# Minimum codegree threshold for Hamilton $\ell$-cycles in $k$-uniform hypergraphs ${ }^{*}$ 

Jie Han, Yi Zhao<br>Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, United States

```
A R T I C L E I N F O
```


## Article history:

Received 9 June 2014
Available online xxxx

## Keywords:

Hamilton cycle
Hypergraph
Absorbing method
Regularity lemma


#### Abstract

For $1 \leq \ell<k / 2$, we show that for sufficiently large $n$, every $k$-uniform hypergraph on $n$ vertices with minimum codegree at least $\frac{n}{2(k-\ell)}$ contains a Hamilton $\ell$-cycle. This codegree condition is best possible and improves on work of Hàn and Schacht who proved an asymptotic result.


© 2015 Published by Elsevier Inc.

## 1. Introduction

A well-known result of Dirac [4] states that every graph $G$ on $n \geq 3$ vertices with minimum degree $\delta(G) \geq n / 2$ contains a Hamilton cycle. In recent years, researchers have worked on extending this result to hypergraphs - see recent surveys [15,18]. Given $k \geq 2$, a $k$-uniform hypergraph (in short, $k$-graph) consists of a vertex set $V$ and an edge set $E \subseteq\binom{V}{k}$, where every edge is a $k$-element subset of $V$. Given a $k$-graph $\mathcal{H}$ with a set $S$ of $d$ vertices (where $1 \leq d \leq k-1$ ) we define $\operatorname{deg}_{\mathcal{H}}(S)$ to be the number of edges containing $S$ (the subscript $\mathcal{H}$ is omitted if it is clear from the context). The minimum

[^0]$d$-degree $\delta_{d}(\mathcal{H})$ of $\mathcal{H}$ is the minimum of $\operatorname{deg}_{\mathcal{H}}(S)$ over all $d$-vertex sets $S$ in $\mathcal{H}$. We refer to $\delta_{1}(\mathcal{H})$ as the minimum vertex degree and $\delta_{k-1}(\mathcal{H})$ the minimum codegree of $\mathcal{H}$. For $1 \leq \ell<k$, a $k$-graph is a called an $\ell$-cycle if its vertices can be ordered cyclically so that each of its edges consists of $k$ consecutive vertices and every two consecutive edges (in the natural order of the edges) share exactly $\ell$ vertices. In $k$-graphs, a ( $k-1$ )-cycle is often called a tight cycle while a 1-cycle is often called a loose cycle. We say that a $k$-graph contains a Hamilton $\ell$-cycle if it contains an $\ell$-cycle as a spanning subhypergraph. Since a $k$-uniform $\ell$-cycle on $n$ vertices contains exactly $n /(k-\ell)$ edges, a necessary condition for a $k$-graph on $n$ vertices to contain a Hamilton $\ell$-cycle is that $k-\ell$ divides $n$.

Confirming a conjecture of Katona and Kierstead [11], Rödl, Ruciński and Szemerédi [19,20] showed that for any fixed $k$, every $k$-graph $\mathcal{H}$ on $n$ vertices with $\delta_{k-1}(\mathcal{H}) \geq n / 2+$ $o(n)$ contains a tight Hamilton cycle. When $k-\ell$ divides both $k$ and $|V|$, a $(k-1)$-cycle on $V$ trivially contains an $\ell$-cycle on $V$. Thus the result in [20] implies that for all $1 \leq \ell<k$ such that $k-\ell$ divides $k$, every $k$-graph $\mathcal{H}$ on $n \in(k-\ell) \mathbb{N}$ vertices with $\delta_{k-1}(\mathcal{H}) \geq n / 2+o(n)$ contains a Hamilton $\ell$-cycle. It is not hard to see that these results are best possible up to the $o(n)$ term - see concluding remarks in Section 4 for more discussion. With long and involved arguments, Rödl, Ruciński and Szemerédi [21] determined the minimum codegree threshold for tight Hamilton cycles in 3-graphs for sufficiently large $n$. (Unless stated otherwise, we assume that $n$ is sufficiently large throughout the paper.)

Loose Hamilton cycles were first studied by Kühn and Osthus [14], who proved that every 3 -graph on $n$ vertices with $\delta_{2}(\mathcal{H}) \geq n / 4+o(n)$ contains a loose Hamilton cycle. This was generalized to arbitrary $k$ and $\ell=1$ by Keevash, Kühn, Mycroft, and Osthus [12] and to arbitrary $k$ and arbitrary $\ell<k / 2$ by Hàn and Schacht [7].

Theorem 1.1. (See [7].) Fix integers $k \geq 3$ and $1 \leq \ell<k / 2$. Assume that $\gamma>0$ and $n \in(k-\ell) \mathbb{N}$ is sufficiently large. If $\mathcal{H}=(V, E)$ is a $k$-graph on $n$ vertices such that $\delta_{k-1}(\mathcal{H}) \geq\left(\frac{1}{2(k-\ell)}+\gamma\right) n$, then $\mathcal{H}$ contains a Hamilton $\ell$-cycle.

Later Kühn, Mycroft, and Osthus [13] proved that whenever $k-\ell$ does not divide $k$, every $k$-graph on $n$ vertices with $\delta_{k-1}(\mathcal{H}) \geq \frac{n}{\left\lceil\frac{k}{k-\ell}\right\rceil(k-\ell)}+o(n)$ contains a Hamilton $\ell$-cycle. This generalizes Theorem 1.1 because $\lceil k /(k-\ell)\rceil=2$ when $\ell<k / 2$. Rödl and Ruciński [18, Problem 2.9] asked for the exact minimum codegree threshold for Hamilton $\ell$-cycles in $k$-graphs. The $k=3$ and $\ell=1$ case was answered by Czygrinow and Molla [3] recently. In this paper we determine this threshold for all $k \geq 3$ and $\ell<k / 2$.

Theorem 1.2 (Main result). Fix integers $k \geq 3$ and $1 \leq \ell<k / 2$. Assume that $n \in(k-\ell) \mathbb{N}$ is sufficiently large. If $\mathcal{H}=(V, E)$ is a $k$-graph on $n$ vertices such that

$$
\begin{equation*}
\delta_{k-1}(\mathcal{H}) \geq \frac{n}{2(k-\ell)} \tag{1.1}
\end{equation*}
$$

then $\mathcal{H}$ contains a Hamilton $\ell$-cycle.

The following simple construction [13, Proposition 2.2] shows that Theorem 1.2 is best possible, and the aforementioned results in $[7,12-14]$ are asymptotically best possible. Let $\mathcal{H}_{0}=(V, E)$ be an $n$-vertex $k$-graph in which $V$ is partitioned into sets $A$ and $B$ such that $|A|=\left\lceil\frac{n}{\left\lceil\frac{k}{k-\ell}\right\rceil(k-\ell)}\right\rceil-1$. The edge set $E$ consists of all $k$-sets that intersect $A$. It is easy to see that $\delta_{k-1}\left(\mathcal{H}_{0}\right)=|A|$. However, an $\ell$-cycle on $n$ vertices has $n /(k-\ell)$ edges and every vertex on such a cycle lies in at most $\left\lceil\frac{k}{k-\ell}\right\rceil$ edges. Since $\left\lceil\frac{k}{k-\ell}\right\rceil|A|<n /(k-\ell)$, $\mathcal{H}_{0}$ contains no Hamilton $\ell$-cycle.

A related problem was studied by Buß, Hàn, and Schacht [1], who proved that every 3 -graph $\mathcal{H}$ on $n$ vertices with minimum vertex degree $\delta_{1}(\mathcal{H}) \geq\left(\frac{7}{16}+o(1)\right)\binom{n}{2}$ contains a loose Hamilton cycle. Recently we [10] improved this to an exact result.

Using the typical approach of obtaining exact results, our proof of Theorem 1.2 consists of an extremal case and a nonextremal case.

Definition 1.3. Let $\Delta>0, a k$-graph $\mathcal{H}$ on $n$ vertices is called $\Delta$-extremal if there is a set $B \subset V(\mathcal{H})$, such that $|B|=\left\lfloor\frac{2(k-\ell)-1}{2(k-\ell)} n\right\rfloor$ and $e(B) \leq \Delta n^{k}$.

Theorem 1.4 (Nonextremal case). For any integer $k \geq 3,1 \leq \ell<k / 2$ and $0<\Delta<1$ there exists $\gamma>0$ such that the following holds. Suppose that $\mathcal{H}$ is a $k$-graph on $n$ vertices such that $n \in(k-\ell) \mathbb{N}$ is sufficiently large. If $\mathcal{H}$ is not $\Delta$-extremal and satisfies $\delta_{k-1}(\mathcal{H}) \geq\left(\frac{1}{2(k-\ell)}-\gamma\right) n$, then $\mathcal{H}$ contains a Hamilton $\ell$-cycle.

Theorem 1.5 (Extremal case). For any integer $k \geq 3,1 \leq \ell<k / 2$ there exists $\Delta>0$ such that the following holds. Suppose $\mathcal{H}$ is a $k$-graph on $n$ vertices such that $n \in(k-\ell) \mathbb{N}$ is sufficiently large. If $\mathcal{H}$ is $\Delta$-extremal and satisfies (1.1), then $\mathcal{H}$ contains a Hamilton $\ell$-cycle.

Theorem 1.2 follows from Theorem 1.4 and 1.5 immediately by choosing $\Delta$ from Theorem 1.5.

Let us compare our proof with those in the aforementioned papers. There is no extremal case in [7,12-14] because only asymptotic results were proved. Our Theorem 1.5 is new and more general than [3, Theorem 3.1]. Following previous work [7,13,19-21], we prove Theorem 1.4 by using the absorbing method initiated by Rödl, Ruciński and Szemerédi. More precisely, we find the desired Hamilton $\ell$-cycle by applying the Absorbing Lemma (Lemma 2.1), the Reservoir Lemma (Lemma 2.2), and the Path-cover Lemma (Lemma 2.3). In fact, when $\ell<k / 2$, the Absorbing Lemma and the Reservoir Lemma are not very difficult and already proven in [7] (in contrast, when $\ell>k / 2$, the Absorbing Lemma in [13] is more difficult to prove). Thus the main step is to prove the Path-cover Lemma. As shown in [7,13], after the Regularity Lemma is applied, it suffices to prove that the cluster $k$-graph $\mathcal{K}$ can be tiled almost perfectly by the $k$-graph $\mathcal{F}_{k, \ell}$, whose vertex set consists of disjoint sets $A_{1}, \ldots, A_{a-1}, B$ of size $k-1$, and whose edges are all the $k$-sets of the form $A_{i} \cup\{b\}$ for $i=1, \ldots, a-1$ and all $b \in B$, where $a=\left\lceil\frac{k}{k-\ell}\right\rceil(k-\ell)$. In this paper we reduce the problem to tile $\mathcal{K}$ with a much simpler $k$-graph $\mathcal{Y}_{k, 2 \ell}$, which
consists of two edges sharing $2 \ell$ vertices. Because of the simple structure of $\mathcal{Y}_{k, 2 \ell}$, we can easily find an almost perfect $\mathcal{Y}_{k, 2 \ell}$-tiling unless $\mathcal{K}$ is in the extremal case (thus the original $k$-graph $\mathcal{H}$ is in the extremal case). Interestingly $\mathcal{Y}_{3,2}$-tiling was studied in the very first paper [14] on loose Hamilton cycles but as a separate problem. Our recent paper [10] indeed used $\mathcal{Y}_{3,2}$-tiling as a tool to prove the corresponding path-cover lemma. On the other hand, the authors of [3] used a different approach (without the Regularity Lemma) to prove the Path-tiling Lemma (though they did not state such lemma explicitly).

The rest of the paper is organized as follows. We prove Theorem 1.4 in Section 2 and Theorem 1.5 in Section 3, and give concluding remarks in Section 4.

Notation. Given an integer $k \geq 0$, a $k$-set is a set with $k$ elements. For a set $X$, we denote by $\binom{X}{k}$ the family of all $k$-subsets of $X$. Given a $k$-graph $\mathcal{H}$ and a set $A \subseteq V(\mathcal{H})$, we denote by $e_{\mathcal{H}}(A)$ the number of the edges of $\mathcal{H}$ in $A$. We often omit the subscript that represents the underlying hypergraph if it is clear from the context. Given a $k$-graph $\mathcal{H}$
 ( $k-|S|$ )-sets $T \subseteq R$ such that $S \cup T$ is an edge of $\mathcal{H}$ (in this case, $T$ is called a neighbor of $S$ ). We define $\overline{\operatorname{deg}}_{\mathcal{H}}(S, R)=\binom{|R \backslash S|}{k-|S|}-\operatorname{deg}(S, R)$ as the number of non-edges on $S \cup R$ that contain $S$. When $R=V(\mathcal{H})$ (and $\mathcal{H}$ is obvious), we simply write $\operatorname{deg}(S)$ and $\overline{\operatorname{deg}}(S)$. When $S=\{v\}$, we use $\operatorname{deg}(v, R)$ instead of $\operatorname{deg}(\{v\}, R)$.

A $k$-graph $\mathcal{P}$ is an $\ell$-path if there is an ordering $\left(v_{1}, \ldots, v_{t}\right)$ of its vertices such that every edge consists of $k$ consecutive vertices and two consecutive edges intersect in exactly $\ell$ vertices. Note that this implies that $k-\ell$ divides $t-\ell$. In this case, we write $\mathcal{P}=v_{1} \cdots v_{t}$ and call two $\ell$-sets $\left\{v_{1}, \ldots, v_{\ell}\right\}$ and $\left\{v_{t-\ell+1}, \ldots, v_{t}\right\}$ ends of $\mathcal{P}$.

## 2. Proof of Theorem 1.4

In this section we prove Theorem 1.4 by following the approach in [7].

### 2.1. Auxiliary lemmas and proof of Theorem 1.4

We need [7, Lemma 5] and [7, Lemma 6] of Hàn and Schacht, in which only a linear codegree condition is needed. Given a $k$-graph $\mathcal{H}$ with an $\ell$-path $\mathcal{P}$ and a vertex set $U \subseteq V(\mathcal{H}) \backslash V(\mathcal{P})$ with $|U| \in(k-\ell) \mathbb{N}$, we say that $\mathcal{P}$ absorbs $U$ if there exists an $\ell$-path $\mathcal{Q}$ of $\mathcal{H}$ with $V(\mathcal{Q})=V(\mathcal{P}) \cup U$ such that $\mathcal{P}$ and $\mathcal{Q}$ have exactly the same ends.

Lemma 2.1 (Absorbing Lemma). (See [7].) For all integers $k \geq 3$ and $1 \leq \ell<k / 2$ and every $\gamma_{1}>0$ there exist $\eta>0$ and an integer $n_{0}$ such that the following holds. Let $\mathcal{H}$ be a $k$-graph on $n \geq n_{0}$ vertices with $\delta_{k-1}(\mathcal{H}) \geq \gamma_{1} n$. Then $\mathcal{H}$ contains an absorbing $\ell$-path $\mathcal{P}$ with $|V(\mathcal{P})| \leq \gamma_{1}^{5} n$ that can absorb any subset $U \subset V(\mathcal{H}) \backslash V(\mathcal{P})$ of size $|U| \leq \eta n$ and $|U| \in(k-\ell) \mathbb{N}$.

Lemma 2.2 (Reservoir Lemma). (See [7].) For all integers $k \geq 3$ and $1 \leq \ell<k / 2$ and every $0<d, \gamma_{2}<1$ there exists an $n_{0}$ such that the following holds. Let $\mathcal{H}$ be a $k$-graph on $n>n_{0}$ vertices with $\delta_{k-1}(\mathcal{H}) \geq d n$, then there is a set $R$ of size at most $\gamma_{2} n$ such that for all $(k-1)$-sets $S \in\binom{V}{k-1}$ we have $\operatorname{deg}(S, R) \geq d \gamma_{2} n / 2$.

The main step in our proof of Theorem 1.4 is the following lemma, which is stronger than [7, Lemma 7]. We defer its proof to the next subsection.

Lemma 2.3 (Path-cover Lemma). For all integers $k \geq 3,1 \leq \ell<k / 2$, and every $\gamma_{3}, \alpha>0$ there exist integers $p$ and $n_{0}$ such that the following holds. Let $\mathcal{H}$ be a $k$-graph on $n>n_{0}$ vertices with $\delta_{k-1}(\mathcal{H}) \geq\left(\frac{1}{2(k-\ell)}-\gamma_{3}\right) n$, then there is a family of at most $p$ vertex disjoint $\ell$-paths that together cover all but at most $\alpha$ n vertices of $\mathcal{H}$, or $\mathcal{H}$ is $14 \gamma_{3}$-extremal.

We can now prove Theorem 1.4 in a similar way as in [7].
Proof of Theorem 1.4. Given $k \geq 3,1 \leq \ell<k / 2$ and $0<\Delta<1$, let $\gamma=\min \left\{\frac{\Delta}{43}, \frac{1}{4 k^{2}}\right\}$ and $n \in(k-\ell) \mathbb{N}$ be sufficiently large. Suppose that $\mathcal{H}=(V, E)$ is a $k$-graph on $n$ vertices with $\delta_{k-1}(\mathcal{H}) \geq\left(\frac{1}{2(k-\ell)}-\gamma\right) n$. Since $\frac{1}{2(k-\ell)}-\gamma>\gamma$, we can apply Lemma 2.1 with $\gamma_{1}=\gamma$ and obtain $\eta>0$ and an absorbing path $\mathcal{P}_{0}$ with ends $S_{0}, T_{0}$ such that $\left|V\left(\mathcal{P}_{0}\right)\right| \leq \gamma^{5} n$ and $\mathcal{P}_{0}$ can absorb any $u$ vertices outside $\mathcal{P}_{0}$ if $u \leq \eta n$ and $u \in(k-\ell) \mathbb{N}$.

Let $V_{1}=\left(V \backslash V\left(\mathcal{P}_{0}\right)\right) \cup S_{0} \cup T_{0}$ and $\mathcal{H}_{1}=\mathcal{H}\left[V_{1}\right]$. Note that $\left|V\left(\mathcal{P}_{0}\right)\right| \leq \gamma^{5} n$ implies that $\delta_{k-1}\left(\mathcal{H}_{1}\right) \geq\left(\frac{1}{2(k-\ell)}-\gamma\right) n-\gamma^{5} n \geq \frac{1}{2 k} n$ as $\gamma<\frac{1}{4 k^{2}}$ and $\ell \geq 1$. We next apply Lemma 2.2 with $d=\frac{1}{2 k}$ and $\gamma_{2}=\min \{\eta / 2, \gamma\}$ to $\mathcal{H}_{1}$ and get a reservoir $R \subset V_{1}$ with $|R| \leq \gamma_{2}\left|V\left(\mathcal{H}_{1}\right)\right| \leq \gamma_{2} n$ such that for any $(k-1)$-set $S \subset V_{1}$, we have

$$
\begin{equation*}
\operatorname{deg}(S, R) \geq d \gamma_{2}\left|V_{1}\right| / 2 \geq d \gamma_{2} n / 4 \tag{2.1}
\end{equation*}
$$

Let $V_{2}=V \backslash\left(V\left(\mathcal{P}_{0}\right) \cup R\right), n_{2}=\left|V_{2}\right|$, and $\mathcal{H}_{2}=\mathcal{H}\left[V_{2}\right]$. Note that $\left|V\left(\mathcal{P}_{0}\right) \cup R\right| \leq$ $\gamma_{1}^{5} n+\gamma_{2} n \leq 2 \gamma n$, so

$$
\delta_{k-1}\left(\mathcal{H}_{2}\right) \geq\left(\frac{1}{2(k-\ell)}-\gamma\right) n-2 \gamma n \geq\left(\frac{1}{2(k-\ell)}-3 \gamma\right) n_{2} .
$$

Applying Lemma 2.3 to $\mathcal{H}_{2}$ with $\gamma_{3}=3 \gamma$ and $\alpha=\eta / 2$, we obtain at most $p$ vertex disjoint $\ell$-paths that cover all but at most $\alpha n_{2}$ vertices of $\mathcal{H}_{2}$, unless $\mathcal{H}_{2}$ is $14 \gamma_{3}$-extremal. In the latter case, there exists $B^{\prime} \subseteq V_{2}$ such that $\left|B^{\prime}\right|=\left\lfloor\frac{2 k-2 \ell-1}{2(k-\ell)} n_{2}\right\rfloor$ and $e\left(B^{\prime}\right) \leq 42 \gamma n_{2}^{k}$. Then we add at most $n-n_{2} \leq 2 \gamma n$ vertices from $V \backslash B^{\prime}$ to $B^{\prime}$ and obtain a vertex set $B \subseteq V(\mathcal{H})$ such that $|B|=\left\lfloor\frac{2 k-2 \ell-1}{2(k-\ell)} n\right\rfloor$ and

$$
e(B) \leq 42 \gamma n_{2}^{k}+2 \gamma n \cdot\binom{n-1}{k-1} \leq 42 \gamma n^{k}+\gamma n^{k} \leq \Delta n^{k}
$$

which means that $\mathcal{H}$ is $\Delta$-extremal, a contradiction. In the former case, denote these $\ell$-paths by $\left\{\mathcal{P}_{i}\right\}_{i \in\left[p^{\prime}\right]}$ for some $p^{\prime} \leq p$, and their ends by $\left\{S_{i}, T_{i}\right\}_{i \in\left[p^{\prime}\right]}$. Note that
both $S_{i}$ and $T_{i}$ are $\ell$-sets for $\ell<k / 2$. We arbitrarily pick disjoint $(k-2 \ell-1)$-sets $X_{0}, X_{1}, \ldots, X_{p^{\prime}} \subset R \backslash\left(S_{0} \cup T_{0}\right)$ (note that $k-2 \ell-1 \geq 0$ ). Let $T_{p^{\prime}+1}=T_{0}$. By (2.1), as $d \gamma_{2} n / 4 \geq k\left(p^{\prime}+1\right)$, we may find $p^{\prime}+1$ vertices $v_{0}, v_{1}, \ldots, v_{p^{\prime}} \in R$ such that $S_{i} \cup T_{i+1} \cup X_{i} \cup\left\{v_{i}\right\} \in E(\mathcal{H})$ for $0 \leq i \leq p^{\prime}$. We thus connect $\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{p^{\prime}}$ together and obtain an $\ell$-cycle $\mathcal{C}$. Note that

$$
|V(\mathcal{H}) \backslash V(\mathcal{C})| \leq|R|+\alpha n_{2} \leq \gamma_{2} n+\alpha n \leq \eta n
$$

and $k-\ell$ divides $|V \backslash V(\mathcal{C})|$ because $k-\ell$ divides both $n$ and $|V(\mathcal{C})|$. So we can use $\mathcal{P}_{0}$ to absorb all unused vertices in $R$ and uncovered vertices in $V_{2}$ thus obtaining a Hamilton $\ell$-cycle in $\mathcal{H}$.

The rest of this section is devoted to the proof of Lemma 2.3.

### 2.2. Proof of Lemma 2.3

Following the approach in [7], we use the Weak Regularity Lemma, which is a straightforward extension of Szemerédi's regularity lemma for graphs [22].

Let $\mathcal{H}=(V, E)$ be a $k$-graph and let $A_{1}, \ldots, A_{k}$ be mutually disjoint non-empty subsets of $V$. We define $e\left(A_{1}, \ldots, A_{k}\right)$ to be the number of crossing edges, namely, those with one vertex in each $A_{i}, i \in[k]$, and the density of $\mathcal{H}$ with respect to $\left(A_{1}, \ldots, A_{k}\right)$ as

$$
d\left(A_{1}, \ldots, A_{k}\right)=\frac{e\left(A_{1}, \ldots, A_{k}\right)}{\left|A_{1}\right| \cdots\left|A_{k}\right|}
$$

We say a $k$-tuple ( $V_{1}, \ldots, V_{k}$ ) of mutually disjoint subsets $V_{1}, \ldots, V_{k} \subseteq V$ is $(\epsilon, d)$-regular, for $\epsilon>0$ and $d \geq 0$, if

$$
\left|d\left(A_{1}, \ldots, A_{k}\right)-d\right| \leq \epsilon
$$

for all $k$-tuples of subsets $A_{i} \subseteq V_{i}, i \in[k]$, satisfying $\left|A_{i}\right| \geq \epsilon\left|V_{i}\right|$. We say $\left(V_{1}, \ldots, V_{k}\right)$ is $\epsilon$-regular if it is $(\epsilon, d)$-regular for some $d \geq 0$. It is immediate from the definition that in an $(\epsilon, d)$-regular $k$-tuple $\left(V_{1}, \ldots, V_{k}\right)$, if $V_{i}^{\prime} \subset V_{i}$ has size $\left|V_{i}^{\prime}\right| \geq c\left|V_{i}\right|$ for some $c \geq \epsilon$, then $\left(V_{1}^{\prime}, \ldots, V_{k}^{\prime}\right)$ is $(\epsilon / c, d)$-regular.

Theorem 2.4 (Weak Regularity Lemma). Given $t_{0} \geq 0$ and $\epsilon>0$, there exist $T_{0}=$ $T_{0}\left(t_{0}, \epsilon\right)$ and $n_{0}=n_{0}\left(t_{0}, \epsilon\right)$ so that for every $k$-graph $\mathcal{H}=(V, E)$ on $n>n_{0}$ vertices, there exists a partition $V=V_{0} \cup V_{1} \cup \cdots \cup V_{t}$ such that
(i) $t_{0} \leq t \leq T_{0}$,
(ii) $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{t}\right|$ and $\left|V_{0}\right| \leq \epsilon n$,
(iii) for all but at most $\epsilon\binom{t}{k} k$-subsets $\left\{i_{1}, \ldots, i_{k}\right\} \subset[t]$, the $k$-tuple $\left(V_{i_{1}}, \ldots, V_{i_{k}}\right)$ is $\epsilon$-regular.

The partition given in Theorem 2.4 is called an $\epsilon$-regular partition of $\mathcal{H}$. Given an $\epsilon$-regular partition of $\mathcal{H}$ and $d \geq 0$, we refer to $V_{i}, i \in[t]$, as clusters and define the cluster hypergraph $\mathcal{K}=\mathcal{K}(\epsilon, d)$ with vertex set $[t]$ and $\left\{i_{1}, \ldots, i_{k}\right\} \subset[t]$ is an edge if and only if $\left(V_{i_{1}}, \ldots, V_{i_{k}}\right)$ is $\epsilon$-regular and $d\left(V_{i_{1}}, \ldots, V_{i_{k}}\right) \geq d$.

We combine Theorem 2.4 and [7, Proposition 16] into the following corollary, which shows that the cluster hypergraph almost inherits the minimum degree of the original hypergraph. Its proof is standard and similar as the one of [7, Proposition 16] so we omit it. ${ }^{1}$

Corollary 2.5. (See [7].) Given $c, \epsilon, d>0$, integers $k \geq 3$ and $t_{0}$, there exist $T_{0}$ and $n_{0}$ such that the following holds. Let $\mathcal{H}$ be a $k$-graph on $n>n_{0}$ vertices with $\delta_{k-1}(\mathcal{H}) \geq c n$. Then $\mathcal{H}$ has an $\epsilon$-regular partition $V_{0} \cup V_{1} \cup \cdots \cup V_{t}$ with $t_{0} \leq t \leq T_{0}$, and in the cluster hypergraph $\mathcal{K}=\mathcal{K}(\epsilon, d)$, all but at most $\sqrt{\epsilon} t^{k-1}(k-1)$-subsets $S$ of $[t]$ satisfy $\operatorname{deg}_{\mathcal{K}}(S) \geq(c-d-\sqrt{\epsilon}) t-(k-1)$.

Let $\mathcal{H}$ be a $k$-partite $k$-graph with partition classes $V_{1}, \ldots, V_{k}$. Given $1 \leq \ell<k / 2$, we call an $\ell$-path $\mathcal{P}$ with edges $\left\{e_{1}, \ldots, e_{q}\right\}$ canonical with respect to $\left(V_{1}, \ldots, V_{k}\right)$ if

$$
e_{i} \cap e_{i+1} \subseteq \bigcup_{j \in[\ell]} V_{j} \quad \text { or } \quad e_{i} \cap e_{i+1} \subseteq \bigcup_{j \in[2 \ell \backslash \backslash \ell]} V_{j}
$$

for $i \in[q-1]$. When $j>2 \ell$, all $e_{1} \cap V_{j}, \ldots, e_{q} \cap V_{j}$ are distinct and thus $\left|V(\mathcal{P}) \cap V_{j}\right|=$ $\left|\left(e_{1} \cup \cdots \cup e_{q}\right) \cap V_{j}\right|=q$. When $j \leq 2 \ell$, exactly one of $e_{i-1} \cap e_{i}$ and $e_{i} \cap e_{i+1}$ intersects $V_{j}$. Thus $\left|V(\mathcal{P}) \cap V_{j}\right|=\frac{q+1}{2}$ if $q$ is odd.

We need the following proposition from [7].
Proposition 2.6. [7, Proposition 19] Suppose that $1 \leq \ell<k / 2$ and $\mathcal{H}$ is a $k$-partite, $k$-graph with partition classes $V_{1}, \ldots, V_{k}$ such that $\left|V_{i}\right|=m$ for all $i \in[k]$, and $|E(\mathcal{H})| \geq$ $d m^{k}$. Then there exists a canonical $\ell$-path in $\mathcal{H}$ with $t>\frac{d m}{2(k-\ell)}$ edges.

In [7] the authors used Proposition 2.6 to cover an $(\epsilon, d)$-regular tuple $\left(V_{1}, \ldots, V_{k}\right)$ of sizes $\left|V_{1}\right|=\cdots=\left|V_{k-1}\right|=(2 k-2 \ell-1) m$ and $\left|V_{k}\right|=(k-1) m$ with vertex disjoint $\ell$-paths. Our next lemma shows that an $(\epsilon, d)$-regular tuple $\left(V_{1}, \ldots, V_{k}\right)$ of sizes $\left|V_{1}\right|=$ $\cdots=\left|V_{2 \ell}\right|=m$ and $\left|V_{i}\right|=2 m$ for $i>2 \ell$ can be covered with $\ell$-paths.

Lemma 2.7. Fix $k \geq 3,1 \leq \ell<k / 2$ and $\epsilon, d>0$ such that $d>2 \epsilon$. Let $m>\frac{k^{2}}{\epsilon^{2}(d-\epsilon)}$. Suppose $\mathcal{V}=\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ is an $(\epsilon, d)$-regular $k$-tuple with

$$
\begin{equation*}
\left|V_{1}\right|=\cdots=\left|V_{2 \ell}\right|=m \quad \text { and } \quad\left|V_{2 \ell+1}\right|=\cdots=\left|V_{k}\right|=2 m \tag{2.2}
\end{equation*}
$$

[^1]Then there are at most $\frac{2 k}{(d-\epsilon) \epsilon}$ vertex-disjoint $\ell$-paths that together cover all but at most $2 k \epsilon m$ vertices of $\mathcal{V}$.

Proof. We greedily find vertex-disjoint canonical $\ell$-paths of odd length by Proposition 2.6 in $\mathcal{V}$ until less than $\epsilon m$ vertices are uncovered in $V_{1}$ as follows. Suppose that we have obtained $\ell$-paths $\mathcal{P}_{1}, \ldots, \mathcal{P}_{p}$ for some $p \geq 0$. Let $q=\sum_{j=1}^{p} e\left(\mathcal{P}_{j}\right)$. Assume that for all $j, \mathcal{P}_{j}$ is canonical with respect to $\mathcal{V}$ and $e\left(\mathcal{P}_{j}\right)$ is odd. Then $\bigcup_{j=1}^{p} \mathcal{P}_{i}$ contains $\frac{q+p}{2}$ vertices of $V_{i}$ for $i \in[2 \ell]$ and $q$ vertices of $V_{i}$ for $i>2 \ell$. For $i \in[k]$, let $U_{i}$ be the set of uncovered vertices of $V_{i}$ and assume that $\left|U_{1}\right| \geq \epsilon m$. Using (2.2), we derive that $\left|U_{1}\right|=\cdots=\left|U_{2 \ell}\right| \geq \epsilon m$ and

$$
\begin{equation*}
\left|U_{2 \ell+1}\right|=\cdots=\left|U_{k}\right|=2\left|U_{1}\right|+p . \tag{2.3}
\end{equation*}
$$

We now consider a $k$-partite subhypergraph $\mathcal{V}^{\prime}$ with arbitrary $\left|U_{1}\right|$ vertices in each $U_{i}$ for $i \in[k]$. By regularity, $\mathcal{V}^{\prime}$ contains at least $(d-\epsilon)\left|U_{1}\right|^{k}$ edges, so we can apply Proposition 2.6 and find an $\ell$-path of odd length at least $\frac{(d-\epsilon) \epsilon m}{2(k-\ell)}-1 \geq \frac{(d-\epsilon) \epsilon m}{2 k}$ (dismiss one edge if needed). We continue this process until $\left|U_{1}\right|<\epsilon m$. Let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{p}$ be the $\ell$-paths obtained in $\mathcal{V}$ after the iteration stops. Since $\left|V_{1} \cap V\left(\mathcal{P}_{j}\right)\right| \geq \frac{(d-\epsilon \epsilon \epsilon m}{2 k}$ for every $j$, we have

$$
p \leq \frac{m}{\frac{(d-\epsilon) \epsilon m}{2 k}}=\frac{2 k}{(d-\epsilon) \epsilon} .
$$

Since $m>\frac{k^{2}}{\epsilon^{2}(d-\epsilon)}$, it follows that $p(k-2 \ell)<\frac{2 k^{2}}{(d-\epsilon) \epsilon}<2 \epsilon m$. By (2.3), the total number of uncovered vertices in $\mathcal{V}$ is

$$
\begin{aligned}
\sum_{i=1}^{k}\left|U_{i}\right| & =\left|U_{1}\right| 2 \ell+\left(2\left|U_{1}\right|+p\right)(k-2 \ell)=2(k-\ell)\left|U_{1}\right|+p(k-2 \ell) \\
& <2(k-1) \epsilon m+2 \epsilon m=2 k \epsilon m .
\end{aligned}
$$

Given $k \geq 3$ and $0 \leq b<k$, let $\mathcal{Y}_{k, b}$ be a $k$-graph with two edges that share exactly $b$ vertices. In general, given two (hyper)graphs $\mathcal{G}$ and $\mathcal{H}$, a $\mathcal{G}$-tiling is a sub(hyper)graph of $\mathcal{H}$ that consists of vertex-disjoint copies of $\mathcal{G}$. A $\mathcal{G}$-tiling is perfect if it is a spanning $\operatorname{sub}($ hyper )graph of $\mathcal{H}$. The following lemma is the main step in our proof of Lemma 2.3 and we prove it in the next subsection. Note that it generalizes [2, Lemma 3.1] of Czygrinow, DeBiasio, and Nagle.

Lemma $2.8\left(\mathcal{Y}_{k, b}\right.$-tiling lemma). Given integers $k \geq 3,1 \leq b<k$ and constants $\gamma, \beta>0$, there exist $0<\epsilon^{\prime}<\gamma \beta$ and an integer $n^{\prime}$ such that the following holds. Suppose $\mathcal{H}$ is a $k$-graph on $n>n^{\prime}$ vertices with $\operatorname{deg}(S) \geq\left(\frac{1}{2 k-b}-\gamma\right) n$ for all but at most $\epsilon^{\prime} n^{k-1}$ sets $S \in\binom{V}{k-1}$, then there is a $\mathcal{Y}_{k, b}$-tiling that covers all but at most $\beta$ n vertices of $\mathcal{H}$ unless $\mathcal{H}$ contains a vertex set $B$ such that $|B|=\left\lfloor\frac{2 k-b-1}{2 k-b} n\right\rfloor$ and $e(B)<6 \gamma n^{k}$.

Now we are ready to prove Lemma 2.3.

Proof of Lemma 2.3. Fix integers $k, \ell, 0<\gamma_{3}, \alpha<1$. Let $\epsilon^{\prime}, n^{\prime}$ be the constants returned from Lemma 2.8 with $b=2 \ell, \gamma=2 \gamma_{3}$, and $\beta=\alpha / 2$. Thus $\epsilon^{\prime}<\gamma \beta=\gamma_{3} \alpha$. Let $T_{0}$ be the constant returned from Corollary 2.5 with $c=\frac{1}{2(k-\ell)}-\gamma_{3}, \epsilon=\left(\epsilon^{\prime}\right)^{2} / 16, d=\gamma_{3} / 2$ and $t_{0}>\max \left\{n^{\prime}, 4 k / \gamma_{3}\right\}$. Furthermore, let $p=\frac{2 T_{0}}{(d-2 \epsilon \epsilon \epsilon}$.

Let $n$ be sufficiently large and let $\mathcal{H}$ be a $k$-graph on $n$ vertices with $\delta_{k-1}(\mathcal{H}) \geq$ $\left(\frac{1}{2(k-\ell)}-\gamma_{3}\right) n$. Applying Corollary 2.5 with the constants chosen above, we obtain an $\epsilon$-regular partition and a cluster hypergraph $\mathcal{K}=\mathcal{K}(\epsilon, d)$ on $[t]$ such that for all but at most $\sqrt{\epsilon} t^{k-1}(k-1)$-sets $S \in\binom{[t]}{k-1}$,

$$
\operatorname{deg}_{\mathcal{K}}(S) \geq\left(\frac{1}{2(k-\ell)}-\gamma_{3}-d-\sqrt{\epsilon}\right) t-(k-1) \geq\left(\frac{1}{2(k-\ell)}-2 \gamma_{3}\right) t
$$

because $d=\gamma_{3} / 2, \sqrt{\epsilon}=\epsilon^{\prime} / 4<\gamma_{3} / 4$ and $k-1<\gamma_{3} t_{0} / 4 \leq \gamma_{3} t / 4$. Let $m$ be the size of clusters, then $(1-\epsilon) \frac{n}{t} \leq m \leq \frac{n}{t}$. Applying Lemma 2.8 with the constants chosen above, we derive that either there is a $\mathcal{Y}_{k, 2 \ell}$-tiling $\mathscr{Y}$ of $\mathcal{K}$ which covers all but at most $\beta t$ vertices of $\mathcal{K}$ or there exists a set $B \subseteq V(\mathcal{K})$, such that $|B|=\left\lfloor\frac{2 k-2 \ell-1}{2(k-\ell)} t\right\rfloor$ and $e_{\mathcal{K}}(B) \leq 12 \gamma_{3} t^{k}$. In the latter case, let $B^{\prime} \subseteq V(\mathcal{H})$ be the union of the clusters in $B$. By regularity,

$$
e_{\mathcal{H}}\left(B^{\prime}\right) \leq e_{\mathcal{K}}(B) \cdot m^{k}+\binom{t}{k} \cdot d \cdot m^{k}+\epsilon \cdot\binom{t}{k} \cdot m^{k}+t\binom{m}{2}\binom{n}{k-2}
$$

where the right-hand side bounds the number of edges from regular $k$-tuples with high density, edges from regular $k$-tuples with low density, edges from irregular $k$-tuples and edges that lie in at most $k-1$ clusters. Since $m \leq \frac{n}{t}, \epsilon<\gamma_{3} / 16, d=\gamma_{3} / 2$, and $t^{-1}<t_{0}^{-1}<\gamma_{3} /(4 k)$, we obtain that

$$
\begin{aligned}
e_{\mathcal{H}}\left(B^{\prime}\right) & \leq 12 \gamma_{3} t^{k} \cdot\left(\frac{n}{t}\right)^{k}+\binom{t}{k} \frac{\gamma_{3}}{2}\left(\frac{n}{t}\right)^{k}+\frac{\gamma_{3}}{16}\binom{t}{k}\left(\frac{n}{t}\right)^{k}+t\binom{n / t}{2}\binom{n}{k-2} \\
& <13 \gamma_{3} n^{k} .
\end{aligned}
$$

Note that $\left|B^{\prime}\right|=\left\lfloor\frac{2 k-2 \ell-1}{2(k-\ell)} t\right\rfloor m \leq \frac{2 k-2 \ell-1}{2(k-\ell)} t \cdot \frac{n}{t}=\frac{2 k-2 \ell-1}{2(k-\ell)} n$, and consequently $\left|B^{\prime}\right| \leq$ $\left\lfloor\frac{2 k-2 \ell-1}{2(k-\ell)} n\right\rfloor$. On the other hand,

$$
\begin{aligned}
\left|B^{\prime}\right| & \left.=\left\lvert\, \frac{2 k-2 \ell-1}{2(k-\ell)} t\right.\right\rfloor m \geq\left(\frac{2 k-2 \ell-1}{2(k-\ell)} t-1\right)(1-\epsilon) \frac{n}{t} \\
& \geq\left(\frac{2 k-2 \ell-1}{2(k-\ell)} t-\epsilon \frac{2 k-2 \ell-1}{2(k-\ell)} t-1\right) \frac{n}{t} \\
& \geq\left(\frac{2 k-2 \ell-1}{2(k-\ell)} t-\epsilon t\right) \frac{n}{t}=\frac{2 k-2 \ell-1}{2(k-\ell)} n-\epsilon n .
\end{aligned}
$$

By adding at most $\epsilon n$ vertices from $V \backslash B^{\prime}$ to $B^{\prime}$, we get a set $B^{\prime \prime} \subseteq V(\mathcal{H})$ of size exactly $\left\lfloor\frac{2 k-2 \ell-1}{2(k-\ell)} n\right\rfloor$, with $e\left(B^{\prime \prime}\right) \leq e\left(B^{\prime}\right)+\epsilon n \cdot n^{k-1}<14 \gamma_{3} n^{k}$. Hence $\mathcal{H}$ is $14 \gamma_{3}$-extremal.

In the former case, let $m^{\prime}=\lfloor m / 2\rfloor$. If $m$ is odd, we throw away one vertex from each cluster covered by $\mathscr{Y}$ (we do nothing if $m$ is even). Thus, the union of the clusters covered by $\mathscr{Y}$ contains all but at most $\beta t m+\left|V_{0}\right|+t \leq \alpha n / 2+2 \epsilon n$ vertices of $\mathcal{H}$. We take the following procedure to each member $\mathcal{Y}^{\prime} \in \mathscr{Y}$. Suppose that $\mathcal{Y}^{\prime}$ has the vertex set $[2 k-2 \ell]$ with edges $\{1, \ldots, k\}$ and $\{k-2 \ell+1, \ldots, 2 k-2 \ell\}$. For $i \in[2 k-2 \ell]$, let $W_{i}$ denote the corresponding cluster in $\mathcal{H}$. We split each $W_{i}, i=k-2 \ell+1, \ldots, k$, into two disjoint sets $W_{i}^{1}$ and $W_{i}^{2}$ of equal size. Then each of the $k$-tuples $\left(W_{k-2 \ell+1}^{1}, \ldots, W_{k}^{1}, W_{1}, \ldots, W_{k-2 \ell}\right)$ and $\left(W_{k-2 \ell+1}^{2}, \ldots, W_{k}^{2}, W_{k+1}, \ldots, W_{2 k-2 \ell}\right)$ is $\left(2 \epsilon, d^{\prime}\right)$-regular for some $d^{\prime} \geq d$ and of sizes $m^{\prime}, \ldots, m^{\prime}, 2 m^{\prime}, \ldots, 2 m^{\prime}$. Applying Lemma 2.7 to these two $k$-tuples, we find a family of at most $\frac{2 k}{\left(d^{\prime}-2 \epsilon\right) 2 \epsilon} \leq \frac{k}{(d-2 \epsilon) \epsilon}$ disjoint loose paths in each $k$-tuple covering all but at most $2 k(2 \epsilon) m^{\prime} \leq 2 k \epsilon m$ vertices. Since $|\mathscr{Y}| \leq \frac{t}{2 k-2 \ell}$, we thus obtain a path-tiling that consists of at most $2 \frac{t}{2 k-2 \ell} \frac{k}{(d-2 \epsilon) \epsilon} \leq \frac{2 T_{0}}{(d-2 \epsilon) \epsilon}=p$ paths and covers all but at most

$$
2 \cdot 2 k \epsilon m \cdot \frac{t}{2 k-2 \ell}+\alpha n / 2+2 \epsilon n<6 \epsilon n+\alpha n / 2<\alpha n
$$

vertices of $\mathcal{H}$, where we use $2 k-2 \ell>k$ and $\epsilon=\left(\epsilon^{\prime}\right)^{2} / 16<\left(\gamma_{3} \alpha\right)^{2} / 16<\alpha / 12$. This completes the proof.

### 2.3. Proof of Lemma 2.8

We first give an upper bound on the size of $k$-graphs containing no copy of $\mathcal{Y}_{k, b}$. In its proof, we use the concept of link (hyper)graph: given a $k$-graph $\mathcal{H}$ with a set $S$ of at most $k-1$ vertices, the link graph of $S$ is the ( $k-|S|$ )-graph with vertex set $V(\mathcal{H}) \backslash S$ and edge set $\{e \backslash S: e \in E(\mathcal{H}), S \subseteq e\}$. Throughout the rest of the paper, we frequently use the simple identity $\binom{m}{b}\binom{m-b}{k-b}=\binom{m}{k}\binom{k}{b}$, which holds for all integers $0 \leq b \leq k \leq m$.

Fact 2.9. Let $0 \leq b<k$ and $m \geq 2 k-b$. If $\mathcal{H}$ is a $k$-graph on $m$ vertices containing no copy of $\mathcal{Y}_{k, b}$, then $e(\mathcal{H})<\binom{m}{k-1}$.

Proof. Fix any $b$-set $S \subseteq V(\mathcal{H})(S=\emptyset$ if $b=0)$ and consider its link graph $L_{S}$. Since $\mathcal{H}$ contains no copy of $\mathcal{Y}_{k, b}$, any two edges of $L_{S}$ intersect. Since $m \geq 2 k-b$, the Erdős-Ko-Rado Theorem [5] implies that $\left|L_{S}\right| \leq\binom{ m-b-1}{k-b-1}$. Thus,

$$
\begin{aligned}
e(\mathcal{H}) & \leq \frac{1}{\binom{k}{b}}\binom{m}{b} \cdot\binom{m-b-1}{k-b-1}=\frac{1}{\binom{k}{b}}\binom{m}{b}\binom{m-b}{k-b} \frac{k-b}{m-b}=\binom{m}{k} \frac{k-b}{m-b} \\
& =\binom{m}{k-1} \frac{k-b}{k} \frac{m-k+1}{m-b}<\binom{m}{k-1} .
\end{aligned}
$$

Proof of Lemma 2.8. Given $\gamma, \beta>0$, let $\epsilon^{\prime}=\frac{\gamma \beta^{k-1}}{(k-1)!}$ and let $n \in \mathbb{N}$ be sufficiently large. Let $\mathcal{H}$ be a $k$-graph on $n$ vertices that satisfies $\operatorname{deg}(S) \geq\left(\frac{1}{2 k-b}-\gamma\right) n$ for all but at most
$\epsilon^{\prime} n^{k-1}(k-1)$-sets $S$. Let $\mathscr{Y}=\left\{\mathcal{Y}_{1}, \ldots, \mathcal{Y}_{m}\right\}$ be a largest $\mathcal{Y}_{k, b}$-tiling in $\mathcal{H}$ (with respect to $m$ ) and write $V_{i}=V\left(\mathcal{Y}_{i}\right)$ for $i \in[m]$. Let $V^{\prime}=\bigcup_{i \in[m]} V_{i}$ and $U=V(\mathcal{H}) \backslash V^{\prime}$. Assume that $|U|>\beta n$ - otherwise we are done.

Let $C$ be the set of vertices $v \in V^{\prime}$ such that $\operatorname{deg}(v, U) \geq(2 k-b)^{2}\binom{|U|}{k-2}$. We will show that $|C| \leq \frac{n}{2 k-b}$ and $C$ covers almost all the edges of $\mathcal{H}$, which implies that $\mathcal{H}[V \backslash C]$ is sparse and $\mathcal{H}$ is in the extremal case. We first observe that every $\mathcal{Y}_{i} \in \mathscr{Y}$ contains at most one vertex in $C$. Suppose instead, two vertices $x, y \in V_{i}$ are both in $C$. Since $\operatorname{deg}(x, U) \geq(2 k-b)^{2}\binom{|U|}{k-2}>\binom{|U|}{k-2}$, by Fact 2.9 , there is a copy of $\mathcal{Y}_{k-1, b-1}$ in the link graph of $x$ on $U$, which gives rise to $\mathcal{Y}^{\prime}$, a copy of $\mathcal{Y}_{k, b}$ on $\{x\} \cup U$. Since the link graph of $y$ on $U \backslash V\left(\mathcal{Y}^{\prime}\right)$ has at least

$$
(2 k-b)^{2}\binom{|U|}{k-2}-(2 k-b-1)\binom{|U|}{k-2}>\binom{\left|U \backslash V\left(\mathcal{Y}^{\prime}\right)\right|}{k-2}
$$

edges, we can find another copy of $\mathcal{Y}_{k, b}$ on $\{y\} \cup\left(U \backslash V\left(\mathcal{Y}^{\prime}\right)\right)$ by Fact 2.9. Replacing $\mathcal{Y}_{i}$ in $\mathscr{Y}$ with these two copies of $\mathcal{Y}_{k, b}$ creates a $\mathcal{Y}_{k, b}$-tiling larger than $\mathscr{Y}$, contradiction. Consequently,

$$
\begin{align*}
\sum_{S \in\binom{U}{k-1}} \operatorname{deg}\left(S, V^{\prime}\right) & \leq|C|\binom{|U|}{k-1}+\left|V^{\prime} \backslash C\right|(2 k-b)^{2}\binom{|U|}{k-2} \\
& <|C|\binom{|U|}{k-1}+(2 k-b)^{2} n\binom{|U|}{k-2} \text { because }\left|V^{\prime} \backslash C\right|<n \\
& =\binom{|U|}{k-1}\left(|C|+\frac{(2 k-b)^{2} n(k-1)}{|U|-k+2}\right) . \tag{2.4}
\end{align*}
$$

Second, by Fact 2.9, $e(U) \leq\binom{|U|}{k-1}$ since $\mathcal{H}[U]$ contains no copy of $\mathcal{Y}_{k, b}$, which implies

$$
\begin{equation*}
\sum_{S \in\binom{U}{k-1}} \operatorname{deg}(S, U) \leq k\binom{|U|}{k-1} \tag{2.5}
\end{equation*}
$$

By the definition of $\epsilon^{\prime}$, we have

$$
\epsilon^{\prime} n^{k-1}=\frac{\gamma \beta^{k-1}}{(k-1)!} n^{k-1}<\frac{\gamma|U|^{k-1}}{(k-1)!}<2 \gamma\binom{|U|}{k-1}
$$

as $|U|$ is large enough. At last, by the degree condition, we have

$$
\begin{align*}
\sum_{S \in\binom{U-1}{U}} \operatorname{deg}(S) & \geq\left(\binom{|U|}{k-1}-\epsilon^{\prime} n^{k-1}\right)\left(\frac{1}{2 k-b}-\gamma\right) n \\
& >(1-2 \gamma)\binom{|U|}{k-1}\left(\frac{1}{2 k-b}-\gamma\right) n \tag{2.6}
\end{align*}
$$

Since $\operatorname{deg}(S)=\operatorname{deg}(S, U)+\operatorname{deg}\left(S, V^{\prime}\right)$, we combine (2.4), (2.5) and (2.6) and get

$$
|C|>(1-2 \gamma)\left(\frac{1}{2 k-b}-\gamma\right) n-k-\frac{(2 k-b)^{2} n(k-1)}{|U|-k+2}
$$

Since $|U|>16 k^{3} / \gamma$, we get

$$
\frac{(2 k-b)^{2} n(k-1)}{|U|-k+2}<\frac{4 k^{3} n}{|U| / 2}<\gamma n / 2
$$

Since $2 \gamma^{2} n>k$ and $2 k-b \geq 4$, it follows that $|C|>\left(\frac{1}{2 k-b}-2 \gamma\right) n$.
Let $I_{C}$ be the set of all $i \in[m]$ such that $V_{i} \cap C \neq \emptyset$. Since each $V_{i}, i \in I_{C}$, contains one vertex of $C$, we have

$$
\begin{equation*}
\left|I_{C}\right|=|C| \geq\left(\frac{1}{2 k-b}-2 \gamma\right) n \geq m-2 \gamma n \tag{2.7}
\end{equation*}
$$

Let $A=\left(\bigcup_{i \in I_{C}} V_{i} \backslash C\right) \cup U$.
Claim 2.10. $\mathcal{H}[A]$ contains no copy of $\mathcal{Y}_{k, b}$, thus $e(A)<\binom{n}{k-1}$.
Proof. The first half of the claim implies the second half by Fact 2.9. Suppose instead, $\mathcal{H}[A]$ contains a copy of $\mathcal{Y}_{k, b}$, denoted by $\mathcal{Y}_{0}$. Note that $V\left(\mathcal{Y}_{0}\right) \nsubseteq U$ because $\mathcal{H}[U]$ contains no copy of $\mathcal{Y}_{k, b}$. Without loss of generality, suppose that $V_{1}, \ldots, V_{j}$ contain the vertices of $\mathcal{Y}_{0}$ for some $j \leq 2 k-b$. For $i \in[j]$, let $c_{i}$ denote the unique vertex in $V_{i} \cap C$. We greedily construct vertex-disjoint copies of $\mathcal{Y}_{k, b}$ on $\left\{c_{i}\right\} \cup U, i \in[j]$ as follows. Suppose we have found $\mathcal{Y}_{1}^{\prime}, \ldots, \mathcal{Y}_{i}^{\prime}$ (copies of $\mathcal{Y}_{k, b}$ ) for some $i<j$. Let $U_{0}$ denote the set of the vertices of $U$ covered by $\mathcal{Y}_{0}, \mathcal{Y}_{1}^{\prime}, \ldots, \mathcal{Y}_{i}^{\prime}$. Then $\left|U_{0}\right| \leq(i+1)(2 k-b-1) \leq(2 k-b)(2 k-b-1)$. Since $\operatorname{deg}\left(c_{i+1}, U\right) \geq(2 k-b)^{2}\binom{|U|}{k-2}$, the link graph of $c_{i+1}$ on $U \backslash U_{0}$ has at least

$$
(2 k-b)^{2}\binom{|U|}{k-2}-\left|U_{0}\right|\binom{|U|}{k-2}>\binom{|U|}{k-2}
$$

edges. By Fact 2.9, there is a copy of $\mathcal{Y}_{k, b}$ on $\left\{c_{i+1}\right\} \cup\left(U \backslash U_{0}\right)$. Let $\mathcal{Y}_{1}^{\prime}, \ldots, \mathcal{Y}_{j}^{\prime}$ denote the copies of $\mathcal{Y}_{k, b}$ constructed in this way. Replacing $\mathcal{Y}_{1}, \ldots, \mathcal{Y}_{j}$ in $\mathscr{Y}$ with $\mathcal{Y}_{0}, \mathcal{Y}_{1}^{\prime}, \ldots, \mathcal{Y}_{j}^{\prime}$ gives a $\mathcal{Y}_{k, b}$-tiling larger than $\mathscr{Y}$, contradiction.

Note that the edges not incident to $C$ are either contained in $A$ or intersect some $V_{i}$, $i \notin I_{C}$. By (2.7) and Claim 2.10,

$$
\begin{aligned}
e(V \backslash C) & \leq e(A)+(2 k-b) \cdot 2 \gamma n\binom{n-1}{k-1}<\binom{n}{k-1}+(4 k-2 b) \gamma n\binom{n}{k-1} \\
& <4 k \gamma n\binom{n}{k-1}<\frac{4 k}{(k-1)!} \gamma n^{k} \leq 6 \gamma n^{k},
\end{aligned}
$$

where the last inequality follows from $k \geq 3$. Since $|C| \leq \frac{n}{2 k-b}$, we can pick a set $B \subseteq V \backslash C$ of order $\left\lfloor\frac{2 k-b-1}{2 k-b} n\right\rfloor$ such that $e(B)<6 \gamma n^{k}$.

## 3. The extremal theorem

In this section we prove Theorem 1.5. Assume that $k \geq 3,1 \leq \ell<k / 2$ and $0<\Delta \ll 1$. Let $n \in(k-\ell) \mathbb{N}$ be sufficiently large. Let $\mathcal{H}$ be a $k$-graph on $V$ of $n$ vertices such that $\delta_{k-1}(\mathcal{H}) \geq \frac{n}{2(k-\ell)}$. Furthermore, assume that $\mathcal{H}$ is $\Delta$-extremal, namely, there is a set $B \subseteq V(\mathcal{H})$, such that $|B|=\left\lfloor\frac{(2 k-2 \ell-1) n}{2(k-\ell)}\right\rfloor$ and $e(B) \leq \Delta n^{k}$. Let $A=V \backslash B$. Then $|A|=\left\lceil\frac{n}{2(k-\ell)}\right\rceil$.

The following is an outline of the proof. We denote by $A^{\prime}$ and $B^{\prime}$ the sets of the vertices of $\mathcal{H}$ that behave as typical vertices of $A$ and $B$, respectively. Let $V_{0}=V \backslash\left(A^{\prime} \cup B^{\prime}\right)$. It is not hard to show that $A^{\prime} \approx A, B^{\prime} \approx B$, and thus $V_{0} \approx \emptyset$. In the ideal case, when $V_{0}=\emptyset$ and $\left|B^{\prime}\right|=(2 k-2 \ell-1)\left|A^{\prime}\right|$, we assign a cyclic order to the vertices of $A^{\prime}$, construct $\left|A^{\prime}\right|$ copies of $\mathcal{Y}_{k, \ell}$ such that each copy contains one vertex of $A^{\prime}$ and $2 k-\ell-1$ vertices of $B^{\prime}$, and any two consecutive copies of $\mathcal{Y}_{k, \ell}$ share exactly $\ell$ vertices of $B^{\prime}$. This gives rise to the desired Hamilton $\ell$-cycle of $\mathcal{H}$. In the general case, we first construct an $\ell$-path $\mathcal{Q}$ with ends $L_{0}$ and $L_{1}$ such that $V_{0} \subseteq V(\mathcal{Q})$ and $\left|B_{1}\right|=(2 k-2 \ell-1)\left|A_{1}\right|+\ell$, where $A_{1}=A^{\prime} \backslash V(\mathcal{Q})$ and $B_{1}=(B \backslash V(\mathcal{Q})) \cup L_{0} \cup L_{1}$. Next we complete the Hamilton $\ell$-cycle by constructing an $\ell$-path on $A_{1} \cup B_{1}$ with ends $L_{0}$ and $L_{1}$.

For the convenience of later calculations, we let $\epsilon_{0}=2 k!e \Delta \ll 1$ and claim that $e(B) \leq \epsilon_{0}\binom{|B|}{k}$. Indeed, since $2(k-\ell)-1 \geq k$, we have

$$
\frac{1}{e} \leq\left(1-\frac{1}{2(k-\ell)}\right)^{2(k-\ell)-1} \leq\left(1-\frac{1}{2(k-\ell)}\right)^{k}
$$

Thus we get

$$
\begin{equation*}
e(B) \leq \frac{\epsilon_{0}}{2 k!e} n^{k} \leq \epsilon_{0}\left(1-\frac{1}{2(k-\ell)}\right)^{k} \frac{n^{k}}{2 k!} \leq \epsilon_{0}\binom{|B|}{k} \tag{3.1}
\end{equation*}
$$

In general, given two disjoint vertex sets $X$ and $Y$ and two integers $i, j \geq 0$, a set $S \subset X \cup Y$ is called an $X^{i} Y^{j}$-set if $|S \cap X|=i$ and $|S \cap Y|=j$. When $X, Y$ are two disjoint subsets of $V(\mathcal{H})$ and $i+j=k$, we denote by $\mathcal{H}\left(X^{i} Y^{j}\right)$ the family of all edges of $\mathcal{H}$ that are $X^{i} Y^{j}$-sets, and let $e_{\mathcal{H}}\left(X^{i} Y^{j}\right)=\left|\mathcal{H}\left(X^{i} Y^{j}\right)\right|$ (the subscript may be omitted if it is clear from the context). We use $\bar{e}_{\mathcal{H}}\left(X^{i} Y^{k-i}\right)$ to denote the number of non-edges among $X^{i} Y^{k-i}$-sets. Given a set $L \subseteq X \cup Y$ with $|L \cap X|=l_{1} \leq i$ and $|L \cap Y|=l_{2} \leq k-i$, we define $\operatorname{deg}\left(L, X^{i} Y^{k-i}\right)$ as the number of edges in $\mathcal{H}\left(X^{i} Y^{k-i}\right)$ that contain $L$, and $\overline{\operatorname{deg}}\left(L, X^{i} Y^{k-i}\right)=\binom{|X|-l_{1}}{i-l_{1}}\binom{|Y|-l_{2}}{k-i-l_{2}}-\operatorname{deg}\left(L, X^{i} Y^{k-i}\right)$. Our earlier notation $\operatorname{deg}(S, R)$ may be viewed as $\operatorname{deg}\left(S, S^{|S|}(R \backslash S)^{k-|S|}\right)$.

### 3.1. Classification of vertices

Let $\epsilon_{1}=\epsilon_{0}{ }^{1 / 3}$ and $\epsilon_{2}=2 \epsilon_{1}^{2}$. Assume that the partition $V(\mathcal{H})=A \cup B$ satisfies that $|B|=\left\lfloor\frac{(2 k-2 \ell-1) n}{2(k-\ell)}\right\rfloor$ and (3.1). In addition, assume that $e(B)$ is the smallest among all such partitions. We now define

$$
\begin{aligned}
A^{\prime} & :=\left\{v \in V: \operatorname{deg}(v, B) \geq\left(1-\epsilon_{1}\right)\binom{|B|}{k-1}\right\} \\
B^{\prime} & :=\left\{v \in V: \operatorname{deg}(v, B) \leq \epsilon_{1}\binom{|B|}{k-1}\right\} \\
V_{0} & :=V \backslash\left(A^{\prime} \cup B^{\prime}\right)
\end{aligned}
$$

Claim 3.1. $A \cap B^{\prime} \neq \emptyset$ implies that $B \subseteq B^{\prime}$, and $B \cap A^{\prime} \neq \emptyset$ implies that $A \subseteq A^{\prime}$.
Proof. First, assume that $A \cap B^{\prime} \neq \emptyset$. Then there is some $u \in A$ such that $\operatorname{deg}(u, B) \leq$ $\epsilon_{1}\binom{|B|}{k-1}$. If there exists some $v \in B \backslash B^{\prime}$, namely, $\operatorname{deg}(v, B)>\epsilon_{1}\binom{|B|}{k-1}$, then we can switch $u$ and $v$ and form a new partition $A^{\prime \prime} \cup B^{\prime \prime}$ such that $\left|B^{\prime \prime}\right|=|B|$ and $e\left(B^{\prime \prime}\right)<e(B)$, which contradicts the minimality of $e(B)$.

Second, assume that $B \cap A^{\prime} \neq \emptyset$. Then some $u \in B$ satisfies that $\operatorname{deg}(u, B) \geq$ $\left(1-\epsilon_{1}\right)\binom{|B|}{k-1}$. Similarly, by the minimality of $e(B)$, we get that for any vertex $v \in A$, $\operatorname{deg}(v, B) \geq\left(1-\epsilon_{1}\right)\binom{|B|}{k-1}$, which implies that $A \subseteq A^{\prime}$.

Claim 3.2. $\left\{\left|A \backslash A^{\prime}\right|,\left|B \backslash B^{\prime}\right|,\left|A^{\prime} \backslash A\right|,\left|B^{\prime} \backslash B\right|\right\} \leq \epsilon_{2}|B|$ and $\left|V_{0}\right| \leq 2 \epsilon_{2}|B|$.
Proof. First assume that $\left|B \backslash B^{\prime}\right|>\epsilon_{2}|B|$. By the definition of $B^{\prime}$, we get that

$$
e(B)>\frac{1}{k} \epsilon_{1}\binom{|B|}{k-1} \cdot \epsilon_{2}|B|>2 \epsilon_{0}\binom{|B|}{k}
$$

which contradicts (3.1).
Second, assume that $\left|A \backslash A^{\prime}\right|>\epsilon_{2}|B|$. Then by the definition of $A^{\prime}$, for any vertex $v \notin A^{\prime}$, we have that $\overline{\operatorname{deg}}(v, B)>\epsilon_{1}\binom{|B|}{k-1}$. So we get

$$
\bar{e}\left(A B^{k-1}\right)>\epsilon_{2}|B| \cdot \epsilon_{1}\binom{|B|}{k-1}=2 \epsilon_{0}|B|\binom{|B|}{k-1} .
$$

Together with (3.1), this implies that

$$
\begin{aligned}
\sum_{S \in\binom{B}{k-1}} \overline{\operatorname{deg}}(S) & =k \bar{e}(B)+\bar{e}\left(A B^{k-1}\right) \\
& >k\left(1-\epsilon_{0}\right)\binom{|B|}{k}+2 \epsilon_{0}|B|\binom{|B|}{k-1} \\
& =\left(\left(1-\epsilon_{0}\right)(|B|-k+1)+2 \epsilon_{0}|B|\right)\binom{|B|}{k-1}>|B|\binom{|B|}{k-1} .
\end{aligned}
$$

where the last inequality holds because $n$ is large enough. By the pigeonhole principle, there exists a set $S \in\binom{B}{k-1}$, such that $\overline{\operatorname{deg}}(S)>|B|=\left\lfloor\frac{(2 k-2 \ell-1) n}{2(k-\ell)}\right\rfloor$, contradicting (1.1).

Consequently,

$$
\begin{aligned}
& \left|A^{\prime} \backslash A\right|=\left|A^{\prime} \cap B\right| \leq\left|B \backslash B^{\prime}\right| \leq \epsilon_{2}|B| \\
& \left|B^{\prime} \backslash B\right|=\left|A \cap B^{\prime}\right| \leq\left|A \backslash A^{\prime}\right| \leq \epsilon_{2}|B| \\
& \left|V_{0}\right|=\left|A \backslash A^{\prime}\right|+\left|B \backslash B^{\prime}\right| \leq \epsilon_{2}|B|+\epsilon_{2}|B|=2 \epsilon_{2}|B|
\end{aligned}
$$

### 3.2. Classification of $\ell$-sets in $B^{\prime}$

In order to construct our Hamilton $\ell$-cycle, we need to connect two $\ell$-paths. To make this possible, we want the ends of our $\ell$-paths to be $\ell$-sets in $B^{\prime}$ that have high degree in $\mathcal{H}\left[A^{\prime} B^{\prime k-1}\right]$. Formally, we call an $\ell$-set $L \subset V$ typical if $\operatorname{deg}(L, B) \leq \epsilon_{1}\binom{|B|}{k-\ell}$, otherwise atypical. We prove several properties related to typical $\ell$-sets in this subsection.

Claim 3.3. The number of atypical $\ell$-sets in $B$ is at most $\epsilon_{2}\binom{|B|}{\ell}$.
Proof. Let $m$ be the number of atypical $\ell$-sets in $B$. By (3.1), we have

$$
\frac{m \epsilon_{1}\binom{|B|}{k-\ell}}{\binom{k}{\ell}} \leq e(B) \leq \epsilon_{0}\binom{|B|}{k},
$$

which gives that $m \leq \frac{\epsilon_{0}\binom{k}{l}\binom{|B|}{k}}{\epsilon_{1}\binom{(B-\ell}{k-\ell}}=\frac{\epsilon_{2}}{2}\binom{|B|-k+\ell}{\ell}<\epsilon_{2}\binom{|B|}{\ell}$.
Claim 3.4. Every typical $\ell$-set $L \subset B^{\prime}$ satisfies $\overline{\operatorname{deg}}\left(L, A^{\prime} B^{\prime k-1}\right) \leq 4 k \epsilon_{1}\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1}\left|A^{\prime}\right|$.
Proof. Fix a typical $\ell$-set $L \subset B^{\prime}$ and consider the following sum,

$$
\sum_{L \subset D \subset B^{\prime},|D|=k-1} \operatorname{deg}(D)=\sum_{L \subset D \subset B^{\prime},|D|=k-1}\left(\operatorname{deg}\left(D, A^{\prime}\right)+\operatorname{deg}\left(D, B^{\prime}\right)+\operatorname{deg}\left(D, V_{0}\right)\right)
$$

By (1.1), the left-hand side is at least $\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1}|A|$. On the other hand,

$$
\sum_{L \subset D \subset B^{\prime},|D|=k-1}\left(\operatorname{deg}\left(D, B^{\prime}\right)+\operatorname{deg}\left(D, V_{0}\right)\right) \leq(k-\ell) \operatorname{deg}\left(L, B^{\prime}\right)+\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1}\left|V_{0}\right| .
$$

Since $L$ is typical and $\left|B^{\prime} \backslash B\right| \leq \epsilon_{2}|B|$ (Claim 3.2), we have

$$
\begin{aligned}
\operatorname{deg}\left(L, B^{\prime}\right) & \leq \operatorname{deg}(L, B)+\left|B^{\prime} \backslash B\right|\binom{\left|B^{\prime}\right|-1}{k-\ell-1} \\
& \leq \epsilon_{1}\binom{|B|}{k-\ell}+\epsilon_{2}|B|\binom{\left|B^{\prime}\right|-1}{k-\ell-1}
\end{aligned}
$$

Since $\epsilon_{2} \ll \epsilon_{1}$ and $\left||B|-\left|B^{\prime}\right|\right| \leq \epsilon_{2}|B|$, it follows that

$$
\begin{aligned}
(k-\ell) \operatorname{deg}\left(L, B^{\prime}\right) & \leq \epsilon_{1}|B|\binom{|B|-1}{k-\ell-1}+(k-\ell) \epsilon_{2}|B|\binom{\left|B^{\prime}\right|-1}{k-\ell-1} \\
& \leq 2 \epsilon_{1}|B|\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1}
\end{aligned}
$$

Putting these together and using Claim 3.2, we obtain that

$$
\begin{aligned}
\sum_{L \subset D \subset B^{\prime},|D|=k-1} \operatorname{deg}\left(D, A^{\prime}\right) & \geq\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1}\left(|A|-\left|V_{0}\right|\right)-2 \epsilon_{1}|B|\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1} \\
& \geq\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1}\left(\left|A^{\prime}\right|-3 \epsilon_{2}|B|-2 \epsilon_{1}|B|\right) .
\end{aligned}
$$

Note that $\operatorname{deg}\left(L, A^{\prime} B^{\prime k-1}\right)=\sum_{L \subset D \subset B^{\prime},|D|=k-1} \operatorname{deg}\left(D, A^{\prime}\right)$. Since $|B| \leq(2 k-2 \ell-$ 1) $|A| \leq(2 k-2 \ell)\left|A^{\prime}\right|$, we finally derive that

$$
\begin{aligned}
\operatorname{deg}\left(L, A^{\prime} B^{\prime k-1}\right) & \geq\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1}\left(1-(2 k-2 \ell)\left(3 \epsilon_{2}+2 \epsilon_{1}\right)\right)\left|A^{\prime}\right| \\
& \geq\left(1-4 k \epsilon_{1}\right)\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1}\left|A^{\prime}\right|
\end{aligned}
$$

as desired.

We next show that we can connect any two disjoint typical $\ell$-sets of $B^{\prime}$ with an $\ell$-path of length two while avoiding any given set of $\frac{n}{4(k-\ell)}$ vertices of $V$.

Claim 3.5. Given two disjoint typical $\ell$-sets $L_{1}, L_{2}$ in $B^{\prime}$ and a vertex set $U \subseteq V$ with $|U| \leq \frac{n}{4(k-\ell)}$, there exist a vertex $a \in A^{\prime} \backslash U$ and a $(2 k-3 \ell-1)$-set $C \subset B^{\prime} \backslash U$ such that $L_{1} \cup L_{2} \cup\{a\} \cup C$ spans an $\ell$-path (of length two) ended at $L_{1}, L_{2}$.

Proof. Fix two disjoint typical $\ell$-sets $L_{1}, L_{2}$ in $B^{\prime}$. Using Claim 3.2, we obtain that $|U| \leq \frac{n}{4(k-\ell)} \leq \frac{|A|}{2}<\frac{2}{3}\left|A^{\prime}\right|$ and

$$
\frac{n}{4(k-\ell)} \leq \frac{|B|+1}{2(2 k-2 \ell-1)} \leq \frac{\left(1+2 \epsilon_{2}\right)\left|B^{\prime}\right|}{2 k}<\frac{\left|B^{\prime}\right|}{k} .
$$

Thus $\left|A^{\prime} \backslash U\right|>\frac{\left|A^{\prime}\right|}{3}$ and $\left|B^{\prime} \backslash U\right|>\frac{k-1}{k}\left|B^{\prime}\right|$. Consider a $(k-\ell)$-graph $\mathcal{G}$ on $\left(A^{\prime} \cup B^{\prime}\right) \backslash U$ such that an $A^{\prime} B^{\prime k-\ell-1}$-set $T$ is an edge of $\mathcal{G}$ if and only if $T \cap U=\emptyset$ and $T$ is a common neighbor of $L_{1}$ and $L_{2}$ in $\mathcal{H}$. By Claim 3.4, we have

$$
\begin{aligned}
\bar{e}(\mathcal{G}) & \leq 2 \cdot 4 k \epsilon_{1}\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1}\left|A^{\prime}\right|<8 k \epsilon_{1}\binom{\frac{k}{k-1}\left|B^{\prime} \backslash U\right|}{k-\ell-1} \cdot 3\left|A^{\prime} \backslash U\right| \\
& \leq 24 k \epsilon_{1}\left(\frac{k}{k-1}\right)^{k-1}\binom{\left|B^{\prime} \backslash U\right|}{k-\ell-1}\left|A^{\prime} \backslash U\right| .
\end{aligned}
$$

Consequently, $e(\mathcal{G})>\frac{1}{2}\binom{\left|B^{\prime} \backslash U\right|}{k-\ell-1}\left|A^{\prime} \backslash U\right|$. Hence there exists a vertex $a \in A^{\prime} \backslash U$ such that $\operatorname{deg}_{\mathcal{G}}(a)>\frac{1}{2}\binom{\left|B^{\prime} \backslash U\right|}{k-\ell-1}>\binom{\left|B^{\prime} \backslash U\right|}{k-\ell-2}$. By Fact 2.9, the link graph of $a$ contains a copy of $\mathcal{Y}_{k-\ell-1, \ell-1}$ (two edges of the link graph sharing $\ell-1$ vertices). In other words, there exists a $(2 k-3 \ell-1)$-set $C \subset B^{\prime} \backslash U$ such that $C \cup\{a\}$ contains two edges of $\mathcal{G}$ sharing $\ell$ vertices. Together with $L_{1}, L_{2}$, this gives rise to the desired $\ell$-path (in $\mathcal{H}$ ) of length two ended at $L_{1}, L_{2}$.

The following claim shows that we can always extend a typical $\ell$-set to an edge of $\mathcal{H}$ by adding one vertex from $A^{\prime}$ and $k-\ell-1$ vertices from $B^{\prime}$ such that every $\ell$-set of these $k-\ell-1$ vertices is typical. This can be done even when at most $\frac{n}{4(k-\ell)}$ vertices of $V$ are not available.

Claim 3.6. Given a typical $\ell$-set $L \subseteq B^{\prime}$ and a set $U \subseteq V$ with $|U| \leq \frac{n}{4(k-\ell)}$, there exists an $A^{\prime} B^{\prime k-\ell-1}$-set $C \subset V \backslash U$ such that $L \cup C$ is an edge of $\mathcal{H}$ and every $\ell$-subset of $C \cap B^{\prime}$ is typical.

Proof. First, since $L$ is typical in $B^{\prime}$, by Claim 3.4, $\overline{\operatorname{deg}}\left(L, A^{\prime} B^{\prime k-1}\right) \leq 4 k \epsilon_{1}\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1}\left|A^{\prime}\right|$. Second, note that a vertex in $A^{\prime}$ is contained in $\binom{\left|B^{\prime}\right|}{k-\ell-1} A^{\prime} B^{\prime k-\ell-1}$-sets, while a vertex in $B^{\prime}$ is contained in $\left|A^{\prime}\right|\binom{\left|B^{\prime}\right|-1}{k-\ell-2} A^{\prime} B^{\prime k-\ell-1}$-sets. It is easy to see that $\left|A^{\prime}\right|\binom{\left|B^{\prime}\right|-1}{k-\ell-2}<\binom{\left|B^{\prime}\right|}{k-\ell-1}$ (as $\left|A^{\prime}\right| \approx \frac{n}{2 k-2 \ell}$ and $\left|B^{\prime}\right| \approx \frac{2 k-2 \ell-1}{2 k-2 \ell} n$ ). We thus derive that at most

$$
|U|\binom{\left|B^{\prime}\right|}{k-\ell-1} \leq \frac{n}{4(k-\ell)}\binom{\left|B^{\prime}\right|}{k-\ell-1}
$$

$A^{\prime} B^{\prime k-\ell-1}$-sets intersect $U$. Finally, by Claim 3.3, the number of atypical $\ell$-sets in $B$ is at most $\epsilon_{2}\binom{|B|}{\ell}$. Using Claim 3.2, we derive that the number of atypical $\ell$-sets in $B^{\prime}$ is at most

$$
\epsilon_{2}\binom{|B|}{\ell}+\left|B^{\prime} \backslash B\right|\binom{\left|B^{\prime}\right|-1}{\ell-1} \leq 2 \epsilon_{2}\binom{\left|B^{\prime}\right|}{\ell}+\epsilon_{2}|B|\binom{\left|B^{\prime}\right|-1}{\ell-1}<3 \ell \epsilon_{2}\binom{\left|B^{\prime}\right|}{\ell} .
$$

Hence at most $3 \ell \epsilon_{2}\binom{\left|B^{\prime}\right|}{\ell}\left|A^{\prime}\right|\binom{\left|B^{\prime}\right|-\ell}{k-2 \ell-1} A^{\prime} B^{\prime k-\ell-1}$-sets contain an atypical $\ell$-set. In summary, at most

$$
4 k \epsilon_{1}\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1}\left|A^{\prime}\right|+\frac{n}{4(k-\ell)}\binom{\left|B^{\prime}\right|}{k-\ell-1}+3 \ell \epsilon_{2}\binom{\left|B^{\prime}\right|}{\ell}\binom{\left|B^{\prime}\right|-\ell}{k-2 \ell-1}\left|A^{\prime}\right|
$$

$A^{\prime} B^{\prime k-\ell-1}$-sets fail some of the desired properties. Since $\epsilon_{1}, \epsilon_{2} \ll 1$ and $\left|A^{\prime}\right| \approx \frac{n}{2(k-\ell)}$, the desired $A^{\prime} B^{\prime k-\ell-1}$-set always exists.

### 3.3. Building a short path $\mathcal{Q}$

First, by the definition of $B$, for any vertex $b \in B^{\prime}$, we have

$$
\begin{align*}
\operatorname{deg}\left(b, B^{\prime}\right) & \leq \operatorname{deg}(b, B)+\left|B^{\prime} \backslash B\right|\binom{\left|B^{\prime}\right|-1}{k-2} \\
& \leq \epsilon_{1}\binom{|B|}{k-1}+\epsilon_{2}|B|\binom{\left|B^{\prime}\right|-1}{k-2}<2 \epsilon_{1}\binom{|B|}{k-1} \tag{3.2}
\end{align*}
$$

The following claim is the only place where we used the exact codegree condition (1.1).

Claim 3.7. Suppose that $\left|A \cap B^{\prime}\right|=q>0$. Then there exists a family $\mathcal{P}_{1}$ of $2 q$ vertexdisjoint edges in $B^{\prime}$, each of which contains two disjoint typical $\ell$-sets.

Proof. Let $\left|A \cap B^{\prime}\right|=q>0$. Since $A \cap B^{\prime} \neq \emptyset$, by Claim 3.1, we have $B \subseteq B^{\prime}$, and consequently $\left|B^{\prime}\right|=\left\lfloor\frac{2 k-2 \ell-1}{2(k-\ell)} n\right\rfloor+q$. By Claim 3.2, we have $q \leq\left|A \backslash A^{\prime}\right| \leq \epsilon_{2}|B|$.

Let $\mathcal{B}$ denote the family of the edges in $B^{\prime}$ that contain two disjoint typical $\ell$-sets. We derive a lower bound for $|\mathcal{B}|$ as follows. We first pick a $(k-1)$-subset of $B$ (recall that $B \subseteq B^{\prime}$ ) that contains no atypical $\ell$-subset. Since $2 \ell \leq k-1$, such a $(k-1)$-set contains two disjoint typical $\ell$-sets. By Claim 3.3, there are at most $\epsilon_{2}\binom{|B|}{\ell}$ atypical $\ell$-sets in $B \cap B^{\prime}=B$ and in turn, there are at most $\epsilon_{2}\binom{|B|}{\ell}\binom{|B|-\ell}{k-\ell-1}(k-1)$-subsets of $B$ that contain an atypical $\ell$-subset. Thus there are at least

$$
\binom{|B|}{k-1}-\epsilon_{2}\binom{|B|}{\ell}\binom{|B|-\ell}{k-\ell-1}=\left(1-\binom{k-1}{\ell} \epsilon_{2}\right)\binom{|B|}{k-1}
$$

( $k-1$ )-subsets of $B$ that contain no atypical $\ell$-subset. After picking such a $(k-1)$-set $S \subset B$, we find a neighbor of $S$ by the codegree condition. Since $\left|B^{\prime}\right|=\left\lfloor\frac{2 k-2 \ell-1}{2(k-\ell)} n\right\rfloor+q$, by (1.1), we have $\operatorname{deg}\left(S, B^{\prime}\right) \geq q$. We thus derive that

$$
|\mathcal{B}| \geq\left(1-\binom{k-1}{\ell} \epsilon_{2}\right)\binom{|B|}{k-1} \frac{q}{k}
$$

in which we divide by $k$ because every edge of $\mathcal{B}$ is counted at most $k$ times.
We claim that $\mathcal{B}$ contains $2 q$ disjoint edges. Suppose instead, a maximum matching in $\mathcal{B}$ has $i<2 q$ edges. By (3.2), at most $2 q k \cdot 2 \epsilon_{1}\binom{|B|}{k-1}$ edges of $B^{\prime}$ intersect the $i$ edges in the matching. Hence, the number of edges of $\mathcal{B}$ that are disjoint from these $i$ edges is at least

$$
\frac{q}{k}\left(1-\binom{k-1}{\ell} \epsilon_{2}\right)\binom{|B|}{k-1}-4 k \epsilon_{1} q\binom{|B|}{k-1} \geq\left(\frac{1}{k}-(4 k+1) \epsilon_{1}\right) q\binom{|B|}{k-1}>0
$$

as $\epsilon_{2} \ll \epsilon_{1} \ll 1$. We may thus obtain a matching of size $i+1$, a contradiction.

Claim 3.8. There exists a non-empty $\ell$-path $\mathcal{Q}$ in $\mathcal{H}$ with the following properties:

- $V_{0} \subseteq V(\mathcal{Q})$,
- $|V(\mathcal{Q})| \leq 10 k \epsilon_{2}|B|$,
- the two ends $L_{0}, L_{1}$ of $\mathcal{Q}$ are typical $\ell$-sets in $B^{\prime}$,
- $\left|B_{1}\right|=(2 k-2 \ell-1)\left|A_{1}\right|+\ell$, where $A_{1}=A^{\prime} \backslash V(\mathcal{Q})$ and $B_{1}=\left(B^{\prime} \backslash V(\mathcal{Q})\right) \cup L_{0} \cup L_{1}$.

Proof. We split into two cases here.
Case 1. $A \cap B^{\prime} \neq \emptyset$.
By Claim 3.1, $A \cap B^{\prime} \neq \emptyset$ implies that $B \subseteq B^{\prime}$. Let $q=\left|A \cap B^{\prime}\right|$. We first apply Claim 3.7 and find a family $\mathcal{P}_{1}$ of vertex-disjoint $2 q$ edges in $B^{\prime}$. Next we associate each vertex of $V_{0}$ with $2 k-\ell-1$ vertices of $B$ (so in $B^{\prime}$ ) forming an $\ell$-path of length two such that these $\left|V_{0}\right|$ paths are pairwise vertex-disjoint, and also vertex-disjoint from the paths in $\mathcal{P}_{1}$, and all these paths have typical ends. To see it, let $V_{0}=\left\{x_{1}, \ldots, x_{\left|V_{0}\right|}\right\}$. Suppose that we have found such $\ell$-paths for $x_{1}, \ldots, x_{i-1}$ with $i \leq\left|V_{0}\right|$. Since $B \subseteq B^{\prime}$, it follows that $A \backslash A^{\prime}=\left(A \cap B^{\prime}\right) \cup V_{0}$. Hence $\left|V_{0}\right|+q=\left|A \backslash A^{\prime}\right| \leq \epsilon_{2}|B|$ by Claim 3.2. Therefore

$$
(2 k-\ell-1)(i-1)+\left|V\left(\mathcal{P}_{1}\right)\right|<2 k\left|V_{0}\right|+2 k q \leq 2 k \epsilon_{2}|B|
$$

and consequently at most $2 k \epsilon_{2}|B|\binom{|B|-1}{k-2}<2 k^{2} \epsilon_{2}\binom{|B|}{k-1}(k-1)$-sets of $B$ intersect the existing paths (including $\left.\mathcal{P}_{1}\right)$. By the definition of $V_{0}, \operatorname{deg}\left(x_{i}, B\right)>\epsilon_{1}\binom{|B|}{k-1}$. Let $\mathcal{G}_{x_{i}}$ be the $(k-1)$-graph on $B$ such that $e \in \mathcal{G}_{x_{i}}$ if

- $\left\{x_{i}\right\} \cup e \in E(\mathcal{H})$,
- $e$ does not contain any vertex from the existing paths,
- $e$ does not contain any atypical $\ell$-set.

By Claim 3.3, the number of $(k-1)$-sets in $B$ containing at least one atypical $\ell$-set is at most $\epsilon_{2}\binom{|B|}{\ell}\binom{|B|-\ell}{k-\ell-1}=\epsilon_{2}\binom{k-1}{\ell}\binom{|B|}{k-1}$. Thus, we have

$$
e\left(\mathcal{G}_{x_{i}}\right) \geq \epsilon_{1}\binom{|B|}{k-1}-2 k^{2} \epsilon_{2}\binom{|B|}{k-1}-\epsilon_{2}\binom{k-1}{\ell}\binom{|B|}{k-1}>\frac{\epsilon_{1}}{2}\binom{|B|}{k-1}>\binom{|B|}{k-2}
$$

because $\epsilon_{2} \ll \epsilon_{1}$ and $|B|$ is sufficiently large. By Fact $2.9, \mathcal{G}_{x_{i}}$ contains a copy of $\mathcal{Y}_{k-1, \ell-1}$, which gives the desired $\ell$-path of length two containing $x_{i}$.

Denote by $\mathcal{P}_{2}$ the family of $\ell$-paths we obtained so far. Now we need to connect paths of $\mathcal{P}_{2}$ together to a single $\ell$-path. For this purpose, we apply Claim 3.5 repeatedly to connect the ends of two $\ell$-paths while avoiding previously used vertices. This is possible because $\left|V\left(\mathcal{P}_{2}\right)\right|=(2 k-\ell)\left|V_{0}\right|+2 k q$ and $(2 k-3 \ell)\left(\left|V_{0}\right|+2 q-1\right)$ vertices are needed to connect all the paths in $\mathcal{P}_{2}$ - the set $U$ (when we apply Claim 3.5) thus satisfies

$$
|U| \leq(4 k-4 \ell)\left|V_{0}\right|+(6 k-6 \ell) q-2 k+3 \ell \leq 6(k-\ell) \epsilon_{2}|B|-2 k+3 \ell .
$$

Let $\mathcal{P}$ denote the resulting $\ell$-path. We have $\left|V(\mathcal{P}) \cap A^{\prime}\right|=\left|V_{0}\right|+2 q-1$ and

$$
\begin{aligned}
\left|V(\mathcal{P}) \cap B^{\prime}\right| & =k \cdot 2 q+(2 k-\ell-1)\left|V_{0}\right|+(2 k-3 \ell-1)\left(\left|V_{0}\right|+2 q-1\right) \\
& =2(2 k-2 \ell-1)\left|V_{0}\right|+2(3 k-3 \ell-1) q-(2 k-3 \ell-1)
\end{aligned}
$$

Let $s=(2 k-2 \ell-1)\left|A^{\prime} \backslash V(\mathcal{P})\right|-\left|B^{\prime} \backslash V(\mathcal{P})\right|$. We have

$$
\begin{aligned}
s= & (2 k-2 \ell-1)\left(\left|A^{\prime}\right|-\left|V_{0}\right|-2 q+1\right)-\left|B^{\prime}\right|+2(2 k-2 \ell-1)\left|V_{0}\right| \\
& +2(3 k-3 \ell-1) q-(2 k-3 \ell-1) \\
= & (2 k-2 \ell-1)\left|A^{\prime}\right|-\left|B^{\prime}\right|+(2 k-2 \ell-1)\left|V_{0}\right|+(2 k-2 \ell) q+\ell .
\end{aligned}
$$

Since $\left|A^{\prime}\right|+\left|B^{\prime}\right|+\left|V_{0}\right|=n$, we have

$$
\begin{equation*}
s=(2 k-2 \ell)\left(\left|A^{\prime}\right|+\left|V_{0}\right|+q\right)-n+\ell . \tag{3.3}
\end{equation*}
$$

Note that $\left|A^{\prime}\right|+\left|V_{0}\right|+q=|A|$ and

$$
(2 k-2 \ell)|A|-n= \begin{cases}0, & \text { if } \frac{n}{k-\ell} \text { is even }  \tag{3.4}\\ k-\ell, & \text { if } \frac{n}{k-\ell} \text { is odd }\end{cases}
$$

Thus $s=\ell$ or $s=k$. If $s=k$, then we extend $\mathcal{P}$ to an $\ell$-path $\mathcal{Q}$ by applying Claim 3.6, otherwise let $\mathcal{Q}=\mathcal{P}$. Then

$$
|V(\mathcal{Q})| \leq|V(\mathcal{P})|+(k-\ell) \leq 6 k \epsilon_{2}|B|,
$$

and $\mathcal{Q}$ has two typical ends $L_{0}, L_{1} \subset B^{\prime}$. We claim that

$$
\begin{equation*}
(2 k-2 \ell-1)\left|A^{\prime} \backslash V(\mathcal{Q})\right|-\left|B^{\prime} \backslash V(\mathcal{Q})\right|=\ell \tag{3.5}
\end{equation*}
$$

Indeed, when $s=\ell$, this is obvious; when $s=k, V(\mathcal{Q}) \backslash V(\mathcal{P})$ contains one vertex of $A^{\prime}$ and $k-\ell-1$ vertices of $B^{\prime}$ and thus

$$
(2 k-2 \ell-1)\left|A^{\prime} \backslash V(\mathcal{Q})\right|-\left|B^{\prime} \backslash V(\mathcal{Q})\right|=s-(2 k-2 \ell-1)+(k-\ell-1)=\ell
$$

Let $A_{1}=A^{\prime} \backslash V(\mathcal{Q})$ and $B_{1}=\left(B^{\prime} \backslash V(\mathcal{Q})\right) \cup L_{0} \cup L_{1}$. We derive that $\left|B_{1}\right|=(2 k-2 \ell-$ 1) $\left|A_{1}\right|+\ell$ from (3.5).

Case 2. $A \cap B^{\prime}=\emptyset$.
Note that $A \cap B^{\prime}=\emptyset$ means that $B^{\prime} \subseteq B$. Then we have

$$
\begin{equation*}
\left|A^{\prime}\right|+\left|V_{0}\right|=\left|V \backslash B^{\prime}\right|=|A|+\left|B \backslash B^{\prime}\right| . \tag{3.6}
\end{equation*}
$$

If $V_{0} \neq \emptyset$, we handle this case similarly as in Case 1 except that we do not need to construct $\mathcal{P}_{1}$. By Claim 3.2, $\left|B \backslash B^{\prime}\right| \leq \epsilon_{2}|B|$ and thus for any vertex $x \in V_{0}$,

$$
\begin{align*}
\operatorname{deg}\left(x, B^{\prime}\right) & \geq \operatorname{deg}(x, B)-\left|B \backslash B^{\prime}\right| \cdot\binom{|B|-1}{k-2} \\
& \geq \epsilon_{1}\binom{|B|}{k-1}-(k-1) \epsilon_{2}\binom{|B|}{k-1}>\frac{\epsilon_{1}}{2}\binom{\left|B^{\prime}\right|}{k-1} . \tag{3.7}
\end{align*}
$$

As in Case 1, we let $V_{0}=\left\{x_{1}, \ldots, x_{\left|V_{0}\right|}\right\}$ and cover them with vertex-disjoint $\ell$-paths of length two. Indeed, for each $i \leq\left|V_{0}\right|$, we construct $\mathcal{G}_{x}$ as before and show that $e\left(\mathcal{G}_{x_{i}}\right) \geq$ $\frac{\epsilon_{1}}{4}\binom{\left|B^{\prime}\right|}{k-1}$. We then apply Fact 2.9 to $\mathcal{G}_{x_{i}}$ obtaining a copy of $\mathcal{Y}_{k-1, \ell-1}$, which gives an $\ell$-path of length two containing $x_{i}$. As in Case 1 , we connect these paths to a single $\ell$-path $\mathcal{P}$ by applying Claim 3.5 repeatedly. Then $|V(\mathcal{P})|=(2 k-\ell)\left|V_{0}\right|+(2 k-3 \ell)\left(\left|V_{0}\right|-1\right)$. Define $s$ as in Case 1. Thus (3.3) holds with $q=0$. Applying (3.6) and (3.4), we derive that

$$
\begin{align*}
s & =2(k-\ell)\left(|A|+\left|B \backslash B^{\prime}\right|\right)-n+\ell \\
& = \begin{cases}\ell+2(k-\ell)\left|B \backslash B^{\prime}\right|, & \text { if } \frac{n}{k-\ell} \text { is even, } \\
k+2(k-\ell)\left|B \backslash B^{\prime}\right|, & \text { if } \frac{n}{k-\ell} \text { is odd, }\end{cases} \tag{3.8}
\end{align*}
$$

which implies that $s \equiv \ell \bmod (k-\ell)$. We extend $\mathcal{P}$ to an $\ell$-path $\mathcal{Q}$ by applying Claim 3.6 $\frac{s-\ell}{k-\ell}$ times. Then

$$
\begin{aligned}
|V(\mathcal{Q})| & =|V(\mathcal{P})|+s-\ell \leq(4 k-4 \ell)\left|V_{0}\right|-2 k+3 \ell+k-\ell+2(k-\ell)\left|B \backslash B^{\prime}\right| \\
& \leq 10 k \epsilon_{2}|B|
\end{aligned}
$$

by Claim 3.2. Note that $\mathcal{Q}$ has two typical ends $L_{0}, L_{1} \subset B^{\prime}$. Since $V(\mathcal{Q}) \backslash V(\mathcal{P})$ contains $\frac{s-\ell}{k-\ell}$ vertices of $A^{\prime}$ and $\frac{s-\ell}{k-\ell}(k-\ell-1)$ vertices of $B^{\prime}$, we have

$$
\begin{aligned}
& (2 k-2 \ell-1)\left|A^{\prime} \backslash V(\mathcal{Q})\right|-\left|B^{\prime} \backslash V(\mathcal{Q})\right| \\
& \quad=s-\frac{s-\ell}{k-\ell}(2 k-2 \ell-1)+\frac{s-\ell}{k-\ell}(k-\ell-1)=\ell
\end{aligned}
$$

We define $A_{1}$ and $B_{1}$ in the same way and similarly we have $\left|B_{1}\right|=(2 k-2 \ell-1)\left|A_{1}\right|+\ell$.
When $V_{0}=\emptyset$, we pick an arbitrary vertex $v \in A^{\prime}$ and form an $\ell$-path $\mathcal{P}$ of length two with typical ends such that $v$ is in the intersection of the two edges. This is possible by the definition of $A^{\prime}$. Define $s$ as in Case 1. It is easy to see that (3.8) still holds. We then extend $\mathcal{P}$ to $\mathcal{Q}$ by applying Claim $3.6 \frac{s-\ell}{k-\ell}$ times. Then $|V(\mathcal{Q})|=2 k-\ell+s-\ell \leq 2 k \epsilon_{2}|B|$ because of (3.8). The rest is the same as in the previous case.

Claim 3.9. The $A_{1}, B_{1}$ and $L_{0}, L_{1}$ defined in Claim 3.8 satisfy the following properties:
(1) $\left|B_{1}\right| \geq\left(1-\epsilon_{1}\right)|B|$,
(2) for any vertex $v \in A_{1}, \overline{\operatorname{deg}}\left(v, B_{1}\right)<3 \epsilon_{1}\binom{\left|B_{1}\right|}{k-1}$,
(3) for any vertex $v \in B_{1}, \overline{\operatorname{deg}}\left(v, A_{1} B_{1}^{k-1}\right) \leq 3 k \epsilon_{1}\binom{\left|B_{1}\right|}{k-1}$,
(4) $\overline{\operatorname{deg}}\left(L_{0}, A_{1} B_{1}^{k-1}\right) \leq 5 k \epsilon_{1}\binom{\left|B_{1}\right|}{k-\ell}, \overline{\operatorname{deg}}\left(L_{1}, A_{1} B_{1}^{k-1}\right) \leq 5 k \epsilon_{1}\binom{\left|B_{1}\right|}{k-\ell}$.

Proof. Part (1): By Claim 3.2, we have $\left|B_{1} \backslash B\right| \leq\left|B^{\prime} \backslash B\right| \leq \epsilon_{2}|B|$. Furthermore,

$$
\left|B_{1}\right| \geq\left|B^{\prime}\right|-|V(\mathcal{Q})| \geq|B|-\epsilon_{2}|B|-10 k \epsilon_{2}|B| \geq\left(1-\epsilon_{1}\right)|B|
$$

Part (2): For a vertex $v \in A_{1}$, since $\overline{\operatorname{deg}}(v, B) \leq \epsilon_{1}\binom{|B|}{k-1}$, we have

$$
\begin{aligned}
\overline{\operatorname{deg}}\left(v, B_{1}\right) & \leq \overline{\operatorname{deg}}(v, B)+\left|B_{1} \backslash B\right|\binom{\left|B_{1}\right|-1}{k-2} \\
& \leq \epsilon_{1}\binom{|B|}{k-1}+\epsilon_{2}|B|\binom{\left|B_{1}\right|-1}{k-2} \\
& <\epsilon_{1}\binom{|B|}{k-1}+\epsilon_{1}\binom{\left|B_{1}\right|}{k-1}<3 \epsilon_{1}\binom{\left|B_{1}\right|}{k-1},
\end{aligned}
$$

where the last inequality follows from Part (1).
Part (3): Consider the sum $\sum \operatorname{deg}(S \cup\{v\})$ taken over all $S \in\binom{B^{\prime} \backslash\{v\}}{k-2}$. Since $\delta_{k-1}(\mathcal{H}) \geq|A|$, we have $\sum \operatorname{deg}(S \cup\{v\}) \geq\binom{\left|B^{\prime}\right|-1}{k-2}|A|$. On the other hand,

$$
\sum \operatorname{deg}(S \cup\{v\})=\operatorname{deg}\left(v, A^{\prime} B^{\prime k-1}\right)+\operatorname{deg}\left(v, V_{0} B^{\prime k-1}\right)+(k-1) \operatorname{deg}\left(v, B^{\prime}\right)
$$

We thus derive that

$$
\operatorname{deg}\left(v, A^{\prime} B^{k-1}\right) \geq\binom{\left|B^{\prime}\right|-1}{k-2}|A|-\operatorname{deg}\left(v, V_{0} B^{k-1}\right)-(k-1) \operatorname{deg}\left(v, B^{\prime}\right)
$$

By Claim 3.2 and (3.2), it follows that

$$
\begin{aligned}
\operatorname{deg}\left(v, A^{\prime} B^{\prime k-1}\right) & \geq\binom{\left|B^{\prime}\right|-1}{k-2}\left(\left|A^{\prime}\right|-\epsilon_{2}|B|\right)-2 \epsilon_{2}|B|\binom{\left|B^{\prime}\right|-1}{k-2}-2(k-1) \epsilon_{1}\binom{|B|}{k-1} \\
& \geq\binom{\left|B^{\prime}\right|-1}{k-2}\left|A^{\prime}\right|-2 k \epsilon_{1}\binom{|B|}{k-1}
\end{aligned}
$$

By Part (1), we now have

$$
\overline{\operatorname{deg}}\left(v, A_{1} B_{1}^{k-1}\right) \leq \overline{\operatorname{deg}}\left(v, A^{\prime} B^{\prime k-1}\right) \leq 2 k \epsilon_{1}\binom{|B|}{k-1} \leq 3 k \epsilon_{1}\binom{\left|B_{1}\right|}{k-1}
$$

Part (4): By Claim 3.4, for any typical $L \subseteq B^{\prime}$, we have $\overline{\operatorname{deg}}\left(L, A^{\prime} B^{\prime k-1}\right) \leq$ $4 k \epsilon_{1}\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1}\left|A^{\prime}\right|$. Thus,

$$
\overline{\operatorname{deg}}\left(L_{0}, A_{1} B_{1}^{k-1}\right) \leq \overline{\operatorname{deg}}\left(L_{0}, A^{\prime} B^{\prime k-1}\right) \leq 4 k \epsilon_{1}\binom{\left|B^{\prime}\right|-\ell}{k-\ell-1}\left|A^{\prime}\right| \leq 5 k \epsilon_{1}\binom{\left|B_{1}\right|}{k-\ell}
$$

where the last inequality holds because $\left|B^{\prime}\right| \leq\left|B_{1}\right|+|V(\mathcal{Q})| \leq\left(1+\epsilon_{1}\right)\left|B_{1}\right|$. The same holds for $L_{1}$.

### 3.4. Completing the Hamilton cycle

We finally complete the proof of Theorem 1.5 by applying the following lemma with $X=A_{1}, Y=B_{1}, \rho=5 k \epsilon_{1}$, and $L_{0}, L_{1}$.

Lemma 3.10. Fix $1 \leq \ell<k / 2$. Let $0<\rho \ll 1$ and $n$ be sufficiently large. Suppose that $\mathcal{H}$ is a $k$-graph with a partition $V(\mathcal{H})=X \cup Y$ and the following properties:

- $|Y|=(2 k-2 \ell-1)|X|+\ell$,
- for every vertex $v \in X, \overline{\operatorname{deg}}(v, Y) \leq \rho\binom{|Y|}{k-1}$ and for every vertex $v \in Y$, $\overline{\operatorname{deg}}\left(v, X Y^{k-1}\right) \leq \rho\binom{|Y|}{k-1}$,
- there are two disjoint $\ell$-sets $L_{0}, L_{1} \subset Y$ such that

$$
\begin{equation*}
\overline{\operatorname{deg}}\left(L_{0}, X Y^{k-1}\right), \overline{\operatorname{deg}}\left(L_{1}, X Y^{k-1}\right) \leq \rho\binom{|Y|}{k-\ell} \tag{3.9}
\end{equation*}
$$

Then $\mathcal{H}$ contains a Hamilton $\ell$-path with $L_{0}$ and $L_{1}$ as ends.
In order to prove Lemma 3.10, we apply two results of Glebov, Person, and Weps [6]. Given $1 \leq j \leq k-1$ and $0 \leq \rho \leq 1$, an ordered set $\left(x_{1}, \ldots, x_{j}\right)$ is $\rho$-typical in a $k$-graph $\mathcal{G}$ if for every $i \in[j]$,

$$
\overline{\operatorname{deg}}_{\mathcal{G}}\left(\left\{x_{1}, \ldots, x_{i}\right\}\right) \leq \rho^{k-i}\binom{|V(\mathcal{G})|-i}{k-i}
$$

It was shown in [6] that every $k$-graph $\mathcal{G}$ with very large minimum vertex degree contains a tight Hamilton cycle. The proof of [6, Theorem 2] actually shows that we can obtain a tight Hamilton cycle by extending any fixed tight path of constant length with two typical ends. This implies the following theorem that we will use.

Theorem 3.11. (See [6].) Given $1 \leq j \leq k$ and $0<\alpha \ll 1$, there exists an $m_{0}$ such that the following holds. Suppose that $\mathcal{G}$ is a $k$-graph on $V$ with $|V|=m \geq m_{0}$ and $\delta_{1}(\mathcal{G}) \geq$ $(1-\alpha)\binom{m-1}{k-1}$. Then given any two disjoint $(22 \alpha)^{\frac{1}{k-1}}$ typical ordered $j$-sets $\left(x_{1}, \ldots, x_{j}\right)$ and $\left(y_{1}, \ldots, y_{j}\right)$, there exists a tight Hamilton path $\mathcal{P}=x_{j} x_{j-1} \cdots x_{1} \cdots \cdots y_{1} y_{2} \cdots y_{j}$ in $\mathcal{G}$.

We also use [6, Lemma 3], in which $V^{2 k-2}$ denotes the set of all $(2 k-2)$-tuples $\left(v_{1}, \ldots, v_{2 k-2}\right)$ such that $v_{i} \in V\left(v_{i}\right.$ 's are not necessarily distinct $)$.

Lemma 3.12. (See [6].) Let $\mathcal{G}$ be the $k$-graph given in Lemma 3.11. Suppose that $\left(x_{1}, \ldots, x_{2 k-2}\right)$ is selected uniformly at random from $V^{2 k-2}$. Then the probability that all $x_{i}$ 's are pairwise distinct and $\left(x_{1}, \ldots, x_{k-1}\right),\left(x_{k}, \ldots, x_{2 k-2}\right)$ are $(22 \alpha)^{\frac{1}{k-1}}$-typical is at least $\frac{8}{11}$.

Proof of Lemma 3.10. In this proof we often write the union $A \cup B \cup\{x\}$ as $A B x$, where $A, B$ are sets and $x$ is an element.

Let $t=|X|$. Our goal is to write $X$ as $\left\{x_{1}, \ldots, x_{t}\right\}$ and partition $Y$ as $\left\{L_{i}, R_{i}, S_{i}, R_{i}^{\prime}\right.$ : $i \in[t]\}$ with $\left|L_{i}\right|=\ell,\left|R_{i}\right|=\left|R_{i}^{\prime}\right|=k-2 \ell$, and $\left|S_{i}\right|=\ell-1$ such that

$$
\begin{equation*}
L_{i} R_{i} S_{i} x_{i}, S_{i} x_{i} R_{i}^{\prime} L_{i+1} \in E(\mathcal{H}) \tag{3.10}
\end{equation*}
$$

for all $i \in[t]$, where $L_{t+1}=L_{0}$. Consequently,

$$
L_{1} R_{1} S_{1} x_{1} R_{1}^{\prime} L_{2} R_{2} S_{2} x_{2} R_{2}^{\prime} \cdots L_{t} R_{t} S_{t} x_{t} R_{t}^{\prime} L_{t+1}
$$

is the desired Hamilton $\ell$-path of $\mathcal{H}$.
Let $\mathcal{G}$ be the $(k-1)$-graph on $Y$ whose edges are all $(k-1)$-sets $S \subseteq Y$ such that $\operatorname{deg}_{\mathcal{H}}(S, X)>(1-\sqrt{\rho}) t$. The following is an outline of our proof. We first find a small subset $Y_{0} \subset Y$ with a partition $\left\{L_{i}, R_{i}, S_{i}, R_{i}^{\prime}: i \in\left[t_{0}\right]\right\}$ such that for every $x \in X$, we have $L_{i} R_{i} S_{i} x, S_{i} x R_{i}^{\prime} L_{i+1} \in E(\mathcal{H})$ for many $i \in\left[t_{0}\right]$. Next we apply Theorem 3.11 to $\mathcal{G}\left[Y \backslash Y_{0}\right]$ and obtain a tight Hamilton path, which, in particular, partitions $Y \backslash Y_{0}$ into $\left\{L_{i}, R_{i}, S_{i}, R_{i}^{\prime}: t_{0}<i \leq t\right\}$ such that $L_{i} R_{i} S_{i}, S_{i} R_{i}^{\prime} L_{i+1} \in E(\mathcal{G})$ for $t_{0}<i \leq t$. Finally we apply the Marriage Theorem to find a perfect matching between $X$ and $[t]$ such that (3.10) holds for all matched $x_{i}$ and $i$.

We now give details of the proof. First we claim that

$$
\begin{equation*}
\delta_{1}(\mathcal{G}) \geq(1-2 \sqrt{\rho})\binom{|Y|-1}{k-2} \tag{3.11}
\end{equation*}
$$

and consequently,

$$
\begin{equation*}
\bar{e}(\mathcal{G}) \leq 2 \sqrt{\rho}\binom{|Y|}{k-1} \tag{3.12}
\end{equation*}
$$

Suppose instead, some vertex $v \in Y$ satisfies $\overline{\operatorname{deg}}_{\mathcal{G}}(v)>2 \sqrt{\rho}\binom{|Y|-1}{k-2}$. Since every non-neighbor $S^{\prime}$ of $v$ in $\mathcal{G}$ satisfies $\overline{\operatorname{deg}}_{\mathcal{H}}\left(S^{\prime} v, X\right) \geq \sqrt{\rho} t$, we have $\overline{\operatorname{deg}}_{\mathcal{H}}\left(v, X Y^{k-1}\right)>$ $2 \sqrt{\rho}\binom{|Y|-1}{k-2} \sqrt{\rho} t$. Since $|Y|=(2 k-2 \ell-1) t+\ell$, we have

$$
\overline{\operatorname{deg}}_{\mathcal{H}}\left(v, X Y^{k-1}\right)>2 \rho \frac{|Y|-\ell}{2 k-2 \ell-1}\binom{|Y|-1}{k-2}>\rho \frac{|Y|}{k-1}\binom{|Y|-1}{k-2}=\rho\binom{|Y|}{k-1}
$$

contradicting our assumption (the second inequality holds because $|Y|$ is sufficiently large).

Let $Q$ be a $(2 k-\ell-1)$-subset of $Y$. We call $Q$ good (otherwise bad) if every ( $k-1$ )-subset of $Q$ is an edge of $\mathcal{G}$ and every $\ell$-set $L \subset Q$ satisfies

$$
\begin{equation*}
\overline{\operatorname{deg}}_{\mathcal{G}}(L) \leq \rho^{1 / 4}\binom{|Y|-\ell}{k-\ell-1} \tag{3.13}
\end{equation*}
$$

Furthermore, we say $Q$ is suitable for a vertex $x \in X$ if $x \cup T \in E(\mathcal{H})$ for every $(k-1)$-set $T \subset Q$. Note that if a $(2 k-\ell-1)$-set is good, by the definition of $\mathcal{G}$, it is suitable for at least $\left(1-\binom{2 k-\ell-1}{k-1} \sqrt{\rho}\right) t$ vertices of $X$. Let $Y^{\prime}=Y \backslash\left(L_{0} \cup L_{1}\right)$.

Claim 3.13. For any $x \in X$, at least $\left(1-\rho^{1 / 5}\right)\binom{|Y|}{2 k-\ell-1}(2 k-\ell-1)$-subsets of $Y^{\prime}$ are good and suitable for $x$.

Proof. Since $\rho+\rho^{1 / 2}+3\left({ }_{\ell}^{2 k-\ell-1}\right) \rho^{1 / 4} \leq \rho^{1 / 5}$, the claim follows from the following three assertions:

- At most $2 \ell\binom{|Y|-1}{2 k-\ell-2} \leq \rho\binom{|Y|}{2 k-\ell-1}(2 k-\ell-1)$-subsets of $Y$ are not subsets of $Y^{\prime}$.
- Given $x \in X$, at most $\rho^{1 / 2}\binom{|Y|}{2 k-\ell-1}(2 k-\ell-1)$-sets in $Y$ are not suitable for $x$.
- At most $3\binom{2 k-\ell-1}{\ell} \rho^{1 / 4}\binom{|Y|}{2 k-\ell-1}(2 k-\ell-1)$-sets in $Y$ are bad.

The first assertion holds because $\left|Y \backslash Y^{\prime}\right|=2 \ell$. The second assertion follows from the degree condition of $\mathcal{H}$, namely, for any $x \in X$, the number of $(2 k-\ell-1)$-sets in $Y$ that are not suitable for $x$ is at most $\rho\binom{|Y|}{k-1}\binom{|Y|-k+1}{k-\ell} \leq \sqrt{\rho}\binom{|Y|}{2 k-\ell-1}$.

To see the third one, let $m$ be the number of $\ell$-sets $L \subseteq Y$ that fail (3.13). By (3.12),

$$
m \frac{\rho^{1 / 4}\binom{|Y|-\ell}{k-\ell-1}}{\binom{k-1}{\ell}} \leq \bar{e}(\mathcal{G}) \leq 2 \sqrt{\rho}\binom{|Y|}{k-1}
$$

which implies that $m \leq 2 \rho^{1 / 4}\binom{|Y|}{\ell}$. Thus at most

$$
2 \rho^{1 / 4}\binom{|Y|}{\ell} \cdot\binom{|Y|-\ell}{2 k-2 \ell-1}
$$

$(2 k-\ell-1)$-subsets of $Y$ contain an $\ell$-set $L$ that fails (3.13). On the other hand, by (3.12), at most

$$
\bar{e}(\mathcal{G})\binom{|Y|-k+1}{k-\ell} \leq 2 \sqrt{\rho}\binom{|Y|}{k-1}\binom{|Y|-k+1}{k-\ell}
$$

$(2 k-\ell-1)$-subsets of $Y$ contain a non-edge of $\mathcal{G}$. Putting these together, the number of bad $(2 k-\ell-1)$-sets in $Y$ is at most

$$
\begin{aligned}
& 2 \rho^{1 / 4}\binom{|Y|}{\ell}\binom{|Y|-\ell}{2 k-2 \ell-1}+2 \sqrt{\rho}\binom{|Y|}{k-1}\binom{|Y|-k+1}{k-\ell} \\
& \quad \leq 3\binom{2 k-\ell-1}{\ell} \rho^{1 / 4}\binom{|Y|}{2 k-\ell-1}
\end{aligned}
$$

as $\rho \ll 1$.

Let $\mathcal{F}_{0}$ be the set of good $(2 k-\ell-1)$-sets in $Y^{\prime}$. We will pick a family of disjoint good $(2 k-\ell-1)$-sets in $Y^{\prime}$ such that for any $x \in X$, many members of this family are suitable for $x$. To achieve this, we pick a family $\mathcal{F}$ by selecting each member of $\mathcal{F}_{0}$ randomly and independently with probability $p=6 \sqrt{\rho}|Y| /\binom{|Y|}{2 k-\ell-1}$. Then $|\mathcal{F}|$ follows the binomial distribution $B\left(\left|\mathcal{F}_{0}\right|, p\right)$ with expectation $\mathbb{E}(|\mathcal{F}|)=p\left|\mathcal{F}_{0}\right| \leq p\binom{|Y|}{2 k-\ell-1}$. Furthermore, for every $x \in X$, let $f(x)$ denote the number of members of $\mathcal{F}$ that are suitable for $x$. Then $f(x)$ follows the binomial distribution $B(N, p)$ with $N \geq\left(1-\rho^{1 / 5}\right)\binom{|Y|}{2 k-\ell-1}$ by Claim 3.13. Hence $\mathbb{E}(f(x)) \geq p\left(1-\rho^{1 / 5}\right)\binom{|Y|}{2 k-\ell-1}$. Since there are at most $\binom{|Y|}{2 k-\ell-1}$. $(2 k-\ell-1) \cdot\binom{|Y|-1}{2 k-\ell-2}$ pairs of intersecting $(2 k-\ell-1)$-sets in $Y$, the expected number of intersecting pairs of $(2 k-\ell-1)$-sets in $\mathcal{F}$ is at most

$$
p^{2}\binom{|Y|}{2 k-\ell-1} \cdot(2 k-\ell-1) \cdot\binom{|Y|-1}{2 k-\ell-2}=36(2 k-\ell-1)^{2} \rho|Y|
$$

By Chernoff's bound (the first two properties) and Markov's bound (the last one), we can find a family $\mathcal{F}$ of good $(2 k-\ell-1)$-subsets of $Y^{\prime}$ that satisfies

- $|\mathcal{F}| \leq 2 p\binom{\left|Y^{\prime}\right|}{2 k-\ell-1} \leq 12 \sqrt{\rho}|Y|$,
- for any vertex $x \in X$, at least $\frac{p}{2}\left(1-\rho^{1 / 5}\right)\binom{|Y|}{2 k-\ell-1} \geq 2 \sqrt{\rho}|Y|$ members of $\mathcal{F}$ are suitable for $x$.
- the number of intersecting pairs of $(2 k-\ell-1)$-sets in $\mathcal{F}$ is at most $72(2 k-\ell-1)^{2} \rho|Y|$.

After deleting one $(2 k-\ell-1)$-set from each of the intersecting pairs from $\mathcal{F}$, we obtain a family $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ consisting of at most $12 \sqrt{\rho}|Y|$ disjoint good $(2 k-\ell-1)$-subsets of $Y^{\prime}$ and for each $x \in X$, at least

$$
\begin{equation*}
2 \sqrt{\rho}|Y|-72(2 k-\ell-1)^{2} \rho|Y| \geq \frac{3}{2} \sqrt{\rho}|Y| \tag{3.14}
\end{equation*}
$$

members of $\mathcal{F}^{\prime}$ are suitable for $x$.
Denote $\mathcal{F}^{\prime}$ by $\left\{Q_{2}, Q_{4}, \ldots, Q_{2 q}\right\}$ for some $q \leq 12 \sqrt{\rho}|Y|$. We arbitrarily partition each $Q_{2 i}$ into $L_{2 i} \cup P_{2 i} \cup L_{2 i+1}$ such that $\left|L_{2 i}\right|=\left|L_{2 i+1}\right|=\ell$ and $\left|P_{2 i}\right|=2 k-3 \ell-1$. Since $Q_{2 i}$ is good, both $L_{2 i}$ and $L_{2 i+1}$ satisfy (3.13). We claim that $L_{0}$ and $L_{1}$ satisfy (3.13) as well. Let us show this for $L_{0}$. By the definition of $\mathcal{G}$, the number of $X Y^{k-\ell-1}$-sets $T$ such that $T \cup L_{0} \notin E(\mathcal{H})$ is at least $\overline{\operatorname{deg}}_{\mathcal{G}}\left(L_{0}\right) \sqrt{\rho} t$. Using (3.9), we derive that $\overline{\operatorname{deg}}_{\mathcal{G}}\left(L_{0}\right) \sqrt{\rho} t \leq$ $\rho\binom{|Y|}{k-\ell}$. Since $|Y| \leq(2 k-2 \ell) t$, it follows that $\overline{\operatorname{deg}}_{\mathcal{G}}\left(L_{0}\right) \leq 2 \sqrt{\rho}\binom{|Y|-1}{k-\ell-1} \leq \rho^{1 / 4}\binom{|Y|-\ell}{k-\ell-1}$.

Next we greedily find disjoint $(2 k-3 \ell-1)$-sets $P_{1}, P_{3}, \ldots, P_{2 q-1}$ from $Y^{\prime} \backslash \bigcup_{i=1}^{q} Q_{2 i}$ such that for each $i \in[q]$, every $(k-\ell-1)$-subset of $P_{2 i-1}$ is a common neighbor of $L_{2 i-1}$ and $L_{2 i}$ in $\mathcal{G}$. Suppose that we have found $P_{1}, P_{3}, \ldots, P_{2 i-1}$ for some $i<q$. Since both $L_{2 i-1}$ and $L_{2 i}$ satisfy (3.13), at most

$$
2 \cdot \rho^{1 / 4}\binom{|Y|-\ell}{k-\ell-1}\binom{|Y|-k+1}{k-2 \ell}
$$

$(2 k-3 \ell-1)$-subsets of $Y$ contain a non-neighbor of $L_{2 i-1}$ or $L_{2 i}$. Thus, the number of $(2 k-3 \ell-1)$-sets that can be chosen as $P_{2 i+1}$ is at least

$$
\binom{\left|Y^{\prime}\right|-(2 k-2 \ell-1) 2 q}{2 k-3 \ell-1}-2 \cdot \rho^{1 / 4}\binom{|Y|-\ell}{k-\ell-1}\binom{|Y|-k+1}{k-2 \ell}>0
$$

as $q \leq 12 \sqrt{\rho}|Y|$ and $\rho \ll 1$.
Let $\frac{Y_{1}}{}=Y^{\prime} \backslash \bigcup_{i=1}^{q}\left(P_{2 i-1} \cup Q_{2 i}\right)$ and $\mathcal{G}^{\prime}=\mathcal{G}\left[Y_{1}\right]$. Then $\left|Y_{1}\right|=\left|Y^{\prime}\right|-(2 k-2 \ell-1) 2 q$. Since $\overline{\operatorname{deg}}_{\mathcal{G}^{\prime}}(v) \leq \overline{\operatorname{deg}}_{\mathcal{G}}(v)$ for every $v \in Y_{1}$, we have, by (3.11),

$$
\delta_{1}\left(\mathcal{G}^{\prime}\right) \geq\binom{\left|Y_{1}\right|-1}{k-2}-2 \sqrt{\rho}\binom{|Y|-1}{k-2} \geq(1-3 \sqrt{\rho})\binom{\left|Y_{1}\right|-1}{k-2}
$$

Let $\alpha=3 \sqrt{\rho}$ and $\rho_{0}=(22 \alpha)^{\frac{1}{k-1}}$. We want to find two disjoint $\rho_{0}$-typical ordered $(k-\ell-1)$-subsets $\left(x_{1}, \ldots, x_{k-\ell-1}\right)$ and $\left(y_{1}, \ldots, y_{k-\ell-1}\right)$ of $Y_{1}$ such that

$$
\begin{equation*}
L_{2 q+1} \cup\left\{x_{1}, \ldots, x_{k-\ell-1}\right\}, L_{0} \cup\left\{y_{1}, \ldots, y_{k-\ell-1}\right\} \in E(\mathcal{G}) . \tag{3.15}
\end{equation*}
$$

To achieve this, we choose $\left(x_{1}, \ldots, x_{k-1}, y_{1}, \ldots, y_{k-1}\right)$ from $Y_{1}{ }^{2 k-2}$ uniformly at random. By Lemma 3.12, with probability at least $\frac{8}{11},\left(x_{1}, \ldots, x_{k-\ell-1}\right)$ and $\left(y_{1}, \ldots, y_{k-\ell-1}\right)$ are two disjoint ordered $\rho_{0}$-typical $(k-\ell-1)$-sets. Since $L_{0}$ satisfies (3.13), at most $(k-\ell-$ $1)!\rho^{1 / 4}\binom{|Y|-\ell}{k-\ell-1}$ ordered $(k-\ell-1)$-subsets of $Y$ are not neighbors of $L_{0}$ (the same holds for $L_{2 q+1}$ ). Thus (3.15) fails with probability at most $2(k-\ell-1)!\rho^{1 / 4}$, provided that $x_{1}, \ldots, x_{k-\ell-1}, y_{1}, \ldots, y_{k-\ell-1}$ are all distinct. Therefore the desired $\left(x_{1}, \ldots, x_{k-\ell-1}\right)$ and $\left(y_{1}, \ldots, y_{k-\ell-1}\right)$ exist.

Next we apply Theorem 3.11 to $\mathcal{G}^{\prime}$ and obtain a tight Hamilton path

$$
\mathcal{P}=x_{k-\ell-1} x_{k-\ell-2} \cdots x_{1} \cdots \cdots y_{1} y_{2} \cdots y_{k-\ell-1} .
$$

Following the order of $\mathcal{P}$, we partition $Y_{1}$ into

$$
R_{2 q+1}, S_{2 q+1}, R_{2 q+1}^{\prime}, L_{2 q+2}, \ldots, L_{t}, R_{t}, S_{t}, R_{t}^{\prime}
$$

such that $\left|L_{i}\right|=\ell,\left|R_{i}\right|=\left|R_{i}^{\prime}\right|=k-2 \ell$, and $\left|S_{i}\right|=\ell-1$. Since $\mathcal{P}$ is a tight path in $\mathcal{G}$, we have

$$
\begin{equation*}
L_{i} R_{i} S_{i}, S_{i} R_{i}^{\prime} L_{i+1} \in E(\mathcal{G}) \tag{3.16}
\end{equation*}
$$

for $2 q+2 \leq i \leq t-1$. Letting $L_{t+1}=L_{0}$, by (3.15), we also have (3.16) for $i=2 q+1$ and $i=t$.

We now arbitrarily partition $P_{i}, 1 \leq i \leq 2 q$ into $R_{i} \cup S_{i} \cup R_{i}^{\prime}$ such that $\left|R_{i}\right|=\left|R_{i}^{\prime}\right|=$ $k-2 \ell$, and $\left|S_{i}\right|=\ell-1$. By the choice of $P_{i}$, (3.16) holds for $1 \leq i \leq 2 q$.

Consider the bipartite graph $\Gamma$ between $X$ and $Z:=\left\{z_{1}, z_{2}, \ldots, z_{t}\right\}$ such that $x \in X$ and $z_{i} \in Z$ are adjacent if and only if $L_{i} R_{i} S_{i} x, x S_{i} R_{i}^{\prime} L_{i+1} \in E(\mathcal{H})$. For every $i \in[t]$,
since (3.16) holds, we have $\operatorname{deg}_{\Gamma}\left(z_{i}\right) \geq(1-2 \sqrt{\rho}) t$ by the definition of $\mathcal{G}$. Let $Z^{\prime}=$ $\left\{z_{2 q+1}, \ldots, z_{t}\right\}$ and $X_{0}$ be the set of $x \in X$ such that $\operatorname{deg}_{\Gamma}\left(x, Z^{\prime}\right) \leq\left|Z^{\prime}\right| / 2$. Then

$$
\left|X_{0}\right| \frac{\left|Z^{\prime}\right|}{2} \leq \sum_{x \in X} \overline{\operatorname{deg}}_{\Gamma}\left(x, Z^{\prime}\right) \leq 2 \sqrt{\rho} t \cdot\left|Z^{\prime}\right|
$$

which implies that $\left|X_{0}\right| \leq 4 \sqrt{\rho} t=4 \sqrt{\rho} \frac{|Y|-\ell}{2 k-2 \ell-1} \leq \frac{4}{3} \sqrt{\rho}|Y|$ (note that $2 k-2 \ell-1 \geq k \geq 3$ ).
We now find a perfect matching between $X$ and $Z$ as follows.

Step 1: Each $x \in X_{0}$ is matched to some $z_{2 i}, i \in[q]$ such that the corresponding $Q_{2 i} \in \mathcal{F}^{\prime}$ is suitable for $x$ (thus $x$ and $z_{2 i}$ are adjacent in $\Gamma$ ) - this is possible because of (3.14) and $\left|X_{0}\right| \leq \frac{4}{3} \sqrt{\rho}|Y|$.

Step 2: Each of the unused $z_{i}, i \in[2 q]$ is matched to a vertex in $X \backslash X_{0}$ - this is possible because $\operatorname{deg}_{\Gamma}\left(z_{i}\right) \geq(1-2 \sqrt{\rho}) t \geq\left|X_{0}\right|+2 q$.
Step 3: Let $X^{\prime}$ be the set of the remaining vertices in $X$. Then $\left|X^{\prime}\right|=t-2 q=\left|Z^{\prime}\right|$. Now consider the induced subgraph $\Gamma^{\prime}$ of $\Gamma$ on $X^{\prime} \cup Z^{\prime}$. Since $\delta\left(\Gamma^{\prime}\right) \geq\left|X^{\prime}\right| / 2$, the Marriage Theorem provides a perfect matching in $\Gamma^{\prime}$.

The perfect matching between $X$ and $Z$ gives rise to the desired Hamilton path of $\mathcal{H}$.

## 4. Concluding remarks

Let $h_{d}^{\ell}(k, n)$ denote the minimum integer $m$ such that every $k$-graph $\mathcal{H}$ on $n$ vertices with minimum $d$-degree $\delta_{d}(\mathcal{H}) \geq m$ contains a Hamilton $\ell$-cycle (provided that $k-\ell$ divides $n$ ). In this paper we determined $h_{k-1}^{\ell}(k, n)$ for all $\ell<k / 2$ and sufficiently large $n$. Unfortunately our proof does not give $h_{k-1}^{\ell}(k, n)$ for all $k, \ell$ such that $k-\ell$ does not divide $k$ even though we believe that $h_{k-1}^{\ell}(k, n)=\frac{n}{\left\lceil\frac{k}{k-\ell}\right\rceil(k-\ell)}$. In fact, when $k-\ell$ does not divide $k$, if we can prove a path-cover lemma similar to Lemma 2.3, then we can follow the proof in [13] to solve the nonextremal case. When $\ell \geq k / 2$, we cannot define $\mathcal{Y}_{k, 2 \ell}$ so the current proof of Lemma 2.3 fails. In addition, when $\ell \geq k / 2$, the extremal case becomes complicated as well.

The situation is quite different when $k-\ell$ divides $k$. When $k$ divides $n$, one can easily construct a $k$-graph $\mathcal{H}$ such that $\delta_{k-1}(\mathcal{H}) \geq \frac{n}{2}-k$ and yet $\mathcal{H}$ contains no perfect matching and consequently no Hamilton $\ell$-cycle for any $\ell$ such that $k-\ell$ divides $k$. A construction in [16] actually shows that $h_{k-1}^{\ell}(k, n) \geq \frac{n}{2}-k$ whenever $k-\ell$ divides $k$, even when $k$ does not divide $n$. The exact value of $h_{d}^{\ell}(k, n)$, when $k-\ell$ divides $k$, is not known except for $h_{2}^{2}(3, n)=\lfloor n / 2\rfloor$ given in [21]. In the forthcoming paper [9], we determine $h_{d}^{k / 2}(k, n)$ exactly for even $k$ and any $d \geq k / 2$.

Let $t_{d}(n, F)$ denote the minimum integer $m$ such that every $k$-graph $\mathcal{H}$ on $n$ vertices with minimum $d$-degree $\delta_{d}(\mathcal{H}) \geq m$ contains a perfect $F$-tiling. One of the first results on hypergraph tiling was $t_{2}\left(n, \mathcal{Y}_{3,2}\right)=n / 4+o(n)$ given by Kühn and Osthus [14]. The exact value of $t_{2}\left(n, \mathcal{Y}_{3,2}\right)$ was determined recently by Czygrinow, DeBiasio, and Nagle
[2]. We [8] determined $t_{1}\left(n, \mathcal{Y}_{3,2}\right)$ very recently. The key lemma in our proof, Lemma 2.8, shows that every $k$-graph $\mathcal{H}$ on $n$ vertices with $\delta_{k-1}(\mathcal{H}) \geq\left(\frac{1}{2 k-b}-o(1)\right) n$ either contains an almost perfect $\mathcal{Y}_{k, b}$-tiling or is in the extremal case. Naturally this raises a question: what is $t_{k-1}\left(n, \mathcal{Y}_{k, b}\right)$ ? Mycroft [17] recently proved a general result on tiling $k$-partite $k$-graphs, which implies that $t_{k-1}\left(n, \mathcal{Y}_{k, b}\right)=\frac{n}{2 k-b}+o(n)$. The lower bound comes from the following construction. Let $\mathcal{H}_{0}$ be the $k$-graph on $n \in(2 k-b) \mathbb{N}$ vertices such that $V\left(\mathcal{H}_{0}\right)=A \cup B$ with $|A|=\frac{n}{2 k-b}-1$, and $E\left(\mathcal{H}_{0}\right)$ consists of all $k$-sets intersecting $A$ and some $k$-subsets of $B$ such that $\mathcal{H}_{0}[B]$ contains no copy of $\mathcal{Y}_{k, b}$. Thus, $\delta_{k-1}\left(\mathcal{H}_{0}\right) \geq \frac{n}{2 k-b}-1$. Since every copy of $\mathcal{Y}_{k, b}$ contains at least one vertex in $A$, there is no perfect $\mathcal{Y}_{k, b}$-tiling in $\mathcal{H}_{0}$. We believe that one can find a matching upper bound by the absorbing method (similar to the proof in [2]). In fact, since we already proved Lemma 2.8, it suffices to prove an absorbing lemma and the extremal case.

## Acknowledgments

We thank two referees for their valuable comments that improved the presentation of this paper.

## References

[1] E. Buß, H. Hàn, M. Schacht, Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs, J. Combin. Theory Ser. B 103 (6) (2013) 658-678.
[2] A. Czygrinow, L. DeBiasio, B. Nagle, Tiling 3-uniform hypergraphs with $K_{4}^{3}-2 e$, J. Graph Theory 75 (2) (2014) 124-136.
[3] A. Czygrinow, T. Molla, Tight codegree condition for the existence of loose Hamilton cycles in 3-graphs, SIAM J. Discrete Math. 28 (1) (2014) 67-76.
[4] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. (3) 2 (1952) 69-81.
[5] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961) 313-320.
[6] R. Glebov, Y. Person, W. Weps, On extremal hypergraphs for Hamiltonian cycles, European J. Combin. 33 (4) (2012) 544-555.
[7] H. Hàn, M. Schacht, Dirac-type results for loose Hamilton cycles in uniform hypergraphs, J. Combin. Theory Ser. B 100 (2010) 332-346.
[8] J. Han, Y. Zhao, Minimum degree thresholds for $C_{4}^{3}$-tiling, J. Graph Theory (2015), http://dx.doi. org/10.1002/jgt.21833, in press.
[9] J. Han, Y. Zhao, Minimum degree conditions for Hamilton ( $k / 2$ )-cycles in $k$-uniform hypergraphs, manuscript.
[10] J. Han, Y. Zhao, Minimum degree thresholds for loose Hamilton cycle in 3-graphs, submitted for publication.
[11] G. Katona, H. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (2) (1999) 205-212.
[12] P. Keevash, D. Kühn, R. Mycroft, D. Osthus, Loose Hamilton cycles in hypergraphs, Discrete Math. 311 (7) (2011) 544-559.
[13] D. Kühn, R. Mycroft, D. Osthus, Hamilton $\ell$-cycles in uniform hypergraphs, J. Combin. Theory Ser. A 117 (7) (2010) 910-927.
[14] D. Kühn, D. Osthus, Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree, J. Combin. Theory Ser. B 96 (6) (2006) 767-821.
[15] D. Kühn, D. Osthus, Hamilton cycles in graphs and hypergraphs: an extremal perspective, in: Proceedings of the International Congress of Mathematicians, vol. 4, 2014, Seoul, Korea, 2014, pp. 381-406.
[16] K. Markström, A. Ruciński, Perfect matchings (and Hamilton cycles) in hypergraphs with large degrees, European J. Combin. 32 (5) (July 2011) 677-687.
[17] R. Mycroft, Packing k-partite k-uniform hypergraphs, submitted for publication.
[18] V. Rödl, A. Ruciński, Dirac-type questions for hypergraphs - a survey (or more problems for Endre to solve), in: An Irregular Mind, in: Bolyai Soc. Math. Stud., vol. 21, 2010, pp. 561-590.
[19] V. Rödl, A. Ruciński, E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, Combin. Probab. Comput. 15 (1-2) (2006) 229-251.
[20] V. Rödl, A. Ruciński, E. Szemerédi, An approximate Dirac-type theorem for k-uniform hypergraphs, Combinatorica 28 (2) (2008) 229-260.
[21] V. Rödl, A. Ruciński, E. Szemerédi, Dirac-type conditions for Hamiltonian paths and cycles in 3-uniform hypergraphs, Adv. Math. 227 (3) (2011) 1225-1299.
[22] E. Szemerédi, Regular partitions of graphs, in: Problèmes combinatoires et théorie des graphes, in: Colloq. Int. Cent. Natl. Rech. Sci., vol. 260, Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976, CNRS, Paris, 1978, pp. 399-401.


[^0]:    * The second author is partially supported NSA grant H98230-12-1-0283 and NSF grant DMS-1400073. E-mail addresses: jhan22@gsu.edu (J. Han), yzhao6@gsu.edu (Y. Zhao).

[^1]:    ${ }^{1}$ Roughly speaking, the lower bound for $\operatorname{deg}_{\mathcal{K}}(S)$ contains $-d$ because when forming $\mathcal{K}$, we discard all $k$-tuple $\left(V_{i_{1}}, \ldots, V_{i_{k}}\right)$ of density less than $d$, contains $-\sqrt{\epsilon}$ because at most $\epsilon\binom{t}{k} k$-tuple are not regular, and contains $-(k-1)$ because we discard all non-crossing edges of $\mathcal{H}$.

