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Abstract. In 1975 Bollobás, Erdős, and Szemerédi asked the following question: given positive
integers n, t, r with 2 ≤ t ≤ r − 1, what is the largest minimum degree δ(G) among all r-partite
graphs G with parts of size n and which do not contain a copy of Kt+1? The r = t + 1 case has
attracted a lot of attention and was fully resolved by Haxell and Szabó, and Szabó and Tardos in
2006. In this paper we investigate the r > t+ 1 case of the problem, which has remained dormant
for over forty years. We resolve the problem exactly in the case when r ≡ −1 (mod t), and up to
an additive constant for many other cases, including when r ≥ (3t−1)(t−1). Our approach utilizes
a connection to the related problem of determining the maximum of the minimum degrees among
the family of balanced r-partite rn-vertex graphs of chromatic number at most t.

1. Introduction

The foundation stone of extremal graph theory is Turán’s theorem from 1941 [14], which states
that the Turán graph Tt(n) (the complete t-partite graph on n vertices with parts of size

⌈
n
t

⌉
or⌊

n
t

⌋
) has the most edges among all Kt+1-free graphs on n vertices. Erdős [7] and Bollobás, Erdős,

and Szemerédi [5] asked the following Turán-type problem for multipartite graphs.

Problem 1.1. Given integers n and 2 ≤ t ≤ r−1, what is the largest minimum degree δ(G) among
all r-partite graphs G with parts of size n and which do not contain a copy of Kt+1?

Let f(n, r, t + 1) denote the answer to Problem 1.1. At a meeting in 1972, Erdős conjectured
that f(n, r, r) = (r − 2)n, see [7, Problem 2, 353–354]. Graver gave a short and elegant proof
for r = 3 but Seymour constructed counterexamples for r ≥ 4, see [5]. The study of f(n, r, r)
(mostly in its complementary form concerning independent transversals) has been a central topic
in Combinatorics (see, e.g., [1, 9, 10, 11, 13]) due to its applications in graph arboricity, list coloring,
and strong chromatic numbers. The problem of determining f(n, r, r) was finally settled by Haxell
and Szabó [9], and Szabó and Tardos [13]; indeed, for every n ∈ N and even r ≥ 2,

f(n, r + 1, r + 1)− n = f(n, r, r) = (r − 1)n−
⌈

rn

2(r − 1)

⌉
.(1.1)

In contrast, little is known about the value of f(n, r, t+1) for r > t+1. In 1975 Bollobás, Erdős,
and Szemerédi [5] stated Problem 1.1 explicitly and noted that Turán’s theorem easily implies that

f(n, r, t+ 1) =
(
r − r

t

)
n when t divides r.(1.2)

Indeed, for any r ≥ t+ 1, Turan’s theorem implies that every Kt+1-free graph G on rn vertices has
at most (1− 1/t)(rn)2/2 edges, and thus δ(G) ≤ (1− 1/t)rn. On the other hand, we may let G be
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the complete t-partite graph on rn vertices with parts of size
⌈
r
t

⌉
n or

⌊
r
t

⌋
n (in other words, G is

an n-vertex blow-up of the Turán graph Tt(r)). Then(
r −

⌈r
t

⌉)
n ≤ f(n, r, t+ 1) ≤

(
r − r

t

)
n.(1.3)

Extending Graver’s work on f(n, 3, 3), Bollobás, Erdős, and Straus [4] answered Problem 1.1 for
all (not necessarily balanced) r-partite graphs G when t = 2. Their result implies that for every
n ∈ N and r ≥ 3,

f(n, r, 3) = br/2cn.

The aim of this paper is to rebuild momentum on Problem 1.1 for r > t + 1 ≥ 4. For any such
choice of r and t, our results either resolve Problem 1.1 or provide a lower bound on f(n, r, t+ 1)
that improves that given in (1.3). In particular, in the case that r ≡ −1 (mod t), our first result
shows that the lower bound in (1.3) is tight.

Theorem 1.2. Given integers n ≥ 1, m ≥ 2, and t ≥ 3, let r = mt − 1. Then f(n, r, t + 1) =
(r − dr/te)n.

It turns out that the lower bound in (1.3) is best possible only if r ≡ 0,−1 (mod t); in all other
cases we give constructions that improve on this lower bound (see Section 4). Moreover, in many
such cases, including when r ≥ (3t−1)(t−1), we determine f(n, r, t+1) up to an additive constant.
Theorem 1.3. Given integers n ≥ 1,m ≥ 2, t ≥ 3, let r = mt − a with 2 ≤ a ≤ min{m, t − 1}.
Suppose

(i) r ≥ a(3t− 1) or
(ii) r

t(3t−1)(m−1) −
a

t(m−1) + a−1
mt−2 ≥

1
n .

Then

(r − 1)n− (m− 1)

⌈
(r − 1)n

mt− 2

⌉
≤ f(n, r, t+ 1) ≤ (r − 1)n−

⌈
(m− 1)(r − 1)n

mt− 2

⌉
.

Thus, up to an additive constant, (1.2), Theorems 1.2 and 1.3 together resolve Problem 1.1
whenever r ≥ (3t − 1)(t − 1). In particular, if r ≥ (3t − 1)(t − 1), r 6≡ 0 (mod t), and dr/tet − 2
divides n, then

f(n, r, t+ 1) = (r − 1)n− dr/te − 1

dr/tet− 2
(r − 1)n.

Combining the last two theorems with (1.2), we essentially determine f(n, r, 4) for all r 6= 7.
Corollary 1.4. Let r ≥ 5 with r 6= 7. Suppose n ≥ 60 if r = 10; n ≥ 22 if r = 13, and n ∈ N
otherwise. Then

f(n, r, 4) =

{
(r − br/3c) r−1

r n− cr if r ≡ 1 (mod 3),

(r − dr/3e)n otherwise,

where 0 ≤ cr ≤ r/3.

The proof of Theorem 1.3 applies a result of Andrásfai, Erdős, and Sós [2]. In particular,
this result allows us conclude that, if r is large compared to t, then f(n, r, t + 1) is equal to the
maximum of the minimum degrees among the family of balanced r-partite rn-vertex graphs of
chromatic number at most t. This approach is also utilised in the proof of Theorem 1.2 when
m ≥ 3. Interestingly, this approach breaks down when m = 2, so we require a separate direct
argument in this case (which hinges on the fact that r = 2t− 1).

There are two extremal problems closely related to Problem 1.1. First, a multipartite Turán
theorem has been known since the 1970s. Bollobás, Erdős, and Szemerédi [5] showed that the
n-vertex blow-up of Tt(r) has the most edges among all r-partite Kt+1-free graphs with n vertices
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in each part. In fact, this easily follows from Turán’s theorem and indicates that for multipar-
tite graphs, the minimum degree version, Problem 1.1, is indeed harder than the Turán problem.1

Furthermore, Bollobás, Erdős, and Straus [4] determined the largest size of (not necessarily bal-
anced) r-partite Kt+1-free graphs. Another related problem concerns finding the smallest dtr such
that every r-partite graph whose parts have pairwise edge density greater than dtr contains a copy
of Kt. Bondy, Shen, Thomassé, and Thomassen [6] showed that d3

3 = 0.618..., the golden ratio.
Pfender [12] showed that dtr = (t − 2)/(t − 1) for sufficiently large r; in particular, d3

r = 1/2 for
r ≥ 13.

1.1. Notation. Given a graph G and x ∈ V (G) we write N(x) for the neighbourhood of x in G
and define d(x) := |N(x)| as the degree of x in G. If X ⊆ V (G) we write N(x,X) := N(x) ∩ X
and d(x,X) := |N(x,X)|. We write G[X] for the induced subgraph of G with vertex set X.

Let G be an r-partite graph with parts V1, . . . , Vr. A transversal is a subset S ⊂ V (G) so that
|S ∩ Vi| = 1 for each part Vi of G. A set S ⊂ V (G) is crossing if |S ∩ Vi| ≤ 1 for each part Vi of G.
Thus an independent transversal is simply a crossing independent set of size r. Define Kr(n) to be
the complete r-partite graph where each part has size n.

1.2. Organization of paper. In Section 2 we formally restate Problem 1.1 in its complementary
form and prove Theorem 1.2 for m = 2. In Section 3, we introduce a related parameter δ(n, r, t)
that is equal to f(n, r, t + 1) if r is large compared to t. In Section 4 we give constructions that
improve on the lower bound in (1.3) whenever r 6≡ 0,−1 (mod t). We give an upper bound on
δ(n, r, t) in Section 5 that allows us to easily deduce Theorems 1.2 and 1.3 in Section 6. We finish
the paper with concluding remarks in Section 7.

2. The complementary problem and Proof of Theorem 1.2 for m = 2

In most papers on f(n, r, r), the complementary form of f(n, r, r) was considered, namely, the
smallest ∆(G) among all r-partite graphs G with parts V1, . . . , Vr of size n and without an inde-
pendent transversal. For a couple of our proofs it will also be easier to work in the corresponding
complementary setting also.

Let ∆(n, r, t) := (r − 1)n − f(n, r, t) denote the smallest maximum degree ∆(G) among all r-
partite graphs G with parts V1, . . . , Vr of size n and without a crossing independent set of size t.
Note that (1.3) is equivalent to(r

t
− 1
)
n ≤ ∆(n, r, t+ 1) ≤

(⌈r
t

⌉
− 1
)
n.

We now prove the following lemma, which is the m = 2 case of Theorem 1.2.

Lemma 2.1. For every n ∈ N and t ≥ 3, f(n, 2t− 1, t+ 1) = (2t− 3)n.

Proof. Let r := 2t − 1. By (1.3), it suffices to prove that f(n, 2t − 1, t + 1) ≤ (2t − 3)n. Further,
by considering the complementary problem, it suffices to prove that if G is an r-partite graph with
vertex classes V1, . . . , Vr of size n so that G does not contain a crossing independent set of size t+1,
then ∆(G) ≥ n.

Suppose for a contradiction that ∆(G) < n.

Claim 2.2. For all x ∈ V (G) and i ∈ [r], we have d(x, Vi) < n/(t− 1).

Proof of claim. Suppose the claim is false. Let D := max{d(v, Vi) : v ∈ V (G), i ∈ [r]} ≥ n/(t− 1).
Without loss of generality, we may assume that there exists x1 ∈ V1 such that d(x1, V2) = D. Since
∆(G) < n, there exists x2 ∈ V2 \ N(x1). Furthermore, since ∆(G) < n and r = 2t − 1, we can

1In contrast, Turán’s theorem easily implies that max δ(G) = n− dn/te among all Kt+1-free graphs on n vertices.
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greedily find x3, . . . , xt−1 such that S = {x1, . . . , xt−1} is a crossing independent set.2 Without loss
of generality, assume that xi ∈ Vi for i ∈ [t− 1].

For each i ∈ [t], let Wi consist of all the vertices of Vr+1−i that are not adjacent to any vertex
in S. Set ni := |Wi| and without loss of generality, assume that n1 ≥ n2 ≥ · · · ≥ nt. Let
` := max{i ∈ [t] : ni > 0}. Note that

n1 + · · ·+ n` = n1 + · · ·+ nt =

∣∣∣∣∣∣
⋃

t≤i≤r
Vi \

⋃
j∈[t−1]

N(xj)

∣∣∣∣∣∣
≥ tn− ((t− 1)∆(G)− d(x1, V2)) > n+D.

By averaging, we have

n1 + · · ·+ n`−1 > (`− 1)(n+D)/`.(2.1)

Notice that the `-partite subgraph of G induced by W1, . . . ,W` must be complete (otherwise one
can extend S into a crossing independent set of size t + 1, a contradiction). Hence, there exists
y ∈W` such that

⋃
i∈[`−1]Wi ⊆ N(y). By the definition of D, we deduce that

n1 + · · ·+ n`−1 ≤
∑

i∈[`−1]

d(y, Vr+1−i) ≤ (`− 1)D.

Together with (2.1), this implies that D > n/(`− 1) and so

∆(G) ≥ d(y) ≥ n1 + · · ·+ n`−1 > (`− 1)(n+D)/` ≥ n,

a contradiction. �

Given a crossing independent set S of G, let σ(S) :=
∑

x∈S d(x, VS) where VS is the union of all
Vi that contain a vertex from S. As mentioned in Footnote 2, we can greedily construct a crossing
independent set of size t. Let S be a crossing independent set of size t with σ(S) maximal. Without
loss of generality, S ∩

⋃
i∈[t−1] Vi = ∅.

Consider any (t − 1)-set S′ ⊂ S. By Claim 2.2, there exists a vertex y ∈ V1 that is not
adjacent to any vertex in S′. Note that S′ ∪ {y} is a crossing independent set of size t. Hence
σ(S) ≥ σ(S′ ∪ {y}) ≥ σ(S′) +

∑
x∈S′ d(x, V1). By summing over all (t− 1)-sets S′ ⊂ S, we obtain

that

tσ(S) ≥
∑

S′⊂S : |S′|=t−1

σ(S′) + (t− 1)
∑
x∈S

d(x, V1) = (t− 2)σ(S) + (t− 1)
∑
x∈S

d(x, V1)

≥ (t− 2)σ(S) + (t− 1)n,

where the last inequality follows as every vertex in V1 must be adjacent to at least one vertex in S
(else there exists a crossing independent set of size t+ 1, a contradiction). Thus σ(S) ≥ (t− 1)n/2.

As S ∩
⋃

i∈[t−1] Vi = ∅, then
⋃

i∈[t−1] Vi ⊆
⋃

x∈S N(x) or else there exists a crossing independent

set of size t+ 1, a contradiction. Therefore,

t∆(G) ≥
∑
x∈S

d(x) ≥ σ(S) +

∣∣∣∣∣∣
⋃

i∈[t−1]

Vi

∣∣∣∣∣∣ ≥ (t− 1)n

2
+ (t− 1)n ≥ tn,

implying that ∆(G) ≥ n, a contradiction. �

2We can actually find a crossing independent set of size t. However, considering a crossing independent set of size
t− 1 is crucial to the argument here.
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3. A connection to the parameter δ(n, r, t)

The following problem turns out to be closely related to Problem 1.1. Let G(n, r, t) be the
family of all r-partite graphs G with parts of size n and with chromatic number χ(G) ≤ t. Let
δ(n, r, t) := max{δ(G) : G ∈ G(n, r, t)}. An n-vertex blow-up of the Turán graph Tt(r) is a member
of G(n, r, t). Together with (1.3), this gives(

r −
⌈r
t

⌉)
n ≤ δ(n, r, t) ≤ f(n, r, t+ 1) ≤

(
r − r

t

)
n.(3.1)

Therefore, when t divides r, we have δ(n, r, t) = f(n, r, t+ 1) = (r − r/t)n.
When r is large compared to t, Corollary 3.3 below implies that f(n, r, t+ 1) = δ(n, r, t) as well.

In fact, this is an easy consequence of the following result of Andrásfai, Erdős, and Sós [2].

Theorem 3.1 (Andrásfai, Erdős, and Sós [2]). Let t ≥ 2 and let G be a Kt+1-free graph on N
vertices. If δ(G) > 3t−4

3t−1N , then χ(G) ≤ t.

Corollary 3.2. For r > t ≥ 2, f(n, r, t+ 1) ≤ max
{

3t−4
3t−1(rn), δ(n, r, t)

}
.

Proof. Let G be a Kt+1-free r-partite graph with n vertices in each part. If δ(G) > 3t−4
3t−1(rn), then

χ(G) ≤ t by Theorem 3.1. Thus G ∈ G(n, r, t) and δ(G) ≤ δ(n, r, t). �

By applying (3.1) together with Corollary 3.2 one can conclude that f(n, r, t + 1) = δ(n, r, t)
provided that r ≥ (t− 1)(3t− 1).

Corollary 3.3. Let r > t ≥ 2 and 0 ≤ a ≤ t − 1 so that r ≡ −a (mod t). If r ≥ a(3t − 1) then
f(n, r, t+ 1) = δ(n, r, t).

Proof. (1.2) covers the case when a = 0 so we assume that a ∈ [t− 1]. By Corollary 3.2, it suffices
to show that δ(n, r, t) ≥ 3t−4

3t−1rn. By (3.1), we have

δ(n, r, t) ≥
(
r −

⌈r
t

⌉)
n =

(
r − r + a

t

)
n =

(
r

t(3t− 1)
+

3t− 4

3t− 1
r − a

t

)
n ≥ 3t− 4

3t− 1
rn,

where we use the fact that r ≥ a(3t− 1) in the last inequality. �

4. Lower bound constructions

In this section we give constructions that improve on the lower bound in (1.3) whenever r 6≡ 0,−1
(mod t).

Proposition 4.1. Let r ≥ m, t ≥ 2 be such that m(t− 1) ≤ r ≤ mt− 1. Then there exists a graph

G ∈ G(n, r, t) such that δ(G) = (r − 1)n− (m− 1)
⌈

(r−1)n
mt−2

⌉
. In particular,

f(n, r, t+ 1) ≥ δ(n, r, t) ≥ (r − 1)n− (m− 1)

⌈
(r − 1)n

mt− 2

⌉
.

Proof. When r = mt − 1, the desired bound follows from (3.1). We thus assume r ≤ mt − 2. Let
` := d(r−1)n/(mt−2)e ≤ n. Let K := Kr(n) and let V1, . . . , Vr denote its parts. For i ∈ [t−1], let
Bi := {(i− 1)m+ 1, . . . , im}. So B1, . . . , Bt−1 form an equipartition of [m(t− 1)]. For i ∈ [t− 1],
let Wi ⊂

⋃
j∈Bi

Vj be such that |Wi ∩ Vj | = ` for j ∈ Bi. Let Wt := V (K) \
⋃

i∈[t−1]Wi. Then

|W1| = · · · = |Wt−1| = `m and |Wt| = rn−m(t− 1)`.

Let G′ be the complete t-partite graph with parts W1, . . . ,Wt. We set G := K ∩ G′; that is, G is
the graph on V (K) such that, for x ∈ Vi ∩Wj and x′ ∈ Vi′ ∩Wj′ , we have xx′ ∈ E(G) if and only
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if i 6= i′ and j 6= j′. Clearly χ(G) ≤ χ(G′) ≤ t. If x ∈ Vi with i /∈ [m(t− 1)], then d(x) = rn− |Wt|.
If x ∈ Vi with i ∈ [m(t− 1)], then

d(x) =

{
rn− (n+ |W1| − `) if x /∈Wt,

rn− (n+ |Wt| − (n− `)) if x ∈Wt.

By our choice of `,

δ(G) = (r − 1)n−max{(m− 1)`, (r − 1)n− (m(t− 1)− 1)`}

= (r − 1)n− (m− 1)` = (r − 1)n− (m− 1)

⌈
(r − 1)n

mt− 2

⌉
,

as required. �

Note that the lower bound in Proposition 4.1 improves the lower bound from (1.3) in the case
when r = mt − a with 2 ≤ a ≤ min{m, t − 1}. Indeed, in this case (1.3) gives a lower bound of
(r −m)n while

(r − 1)n− (m− 1)

⌈
(r − 1)n

mt− 2

⌉
> (r − 1)n− (m− 1)

(r − 1)

mt− 2
n− (m− 1)

= (r −m)n+
(a− 1)(m− 1)

mt− 2
n− (m− 1).(4.1)

Thus, if n ≥ (mt− 2)/(a− 1), then the lower bound in Proposition 4.1 improves the lower bound
from (1.3).

In the remaining case – when m < a ≤ t− 1 – the next result beats the lower bound from (1.3)
when n is not too small.

Proposition 4.2. Let r > t ≥ 3 be such that r = mt− a with 2 ≤ m < a < t. Then

f(n, r, t+ 1) ≥ δ(n, r, t) ≥ (r − 1)n− (m− 1)

⌈
(m(t− 1− a+m)− 1)n

m(t− a+m)− 2

⌉
.

Proof. Let t′ := t−a+m and r′ := m(t′−1). By Proposition 4.1, there exists a graph G′ ∈ G(n, r′, t′)
such that

δ(G′) = (r′ − 1)n− (m− 1)

⌈
(r′ − 1)n

mt′ − 2

⌉
≤ (r′ − 1)n− (m− 2)n,

where the last inequality is due to fact that

(m− 1)(r′ − 1)− (mt′ − 2)(m− 2) = m(t′ −m+ 2)− 3 = (t− a+ 2)m− 3 > 0.

We now construct a graph G ∈ G(n, r, t) from G′ as follows. Let Wa−m+1 := V (G′). Let
W1, . . . ,Wa−m be vertex sets each of size (m− 1)n such that W1, . . . ,Wa−m+1 are disjoint. Let G
be the resulting graph on

⋃
i∈[a−m+1]Wi obtained from G′ by adding edges xx′ for all x ∈ Wi and

x′ ∈ Wi′ with i 6= i′. Note that χ(G) = χ(G′) + a−m ≤ t. Since each Wi with i ∈ [a−m] can be
partitioned into m− 1 vertex classes of size n, we deduce that G ∈ G(n, r, t).

For x ∈ V (G) \ V (G′), we have dG(x) = rn− (m− 1)n, and for x ∈ V (G′) we have

dG(x) = (a−m)(m− 1)n+ δ(G′) = (r − 1)n− (m− 1)

⌈
(r′ − 1)n

mt′ − 2

⌉
≤ (r − 1)n− (m− 2)n.

Hence,

δ(G) = (r − 1)n− (m− 1)

⌈
(r′ − 1)n

mt′ − 2

⌉
,

as required. �
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By applying Corollary 3.2 with Proposition 4.1 we can obtain the following result, which improves
on Corollary 3.3 in most cases when n is not too small.

Corollary 4.3. Given m, t ≥ 2, let r = mt− a where 2 ≤ a ≤ min{m, t− 1}. If

r

t(3t− 1)(m− 1)
− a

t(m− 1)
+

a− 1

tm− 2
≥ 1

n
,

then f(n, r, t+ 1) = δ(n, r, t).

Proof. By (3.1) and Corollary 3.2 it suffices to prove that

δ(n, r, t) ≥ 3t− 4

3t− 1
rn.(4.2)

Proposition 4.1 and (4.1) together imply that

δ(n, r, t) > (r −m)n+
(a− 1)(m− 1)

mt− 2
n− (m− 1).

On the other hand, 3t−4
3t−1r = r −m+ a

t −
r

t(3t−1) . Thus, to prove (4.2), it suffices to have

(a− 1)(m− 1)

mt− 2
n− (m− 1) ≥ an

t
− rn

t(3t− 1)
.

Indeed, this is equivalent to our assumption

r

t(3t− 1)(m− 1)
− a

t(m− 1)
+

a− 1

mt− 2
≥ 1

n
. �

5. An upper bound on δ(n, r, t)

In this section we prove the following upper bound on δ(n, r, t).

Proposition 5.1. Let r, n ∈ N and m, t ≥ 2 be such that (m− 1)t < r < mt. Then,

δ(n, r, t) ≤ (r − 1)n−
⌈

(m− 1)(r − 1)n

mt− 2

⌉
.

Proof. Let ∆∗ := (m − 1)(r − 1)n/(mt − 2). Since δ(n, r, t) is an integer, it suffices to show that
δ(n, r, t) ≤ (r−1)n−∆∗. Suppose to the contrary that δ(n, r, t) > (r−1)n−∆∗. Let G ∈ G(n, r, t)
be such that δ(G) = δ(n, r, t). As G ∈ G(n, r, t), V (G) can be partitioned into r independent sets
V1, . . . , Vr each of size n; as χ(G) ≤ t, V (G) can be partitioned into t color classes W1, . . . ,Wt. For
every x ∈ Vi ∩Wj , we have d(x) ≤ (r − 1)n− |Wj |+ |Vi ∩Wj |.

For i ∈ [r], let C(i) := {j ∈ [t] : |Vi ∩Wj | 6= 0} be the set of colors present in Vi. For j ∈ [t], let
supp(j) := {i ∈ [r] : |Vi ∩Wj | 6= 0} be the set of parts that color j is present. Let

∆j := |Wj | − min
i∈supp(j)

|Vi ∩Wj |.

Thus δ(G) ≤ minj∈[t]{(r − 1)n−∆j}. Hence we have for all j ∈ [t],

∆j < ∆∗ =
(m− 1)(r − 1)n

mt− 2
.(5.1)

Claim 5.2. For all j ∈ [t], |Wj | < m∆∗/(m− 1).

Proof of claim. Note that

m∆∗

m− 1
=
m(r − 1)n

mt− 2
≥ m(m− 1)tn

mt− 2
> (m− 1)n.
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If |supp(j)| ≤ m − 1, then |Wj | ≤ (m − 1)n < m
m−1∆∗ as desired. Hence we may assume that

|supp(j)| ≥ m. Using the definition of ∆j and (5.1), we obtain that

m− 1

m
|Wj | ≤

|supp(j)| − 1

|supp(j)|
|Wj | ≤ ∆j < ∆∗.

Hence the claim follows. �

Suppose that |C(i)| = 1 for all i ∈ [r]. Every Vi is a subset of some Wj and consequently, there
exists j ∈ [t] with |Wj | ≥ dr/ten ≥ mn. It follows that

∆j ≥ |Wj | − n ≥ (m− 1)n ≥ (m− 1)
r − 1

mt− 2
n = ∆∗,

a contradiction.
Without loss of generality, we assume that |C(1)| = s ≥ 2. For every j ∈ C(1), we know that

|Wj | ≤ ∆j + |V1 ∩Wj | from the definition of ∆j . Hence,∑
j∈C(1)

|Wj | ≤
∑

j∈C(1)

(∆j + |V1 ∩Wj |)
(5.1)
< s∆∗ + n.

Together with Claim 5.2, this gives

rn =
∑
j∈[t]

|Wj | < s∆∗ + n+ (t− s) m

m− 1
∆∗ =

mt− s
m− 1

∆∗ + n ≤ mt− 2

m− 1
∆∗ + n = rn,

a contradiction. �

6. Proof of the main results

The proofs of Theorems 1.2 and 1.3 and Corollary 1.4 now follow easily from our auxiliary results.

Proof of Theorem 1.2. The m = 2 case of the theorem is precisely Lemma 2.1. For m ≥ 3, we may
apply Corollary 3.3 (with a := 1) to conclude that f(n, r, t + 1) = δ(n, r, t). Then Proposition 5.1
implies δ(n, r, t) ≤ (r −m)n = (r − dr/te)n; together with the lower bound in (1.3) this completes
the proof. �

Proof of Theorem 1.3. Under Condition (i), we first apply Corollary 3.3 to obtain that f(n, r, t +
1) = δ(n, r, t). Then Propositions 4.1 and 5.1 give the desired lower and upper bounds, respectively.
Under Condition (ii), we apply Corollary 4.3 instead of Corollary 3.3. �

Proof of Corollary 1.4. The case when r ≡ 0 (mod 3) follows from (1.2). The case when r ≡ 2
(mod 3) follows immediately from Theorem 1.2. If r ≡ 1 (mod 3) then r = 3m−2 for some m ≥ 4.
Thus Condition (i) of Theorem 1.3 holds provided that m ≥ 6. If r = 10 and n ≥ 60 or r = 13 and
n ≥ 22, then it is easy to check that Condition (ii) of Theorem 1.3 holds. Thus Theorem 1.3 yields
the corollary in this case. �

7. Concluding remarks

In this paper we have resolved Problem 1.1 for many choices of r and t. For the remaining open
cases, it would be interesting to establish when (if at all) a lower bound construction from Section 4
is extremal. One obvious case would be to determine f(n, 7, 4), which is the only remaining case
for f(n, r, 4).

Our results show that f(n, r, t + 1) = δ(n, r, t) when r is large compared to t. It would be
interesting to determine all values of r and t for which this equality holds. Proposition 5.1 and
(1.1) together show that f(n, t + 1, t + 1) > δ(n, t + 1, t) when t ≥ 3 is odd and n is sufficiently
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large. Indeed, Proposition 5.1 implies that δ(n, t + 1, t) ≤ tn − d tn
2t−2e for every t ≥ 2. If t is odd,

then by (1.1), we have

f(n, t+ 1, t+ 1) = tn−
⌈

(t+ 1)n

2t

⌉
> tn−

⌈
tn

2t− 2

⌉
≥ δ(n, t+ 1, t).

As mentioned in the Introduction, Bollobás, Erdős, and Straus [4] determined the largest δ(G)
among all K3-free (not necessarily balanced) r-partite graphs G for all r. It is natural to extend
the results in the present paper to unbalanced multipartite graphs as well.

It is also natural to ask for the largest δ(G) among H-free multipartite graphs G for a fixed graph
H 6= Kt. For example, Bollobás, Erdős, and Szemerédi [5] showed that if G is a tripartite graph

with n vertices in each part and with δ(G) ≥ n + 1√
2
n3/4, then G contains a copy of K3(2); they

asked if δ(G) ≥ n+Cn1/2 suffices. Furthermore, extending the aforementioned multipartite Turán
theorem of Bollobás, Erdős, and Straus [4], there has been recent work on determining the largest
e(G) among all multipartite graphs G on n vertices that contain no multiple (disjoint) copies of
Kt, see, e.g., [3, 8].

The following result might be useful for constructing extremal examples for the remaining open
cases of Problem 1.1. It shows that given an upper bound on ∆(n0, r0, t0)/n0 one can obtain an
upper bound on ∆(n, r, t)/n for other triples (n, r, t).

Proposition 7.1. Let r0, t0 ∈ N so that 2 ≤ t0 ≤ r0. Let ∆0 ≥ 0 be such that ∆(n0, r0, t0)/n0 ≤ ∆0

for all n0 ∈ N. Let n, k ≥ 2 be integers. Set r := r0k and t := k+ t0. Then there exists an r-partite
graph G with parts of size n so that:

• G contains no crossing independent set of size t;

• ∆(G) ≤ (r0 − 1)
⌈

∆0+(k−1)r0
∆0+kr0−1 · n

⌉
.

That is,

∆(n, r, t) ≤ (r0 − 1)

⌈
∆0 + (k − 1)r0

∆0 + kr0 − 1
· n
⌉
,

or equivalently

f(n, r, t) ≥ (r − 1)n− (r0 − 1)

⌈
∆0 + (k − 1)r0

∆0 + kr0 − 1
· n
⌉
.

Proof. Let ` := b(r0−1)n/(∆0 +kr0−1)c. We construct an r-partite graph G with parts V1, . . . , Vr
of size n as follows. Partition each Vi into Li ∪ Si such that |Si| = ` and |Li| = n− `. We call the
vertices in each Li large and those in each Si small. We partition [r] into k blocks of size r0 by
assigning i and j to the same block if di/r0e = dj/r0e. We form a complete bipartite graph between
Li and Lj (joining Li and Lj for short) if and only if i and j are in the same block. We join Si
and Sj if i and j are not in the same block. By the definition of ∆0, there exists an r0-partite
graph GS with ` vertices in each part and ∆(GS) ≤ ∆0` containing no crossing independent set of
size t0. We place a copy of GS in each block so that the sets Si in the block each form one of the
vertex classes of GS .

We claim that G contains no crossing independent set of size t. Indeed, a crossing independent
set contains at most one large vertex from each block, and at most t0 − 1 small vertices. Thus the
largest crossing independent set has size k + t0 − 1 = t− 1.

Note that
∆(G) = max{(∆0 + (k − 1)r0)`, (r0 − 1)(n− `).

The choice of ` ensures

∆(G) ≤ (r0 − 1)

⌈
∆0 + (k − 1)r0

∆0 + kr0 − 1
· n
⌉
,

as desired. �
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