \\
= & (|U|-1)^{2}-\binom{\left|U_{2}\right|}{2}+(2|W|-1)|M| .
\end{aligned}
$$

Since $|M| \leqslant|W|-1$ and $\left|U_{2}\right| \geqslant n-3|W|+2$, we derive that

$$
\begin{aligned}
\operatorname{deg}\left(v_{0}\right)+\operatorname{deg}\left(u_{0}\right) & \leqslant(n-|W|-1)^{2}-\binom{n-3|W|+2}{2}+(2|W|-1)(|W|-1) \\
& =\frac{2}{3} n^{2}-\frac{7}{3} n+\frac{73}{24}-\frac{3}{2}\left(\frac{n}{3}+\frac{7}{6}-|W|\right)^{2}
\end{aligned}
$$

Since $|W| \leqslant\left(\frac{1}{3}-\gamma\right) n, 0<\varepsilon \ll \gamma$ and n is sufficiently large, we have

$$
\operatorname{deg}\left(v_{0}\right)+\operatorname{deg}\left(u_{0}\right) \leqslant \frac{2}{3} n^{2}-\frac{7}{3} n+\frac{73}{24}-\frac{3}{2}\left(\gamma n+\frac{7}{6}\right)^{2}<\frac{2}{3} n^{2}-\varepsilon n^{2}
$$

This contradicts our assumption on $\sigma_{2}(H)$ because v_{0} and u_{0} are adjacent.
Case 1.2: No vertex in W_{2} is adjacent to any vertex in U_{2}.
Fix $v_{0} \in W_{2}$. Since v_{0} is not adjacent to any vertex in U_{2}, we have $\operatorname{deg}\left(v_{0}\right) \leqslant\binom{\left|U_{1}\right|}{2}=$ $\binom{2|M|}{2}$. Since v_{0} is not an isolated vertex, there exists a vertex $u_{1} \in U_{1}$ that is adjacent to v_{0}. By the assumption, there is no edge of H containing u_{1}, a vertex from U_{2}, and a vertex from W_{2}. Thus $\operatorname{deg}\left(u_{1}\right) \leqslant\binom{|U|-1}{2}+(|U|-1)|W|-\left|U_{2}\right|\left|W_{2}\right|$. Since $|M| \leqslant|W|-1$ and $|U|=n-|W|$, it follows that

$$
\begin{aligned}
\operatorname{deg}\left(v_{0}\right)+\operatorname{deg}\left(u_{1}\right) & \leqslant\binom{ 2(|W|-1)}{2}+\binom{|U|-1}{2}+(|U|-1)|W|-(n-3|W|+2) \\
& =\frac{3}{2}\left(|W|-\frac{1}{2}\right)^{2}+\frac{1}{2} n^{2}-\frac{5}{2} n+\frac{13}{8} .
\end{aligned}
$$

Furthermore, since $|W| \leqslant\left(\frac{1}{3}-\gamma\right) n$ and $0<\varepsilon \ll \gamma$, we derive that

$$
\begin{aligned}
\operatorname{deg}\left(v_{0}\right)+\operatorname{deg}\left(u_{1}\right) & \leqslant \frac{3}{2}\left(\frac{n}{3}-\gamma n-\frac{1}{2}\right)^{2}+\frac{1}{2} n^{2}-\frac{5}{2} n+\frac{13}{8} \\
& =\left(\frac{2}{3}-\gamma+\frac{3}{2} \gamma^{2}\right) n^{2}-\left(3-\frac{3}{2} \gamma\right) n+2 \\
& <\frac{2}{3} n^{2}-\varepsilon n^{2}
\end{aligned}
$$

contradicting our assumption on $\sigma_{2}(H)$.
Case 2: $|W|>\left(\frac{1}{3}-\gamma\right) n$.
Claim 8. $|M| \geqslant n / 3-\gamma^{\prime} n$.
Proof. To the contrary, assume that $|M|<n / 3-\gamma^{\prime} n$. Fix $v_{0} \in W_{2}$. Then $\operatorname{deg}\left(v_{0}\right) \leqslant$ $\binom{|U|}{2}-\binom{\left|U_{2}\right|}{2}$ because there is no edge of type $U_{2} U_{2} W_{2}$. Suppose $u \in U$ is adjacent to v_{0}. Trivially $\operatorname{deg}(u) \leqslant\binom{|U|-1}{2}+(|U|-1)|W|$. Thus

$$
\begin{aligned}
\operatorname{deg}\left(v_{0}\right)+\operatorname{deg}(u) & \leqslant\binom{|U|-1}{2}+(|U|-1)|W|+\binom{|U|}{2}-\binom{\left|U_{2}\right|}{2} \\
& =(n-1)(|U|-1)-\binom{\left|U_{2}\right|}{2}
\end{aligned}
$$

Our assumptions imply that $|U| \leqslant 2 n / 3+\gamma n$ and $\left|U_{2}\right| \geqslant 2 \gamma^{\prime} n$. As a result,

$$
\operatorname{deg}\left(v_{0}\right)+\operatorname{deg}(u) \leqslant(n-1)\left(\frac{2}{3} n+\gamma n-1\right)-\binom{2 \gamma^{\prime} n}{2}<\frac{2}{3} n^{2}-\varepsilon n^{2}
$$

because $\varepsilon \ll \gamma \ll \gamma^{\prime}$ and n is sufficiently large. This contradicts our assumption on $\sigma_{2}(H)$.

Fix $u_{1} \neq u_{2} \in U_{2}$ and $v_{0} \in W_{2}$. Trivially $\operatorname{deg}(w) \leqslant\binom{|U|}{2}$ for any vertex $w \in W$ and $\operatorname{deg}(u) \leqslant\binom{|U|-1}{2}+|W|(|U|-1)$ for any vertex $u \in U$. Furthermore, for any two distinct edges $e_{1}, e_{2} \in M$, we observe that at least one triple of type $U U W$ with one vertex from each of e_{1} and e_{2} and one vertex from $\left\{u_{1}, u_{2}, v_{0}\right\}$ is not an edge - otherwise there is a matching M_{3} of size three on $e_{1} \cup e_{2} \cup\left\{u_{1}, u_{2}, v_{0}\right\}$ and $M_{3} \cup M \backslash\left\{e_{1}, e_{2}\right\}$ is thus a matching larger than M. By Claim $8,|M| \geqslant n / 3-\gamma^{\prime} n$. Thus,

$$
\operatorname{deg}\left(u_{1}\right)+\operatorname{deg}\left(u_{2}\right)+\operatorname{deg}\left(v_{0}\right) \leqslant 2\left(\binom{|U|-1}{2}+|W|(U \mid-1)\right)+\binom{|U|}{2}-\binom{n / 3-\gamma^{\prime} n}{2}
$$

On the other hand, since $|W|>\left(\frac{1}{3}-\gamma\right) n \geqslant n / 4$, Claim 3 implies that u_{i} is adjacent to some vertex in W for $i=1,2$. We know that v_{0} is adjacent to some vertex in U. Therefore, $\operatorname{deg}\left(u_{i}\right)>\left(2 n^{2} / 3-\varepsilon n^{2}\right)-\binom{|U|}{2}$ for $i=1,2$, and $\operatorname{deg}\left(v_{0}\right)>\left(2 n^{2} / 3-\varepsilon n^{2}\right)-$ $\left(\binom{|U|-1}{2}+|W|(|U|-1)\right)$. It follows that

$$
\operatorname{deg}\left(u_{1}\right)+\operatorname{deg}\left(u_{2}\right)+\operatorname{deg}\left(v_{0}\right)>3\left(\frac{2 n^{2}}{3}-\varepsilon n^{2}\right)-2\binom{|U|}{2}-\binom{|U|-1}{2}-|W|(|U|-1) .
$$

The upper and lower bounds for $\operatorname{deg}\left(u_{1}\right)+\operatorname{deg}\left(u_{2}\right)+\operatorname{deg}\left(v_{0}\right)$ together imply that

$$
\begin{gathered}
3\left(\binom{|U|-1}{2}+|W|(|U|-1)+\binom{|U|}{2}\right)-\binom{n / 3-\gamma^{\prime} n}{2}>3\left(\frac{2 n^{2}}{3}-\varepsilon n^{2}\right) \\
\text { or }(|U|-1)(n-1)-\frac{1}{3}\binom{n / 3-\gamma^{\prime} n}{2}>\frac{2 n^{2}}{3}-\varepsilon n^{2}
\end{gathered}
$$

which is impossible because $|U| \leqslant 2 n / 3+\gamma n, 0<\varepsilon \ll \gamma \ll \gamma^{\prime} \ll 1$ and n is sufficiently large. This completes the proof of Lemma 4.

4 Proof of Theorem 2

Choose a matching M such that (i) M covers all the vertices of W; (ii) subject to (i), $|M|$ is the largest. Lemma 4 implies that such a matching exists. Let $M_{1}=\{e \in M: e \cap W \neq \emptyset\}$, $M_{2}=M \backslash M_{1}$, and $U_{3}=V(H) \backslash V(M)$. We have $\left|M_{1}\right|=|W|,\left|M_{2}\right|=|M|-|W|$, $\left|U_{3}\right|=n-3|M|$.

Suppose to the contrary, that $|M| \leqslant n / 3-1$. Fix three vertices u_{1}, u_{2}, u_{3} of U_{3}. We distinguish the following two cases.

Case 1: $|M| \leqslant n / 3-\eta n$.
Trivially, for every $i \in\{1,2,3\}$, there are at most $3|M|$ edges in H containing u_{i} and two vertices from the same edge of M. For any distinct e_{1}, e_{2} from M, we claim that

$$
\begin{equation*}
\sum_{i=1}^{3}\left|L_{u_{i}}\left(e_{1}, e_{2}\right)\right| \leqslant 18 \tag{3}
\end{equation*}
$$

Indeed, let H_{1} be the 3 -partite subgraph of H induced on three parts $\left\{u_{1}, u_{2}, u_{3}\right\}, e_{1}$, and e_{2}. We observe that H_{1} does not contain a perfect matching - otherwise, letting M_{1} be a perfect matching of $H_{1},\left(M \backslash\left\{e_{1}, e_{2}\right\}\right) \cup M_{1}$ is a larger matching than M, a contradiction. Apply Lemma 5 with $n=k=s=3$, we obtain that $\left|E\left(H_{1}\right)\right| \leqslant 18$. Therefore $\sum_{i=1}^{3}\left|L_{u_{i}}\left(e_{1}, e_{2}\right)\right| \leqslant 18$.

For any $e \in M_{1}$, we claim that

$$
\sum_{i=1}^{3}\left|L_{u_{i}}\left(e, U_{3}\right)\right| \leqslant 6\left(\left|U_{3}\right|-1\right)
$$

Indeed, assume $e=\left\{v_{1}, v_{2}, v_{3}\right\} \in M_{1}$ with $v_{1} \in W$. Apply Lemma 6 with $A=\left\{u_{1}, u_{2}, u_{3}\right\}$, $V=U_{3}$, and $G_{i}=\left(U_{3}, L_{v_{i}}\left(U_{3}\right)\right)$ for $i=1,2,3$. Since $|M| \leqslant n / 3-4$, we have $|B|=$ $\left|U_{3}\right|-3 \geqslant 2$. By the maximality of M, no edge of G_{1} is disjoint from an edge of G_{2} or G_{3}. By Lemma 6, $\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 6\left(\left|U_{3}\right|-1\right)$. Hence $\sum_{i=1}^{3}\left|L_{u_{i}}\left(e, U_{3}\right)\right|=$ $\sum_{i=1}^{3} \sum_{j=1}^{3} \operatorname{deg}_{G_{i}}\left(u_{j}\right) \leqslant 6\left(\left|U_{3}\right|-1\right)$.

Similarly, for any $e \in M_{2}$, we can apply Lemma 7 to obtain that

$$
\sum_{i=1}^{3}\left|L_{u_{i}}\left(e, U_{3}\right)\right| \leqslant 3\left(\left|U_{3}\right|+1\right)
$$

Putting these bounds together gives

$$
\begin{aligned}
\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right) & \leqslant 18\binom{|M|}{2}+9|M|+\sum_{i=1}^{3}\left|L_{u_{i}}\left(V\left(M_{1}\right), U_{3}\right)\right|+\sum_{i=1}^{3}\left|L_{u_{i}}\left(V\left(M_{2}\right), U_{3}\right)\right| \\
& \leqslant 18\binom{|M|}{2}+9|M|+6\left|M_{1}\right|\left(\left|U_{3}\right|-1\right)+3\left|M_{2}\right|\left(\left|U_{3}\right|+1\right)
\end{aligned}
$$

Since $\left|M_{1}\right|=|W|,\left|M_{2}\right|=|M|-|W|,\left|U_{3}\right|=n-3|M|$, we derive that

$$
\begin{aligned}
\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right) & \leqslant 18\binom{|M|}{2}+9|M|+6|W|(n-3|M|-1)+3(|M|-|W|)(n-3|M|+1) \\
& =(3 n-9|W|+3)|M|+3|W| n-9|W|
\end{aligned}
$$

Furthermore, $3 n-9|W|+3>0$ and $|M| \leqslant n / 3-\eta n$ implies that

$$
\begin{align*}
\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right) & \leqslant(3 n-9|W|+3)\left(\frac{n}{3}-\eta n\right)+3|W| n-9|W| \\
& =(9 \eta n-9)|W|+(1-3 \eta) n^{2}+(1-3 \eta) n \tag{4}
\end{align*}
$$

If $|W| \leqslant n / 4$, from (4), we have

$$
\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right) \leqslant(9 \eta n-9) \frac{n}{4}+(1-3 \eta) n^{2}+(1-3 \eta) n=\left(1-\frac{3}{4} \eta\right) n^{2}-\left(3 \eta+\frac{5}{4}\right) n
$$

which contradicts the condition $\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right) \geqslant 3\left(\frac{n^{2}}{3}-\frac{\varepsilon n^{2}}{2}\right)$ because $u_{i} \in U_{3}$ for $i \in[3]$ and $\varepsilon \ll \eta$.

If $|W|>n / 4$, Claim 3 implies that u_{i} is adjacent to one vertex of $W, i=1,2,3$. Furthermore, $\operatorname{deg}(w) \leqslant\binom{|U|}{2}$ for $w \in W$. So

$$
\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right)>3\left(\frac{2 n^{2}}{3}-\varepsilon n^{2}-\binom{|U|}{2}\right)=3\left(\frac{2 n^{2}}{3}-\varepsilon n^{2}-\binom{n-|W|}{2}\right)
$$

The upper and lower bounds for $\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right)$ together imply that

$$
(9 \eta n-9)|W|+(1-3 \eta) n^{2}+(1-3 \eta) n+3\binom{n-|W|}{2}>3\left(\frac{2 n^{2}}{3}-\varepsilon n^{2}\right)
$$

which is a contradiction because $|W|>n / 4,0<\varepsilon \ll \eta \ll 1$ and n is sufficiently large.
Case 2: $|M|>n / 3-\eta n$.
If $|M|=n / 3-1$, then $\left|U_{3}\right|=3$ and we can not apply Lemmas 6 and 7. Fortunately, when $|M|>n / 3-\eta n$, Lemma 5 suffices for our proof.

Let $W^{\prime}=\left\{v \in W: \operatorname{deg}(v) \leqslant(5 / 18+\tau) n^{2}\right\}$. Let M^{\prime} be the sub-matching of M covering every vertex of W^{\prime}. If $\left|W^{\prime}\right| \leqslant \rho n$, we claim that $\operatorname{deg}_{H^{\prime}}(u) \geqslant\left(\frac{5}{9}+\gamma\right)\binom{n}{2}$ for every vertex $u \in V\left(H^{\prime}\right)$, where $H^{\prime}:=H\left[V \backslash V\left(M^{\prime}\right)\right]$. Indeed, from the definition of W^{\prime}, $\operatorname{deg}_{H}(u)>(5 / 18+\tau) n^{2}$ for every vertex $u \in V\left(H^{\prime}\right)$. Hence,

$$
\operatorname{deg}_{H^{\prime}}(u) \geqslant \operatorname{deg}_{H}(u)-3 n\left|W^{\prime}\right|>\left(\frac{5}{18}+\tau\right) n^{2}-3 n\left|W^{\prime}\right|
$$

Since $\left|W^{\prime}\right| \leqslant \rho n, 0<\gamma \ll \rho \ll \tau \ll 1$ and n is sufficiently large, we have

$$
\operatorname{deg}_{H^{\prime}}(u)>\left(\frac{5}{18}+\tau\right) n^{2}-3 \rho n^{2}>\left(\frac{5}{9}+\gamma\right)\binom{n}{2} .
$$

In addition, n is divisible by 3 , so $\left|V\left(H^{\prime}\right)\right|$ is divisible by 3 . (1) implies that H^{\prime} contains a perfect matching $M^{\prime \prime}$. Now $M^{\prime} \cup M^{\prime \prime}$ is a perfect matching of H.

Therefore, we assume that $\left|W^{\prime}\right| \geqslant \rho n$ in the rest of the proof. If one vertex of u_{1}, u_{2}, u_{3}, say, u_{1}, is adjacent to one vertex in W^{\prime}, the definition of W^{\prime} implies that $\operatorname{deg}\left(u_{1}\right)>2 n^{2} / 3-\varepsilon n^{2}-\left(\frac{5}{18}+\tau\right) n^{2}$. Recall that $\operatorname{deg}\left(u_{i}\right)>n^{2} / 3-\varepsilon n^{2} / 2$ for $i=2,3$. Thus

$$
\begin{equation*}
\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right)>\left(\frac{4}{3} n^{2}-2 \varepsilon n^{2}\right)-\left(\frac{5}{18}+\tau\right) n^{2}=\left(\frac{19}{18}-2 \varepsilon-\tau\right) n^{2} \tag{5}
\end{equation*}
$$

On the other hand,

$$
\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right) \leqslant 18\binom{|M|}{2}+9|M|+9|M|(n-3|M|-1)=9|M|(n-2|M|-1)
$$

where, by (3), $18\binom{|M|}{2}$ bounds the number of edges intersecting two members of M, $9|M|$ bounds the number of edges with two vertices in the same member of M, and $9|M|(n-3|M|-1)$ bounds the number of edges with one vertex in $V(M)$ and an additional vertex in U_{3} (besides u_{i}). Since the function $f(x):=9 x(n-2 x-1)$ decreases when $x \geqslant \frac{n-1}{4}$, we have $f(x) \leqslant f\left(\frac{n}{3}-\eta n\right)$ for all $x \geqslant \frac{n}{3}-\eta n$. It follows that

$$
\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right) \leqslant 9\left(\frac{n}{3}-\eta n\right)\left(n-2\left(\frac{n}{3}-\eta n\right)-1\right)=\left(1+3 \eta-18 \eta^{2}\right) n^{2}-(3-9 \eta) n
$$

Note that $\left(1+3 \eta-18 \eta^{2}\right) n^{2}-(3-9 \eta) n<\left(\frac{19}{18}-2 \varepsilon-\tau\right) n^{2}$ because $0<\varepsilon \ll \eta \ll \tau \ll 1$ and n is sufficiently large. We thus obtain a contradiction with (5).

We thus assume that none of u_{1}, u_{2}, u_{3} is adjacent to any vertex in W^{\prime}. It follows that

$$
\begin{aligned}
\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right) \leqslant & 18\binom{|M|-\left|M^{\prime}\right|}{2}+9\left(|M|-\left|M^{\prime}\right|\right)+9\left(|M|-\left|M^{\prime}\right|\right)(n-3|M|-1) \\
& +3\binom{2\left|M^{\prime}\right|}{2}+3\left(2\left|M^{\prime}\right|\right)\left(n-3\left|M^{\prime}\right|-1\right) \\
= & -3\left(\left|M^{\prime}\right|+\frac{1}{2} n-\frac{3}{2}|M|\right)^{2}-\frac{45}{4}|M|^{2}+\frac{9}{2} n|M|-9|M|+\frac{3}{4} n^{2}
\end{aligned}
$$

As before, $18\binom{|M|-\left|M^{\prime}\right|}{2}$ bounds the number of edges intersecting two members of $M \backslash M^{\prime}$, $9\left(|M|-\left|M^{\prime}\right|\right)$ for those with two vertices in the same member of $M \backslash M^{\prime}$, and $9(|M|-$ $\left.\left|M^{\prime}\right|\right)(n-3|M|-1)$ for those with one vertex in $V\left(M \backslash M^{\prime}\right)$ and an additional vertex in U_{3} (besides u_{i}). In addition, $3\binom{2\left|M^{\prime}\right|}{2}$ bounds the number of edges with two vertices in $V\left(M^{\prime}\right) \backslash W^{\prime}$, and $3\left(2\left|M^{\prime}\right|\right)\left(n-3\left|M^{\prime}\right|-1\right)$ for those with one vertex in $V\left(M^{\prime}\right) \backslash W^{\prime}$ and
one vertex in $V(H) \backslash V\left(M^{\prime}\right)$. Since $-n / 2+3|M| / 2<0$ and $\left|M^{\prime}\right|=\left|W^{\prime}\right| \geqslant \rho n$,

$$
\begin{aligned}
\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right) & \leqslant-3\left(\rho n+\frac{1}{2} n-\frac{3}{2}|M|\right)^{2}-\frac{45}{4}|M|^{2}+\frac{9}{2} n|M|-9|M|+\frac{3}{4} n^{2} \\
& =-18\left(|M|-\frac{1}{4} n-\frac{1}{4} \rho n+\frac{1}{4}\right)^{2}+\left(\frac{9}{8}-\frac{15}{8} \rho^{2}-\frac{3}{4} \rho\right) n^{2}-\frac{9}{4} \rho n-\frac{9}{4} n+\frac{9}{8} .
\end{aligned}
$$

Recall that $0<\rho \ll 1$, so $\frac{1}{4} n+\frac{1}{4} \rho n-\frac{1}{4}<\frac{n}{3}-\eta n$. Furthermore, $|M|>\frac{n}{3}-\eta n$, hence we have

$$
\begin{aligned}
\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right) \leqslant & -18\left(\frac{n}{3}-\eta n-\frac{1}{4} n-\frac{1}{4} \rho n+\frac{1}{4}\right)^{2}+\left(\frac{9}{8}-\frac{15}{8} \rho^{2}-\frac{3}{4} \rho\right) n^{2} \\
& -\frac{9}{4} \rho n-\frac{9}{4} n+\frac{9}{8} \\
= & \left(1-3 \rho^{2}-9 \eta \rho+3 \eta-18 \eta^{2}\right) n^{2}+(9 \eta-3) n
\end{aligned}
$$

which contradicts the condition $\sum_{i=1}^{3} \operatorname{deg}\left(u_{i}\right) \geqslant 3\left(n^{2} / 3-\varepsilon n^{2} / 2\right)$ because $0<\varepsilon \ll \eta \ll$ $\rho \ll 1$ and n is sufficiently large. This completes the proof of Theorem 2.

5 Concluding remarks

In this paper we consider the minimum degree sum of two adjacent vertices that guarantees a perfect matching in 3 -graphs. Given $3 \leqslant k<n$ and $2 \leqslant s \leqslant n / k$, can we generalize this problem to k-graphs not containing a matching of size s ? For $1 \leqslant \ell \leqslant k$, let $H_{n, k, s}^{\ell}$ denote the k-graph whose vertex set is partitioned into two sets S and T of size $n-s \ell+1$ and $s \ell-1$, respectively, and whose edge set consists of all the k-sets with at least ℓ vertices in T. It is clear that $H_{n, k, s}^{\ell}$ contains no matching of size s. A well-known conjecture of Erdős [3] says that $H_{n, k, s}^{1}$ or $H_{n, k, s}^{k}$ is the densest k-graph on n vertices not containing a matching of size s. It is reasonable to speculate that the largest $\sigma_{2}(H)$ among all k graphs H on n vertices not containing a matching of size s is also attained by $H_{n, k, s}^{\ell}$. Note that $H_{n, k, s}^{k}$ is a complete k-graph of order $s k-1$ together with $n-s k+1$ isolated vertices and thus $\sigma_{2}\left(H_{n, k, s}^{k}\right)=2\binom{s k-2}{k-1}$. When $1 \leqslant \ell \leqslant k-2$, any two vertices of $H_{n, k, s}^{\ell}$ are adjacent and thus $\sigma_{2}\left(H_{n, k, s}^{\ell}\right)=2 \delta_{1}\left(H_{n, k, s}^{\ell}\right)$. When $\ell=k-1$, it is easy to see that $\sigma_{2}\left(H_{n, k, s}^{k-1}\right)=2\binom{s(k-1)-2}{k-1}+(n-s(k-1)+2)\binom{s(k-1)-2}{k-2}$.

Assume $s=n / k$. Since $\delta_{1}\left(H_{n, k, n / k}^{\ell}\right) \leqslant \delta_{1}\left(H_{n, k, n / k}^{1}\right)$ for $1 \leqslant \ell \leqslant k-2$ and $H_{n, k, n / k}^{k}$ contains isolated vertices, we only need to compare $\sigma_{2}\left(H_{n, k, n / k}^{1}\right)$ and $\sigma_{2}\left(H_{n, k, n / k}^{k-1}\right)$. For sufficiently large n, it is easy to see that $\sigma_{2}\left(H_{n, k, n / k}^{1}\right)<\sigma_{2}\left(H_{n, k, n / k}^{k-1}\right)$ when $k \leqslant 6$ and $\sigma_{2}\left(H_{n, k, n / k}^{1}\right)>\sigma_{2}\left(H_{n, k, n / k}^{k-1}\right)$ when $k \geqslant 7$.
Problem 9. Does the following hold for any sufficiently large n that is divisible by k ? Let H be a k-graph of order n without isolated vertex. If $k \leqslant 6$ and $\sigma_{2}(H)>\sigma_{2}\left(H_{n, k, n / k}^{k-1}\right)$ or $k \geqslant 7$ and $\sigma_{2}(H)>\sigma_{2}\left(H_{n, k, n / k}^{1}\right)$, then H contains a perfect matching.

Now assume $k=3$ and $2 \leqslant s \leqslant n / 3$. Note that

$$
\begin{aligned}
& \sigma_{2}\left(H_{n, 3, s}^{3}\right)=2\binom{3 s-2}{2}, \quad \sigma_{2}\left(H_{n, 3, s}^{1}\right)=2\left(\binom{n-1}{2}-\binom{n-s}{2}\right), \text { and } \\
& \sigma_{2}\left(H_{n, 3, s}^{2}\right)=\binom{2 s-2}{2}+(n-2 s+1)\binom{2 s-2}{1}+\binom{2 s-1}{2}=(2 s-2)(n-1)
\end{aligned}
$$

It is easy to see that $\sigma_{2}\left(H_{n, 3, s}^{2}\right)>\sigma_{2}\left(H_{n, 3, s}^{1}\right)$. Zhang and $\mathrm{Lu}[23]$ made the following conjecture.
Conjecture 10. [23] There exists $n_{0} \in \mathbb{N}$ such that the following holds. Suppose that H is a 3 -graph of order $n \geqslant n_{0}$ without isolated vertex. If $\sigma_{2}(H)>2\left(\binom{n-1}{2}-\binom{n-s}{2}\right)$ and $n \geqslant 3 s$, then H contains no matching of size s if and only if H is a subgraph of $H_{n, 3, s}^{2}$.

Zhang and $\mathrm{Lu}[23]$ showed that the conjecture holds when $n \geqslant 9 s^{2}$. Later the same authors [24] proved the conjecture for $n \geqslant 13 s$. If Conjecture 10 is true, then it implies the following theorem of Kühn, Osthus and Treglown [10].
Theorem 11. [10] There exists $n_{0} \in \mathbb{N}$ such that if H is a 3 -graph of order $n \geqslant n_{0}$ with $\delta_{1}(H) \geqslant\binom{ n-1}{2}-\binom{n-s}{2}+1$ and $n \geqslant 3 s$, then H contains a matching of size s.

Our Theorem 1 suggests a weaker conjecture than Conjecture 10.
Conjecture 12. There exists $n_{1} \in \mathbb{N}$ such that the following holds. Suppose that H is a 3 -graph of order $n \geqslant n_{1}$ without isolated vertex. If $\sigma_{2}(H)>\sigma_{2}\left(H_{n, 3, s}^{2}\right)$ and $n \geqslant 3 s$, then H contains a matching of size s.

On the other hand, we may allow a 3 -graph to contain isolated vertices. Note that $\sigma_{2}\left(H_{n, 3, s}^{2}\right) \geqslant \sigma_{2}\left(H_{n, 3, s}^{3}\right)$ if and only if $s \leqslant(2 n+4) / 9$. We make the following conjecture.
Conjecture 13. There exists $n_{2} \in \mathbb{N}$ such that the following holds. Suppose that H is a 3 -graph of order $n \geqslant n_{2}$ and $2 \leqslant s \leqslant n / 3$. If $\sigma_{2}(H)>\sigma_{2}\left(H_{n, 3, s}^{2}\right)$ and $s \leqslant(2 n+4) / 9$ or $\sigma_{2}(H)>\sigma_{2}\left(H_{n, 3, s}^{3}\right)$ and $s>(2 n+4) / 9$, then H contains a matching of size s.

In fact, we can derive Conjecture 13 from Conjecture 12 as follows. Let $n_{2}=$ $\max \left\{\binom{n_{1}}{2}, \frac{3}{2} n_{1}\right\}$ and H be a 3 -graph of order $n \geqslant n_{2}$ satisfying the assumption of Conjecture 13. If H contains no isolated vertex, then H contains a matching of size s by Conjecture 12. Otherwise, let W be the set of isolated vertices in H. Let $H^{\prime}=H\left[V(H) \backslash W^{\prime}\right]$ and $n^{\prime}=n-|W|$. Then H^{\prime} is a 3 -graph without isolated vertex and $\sigma_{2}\left(H^{\prime}\right)=\sigma_{2}(H)$. When $2 \leqslant s \leqslant(2 n+4) / 9$, we have $\sigma_{2}\left(H^{\prime}\right)>\sigma_{2}\left(H_{n, 3, s}^{2}\right)>\sigma_{2}\left(H_{n^{\prime}, 3, s}^{2}\right)$. In addition, since $n \geqslant\binom{ n_{1}}{2}$ and

$$
2\binom{n^{\prime}-1}{2} \geqslant \sigma_{2}\left(H^{\prime}\right)>(2 s-2)(n-1) \geqslant 2(n-1)
$$

we have $n^{\prime} \geqslant n_{1}$. When $s>(2 n+4) / 9$, we have $\sigma_{2}\left(H^{\prime}\right)>\sigma_{2}\left(H_{n, 3, s}^{3}\right)>\sigma_{2}\left(H_{n, 3, s}^{2}\right)>$ $\sigma_{2}\left(H_{n^{\prime}, 3, s}^{2}\right)$. In addition, since $n \geqslant 3 n_{1} / 2$ and

$$
2\binom{n^{\prime}-1}{2} \geqslant \sigma_{2}\left(H^{\prime}\right)>2\binom{3 s-2}{2}>2\binom{(n-1) / 3}{2}
$$

we have $n^{\prime} \geqslant n_{1}$. In both cases, Conjecture 12 implies that H^{\prime} contains a matching of size s.

References

[1] R. Aharoni and D. Howard, A rainbow r-partite version of the Erdős-Ko-Rado theorem, Combin. Probab. Comput. 26 (2017), 321-337.
[2] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, and B. Sudakov. Large matchings in uniform hypergraphs and the conjectures of Erdős and Samuels, J. Combin. Theory Ser. A 119 (2012), 1200-1215.
[3] P. Erdős, A problem on independent r-tuples, Ann. Univ. Sci. Budapest. Eőtvős Sect. Math. 8 (1965), 93-95.
[4] H. Hàn, Y. Person, and M. Schacht, On perfect matchings in uniform hypergraphs with large minimum vertex degree, SIAM J. Discrete Math. 23 (2009), 732-748.
[5] J. Han, Perfect matchings in hypergraphs and the Erdős matching conjecture, SIAM J. Discrete Math. 30 (2016), 1351-1357.
[6] I. Khan, Perfect matching in 3-uniform hypergraphs with large vertex degree, SIAM J. Discrete Math. 27 (2013), 1021-1039.
[7] I. Khan, Perfect matchings in 4-uniform hypergraphs, J. Combin. Theory Ser. B 116 (2016), 333-366.
[8] D. Kühn and D. Osthus, Matchings in hypergraphs of large minimum degree, J. Graph Theory 51 (2006), 269-280.
[9] D. Kühn and D. Osthus, Embedding large subgraphs into dense graphs. In Surveys in combinatorics 2009, volume 365 of London Math. Soc. Lecture Note Ser., pages 137-167. Cambridge Univ. Press, Cambridge, 2009.
[10] D. Kühn, D. Osthus and A. Treglown, Matchings in 3-uniform hypergaphs, J. Combin. Theory Ser. B 103 (2013), 291-305.
[11] D. Kühn, D. Osthus and T. Townsend, Fractional and integer matchings in uniform hypergraphs, European J. Combin. 38 (2014), 83-96.
[12] K. Markström and A. Ruciński, Perfect matchings (and Hamilton cycles) in hypergraphs with large degrees, European J. Combin. 32 (2011), 677-687.
[13] O. Pikhurko, Perfect matchings and K_{4}^{3}-tilings in hypergraphs of large codegree, Graphs Combin. 24 (2008), 391-404.
[14] V. Rödl and A. Ruciński, Dirac-type questions for hypergraphs - a survey (or more problems for Endre to solve), An Irregular Mind, Bolyai Soc. Math. Studies 21 (2010), 561-590.
[15] V. Rödl, A. Ruciński, and E. Szemerédi, Perfect matchings in uniform hypergraphs with large minimum degree, European J. Combin. 27 (2006), 1333-1349.
[16] V. Rödl, A. Ruciński, and E. Szemerédi, An approximate Dirac-type theorem for k-uniform hypergraphs, Combinatorica, 28 (2008), 229-260.
[17] V. Rödl, A. Ruciński, and E. Szemerédi, Perfect matchings in large uniform hypergraphs with large minimum collective degree, J. Combin. Theory Ser. A 116 (2009), 613-636.
[18] Y. Tang and G. Yan, An approximate Ore-type result for tight hamilton cycles in uniform hypergraphs, Discrete Math. 340 (2017), 1528-1534.
[19] A. Treglown and Y. Zhao, Exact minimum degree thresholds for perfect matchings in uniform hypergraphs, J. Combin. Theory Ser. A 119 (2012), 1500-1522.
[20] A. Treglown and Y. Zhao, Exact minimum degree thresholds for perfect matchings in uniform hypergraphs II, J. Combin. Theory Ser. A 120 (2013), 1463-1482.
[21] A. Treglown and Y. Zhao, A note on perfect matchings in uniform hypergraphs, Electron. J. Combin. 23 (2016), 1-16.
[22] Y. Zhang and M. Lu, Some Ore-type results for matching and perfect matching in k-uniform hypergraphs, Acta. Math. Sin. - English Ser. (2018), doi:10.1007/s10114-018-7260-1.
[23] Y. Zhang and M. Lu, d-matching in 3-uniform hypergraphs, Discrete Math. 341 (2018), 748-758.
[24] Y. Zhang and M. Lu, Matching in 3-uniform hypergraphs, submitted.
[25] Y. Zhao, Recent advances on dirac-type problems for hypergraphs. In Recent Trends in Combinatorics, volume 159 of the IMA Volumes in Mathematics and its Applications. Springer, New York, 2016.

[^0]: *Partially supported by NSF grants DMS-1400073 and DMS-1700622.
 ${ }^{\dagger}$ Supported by the National Natural Science Foundation of China (Grant 11771247).

[^1]: ${ }^{1}$ In fact, due to the absorbing method, we only need to verify the extremal case.

