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For 1 ≤ � < k/2, we show that for sufficiently large n, every 
k-uniform hypergraph on n vertices with minimum codegree 
at least n

2(k−�) contains a Hamilton �-cycle. This codegree 
condition is best possible and improves on work of Hàn and 
Schacht who proved an asymptotic result.
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1. Introduction

A well-known result of Dirac [4] states that every graph G on n ≥ 3 vertices with 
minimum degree δ(G) ≥ n/2 contains a Hamilton cycle. In recent years, researchers 
have worked on extending this result to hypergraphs — see recent surveys [15,18]. Given 
k ≥ 2, a k-uniform hypergraph (in short, k-graph) consists of a vertex set V and an edge 
set E ⊆

(
V
k

)
, where every edge is a k-element subset of V . Given a k-graph H with a 

set S of d vertices (where 1 ≤ d ≤ k − 1) we define degH(S) to be the number of edges 
containing S (the subscript H is omitted if it is clear from the context). The minimum 
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d-degree δd(H) of H is the minimum of degH(S) over all d-vertex sets S in H. We refer 
to δ1(H) as the minimum vertex degree and δk−1(H) the minimum codegree of H. For 
1 ≤ � < k, a k-graph is a called an �-cycle if its vertices can be ordered cyclically so that 
each of its edges consists of k consecutive vertices and every two consecutive edges (in the 
natural order of the edges) share exactly � vertices. In k-graphs, a (k − 1)-cycle is often 
called a tight cycle while a 1-cycle is often called a loose cycle. We say that a k-graph 
contains a Hamilton �-cycle if it contains an �-cycle as a spanning subhypergraph. Since 
a k-uniform �-cycle on n vertices contains exactly n/(k− �) edges, a necessary condition 
for a k-graph on n vertices to contain a Hamilton �-cycle is that k − � divides n.

Confirming a conjecture of Katona and Kierstead [11], Rödl, Ruciński and Szemerédi 
[19,20] showed that for any fixed k, every k-graph H on n vertices with δk−1(H) ≥ n/2 +
o(n) contains a tight Hamilton cycle. When k− � divides both k and |V |, a (k− 1)-cycle 
on V trivially contains an �-cycle on V . Thus the result in [20] implies that for all 
1 ≤ � < k such that k − � divides k, every k-graph H on n ∈ (k − �)N vertices with 
δk−1(H) ≥ n/2 + o(n) contains a Hamilton �-cycle. It is not hard to see that these 
results are best possible up to the o(n) term — see concluding remarks in Section 4
for more discussion. With long and involved arguments, Rödl, Ruciński and Szemerédi 
[21] determined the minimum codegree threshold for tight Hamilton cycles in 3-graphs 
for sufficiently large n. (Unless stated otherwise, we assume that n is sufficiently large 
throughout the paper.)

Loose Hamilton cycles were first studied by Kühn and Osthus [14], who proved that 
every 3-graph on n vertices with δ2(H) ≥ n/4 + o(n) contains a loose Hamilton cycle. 
This was generalized to arbitrary k and � = 1 by Keevash, Kühn, Mycroft, and Osthus 
[12] and to arbitrary k and arbitrary � < k/2 by Hàn and Schacht [7].

Theorem 1.1. (See [7].) Fix integers k ≥ 3 and 1 ≤ � < k/2. Assume that γ > 0 and 
n ∈ (k − �)N is sufficiently large. If H = (V, E) is a k-graph on n vertices such that 
δk−1(H) ≥ ( 1

2(k−�) + γ)n, then H contains a Hamilton �-cycle.

Later Kühn, Mycroft, and Osthus [13] proved that whenever k− � does not divide k, 
every k-graph on n vertices with δk−1(H) ≥ n

� k
k−� �(k−�) + o(n) contains a Hamilton 

�-cycle. This generalizes Theorem 1.1 because �k/(k − �)� = 2 when � < k/2. Rödl and 
Ruciński [18, Problem 2.9] asked for the exact minimum codegree threshold for Hamilton 
�-cycles in k-graphs. The k = 3 and � = 1 case was answered by Czygrinow and Molla 
[3] recently. In this paper we determine this threshold for all k ≥ 3 and � < k/2.

Theorem 1.2 (Main result). Fix integers k ≥ 3 and 1 ≤ � < k/2. Assume that n ∈ (k−�)N
is sufficiently large. If H = (V, E) is a k-graph on n vertices such that

δk−1(H) ≥ n

2(k − �) , (1.1)

then H contains a Hamilton �-cycle.
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The following simple construction [13, Proposition 2.2] shows that Theorem 1.2 is best 
possible, and the aforementioned results in [7,12–14] are asymptotically best possible. 
Let H0 = (V, E) be an n-vertex k-graph in which V is partitioned into sets A and B
such that |A| = � n

� k
k−� �(k−�)� −1. The edge set E consists of all k-sets that intersect A. It 

is easy to see that δk−1(H0) = |A|. However, an �-cycle on n vertices has n/(k− �) edges 
and every vertex on such a cycle lies in at most � k

k−�� edges. Since � k
k−��|A| < n/(k− �), 

H0 contains no Hamilton �-cycle.
A related problem was studied by Buß, Hàn, and Schacht [1], who proved that every 

3-graph H on n vertices with minimum vertex degree δ1(H) ≥ ( 7
16 + o(1))

(
n
2
)

contains a 
loose Hamilton cycle. Recently we [10] improved this to an exact result.

Using the typical approach of obtaining exact results, our proof of Theorem 1.2 con-
sists of an extremal case and a nonextremal case.

Definition 1.3. Let Δ > 0, a k-graph H on n vertices is called Δ-extremal if there is a 
set B ⊂ V (H), such that |B| = 	2(k−�)−1

2(k−�) n
 and e(B) ≤ Δnk.

Theorem 1.4 (Nonextremal case). For any integer k ≥ 3, 1 ≤ � < k/2 and 0 < Δ < 1
there exists γ > 0 such that the following holds. Suppose that H is a k-graph on n
vertices such that n ∈ (k − �)N is sufficiently large. If H is not Δ-extremal and satisfies 
δk−1(H) ≥ ( 1

2(k−�) − γ)n, then H contains a Hamilton �-cycle.

Theorem 1.5 (Extremal case). For any integer k ≥ 3, 1 ≤ � < k/2 there exists Δ > 0
such that the following holds. Suppose H is a k-graph on n vertices such that n ∈ (k−�)N
is sufficiently large. If H is Δ-extremal and satisfies (1.1), then H contains a Hamilton 
�-cycle.

Theorem 1.2 follows from Theorem 1.4 and 1.5 immediately by choosing Δ from 
Theorem 1.5.

Let us compare our proof with those in the aforementioned papers. There is no ex-
tremal case in [7,12–14] because only asymptotic results were proved. Our Theorem 1.5
is new and more general than [3, Theorem 3.1]. Following previous work [7,13,19–21], we 
prove Theorem 1.4 by using the absorbing method initiated by Rödl, Ruciński and Sze-
merédi. More precisely, we find the desired Hamilton �-cycle by applying the Absorbing 
Lemma (Lemma 2.1), the Reservoir Lemma (Lemma 2.2), and the Path-cover Lemma 
(Lemma 2.3). In fact, when � < k/2, the Absorbing Lemma and the Reservoir Lemma 
are not very difficult and already proven in [7] (in contrast, when � > k/2, the Absorbing 
Lemma in [13] is more difficult to prove). Thus the main step is to prove the Path-cover 
Lemma. As shown in [7,13], after the Regularity Lemma is applied, it suffices to prove 
that the cluster k-graph K can be tiled almost perfectly by the k-graph Fk,�, whose 
vertex set consists of disjoint sets A1, . . . , Aa−1, B of size k − 1, and whose edges are all 
the k-sets of the form Ai∪{b} for i = 1, . . . , a −1 and all b ∈ B, where a = � k

k−��(k− �). 
In this paper we reduce the problem to tile K with a much simpler k-graph Yk,2�, which 
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consists of two edges sharing 2� vertices. Because of the simple structure of Yk,2�, we 
can easily find an almost perfect Yk,2�-tiling unless K is in the extremal case (thus the 
original k-graph H is in the extremal case). Interestingly Y3,2-tiling was studied in the 
very first paper [14] on loose Hamilton cycles but as a separate problem. Our recent pa-
per [10] indeed used Y3,2-tiling as a tool to prove the corresponding path-cover lemma. 
On the other hand, the authors of [3] used a different approach (without the Regular-
ity Lemma) to prove the Path-tiling Lemma (though they did not state such lemma 
explicitly).

The rest of the paper is organized as follows. We prove Theorem 1.4 in Section 2 and 
Theorem 1.5 in Section 3, and give concluding remarks in Section 4.

Notation. Given an integer k ≥ 0, a k-set is a set with k elements. For a set X, we denote 
by 

(
X
k

)
the family of all k-subsets of X. Given a k-graph H and a set A ⊆ V (H), we 

denote by eH(A) the number of the edges of H in A. We often omit the subscript that 
represents the underlying hypergraph if it is clear from the context. Given a k-graph H
with two vertex sets S, R such that |S| < k, we denote by degH(S, R) the number of 
(k− |S|)-sets T ⊆ R such that S ∪ T is an edge of H (in this case, T is called a neighbor
of S). We define degH(S, R) =

(|R\S|
k−|S|

)
− deg(S, R) as the number of non-edges on S ∪R

that contain S. When R = V (H) (and H is obvious), we simply write deg(S) and deg(S). 
When S = {v}, we use deg(v, R) instead of deg({v}, R).

A k-graph P is an �-path if there is an ordering (v1, . . . , vt) of its vertices such that 
every edge consists of k consecutive vertices and two consecutive edges intersect in exactly 
� vertices. Note that this implies that k−� divides t −�. In this case, we write P = v1 · · · vt
and call two �-sets {v1, . . . , v�} and {vt−�+1, . . . , vt} ends of P.

2. Proof of Theorem 1.4

In this section we prove Theorem 1.4 by following the approach in [7].

2.1. Auxiliary lemmas and proof of Theorem 1.4

We need [7, Lemma 5] and [7, Lemma 6] of Hàn and Schacht, in which only a linear 
codegree condition is needed. Given a k-graph H with an �-path P and a vertex set 
U ⊆ V (H) \V (P) with |U | ∈ (k− �)N, we say that P absorbs U if there exists an �-path 
Q of H with V (Q) = V (P) ∪ U such that P and Q have exactly the same ends.

Lemma 2.1 (Absorbing Lemma). (See [7].) For all integers k ≥ 3 and 1 ≤ � < k/2 and 
every γ1 > 0 there exist η > 0 and an integer n0 such that the following holds. Let H be 
a k-graph on n ≥ n0 vertices with δk−1(H) ≥ γ1n. Then H contains an absorbing �-path 
P with |V (P)| ≤ γ5

1n that can absorb any subset U ⊂ V (H) \ V (P) of size |U | ≤ ηn and 
|U | ∈ (k − �)N.
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Lemma 2.2 (Reservoir Lemma). (See [7].) For all integers k ≥ 3 and 1 ≤ � < k/2 and 
every 0 < d, γ2 < 1 there exists an n0 such that the following holds. Let H be a k-graph 
on n > n0 vertices with δk−1(H) ≥ dn, then there is a set R of size at most γ2n such 
that for all (k − 1)-sets S ∈

(
V

k−1
)

we have deg(S, R) ≥ dγ2n/2.

The main step in our proof of Theorem 1.4 is the following lemma, which is stronger 
than [7, Lemma 7]. We defer its proof to the next subsection.

Lemma 2.3 (Path-cover Lemma). For all integers k ≥ 3, 1 ≤ � < k/2, and every γ3, α > 0
there exist integers p and n0 such that the following holds. Let H be a k-graph on n > n0
vertices with δk−1(H) ≥ ( 1

2(k−�) −γ3)n, then there is a family of at most p vertex disjoint 
�-paths that together cover all but at most αn vertices of H, or H is 14γ3-extremal.

We can now prove Theorem 1.4 in a similar way as in [7].

Proof of Theorem 1.4. Given k ≥ 3, 1 ≤ � < k/2 and 0 < Δ < 1, let γ = min{Δ
43 , 

1
4k2 }

and n ∈ (k−�)N be sufficiently large. Suppose that H = (V, E) is a k-graph on n vertices 
with δk−1(H) ≥ ( 1

2(k−�)−γ)n. Since 1
2(k−�)−γ > γ, we can apply Lemma 2.1 with γ1 = γ

and obtain η > 0 and an absorbing path P0 with ends S0, T0 such that |V (P0)| ≤ γ5n

and P0 can absorb any u vertices outside P0 if u ≤ ηn and u ∈ (k − �)N.
Let V1 = (V \ V (P0)) ∪ S0 ∪ T0 and H1 = H[V1]. Note that |V (P0)| ≤ γ5n implies 

that δk−1(H1) ≥ ( 1
2(k−�) − γ)n − γ5n ≥ 1

2kn as γ < 1
4k2 and � ≥ 1. We next apply 

Lemma 2.2 with d = 1
2k and γ2 = min{η/2, γ} to H1 and get a reservoir R ⊂ V1 with 

|R| ≤ γ2|V (H1)| ≤ γ2n such that for any (k − 1)-set S ⊂ V1, we have

deg(S,R) ≥ dγ2|V1|/2 ≥ dγ2n/4. (2.1)

Let V2 = V \ (V (P0) ∪ R), n2 = |V2|, and H2 = H[V2]. Note that |V (P0) ∪ R| ≤
γ5
1n + γ2n ≤ 2γn, so

δk−1(H2) ≥
(

1
2(k − �) − γ

)
n− 2γn ≥

(
1

2(k − �) − 3γ
)
n2.

Applying Lemma 2.3 to H2 with γ3 = 3γ and α = η/2, we obtain at most p vertex disjoint 
�-paths that cover all but at most αn2 vertices of H2, unless H2 is 14γ3-extremal. In 
the latter case, there exists B′ ⊆ V2 such that |B′| = 	2k−2�−1

2(k−�) n2
 and e(B′) ≤ 42γnk
2 . 

Then we add at most n − n2 ≤ 2γn vertices from V \ B′ to B′ and obtain a vertex set 
B ⊆ V (H) such that |B| = 	2k−2�−1

2(k−�) n
 and

e(B) ≤ 42γnk
2 + 2γn ·

(
n− 1
k − 1

)
≤ 42γnk + γnk ≤ Δnk,

which means that H is Δ-extremal, a contradiction. In the former case, denote these 
�-paths by {Pi}i∈[p′] for some p′ ≤ p, and their ends by {Si, Ti}i∈[p′]. Note that 
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both Si and Ti are �-sets for � < k/2. We arbitrarily pick disjoint (k − 2� − 1)-sets 
X0, X1, . . . , Xp′ ⊂ R \ (S0 ∪ T0) (note that k − 2� − 1 ≥ 0). Let Tp′+1 = T0. By 
(2.1), as dγ2n/4 ≥ k(p′ + 1), we may find p′ + 1 vertices v0, v1, . . . , vp′ ∈ R such that 
Si ∪ Ti+1 ∪Xi ∪ {vi} ∈ E(H) for 0 ≤ i ≤ p′. We thus connect P0, P1, . . . , Pp′ together 
and obtain an �-cycle C. Note that

∣∣V (H) \ V (C)
∣∣ ≤ |R| + αn2 ≤ γ2n + αn ≤ ηn

and k− � divides |V \V (C)| because k− � divides both n and |V (C)|. So we can use P0 to 
absorb all unused vertices in R and uncovered vertices in V2 thus obtaining a Hamilton 
�-cycle in H. �

The rest of this section is devoted to the proof of Lemma 2.3.

2.2. Proof of Lemma 2.3

Following the approach in [7], we use the Weak Regularity Lemma, which is a straight-
forward extension of Szemerédi’s regularity lemma for graphs [22].

Let H = (V, E) be a k-graph and let A1, . . . , Ak be mutually disjoint non-empty 
subsets of V . We define e(A1, . . . , Ak) to be the number of crossing edges, namely, those 
with one vertex in each Ai, i ∈ [k], and the density of H with respect to (A1, . . . , Ak) as

d(A1, . . . , Ak) = e(A1, . . . , Ak)
|A1| · · · |Ak|

.

We say a k-tuple (V1, . . . , Vk) of mutually disjoint subsets V1, . . . , Vk ⊆ V is (ε, d)-regular, 
for ε > 0 and d ≥ 0, if

∣∣d(A1, . . . , Ak) − d
∣∣ ≤ ε

for all k-tuples of subsets Ai ⊆ Vi, i ∈ [k], satisfying |Ai| ≥ ε|Vi|. We say (V1, . . . , Vk) is 
ε-regular if it is (ε, d)-regular for some d ≥ 0. It is immediate from the definition that in 
an (ε, d)-regular k-tuple (V1, . . . , Vk), if V ′

i ⊂ Vi has size |V ′
i | ≥ c|Vi| for some c ≥ ε, then 

(V ′
1 , . . . , V

′
k) is (ε/c, d)-regular.

Theorem 2.4 (Weak Regularity Lemma). Given t0 ≥ 0 and ε > 0, there exist T0 =
T0(t0, ε) and n0 = n0(t0, ε) so that for every k-graph H = (V, E) on n > n0 vertices, 
there exists a partition V = V0 ∪ V1 ∪ · · · ∪ Vt such that

(i) t0 ≤ t ≤ T0,
(ii) |V1| = |V2| = · · · = |Vt| and |V0| ≤ εn,
(iii) for all but at most ε

(
t
k

)
k-subsets {i1, . . . , ik} ⊂ [t], the k-tuple (Vi1 , . . . , Vik) is 

ε-regular.
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The partition given in Theorem 2.4 is called an ε-regular partition of H. Given an 
ε-regular partition of H and d ≥ 0, we refer to Vi, i ∈ [t], as clusters and define the 
cluster hypergraph K = K(ε, d) with vertex set [t] and {i1, . . . , ik} ⊂ [t] is an edge if and 
only if (Vi1 , . . . , Vik) is ε-regular and d(Vi1 , . . . , Vik) ≥ d.

We combine Theorem 2.4 and [7, Proposition 16] into the following corollary, which 
shows that the cluster hypergraph almost inherits the minimum degree of the original 
hypergraph. Its proof is standard and similar as the one of [7, Proposition 16] so we omit 
it.1

Corollary 2.5. (See [7].) Given c, ε, d > 0, integers k ≥ 3 and t0, there exist T0 and n0
such that the following holds. Let H be a k-graph on n > n0 vertices with δk−1(H) ≥ cn. 
Then H has an ε-regular partition V0 ∪ V1 ∪ · · · ∪ Vt with t0 ≤ t ≤ T0, and in the 
cluster hypergraph K = K(ε, d), all but at most 

√
εtk−1 (k − 1)-subsets S of [t] satisfy 

degK(S) ≥ (c − d −√
ε )t − (k − 1).

Let H be a k-partite k-graph with partition classes V1, . . . , Vk. Given 1 ≤ � < k/2, we 
call an �-path P with edges {e1, . . . , eq} canonical with respect to (V1, . . . , Vk) if

ei ∩ ei+1 ⊆
⋃
j∈[�]

Vj or ei ∩ ei+1 ⊆
⋃

j∈[2�]\[�]
Vj

for i ∈ [q − 1]. When j > 2�, all e1 ∩ Vj , . . . , eq ∩ Vj are distinct and thus |V (P) ∩ Vj | =
|(e1 ∪ · · · ∪ eq) ∩ Vj | = q. When j ≤ 2�, exactly one of ei−1 ∩ ei and ei ∩ ei+1 intersects 
Vj . Thus |V (P) ∩ Vj | = q+1

2 if q is odd.
We need the following proposition from [7].

Proposition 2.6. [7, Proposition 19] Suppose that 1 ≤ � < k/2 and H is a k-partite, 
k-graph with partition classes V1, . . . , Vk such that |Vi| = m for all i ∈ [k], and |E(H)| ≥
dmk. Then there exists a canonical �-path in H with t > dm

2(k−�) edges.

In [7] the authors used Proposition 2.6 to cover an (ε, d)-regular tuple (V1, . . . , Vk) of 
sizes |V1| = · · · = |Vk−1| = (2k − 2� − 1)m and |Vk| = (k − 1)m with vertex disjoint 
�-paths. Our next lemma shows that an (ε, d)-regular tuple (V1, . . . , Vk) of sizes |V1| =
· · · = |V2�| = m and |Vi| = 2m for i > 2� can be covered with �-paths.

Lemma 2.7. Fix k ≥ 3, 1 ≤ � < k/2 and ε, d > 0 such that d > 2ε. Let m > k2

ε2(d−ε) . 
Suppose V = (V1, V2, . . . , Vk) is an (ε, d)-regular k-tuple with

|V1| = · · · = |V2�| = m and |V2�+1| = · · · = |Vk| = 2m. (2.2)

1 Roughly speaking, the lower bound for degK(S) contains −d because when forming K, we discard all 
k-tuple (Vi1 , . . . , Vik ) of density less than d, contains −√

ε because at most ε
(t
k

)
k-tuple are not regular, 

and contains −(k − 1) because we discard all non-crossing edges of H.



J. Han, Y. Zhao / Journal of Combinatorial Theory, Series A 132 (2015) 194–223 201
Then there are at most 2k
(d−ε)ε vertex-disjoint �-paths that together cover all but at most 

2kεm vertices of V.

Proof. We greedily find vertex-disjoint canonical �-paths of odd length by Proposition 2.6
in V until less than εm vertices are uncovered in V1 as follows. Suppose that we have 
obtained �-paths P1, . . . , Pp for some p ≥ 0. Let q =

∑p
j=1 e(Pj). Assume that for 

all j, Pj is canonical with respect to V and e(Pj) is odd. Then 
⋃p

j=1 Pi contains q+p
2

vertices of Vi for i ∈ [2�] and q vertices of Vi for i > 2�. For i ∈ [k], let Ui be the 
set of uncovered vertices of Vi and assume that |U1| ≥ εm. Using (2.2), we derive that 
|U1| = · · · = |U2�| ≥ εm and

|U2�+1| = · · · = |Uk| = 2|U1| + p. (2.3)

We now consider a k-partite subhypergraph V ′ with arbitrary |U1| vertices in each Ui

for i ∈ [k]. By regularity, V ′ contains at least (d − ε)|U1|k edges, so we can apply Propo-
sition 2.6 and find an �-path of odd length at least (d−ε)εm

2(k−�) − 1 ≥ (d−ε)εm
2k (dismiss one 

edge if needed). We continue this process until |U1| < εm. Let P1, . . . , Pp be the �-paths 
obtained in V after the iteration stops. Since |V1∩V (Pj)| ≥ (d−ε)εm

2k for every j, we have

p ≤ m
(d−ε)εm

2k

= 2k
(d− ε)ε .

Since m > k2

ε2(d−ε) , it follows that p(k − 2�) < 2k2

(d−ε)ε < 2εm. By (2.3), the total number 
of uncovered vertices in V is

k∑
i=1

|Ui| = |U1|2� +
(
2|U1| + p

)
(k − 2�) = 2(k − �)|U1| + p(k − 2�)

< 2(k − 1)εm + 2εm = 2kεm. �
Given k ≥ 3 and 0 ≤ b < k, let Yk,b be a k-graph with two edges that share exactly b

vertices. In general, given two (hyper)graphs G and H, a G-tiling is a sub(hyper)graph 
of H that consists of vertex-disjoint copies of G. A G-tiling is perfect if it is a spanning 
sub(hyper)graph of H. The following lemma is the main step in our proof of Lemma 2.3
and we prove it in the next subsection. Note that it generalizes [2, Lemma 3.1] of Czy-
grinow, DeBiasio, and Nagle.

Lemma 2.8 (Yk,b-tiling lemma). Given integers k ≥ 3, 1 ≤ b < k and constants γ, β > 0, 
there exist 0 < ε′ < γβ and an integer n′ such that the following holds. Suppose H is a 
k-graph on n > n′ vertices with deg(S) ≥ ( 1

2k−b − γ)n for all but at most ε′nk−1 sets 
S ∈

(
V

k−1
)
, then there is a Yk,b-tiling that covers all but at most βn vertices of H unless 

H contains a vertex set B such that |B| = 	2k−b−1n
 and e(B) < 6γnk.
2k−b
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Now we are ready to prove Lemma 2.3.

Proof of Lemma 2.3. Fix integers k, �, 0 < γ3, α < 1. Let ε′, n′ be the constants returned 
from Lemma 2.8 with b = 2�, γ = 2γ3, and β = α/2. Thus ε′ < γβ = γ3α. Let T0 be the 
constant returned from Corollary 2.5 with c = 1

2(k−�) − γ3, ε = (ε′)2/16, d = γ3/2 and 

t0 > max{n′, 4k/γ3}. Furthermore, let p = 2T0
(d−2ε)ε .

Let n be sufficiently large and let H be a k-graph on n vertices with δk−1(H) ≥
( 1
2(k−�) − γ3)n. Applying Corollary 2.5 with the constants chosen above, we obtain an 

ε-regular partition and a cluster hypergraph K = K(ε, d) on [t] such that for all but at 
most 

√
εtk−1 (k − 1)-sets S ∈

( [t]
k−1

)
,

degK(S) ≥
(

1
2(k − �) − γ3 − d−

√
ε

)
t− (k − 1) ≥

(
1

2(k − �) − 2γ3

)
t,

because d = γ3/2, 
√
ε = ε′/4 < γ3/4 and k − 1 < γ3t0/4 ≤ γ3t/4. Let m be the size of 

clusters, then (1 − ε)nt ≤ m ≤ n
t . Applying Lemma 2.8 with the constants chosen above, 

we derive that either there is a Yk,2�-tiling Y of K which covers all but at most βt vertices 
of K or there exists a set B ⊆ V (K), such that |B| = 	2k−2�−1

2(k−�) t
 and eK(B) ≤ 12γ3t
k. 

In the latter case, let B′ ⊆ V (H) be the union of the clusters in B. By regularity,

eH
(
B′) ≤ eK(B) ·mk +

(
t

k

)
· d ·mk + ε ·

(
t

k

)
·mk + t

(
m

2

)(
n

k − 2

)
,

where the right-hand side bounds the number of edges from regular k-tuples with high 
density, edges from regular k-tuples with low density, edges from irregular k-tuples and 
edges that lie in at most k − 1 clusters. Since m ≤ n

t , ε < γ3/16, d = γ3/2, and 
t−1 < t−1

0 < γ3/(4k), we obtain that

eH
(
B′) ≤ 12γ3t

k ·
(
n

t

)k

+
(
t

k

)
γ3

2

(
n

t

)k

+ γ3

16

(
t

k

)(
n

t

)k

+ t

(
n/t

2

)(
n

k − 2

)

< 13γ3n
k.

Note that |B′| = 	2k−2�−1
2(k−�) t
m ≤ 2k−2�−1

2(k−�) t · n
t = 2k−2�−1

2(k−�) n, and consequently |B′| ≤
	 2k−2�−1

2(k−�) n
. On the other hand,

∣∣B′∣∣ =
⌊

2k − 2�− 1
2(k − �) t

⌋
m ≥

(
2k − 2�− 1

2(k − �) t− 1
)

(1 − ε)n
t

≥
(

2k − 2�− 1
2(k − �) t− ε

2k − 2�− 1
2(k − �) t− 1

)
n

t

≥
(

2k − 2�− 1
t− εt

)
n = 2k − 2�− 1

n− εn.
2(k − �) t 2(k − �)
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By adding at most εn vertices from V \B′ to B′, we get a set B′′ ⊆ V (H) of size exactly 
	2k−2�−1

2(k−�) n
, with e(B′′) ≤ e(B′) + εn · nk−1 < 14γ3n
k. Hence H is 14γ3-extremal.

In the former case, let m′ = 	m/2
. If m is odd, we throw away one vertex from each 
cluster covered by Y (we do nothing if m is even). Thus, the union of the clusters covered 
by Y contains all but at most βtm + |V0| + t ≤ αn/2 + 2εn vertices of H. We take the 
following procedure to each member Y ′ ∈ Y . Suppose that Y ′ has the vertex set [2k−2�]
with edges {1, . . . , k} and {k − 2� + 1, . . . , 2k − 2�}. For i ∈ [2k − 2�], let Wi denote the 
corresponding cluster in H. We split each Wi, i = k− 2� +1, . . . , k, into two disjoint sets 
W 1

i and W 2
i of equal size. Then each of the k-tuples (W 1

k−2�+1, . . . , W
1
k , W1, . . . , Wk−2�)

and (W 2
k−2�+1, . . . , W

2
k , Wk+1, . . . , W2k−2�) is (2ε, d′)-regular for some d′ ≥ d and of sizes 

m′, . . . , m′, 2m′, . . . , 2m′. Applying Lemma 2.7 to these two k-tuples, we find a family of 
at most 2k

(d′−2ε)2ε ≤ k
(d−2ε)ε disjoint loose paths in each k-tuple covering all but at most 

2k(2ε)m′ ≤ 2kεm vertices. Since |Y | ≤ t
2k−2� , we thus obtain a path-tiling that consists 

of at most 2 t
2k−2�

k
(d−2ε)ε ≤ 2T0

(d−2ε)ε = p paths and covers all but at most

2 · 2kεm · t

2k − 2� + αn/2 + 2εn < 6εn + αn/2 < αn

vertices of H, where we use 2k − 2� > k and ε = (ε′)2/16 < (γ3α)2/16 < α/12. This 
completes the proof. �
2.3. Proof of Lemma 2.8

We first give an upper bound on the size of k-graphs containing no copy of Yk,b. In 
its proof, we use the concept of link (hyper)graph: given a k-graph H with a set S of at 
most k − 1 vertices, the link graph of S is the (k − |S|)-graph with vertex set V (H) \ S
and edge set {e \ S : e ∈ E(H), S ⊆ e}. Throughout the rest of the paper, we frequently 
use the simple identity 

(
m
b

)(
m−b
k−b

)
=

(
m
k

)(
k
b

)
, which holds for all integers 0 ≤ b ≤ k ≤ m.

Fact 2.9. Let 0 ≤ b < k and m ≥ 2k − b. If H is a k-graph on m vertices containing no 
copy of Yk,b, then e(H) <

(
m

k−1
)
.

Proof. Fix any b-set S ⊆ V (H) (S = ∅ if b = 0) and consider its link graph LS. Since 
H contains no copy of Yk,b, any two edges of LS intersect. Since m ≥ 2k − b, the 
Erdős–Ko–Rado Theorem [5] implies that |LS | ≤

(
m−b−1
k−b−1

)
. Thus,

e(H) ≤ 1(
k
b

)(m
b

)
·
(
m− b− 1
k − b− 1

)
= 1(

k
b

)(m
b

)(
m− b

k − b

)
k − b

m− b
=

(
m

k

)
k − b

m− b

=
(

m

k − 1

)
k − b

k

m− k + 1
m− b

<

(
m

k − 1

)
. �

Proof of Lemma 2.8. Given γ, β > 0, let ε′ = γβk−1

(k−1)! and let n ∈ N be sufficiently large. 
Let H be a k-graph on n vertices that satisfies deg(S) ≥ ( 1 − γ)n for all but at most 
2k−b
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ε′nk−1 (k − 1)-sets S. Let Y = {Y1, . . . , Ym} be a largest Yk,b-tiling in H (with respect 
to m) and write Vi = V (Yi) for i ∈ [m]. Let V ′ =

⋃
i∈[m] Vi and U = V (H) \V ′. Assume 

that |U | > βn — otherwise we are done.
Let C be the set of vertices v ∈ V ′ such that deg(v, U) ≥ (2k−b)2

( |U |
k−2

)
. We will show 

that |C| ≤ n
2k−b and C covers almost all the edges of H, which implies that H[V \ C]

is sparse and H is in the extremal case. We first observe that every Yi ∈ Y contains 
at most one vertex in C. Suppose instead, two vertices x, y ∈ Vi are both in C. Since 
deg(x, U) ≥ (2k − b)2

( |U |
k−2

)
>

( |U |
k−2

)
, by Fact 2.9, there is a copy of Yk−1,b−1 in the link 

graph of x on U , which gives rise to Y ′, a copy of Yk,b on {x} ∪ U . Since the link graph 
of y on U \ V (Y ′) has at least

(2k − b)2
(

|U |
k − 2

)
− (2k − b− 1)

(
|U |
k − 2

)
>

(
|U \ V (Y ′)|

k − 2

)

edges, we can find another copy of Yk,b on {y} ∪ (U \ V (Y ′)) by Fact 2.9. Replacing Yi

in Y with these two copies of Yk,b creates a Yk,b-tiling larger than Y , contradiction. 
Consequently,

∑
S∈

( U
k−1

) deg
(
S, V ′) ≤ |C|

(
|U |
k − 1

)
+
∣∣V ′ \ C

∣∣(2k − b)2
(

|U |
k − 2

)

< |C|
(

|U |
k − 1

)
+ (2k − b)2n

(
|U |
k − 2

)
because

∣∣V ′ \ C
∣∣ < n

=
(

|U |
k − 1

)(
|C| + (2k − b)2n(k − 1)

|U | − k + 2

)
. (2.4)

Second, by Fact 2.9, e(U) ≤
( |U |
k−1

)
since H[U ] contains no copy of Yk,b, which implies

∑
S∈

( U
k−1

) deg(S,U) ≤ k

(
|U |
k − 1

)
. (2.5)

By the definition of ε′, we have

ε′nk−1 = γβk−1

(k − 1)!n
k−1 <

γ|U |k−1

(k − 1)! < 2γ
(

|U |
k − 1

)

as |U | is large enough. At last, by the degree condition, we have

∑
S∈

( U
k−1

) deg(S) ≥
((

|U |
k − 1

)
− ε′nk−1

)(
1

2k − b
− γ

)
n

> (1 − 2γ)
(

|U |
)(

1 − γ

)
n. (2.6)
k − 1 2k − b
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Since deg(S) = deg(S, U) + deg(S, V ′), we combine (2.4), (2.5) and (2.6) and get

|C| > (1 − 2γ)
(

1
2k − b

− γ

)
n− k − (2k − b)2n(k − 1)

|U | − k + 2 .

Since |U | > 16k3/γ, we get

(2k − b)2n(k − 1)
|U | − k + 2 <

4k3n

|U |/2 < γn/2.

Since 2γ2n > k and 2k − b ≥ 4, it follows that |C| > ( 1
2k−b − 2γ)n.

Let IC be the set of all i ∈ [m] such that Vi ∩ C �= ∅. Since each Vi, i ∈ IC , contains 
one vertex of C, we have

|IC | = |C| ≥
(

1
2k − b

− 2γ
)
n ≥ m− 2γn. (2.7)

Let A = (
⋃

i∈IC
Vi \ C) ∪ U .

Claim 2.10. H[A] contains no copy of Yk,b, thus e(A) <
(

n
k−1

)
.

Proof. The first half of the claim implies the second half by Fact 2.9. Suppose instead, 
H[A] contains a copy of Yk,b, denoted by Y0. Note that V (Y0) �⊆ U because H[U ] contains 
no copy of Yk,b. Without loss of generality, suppose that V1, . . . , Vj contain the vertices of 
Y0 for some j ≤ 2k− b. For i ∈ [j], let ci denote the unique vertex in Vi∩C. We greedily 
construct vertex-disjoint copies of Yk,b on {ci} ∪ U , i ∈ [j] as follows. Suppose we have 
found Y ′

1, . . . , Y ′
i (copies of Yk,b) for some i < j. Let U0 denote the set of the vertices of 

U covered by Y0, Y ′
1, . . . , Y ′

i. Then |U0| ≤ (i +1)(2k− b − 1) ≤ (2k− b)(2k− b − 1). Since 
deg(ci+1, U) ≥ (2k − b)2

( |U |
k−2

)
, the link graph of ci+1 on U \ U0 has at least

(2k − b)2
(

|U |
k − 2

)
− |U0|

(
|U |
k − 2

)
>

(
|U |
k − 2

)

edges. By Fact 2.9, there is a copy of Yk,b on {ci+1} ∪ (U \ U0). Let Y ′
1, . . . , Y ′

j denote 
the copies of Yk,b constructed in this way. Replacing Y1, . . . , Yj in Y with Y0, Y ′

1, . . . , Y ′
j

gives a Yk,b-tiling larger than Y , contradiction. �
Note that the edges not incident to C are either contained in A or intersect some Vi, 

i /∈ IC . By (2.7) and Claim 2.10,

e(V \ C) ≤ e(A) + (2k − b) · 2γn
(
n− 1
k − 1

)
<

(
n

k − 1

)
+ (4k − 2b)γn

(
n

k − 1

)

< 4kγn
(

n
)

<
4k

γnk ≤ 6γnk,

k − 1 (k − 1)!
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where the last inequality follows from k ≥ 3. Since |C| ≤ n
2k−b , we can pick a set 

B ⊆ V \ C of order 	2k−b−1
2k−b n
 such that e(B) < 6γnk. �

3. The extremal theorem

In this section we prove Theorem 1.5. Assume that k ≥ 3, 1 ≤ � < k/2 and 0 < Δ � 1. 
Let n ∈ (k − �)N be sufficiently large. Let H be a k-graph on V of n vertices such that 
δk−1(H) ≥ n

2(k−�) . Furthermore, assume that H is Δ-extremal, namely, there is a set 
B ⊆ V (H), such that |B| = 	 (2k−2�−1)n

2(k−�) 
 and e(B) ≤ Δnk. Let A = V \ B. Then 
|A| = � n

2(k−�)�.
The following is an outline of the proof. We denote by A′ and B′ the sets of the vertices 

of H that behave as typical vertices of A and B, respectively. Let V0 = V \ (A′∪B′). It is 
not hard to show that A′ ≈ A, B′ ≈ B, and thus V0 ≈ ∅. In the ideal case, when V0 = ∅
and |B′| = (2k− 2� − 1)|A′|, we assign a cyclic order to the vertices of A′, construct |A′|
copies of Yk,� such that each copy contains one vertex of A′ and 2k − � − 1 vertices of 
B′, and any two consecutive copies of Yk,� share exactly � vertices of B′. This gives rise 
to the desired Hamilton �-cycle of H. In the general case, we first construct an �-path 
Q with ends L0 and L1 such that V0 ⊆ V (Q) and |B1| = (2k − 2� − 1)|A1| + �, where 
A1 = A′ \V (Q) and B1 = (B \V (Q)) ∪L0 ∪L1. Next we complete the Hamilton �-cycle 
by constructing an �-path on A1 ∪B1 with ends L0 and L1.

For the convenience of later calculations, we let ε0 = 2k!eΔ � 1 and claim that 
e(B) ≤ ε0

(|B|
k

)
. Indeed, since 2(k − �) − 1 ≥ k, we have

1
e
≤

(
1 − 1

2(k − �)

)2(k−�)−1

≤
(

1 − 1
2(k − �)

)k

.

Thus we get

e(B) ≤ ε0
2k!en

k ≤ ε0

(
1 − 1

2(k − �)

)k
nk

2k! ≤ ε0

(
|B|
k

)
. (3.1)

In general, given two disjoint vertex sets X and Y and two integers i, j ≥ 0, a set 
S ⊂ X ∪ Y is called an XiY j-set if |S ∩ X| = i and |S ∩ Y | = j. When X, Y are 
two disjoint subsets of V (H) and i + j = k, we denote by H(XiY j) the family of all 
edges of H that are XiY j-sets, and let eH(XiY j) = |H(XiY j)| (the subscript may be 
omitted if it is clear from the context). We use eH(XiY k−i) to denote the number of 
non-edges among XiY k−i-sets. Given a set L ⊆ X ∪ Y with |L ∩ X| = l1 ≤ i and 
|L ∩ Y | = l2 ≤ k − i, we define deg(L, XiY k−i) as the number of edges in H(XiY k−i)
that contain L, and deg(L, XiY k−i) =

(|X|−l1
i−l1

)( |Y |−l2
k−i−l2

)
− deg(L, XiY k−i). Our earlier 

notation deg(S, R) may be viewed as deg(S, S|S|(R \ S)k−|S|).
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3.1. Classification of vertices

Let ε1 = ε0
1/3 and ε2 = 2ε21. Assume that the partition V (H) = A ∪ B satisfies that 

|B| = 	 (2k−2�−1)n
2(k−�) 
 and (3.1). In addition, assume that e(B) is the smallest among all 

such partitions. We now define

A′ :=
{
v ∈ V : deg(v,B) ≥ (1 − ε1)

(
|B|
k − 1

)}
,

B′ :=
{
v ∈ V : deg(v,B) ≤ ε1

(
|B|
k − 1

)}
,

V0 := V \
(
A′ ∪B′).

Claim 3.1. A ∩B′ �= ∅ implies that B ⊆ B′, and B ∩A′ �= ∅ implies that A ⊆ A′.

Proof. First, assume that A ∩B′ �= ∅. Then there is some u ∈ A such that deg(u, B) ≤
ε1
( |B|
k−1

)
. If there exists some v ∈ B \B′, namely, deg(v, B) > ε1

( |B|
k−1

)
, then we can switch 

u and v and form a new partition A′′ ∪ B′′ such that |B′′| = |B| and e(B′′) < e(B), 
which contradicts the minimality of e(B).

Second, assume that B ∩ A′ �= ∅. Then some u ∈ B satisfies that deg(u, B) ≥
(1 − ε1)

( |B|
k−1

)
. Similarly, by the minimality of e(B), we get that for any vertex v ∈ A, 

deg(v, B) ≥ (1 − ε1)
( |B|
k−1

)
, which implies that A ⊆ A′. �

Claim 3.2. {|A \A′|, |B \B′|, |A′ \A|, |B′ \B|} ≤ ε2|B| and |V0| ≤ 2ε2|B|.

Proof. First assume that |B \B′| > ε2|B|. By the definition of B′, we get that

e(B) > 1
k
ε1

(
|B|
k − 1

)
· ε2|B| > 2ε0

(
|B|
k

)
,

which contradicts (3.1).
Second, assume that |A \ A′| > ε2|B|. Then by the definition of A′, for any vertex 

v /∈ A′, we have that deg(v, B) > ε1
( |B|
k−1

)
. So we get

e
(
ABk−1) > ε2|B| · ε1

(
|B|
k − 1

)
= 2ε0|B|

(
|B|
k − 1

)
.

Together with (3.1), this implies that
∑

S∈
( B
k−1

) deg(S) = ke(B) + e
(
ABk−1)

> k(1 − ε0)
(
|B|
k

)
+ 2ε0|B|

(
|B|
k − 1

)

=
(
(1 − ε0)

(
|B| − k + 1

)
+ 2ε0|B|

)( |B|
)

> |B|
(

|B|
)
.

k − 1 k − 1
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where the last inequality holds because n is large enough. By the pigeonhole principle, 
there exists a set S ∈

(
B

k−1
)
, such that deg(S) > |B| = 	 (2k−2�−1)n

2(k−�) 
, contradicting (1.1).
Consequently,

∣∣A′ \A
∣∣ =

∣∣A′ ∩B
∣∣ ≤ ∣∣B \B′∣∣ ≤ ε2|B|,∣∣B′ \B

∣∣ =
∣∣A ∩B′∣∣ ≤ ∣∣A \A′∣∣ ≤ ε2|B|,

|V0| =
∣∣A \A′∣∣ +

∣∣B \B′∣∣ ≤ ε2|B| + ε2|B| = 2ε2|B|. �
3.2. Classification of �-sets in B′

In order to construct our Hamilton �-cycle, we need to connect two �-paths. To make 
this possible, we want the ends of our �-paths to be �-sets in B′ that have high degree in 
H[A′B′ k−1]. Formally, we call an �-set L ⊂ V typical if deg(L, B) ≤ ε1

( |B|
k−�

)
, otherwise 

atypical. We prove several properties related to typical �-sets in this subsection.

Claim 3.3. The number of atypical �-sets in B is at most ε2
(|B|

�

)
.

Proof. Let m be the number of atypical �-sets in B. By (3.1), we have

mε1
( |B|
k−�

)
(
k
�

) ≤ e(B) ≤ ε0

(
|B|
k

)
,

which gives that m ≤ ε0
(k
l

)(|B|
k

)
ε1

( |B|
k−�

) = ε2
2
(|B|−k+�

�

)
< ε2

(|B|
�

)
. �

Claim 3.4. Every typical �-set L ⊂ B′ satisfies deg(L, A′B′ k−1) ≤ 4kε1
(|B′|−�
k−�−1

)
|A′|.

Proof. Fix a typical �-set L ⊂ B′ and consider the following sum,
∑

L⊂D⊂B′,|D|=k−1

deg(D) =
∑

L⊂D⊂B′,|D|=k−1

(
deg

(
D,A′) + deg

(
D,B′) + deg(D,V0)

)
.

By (1.1), the left-hand side is at least 
(|B′|−�
k−�−1

)
|A|. On the other hand,

∑
L⊂D⊂B′,|D|=k−1

(
deg

(
D,B′) + deg(D,V0)

)
≤ (k − �) deg

(
L,B′) +

(
|B′| − �

k − �− 1

)
|V0|.

Since L is typical and |B′ \B| ≤ ε2|B| (Claim 3.2), we have

deg
(
L,B′) ≤ deg(L,B) +

∣∣B′ \B
∣∣( |B′| − 1

k − �− 1

)

≤ ε1

(
|B|

)
+ ε2|B|

(
|B′| − 1

)
.

k − � k − �− 1
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Since ε2 � ε1 and ||B| − |B′|| ≤ ε2|B|, it follows that

(k − �) deg
(
L,B′) ≤ ε1|B|

(
|B| − 1
k − �− 1

)
+ (k − �)ε2|B|

(
|B′| − 1
k − �− 1

)

≤ 2ε1|B|
(

|B′| − �

k − �− 1

)
.

Putting these together and using Claim 3.2, we obtain that

∑
L⊂D⊂B′,|D|=k−1

deg
(
D,A′) ≥ (

|B′| − �

k − �− 1

)(
|A| − |V0|

)
− 2ε1|B|

(
|B′| − �

k − �− 1

)

≥
(

|B′| − �

k − �− 1

)(∣∣A′∣∣− 3ε2|B| − 2ε1|B|
)
.

Note that deg(L, A′B′ k−1) =
∑

L⊂D⊂B′,|D|=k−1 deg(D, A′). Since |B| ≤ (2k − 2� −
1)|A| ≤ (2k − 2�)|A′|, we finally derive that

deg
(
L,A′B′ k−1) ≥ (

|B′| − �

k − �− 1

)(
1 − (2k − 2�)(3ε2 + 2ε1)

)∣∣A′∣∣
≥ (1 − 4kε1)

(
|B′| − �

k − �− 1

)∣∣A′∣∣.
as desired. �

We next show that we can connect any two disjoint typical �-sets of B′ with an �-path 
of length two while avoiding any given set of n

4(k−�) vertices of V .

Claim 3.5. Given two disjoint typical �-sets L1, L2 in B′ and a vertex set U ⊆ V with 
|U | ≤ n

4(k−�) , there exist a vertex a ∈ A′ \ U and a (2k − 3� − 1)-set C ⊂ B′ \ U such 
that L1 ∪ L2 ∪ {a} ∪ C spans an �-path (of length two) ended at L1, L2.

Proof. Fix two disjoint typical �-sets L1, L2 in B′. Using Claim 3.2, we obtain that 
|U | ≤ n

4(k−�) ≤ |A|
2 < 2

3 |A′| and

n

4(k − �) ≤ |B| + 1
2(2k − 2�− 1) ≤ (1 + 2ε2)|B′|

2k <
|B′|
k

.

Thus |A′ \U | > |A′|
3 and |B′ \U | > k−1

k |B′|. Consider a (k− �)-graph G on (A′ ∪B′) \U
such that an A′B′ k−�−1-set T is an edge of G if and only if T ∩U = ∅ and T is a common 
neighbor of L1 and L2 in H. By Claim 3.4, we have
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e(G) ≤ 2 · 4kε1
(

|B′| − �

k − �− 1

)∣∣A′∣∣ < 8kε1
( k

k−1 |B′ \ U |
k − �− 1

)
· 3
∣∣A′ \ U

∣∣
≤ 24kε1

(
k

k − 1

)k−1( |B′ \ U |
k − �− 1

)∣∣A′ \ U
∣∣.

Consequently, e(G) > 1
2
(|B′\U |
k−�−1

)
|A′ \ U |. Hence there exists a vertex a ∈ A′ \ U such 

that degG(a) > 1
2
(|B′\U |
k−�−1

)
>

(|B′\U |
k−�−2

)
. By Fact 2.9, the link graph of a contains a copy 

of Yk−�−1,�−1 (two edges of the link graph sharing � − 1 vertices). In other words, there 
exists a (2k− 3� − 1)-set C ⊂ B′ \U such that C ∪{a} contains two edges of G sharing �
vertices. Together with L1, L2, this gives rise to the desired �-path (in H) of length two 
ended at L1, L2. �

The following claim shows that we can always extend a typical �-set to an edge of H
by adding one vertex from A′ and k − � − 1 vertices from B′ such that every �-set of 
these k− � − 1 vertices is typical. This can be done even when at most n

4(k−�) vertices of 
V are not available.

Claim 3.6. Given a typical �-set L ⊆ B′ and a set U ⊆ V with |U | ≤ n
4(k−�) , there exists 

an A′B′ k−�−1-set C ⊂ V \ U such that L ∪ C is an edge of H and every �-subset of 
C ∩B′ is typical.

Proof. First, since L is typical in B′, by Claim 3.4, deg(L, A′B′ k−1) ≤ 4kε1
(|B′|−�
k−�−1

)
|A′|. 

Second, note that a vertex in A′ is contained in 
( |B′|
k−�−1

)
A′B′ k−�−1-sets, while a vertex in 

B′ is contained in |A′|
(|B′|−1
k−�−2

)
A′B′ k−�−1-sets. It is easy to see that |A′|

(|B′|−1
k−�−2

)
<

( |B′|
k−�−1

)
(as |A′| ≈ n

2k−2� and |B′| ≈ 2k−2�−1
2k−2� n). We thus derive that at most

|U |
(

|B′|
k − �− 1

)
≤ n

4(k − �)

(
|B′|

k − �− 1

)

A′B′ k−�−1-sets intersect U . Finally, by Claim 3.3, the number of atypical �-sets in B is 
at most ε2

(|B|
�

)
. Using Claim 3.2, we derive that the number of atypical �-sets in B′ is 

at most

ε2

(
|B|
�

)
+
∣∣B′ \B

∣∣(|B′| − 1
�− 1

)
≤ 2ε2

(
|B′|
�

)
+ ε2|B|

(
|B′| − 1
�− 1

)
< 3�ε2

(
|B′|
�

)
.

Hence at most 3�ε2
(|B′|

�

)
|A′|

( |B′|−�
k−2�−1

)
A′B′ k−�−1-sets contain an atypical �-set. In sum-

mary, at most

4kε1
(

|B′| − �

k − �− 1

)∣∣A′∣∣ + n

4(k − �)

(
|B′|

k − �− 1

)
+ 3�ε2

(
|B′|
�

)(
|B′| − �

k − 2�− 1

)∣∣A′∣∣
A′B′ k−�−1-sets fail some of the desired properties. Since ε1, ε2 � 1 and |A′| ≈ n

2(k−�) , 
the desired A′B′ k−�−1-set always exists. �
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3.3. Building a short path Q

First, by the definition of B, for any vertex b ∈ B′, we have

deg
(
b, B′) ≤ deg(b, B) +

∣∣B′ \B
∣∣(|B′| − 1

k − 2

)

≤ ε1

(
|B|
k − 1

)
+ ε2|B|

(
|B′| − 1
k − 2

)
< 2ε1

(
|B|
k − 1

)
. (3.2)

The following claim is the only place where we used the exact codegree condition 
(1.1).

Claim 3.7. Suppose that |A ∩ B′| = q > 0. Then there exists a family P1 of 2q vertex-
disjoint edges in B′, each of which contains two disjoint typical �-sets.

Proof. Let |A ∩ B′| = q > 0. Since A ∩ B′ �= ∅, by Claim 3.1, we have B ⊆ B′, and 
consequently |B′| = 	2k−2�−1

2(k−�) n
 + q. By Claim 3.2, we have q ≤ |A \A′| ≤ ε2|B|.
Let B denote the family of the edges in B′ that contain two disjoint typical �-sets. 

We derive a lower bound for |B| as follows. We first pick a (k − 1)-subset of B (recall 
that B ⊆ B′) that contains no atypical �-subset. Since 2� ≤ k − 1, such a (k − 1)-set 
contains two disjoint typical �-sets. By Claim 3.3, there are at most ε2

(|B|
�

)
atypical �-sets 

in B ∩ B′ = B and in turn, there are at most ε2
(|B|

�

)( |B|−�
k−�−1

)
(k − 1)-subsets of B that 

contain an atypical �-subset. Thus there are at least
(

|B|
k − 1

)
− ε2

(
|B|
�

)(
|B| − �

k − �− 1

)
=

(
1 −

(
k − 1
�

)
ε2

)(
|B|
k − 1

)

(k − 1)-subsets of B that contain no atypical �-subset. After picking such a (k − 1)-set 
S ⊂ B, we find a neighbor of S by the codegree condition. Since |B′| = 	2k−2�−1

2(k−�) n
 + q, 
by (1.1), we have deg(S, B′) ≥ q. We thus derive that

|B| ≥
(

1 −
(
k − 1
�

)
ε2

)(
|B|
k − 1

)
q

k
,

in which we divide by k because every edge of B is counted at most k times.
We claim that B contains 2q disjoint edges. Suppose instead, a maximum matching 

in B has i < 2q edges. By (3.2), at most 2qk · 2ε1
( |B|
k−1

)
edges of B′ intersect the i edges 

in the matching. Hence, the number of edges of B that are disjoint from these i edges is 
at least

q

k

(
1 −

(
k − 1
�

)
ε2

)(
|B|
k − 1

)
− 4kε1q

(
|B|
k − 1

)
≥

(
1
k
− (4k + 1)ε1

)
q

(
|B|
k − 1

)
> 0,

as ε2 � ε1 � 1. We may thus obtain a matching of size i + 1, a contradiction. �
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Claim 3.8. There exists a non-empty �-path Q in H with the following properties:

• V0 ⊆ V (Q),
• |V (Q)| ≤ 10kε2|B|,
• the two ends L0, L1 of Q are typical �-sets in B′,
• |B1| = (2k− 2� − 1)|A1| + �, where A1 = A′ \V (Q) and B1 = (B′ \V (Q)) ∪L0 ∪L1.

Proof. We split into two cases here.

Case 1. A ∩B′ �= ∅.
By Claim 3.1, A ∩ B′ �= ∅ implies that B ⊆ B′. Let q = |A ∩ B′|. We first apply 

Claim 3.7 and find a family P1 of vertex-disjoint 2q edges in B′. Next we associate each 
vertex of V0 with 2k− � −1 vertices of B (so in B′) forming an �-path of length two such 
that these |V0| paths are pairwise vertex-disjoint, and also vertex-disjoint from the paths 
in P1, and all these paths have typical ends. To see it, let V0 = {x1, . . . , x|V0|}. Suppose 
that we have found such �-paths for x1, . . . , xi−1 with i ≤ |V0|. Since B ⊆ B′, it follows 
that A \A′ = (A ∩B′) ∪ V0. Hence |V0| + q = |A \A′| ≤ ε2|B| by Claim 3.2. Therefore

(2k − �− 1)(i− 1) +
∣∣V (P1)

∣∣ < 2k|V0| + 2kq ≤ 2kε2|B|

and consequently at most 2kε2|B|
(|B|−1

k−2
)
< 2k2ε2

( |B|
k−1

)
(k − 1)-sets of B intersect the 

existing paths (including P1). By the definition of V0, deg(xi, B) > ε1
( |B|
k−1

)
. Let Gxi

be 
the (k − 1)-graph on B such that e ∈ Gxi

if

• {xi} ∪ e ∈ E(H),
• e does not contain any vertex from the existing paths,
• e does not contain any atypical �-set.

By Claim 3.3, the number of (k− 1)-sets in B containing at least one atypical �-set is at 
most ε2

(|B|
�

)( |B|−�
k−�−1

)
= ε2

(
k−1
�

)( |B|
k−1

)
. Thus, we have

e(Gxi
) ≥ ε1

(
|B|
k − 1

)
− 2k2ε2

(
|B|
k − 1

)
− ε2

(
k − 1
�

)(
|B|
k − 1

)
>

ε1
2

(
|B|
k − 1

)
>

(
|B|
k − 2

)
,

because ε2 � ε1 and |B| is sufficiently large. By Fact 2.9, Gxi
contains a copy of Yk−1,�−1, 

which gives the desired �-path of length two containing xi.
Denote by P2 the family of �-paths we obtained so far. Now we need to connect paths 

of P2 together to a single �-path. For this purpose, we apply Claim 3.5 repeatedly to 
connect the ends of two �-paths while avoiding previously used vertices. This is possible 
because |V (P2)| = (2k − �)|V0| + 2kq and (2k− 3�)(|V0| + 2q − 1) vertices are needed to 
connect all the paths in P2 — the set U (when we apply Claim 3.5) thus satisfies

|U | ≤ (4k − 4�)|V0| + (6k − 6�)q − 2k + 3� ≤ 6(k − �)ε2|B| − 2k + 3�.
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Let P denote the resulting �-path. We have |V (P) ∩A′| = |V0| + 2q − 1 and
∣∣V (P) ∩B′∣∣ = k · 2q + (2k − �− 1)|V0| + (2k − 3�− 1)

(
|V0| + 2q − 1

)
= 2(2k − 2�− 1)|V0| + 2(3k − 3�− 1)q − (2k − 3�− 1).

Let s = (2k − 2� − 1)|A′ \ V (P)| − |B′ \ V (P)|. We have

s = (2k − 2�− 1)
(∣∣A′∣∣− |V0| − 2q + 1

)
−
∣∣B′∣∣ + 2(2k − 2�− 1)|V0|

+ 2(3k − 3�− 1)q − (2k − 3�− 1)

= (2k − 2�− 1)
∣∣A′∣∣− ∣∣B′∣∣ + (2k − 2�− 1)|V0| + (2k − 2�)q + �.

Since |A′| + |B′| + |V0| = n, we have

s = (2k − 2�)
(∣∣A′∣∣ + |V0| + q

)
− n + �. (3.3)

Note that |A′| + |V0| + q = |A| and

(2k − 2�)|A| − n =
{

0, if n
k−� is even,

k − �, if n
k−� is odd. (3.4)

Thus s = � or s = k. If s = k, then we extend P to an �-path Q by applying Claim 3.6, 
otherwise let Q = P. Then

∣∣V (Q)
∣∣ ≤ ∣∣V (P)

∣∣ + (k − �) ≤ 6kε2|B|,

and Q has two typical ends L0, L1 ⊂ B′. We claim that

(2k − 2�− 1)
∣∣A′ \ V (Q)

∣∣− ∣∣B′ \ V (Q)
∣∣ = �. (3.5)

Indeed, when s = �, this is obvious; when s = k, V (Q) \ V (P) contains one vertex of A′

and k − � − 1 vertices of B′ and thus

(2k − 2�− 1)
∣∣A′ \ V (Q)

∣∣− ∣∣B′ \ V (Q)
∣∣ = s− (2k − 2�− 1) + (k − �− 1) = �.

Let A1 = A′ \ V (Q) and B1 = (B′ \ V (Q)) ∪ L0 ∪ L1. We derive that |B1| = (2k − 2� −
1)|A1| + � from (3.5).

Case 2. A ∩B′ = ∅.
Note that A ∩B′ = ∅ means that B′ ⊆ B. Then we have

∣∣A′∣∣ + |V0| =
∣∣V \B′∣∣ = |A| +

∣∣B \B′∣∣. (3.6)

If V0 �= ∅, we handle this case similarly as in Case 1 except that we do not need to 
construct P1. By Claim 3.2, |B \B′| ≤ ε2|B| and thus for any vertex x ∈ V0,
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deg
(
x,B′) ≥ deg(x,B) −

∣∣B \B′∣∣ · (|B| − 1
k − 2

)

≥ ε1

(
|B|
k − 1

)
− (k − 1)ε2

(
|B|
k − 1

)
>

ε1
2

(
|B′|
k − 1

)
. (3.7)

As in Case 1, we let V0 = {x1, . . . , x|V0|} and cover them with vertex-disjoint �-paths of 
length two. Indeed, for each i ≤ |V0|, we construct Gx as before and show that e(Gxi

) ≥
ε1
4
(|B′|
k−1

)
. We then apply Fact 2.9 to Gxi

obtaining a copy of Yk−1,�−1, which gives an 
�-path of length two containing xi. As in Case 1, we connect these paths to a single �-path 
P by applying Claim 3.5 repeatedly. Then |V (P)| = (2k−�)|V0| +(2k−3�)(|V0| −1). Define 
s as in Case 1. Thus (3.3) holds with q = 0. Applying (3.6) and (3.4), we derive that

s = 2(k − �)
(
|A| +

∣∣B \B′∣∣)− n + �

=
{
� + 2(k − �)|B \B′|, if n

k−� is even,
k + 2(k − �)|B \B′|, if n

k−� is odd,
(3.8)

which implies that s ≡ � mod (k−�). We extend P to an �-path Q by applying Claim 3.6
s−�
k−� times. Then

∣∣V (Q)
∣∣ =

∣∣V (P)
∣∣ + s− � ≤ (4k − 4�)|V0| − 2k + 3� + k − � + 2(k − �)

∣∣B \B′∣∣
≤ 10kε2|B|

by Claim 3.2. Note that Q has two typical ends L0, L1 ⊂ B′. Since V (Q) \V (P) contains 
s−�
k−� vertices of A′ and s−�

k−� (k − � − 1) vertices of B′, we have

(2k − 2�− 1)
∣∣A′ \ V (Q)

∣∣− ∣∣B′ \ V (Q)
∣∣

= s− s− �

k − �
(2k − 2�− 1) + s− �

k − �
(k − �− 1) = �.

We define A1 and B1 in the same way and similarly we have |B1| = (2k−2� −1)|A1| + �.
When V0 = ∅, we pick an arbitrary vertex v ∈ A′ and form an �-path P of length two 

with typical ends such that v is in the intersection of the two edges. This is possible by 
the definition of A′. Define s as in Case 1. It is easy to see that (3.8) still holds. We then 
extend P to Q by applying Claim 3.6 s−�

k−� times. Then |V (Q)| = 2k− � +s − � ≤ 2kε2|B|
because of (3.8). The rest is the same as in the previous case. �
Claim 3.9. The A1, B1 and L0, L1 defined in Claim 3.8 satisfy the following properties:

(1) |B1| ≥ (1 − ε1)|B|,
(2) for any vertex v ∈ A1, deg(v, B1) < 3ε1

(|B1|
k−1

)
,

(3) for any vertex v ∈ B1, deg(v, A1B
k−1
1 ) ≤ 3kε1

(|B1|
k−1

)
,

(4) deg(L0, A1B
k−1
1 ) ≤ 5kε1

(|B1|), deg(L1, A1B
k−1
1 ) ≤ 5kε1

(|B1|).
k−� k−�
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Proof. Part (1): By Claim 3.2, we have |B1 \B| ≤ |B′ \B| ≤ ε2|B|. Furthermore,

|B1| ≥
∣∣B′∣∣− ∣∣V (Q)

∣∣ ≥ |B| − ε2|B| − 10kε2|B| ≥ (1 − ε1)|B|.

Part (2): For a vertex v ∈ A1, since deg(v, B) ≤ ε1
( |B|
k−1

)
, we have

deg(v,B1) ≤ deg(v,B) + |B1 \B|
(
|B1| − 1
k − 2

)

≤ ε1

(
|B|
k − 1

)
+ ε2|B|

(
|B1| − 1
k − 2

)

< ε1

(
|B|
k − 1

)
+ ε1

(
|B1|
k − 1

)
< 3ε1

(
|B1|
k − 1

)
,

where the last inequality follows from Part (1).
Part (3): Consider the sum 

∑
deg(S ∪ {v}) taken over all S ∈

(
B′\{v}
k−2

)
. Since 

δk−1(H) ≥ |A|, we have 
∑

deg(S ∪ {v}) ≥
(|B′|−1

k−2
)
|A|. On the other hand,

∑
deg

(
S ∪ {v}

)
= deg

(
v,A′B′ k−1) + deg

(
v, V0B

′ k−1) + (k − 1) deg
(
v,B′).

We thus derive that

deg
(
v,A′B′ k−1) ≥ (

|B′| − 1
k − 2

)
|A| − deg

(
v, V0B

′ k−1)− (k − 1) deg
(
v,B′).

By Claim 3.2 and (3.2), it follows that

deg
(
v,A′B′ k−1) ≥ (

|B′| − 1
k − 2

)(∣∣A′∣∣− ε2|B|
)
− 2ε2|B|

(
|B′| − 1
k − 2

)
− 2(k − 1)ε1

(
|B|
k − 1

)

≥
(
|B′| − 1
k − 2

)∣∣A′∣∣− 2kε1
(

|B|
k − 1

)
.

By Part (1), we now have

deg
(
v,A1B

k−1
1

)
≤ deg

(
v,A′B′ k−1) ≤ 2kε1

(
|B|
k − 1

)
≤ 3kε1

(
|B1|
k − 1

)
.

Part (4): By Claim 3.4, for any typical L ⊆ B′, we have deg(L, A′B′ k−1) ≤
4kε1

(|B′|−�
k−�−1

)
|A′|. Thus,

deg
(
L0, A1B

k−1
1

)
≤ deg

(
L0, A

′B′ k−1) ≤ 4kε1
(

|B′| − �

k − �− 1

)∣∣A′∣∣ ≤ 5kε1
(
|B1|
k − �

)
,

where the last inequality holds because |B′| ≤ |B1| + |V (Q)| ≤ (1 + ε1)|B1|. The same 
holds for L1. �
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3.4. Completing the Hamilton cycle

We finally complete the proof of Theorem 1.5 by applying the following lemma with 
X = A1, Y = B1, ρ = 5kε1, and L0, L1.

Lemma 3.10. Fix 1 ≤ � < k/2. Let 0 < ρ � 1 and n be sufficiently large. Suppose that 
H is a k-graph with a partition V (H) = X ∪ Y and the following properties:

• |Y | = (2k − 2� − 1)|X| + �,
• for every vertex v ∈ X, deg(v, Y ) ≤ ρ

( |Y |
k−1

)
and for every vertex v ∈ Y , 

deg(v, XY k−1) ≤ ρ
( |Y |
k−1

)
,

• there are two disjoint �-sets L0, L1 ⊂ Y such that

deg
(
L0, XY k−1), deg

(
L1, XY k−1) ≤ ρ

(
|Y |
k − �

)
. (3.9)

Then H contains a Hamilton �-path with L0 and L1 as ends.

In order to prove Lemma 3.10, we apply two results of Glebov, Person, and Weps [6]. 
Given 1 ≤ j ≤ k − 1 and 0 ≤ ρ ≤ 1, an ordered set (x1, . . . , xj) is ρ-typical in a k-graph 
G if for every i ∈ [j],

degG
(
{x1, . . . , xi}

)
≤ ρk−i

(
|V (G)| − i

k − i

)
.

It was shown in [6] that every k-graph G with very large minimum vertex degree contains 
a tight Hamilton cycle. The proof of [6, Theorem 2] actually shows that we can obtain 
a tight Hamilton cycle by extending any fixed tight path of constant length with two 
typical ends. This implies the following theorem that we will use.

Theorem 3.11. (See [6].) Given 1 ≤ j ≤ k and 0 < α � 1, there exists an m0 such that 
the following holds. Suppose that G is a k-graph on V with |V | = m ≥ m0 and δ1(G) ≥
(1 − α)

(
m−1
k−1

)
. Then given any two disjoint (22α)

1
k−1 -typical ordered j-sets (x1, . . . , xj)

and (y1, . . . , yj), there exists a tight Hamilton path P = xjxj−1 · · ·x1· · · · · ·y1y2 · · · yj
in G.

We also use [6, Lemma 3], in which V 2k−2 denotes the set of all (2k − 2)-tuples 
(v1, . . . , v2k−2) such that vi ∈ V (vi’s are not necessarily distinct).

Lemma 3.12. (See [6].) Let G be the k-graph given in Lemma 3.11. Suppose that 
(x1, . . . , x2k−2) is selected uniformly at random from V 2k−2. Then the probability that 
all xi’s are pairwise distinct and (x1, . . . , xk−1), (xk, . . . , x2k−2) are (22α)

1
k−1 -typical is 

at least 8 .
11
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Proof of Lemma 3.10. In this proof we often write the union A ∪B∪{x} as ABx, where 
A, B are sets and x is an element.

Let t = |X|. Our goal is to write X as {x1, . . . , xt} and partition Y as {Li, Ri, Si, R′
i :

i ∈ [t]} with |Li| = �, |Ri| = |R′
i| = k − 2�, and |Si| = � − 1 such that

LiRiSixi, SixiR
′
iLi+1 ∈ E(H) (3.10)

for all i ∈ [t], where Lt+1 = L0. Consequently,

L1 R1 S1 x1 R
′
1 L2 R2 S2 x2 R

′
2 · · · Lt Rt St xt R

′
t Lt+1

is the desired Hamilton �-path of H.
Let G be the (k − 1)-graph on Y whose edges are all (k − 1)-sets S ⊆ Y such that 

degH(S, X) > (1 −√
ρ )t. The following is an outline of our proof. We first find a small 

subset Y0 ⊂ Y with a partition {Li, Ri, Si, R′
i : i ∈ [t0]} such that for every x ∈ X, we 

have LiRiSix, SixR
′
iLi+1 ∈ E(H) for many i ∈ [t0]. Next we apply Theorem 3.11 to 

G[Y \ Y0] and obtain a tight Hamilton path, which, in particular, partitions Y \ Y0 into 
{Li, Ri, Si, R′

i : t0 < i ≤ t} such that LiRiSi, SiR
′
iLi+1 ∈ E(G) for t0 < i ≤ t. Finally 

we apply the Marriage Theorem to find a perfect matching between X and [t] such that 
(3.10) holds for all matched xi and i.

We now give details of the proof. First we claim that

δ1(G) ≥ (1 − 2√ρ )
(
|Y | − 1
k − 2

)
, (3.11)

and consequently,

e(G) ≤ 2√ρ

(
|Y |
k − 1

)
. (3.12)

Suppose instead, some vertex v ∈ Y satisfies degG(v) > 2√ρ
(|Y |−1

k−2
)
. Since every 

non-neighbor S′ of v in G satisfies degH(S′v, X) ≥ √
ρt, we have degH(v, XY k−1) >

2√ρ
(|Y |−1

k−2
)√

ρt. Since |Y | = (2k − 2� − 1)t + �, we have

degH
(
v,XY k−1) > 2ρ |Y | − �

2k − 2�− 1

(
|Y | − 1
k − 2

)
> ρ

|Y |
k − 1

(
|Y | − 1
k − 2

)
= ρ

(
|Y |
k − 1

)
,

contradicting our assumption (the second inequality holds because |Y | is sufficiently 
large).

Let Q be a (2k−� −1)-subset of Y . We call Q good (otherwise bad) if every (k−1)-subset 
of Q is an edge of G and every �-set L ⊂ Q satisfies

degG(L) ≤ ρ1/4
(

|Y | − �
)
. (3.13)
k − �− 1
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Furthermore, we say Q is suitable for a vertex x ∈ X if x ∪T ∈ E(H) for every (k−1)-set 
T ⊂ Q. Note that if a (2k− � − 1)-set is good, by the definition of G, it is suitable for at 
least (1 −

(2k−�−1
k−1

)√
ρ)t vertices of X. Let Y ′ = Y \ (L0 ∪ L1).

Claim 3.13. For any x ∈ X, at least (1 − ρ1/5)
( |Y |
2k−�−1

)
(2k − � − 1)-subsets of Y ′ are 

good and suitable for x.

Proof. Since ρ + ρ1/2 + 3
(2k−�−1

�

)
ρ1/4 ≤ ρ1/5, the claim follows from the following three 

assertions:

• At most 2�
( |Y |−1
2k−�−2

)
≤ ρ

( |Y |
2k−�−1

)
(2k − � − 1)-subsets of Y are not subsets of Y ′.

• Given x ∈ X, at most ρ1/2( |Y |
2k−�−1

)
(2k − � − 1)-sets in Y are not suitable for x.

• At most 3
(2k−�−1

�

)
ρ1/4( |Y |

2k−�−1
)

(2k − � − 1)-sets in Y are bad.

The first assertion holds because |Y \ Y ′| = 2�. The second assertion follows from the 
degree condition of H, namely, for any x ∈ X, the number of (2k− � − 1)-sets in Y that 
are not suitable for x is at most ρ

( |Y |
k−1

)(|Y |−k+1
k−�

)
≤ √

ρ
( |Y |
2k−�−1

)
.

To see the third one, let m be the number of �-sets L ⊆ Y that fail (3.13). By (3.12),

m
ρ1/4( |Y |−�

k−�−1
)

(
k−1
�

) ≤ e(G) ≤ 2√ρ

(
|Y |
k − 1

)
,

which implies that m ≤ 2ρ1/4(|Y |
�

)
. Thus at most

2ρ1/4
(
|Y |
�

)
·
(

|Y | − �

2k − 2�− 1

)

(2k − � − 1)-subsets of Y contain an �-set L that fails (3.13). On the other hand, by 
(3.12), at most

e(G)
(
|Y | − k + 1

k − �

)
≤ 2√ρ

(
|Y |
k − 1

)(
|Y | − k + 1

k − �

)

(2k − � − 1)-subsets of Y contain a non-edge of G. Putting these together, the number 
of bad (2k − � − 1)-sets in Y is at most

2ρ1/4
(
|Y |
�

)(
|Y | − �

2k − 2�− 1

)
+ 2√ρ

(
|Y |
k − 1

)(
|Y | − k + 1

k − �

)

≤ 3
(

2k − �− 1
�

)
ρ1/4

(
|Y |

2k − �− 1

)
,

as ρ � 1. �
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Let F0 be the set of good (2k−� −1)-sets in Y ′. We will pick a family of disjoint good 
(2k−� −1)-sets in Y ′ such that for any x ∈ X, many members of this family are suitable 
for x. To achieve this, we pick a family F by selecting each member of F0 randomly and 
independently with probability p = 6√ρ|Y |/

( |Y |
2k−�−1

)
. Then |F| follows the binomial 

distribution B(|F0|, p) with expectation E(|F|) = p|F0| ≤ p
( |Y |
2k−�−1

)
. Furthermore, for 

every x ∈ X, let f(x) denote the number of members of F that are suitable for x. 
Then f(x) follows the binomial distribution B(N, p) with N ≥ (1 − ρ1/5)

( |Y |
2k−�−1

)
by 

Claim 3.13. Hence E(f(x)) ≥ p(1 − ρ1/5)
( |Y |
2k−�−1

)
. Since there are at most 

( |Y |
2k−�−1

)
·

(2k − � − 1) ·
( |Y |−1
2k−�−2

)
pairs of intersecting (2k − � − 1)-sets in Y , the expected number 

of intersecting pairs of (2k − � − 1)-sets in F is at most

p2
(

|Y |
2k − �− 1

)
· (2k − �− 1) ·

(
|Y | − 1

2k − �− 2

)
= 36(2k − �− 1)2ρ|Y |.

By Chernoff’s bound (the first two properties) and Markov’s bound (the last one), we 
can find a family F of good (2k − � − 1)-subsets of Y ′ that satisfies

• |F| ≤ 2p
( |Y ′|
2k−�−1

)
≤ 12√ρ|Y |,

• for any vertex x ∈ X, at least p
2 (1 − ρ1/5)

( |Y |
2k−�−1

)
≥ 2√ρ|Y | members of F are 

suitable for x.
• the number of intersecting pairs of (2k−� −1)-sets in F is at most 72(2k−� −1)2ρ|Y |.

After deleting one (2k− � − 1)-set from each of the intersecting pairs from F , we obtain 
a family F ′ ⊆ F consisting of at most 12√ρ|Y | disjoint good (2k − � − 1)-subsets of Y ′

and for each x ∈ X, at least

2√ρ|Y | − 72(2k − �− 1)2ρ|Y | ≥ 3
2
√
ρ|Y | (3.14)

members of F ′ are suitable for x.
Denote F ′ by {Q2, Q4, . . . , Q2q} for some q ≤ 12√ρ|Y |. We arbitrarily partition each 

Q2i into L2i ∪ P2i ∪ L2i+1 such that |L2i| = |L2i+1| = � and |P2i| = 2k − 3� − 1. Since 
Q2i is good, both L2i and L2i+1 satisfy (3.13). We claim that L0 and L1 satisfy (3.13) as 
well. Let us show this for L0. By the definition of G, the number of XY k−�−1-sets T such 
that T ∪L0 �∈ E(H) is at least degG(L0)

√
ρt. Using (3.9), we derive that degG(L0)

√
ρt ≤

ρ
( |Y |
k−�

)
. Since |Y | ≤ (2k − 2�)t, it follows that degG(L0) ≤ 2√ρ

( |Y |−1
k−�−1

)
≤ ρ1/4( |Y |−�

k−�−1
)
.

Next we greedily find disjoint (2k − 3� − 1)-sets P1, P3, . . . , P2q−1 from Y ′ \
⋃q

i=1 Q2i

such that for each i ∈ [q], every (k − � − 1)-subset of P2i−1 is a common neighbor of 
L2i−1 and L2i in G. Suppose that we have found P1, P3, . . . , P2i−1 for some i < q. Since 
both L2i−1 and L2i satisfy (3.13), at most

2 · ρ1/4
(

|Y | − �
)(

|Y | − k + 1
)

k − �− 1 k − 2�
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(2k − 3� − 1)-subsets of Y contain a non-neighbor of L2i−1 or L2i. Thus, the number of 
(2k − 3� − 1)-sets that can be chosen as P2i+1 is at least

(
|Y ′| − (2k − 2�− 1)2q

2k − 3�− 1

)
− 2 · ρ1/4

(
|Y | − �

k − �− 1

)(
|Y | − k + 1

k − 2�

)
> 0,

as q ≤ 12√ρ|Y | and ρ � 1.
Let Y1 = Y ′ \

⋃q
i=1(P2i−1 ∪Q2i) and G′ = G[Y1]. Then |Y1| = |Y ′| − (2k − 2� − 1)2q. 

Since degG′(v) ≤ degG(v) for every v ∈ Y1, we have, by (3.11),

δ1
(
G′) ≥ (

|Y1| − 1
k − 2

)
− 2√ρ

(
|Y | − 1
k − 2

)
≥ (1 − 3√ρ )

(
|Y1| − 1
k − 2

)
.

Let α = 3√ρ and ρ0 = (22α)
1

k−1 . We want to find two disjoint ρ0-typical ordered 
(k − � − 1)-subsets (x1, . . . , xk−�−1) and (y1, . . . , yk−�−1) of Y1 such that

L2q+1 ∪ {x1, . . . , xk−�−1}, L0 ∪ {y1, . . . , yk−�−1} ∈ E(G). (3.15)

To achieve this, we choose (x1, . . . , xk−1, y1, . . . , yk−1) from Y1
2k−2 uniformly at random. 

By Lemma 3.12, with probability at least 8
11 , (x1, . . . , xk−�−1) and (y1, . . . , yk−�−1) are 

two disjoint ordered ρ0-typical (k− � − 1)-sets. Since L0 satisfies (3.13), at most (k− � −
1)!ρ1/4( |Y |−�

k−�−1
)

ordered (k− � − 1)-subsets of Y are not neighbors of L0 (the same holds 
for L2q+1). Thus (3.15) fails with probability at most 2(k − � − 1)!ρ1/4, provided that 
x1, . . . , xk−�−1, y1, . . . , yk−�−1 are all distinct. Therefore the desired (x1, . . . , xk−�−1) and 
(y1, . . . , yk−�−1) exist.

Next we apply Theorem 3.11 to G′ and obtain a tight Hamilton path

P = xk−�−1xk−�−2 · · ·x1· · · · · ·y1y2 · · · yk−�−1.

Following the order of P, we partition Y1 into

R2q+1, S2q+1, R
′
2q+1, L2q+2, . . . , Lt, Rt, St, R

′
t

such that |Li| = �, |Ri| = |R′
i| = k − 2�, and |Si| = � − 1. Since P is a tight path in G, 

we have

LiRiSi, SiR
′
iLi+1 ∈ E(G) (3.16)

for 2q + 2 ≤ i ≤ t − 1. Letting Lt+1 = L0, by (3.15), we also have (3.16) for i = 2q + 1
and i = t.

We now arbitrarily partition Pi, 1 ≤ i ≤ 2q into Ri ∪ Si ∪R′
i such that |Ri| = |R′

i| =
k − 2�, and |Si| = � − 1. By the choice of Pi, (3.16) holds for 1 ≤ i ≤ 2q.

Consider the bipartite graph Γ between X and Z := {z1, z2, . . . , zt} such that x ∈ X

and zi ∈ Z are adjacent if and only if LiRiSix, xSiR
′
iLi+1 ∈ E(H). For every i ∈ [t], 
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since (3.16) holds, we have degΓ (zi) ≥ (1 − 2√ρ )t by the definition of G. Let Z ′ =
{z2q+1, . . . , zt} and X0 be the set of x ∈ X such that degΓ (x, Z ′) ≤ |Z ′|/2. Then

|X0|
|Z ′|
2 ≤

∑
x∈X

degΓ
(
x, Z ′) ≤ 2√ρt ·

∣∣Z ′∣∣,
which implies that |X0| ≤ 4√ρt = 4√ρ |Y |−�

2k−2�−1 ≤ 4
3
√
ρ|Y | (note that 2k−2� −1 ≥ k ≥ 3).

We now find a perfect matching between X and Z as follows.

Step 1: Each x ∈ X0 is matched to some z2i, i ∈ [q] such that the corresponding Q2i ∈ F ′

is suitable for x (thus x and z2i are adjacent in Γ ) — this is possible because of 
(3.14) and |X0| ≤ 4

3
√
ρ|Y |.

Step 2: Each of the unused zi, i ∈ [2q] is matched to a vertex in X \X0 — this is possible 
because degΓ (zi) ≥ (1 − 2√ρ )t ≥ |X0| + 2q.

Step 3: Let X ′ be the set of the remaining vertices in X. Then |X ′| = t − 2q = |Z ′|. 
Now consider the induced subgraph Γ ′ of Γ on X ′ ∪ Z ′. Since δ(Γ ′) ≥ |X ′|/2, 
the Marriage Theorem provides a perfect matching in Γ ′.

The perfect matching between X and Z gives rise to the desired Hamilton path of H. �
4. Concluding remarks

Let h�
d(k, n) denote the minimum integer m such that every k-graph H on n vertices 

with minimum d-degree δd(H) ≥ m contains a Hamilton �-cycle (provided that k − �

divides n). In this paper we determined h�
k−1(k, n) for all � < k/2 and sufficiently large n. 

Unfortunately our proof does not give h�
k−1(k, n) for all k, � such that k − � does not 

divide k even though we believe that h�
k−1(k, n) = n

� k
k−� �(k−�) . In fact, when k − � does 

not divide k, if we can prove a path-cover lemma similar to Lemma 2.3, then we can 
follow the proof in [13] to solve the nonextremal case. When � ≥ k/2, we cannot define 
Yk,2� so the current proof of Lemma 2.3 fails. In addition, when � ≥ k/2, the extremal 
case becomes complicated as well.

The situation is quite different when k− � divides k. When k divides n, one can easily 
construct a k-graph H such that δk−1(H) ≥ n

2 −k and yet H contains no perfect matching 
and consequently no Hamilton �-cycle for any � such that k− � divides k. A construction 
in [16] actually shows that h�

k−1(k, n) ≥ n
2 − k whenever k − � divides k, even when k

does not divide n. The exact value of h�
d(k, n), when k− � divides k, is not known except 

for h2
2(3, n) = 	n/2
 given in [21]. In the forthcoming paper [9], we determine hk/2

d (k, n)
exactly for even k and any d ≥ k/2.

Let td(n, F ) denote the minimum integer m such that every k-graph H on n vertices 
with minimum d-degree δd(H) ≥ m contains a perfect F -tiling. One of the first results 
on hypergraph tiling was t2(n, Y3,2) = n/4 + o(n) given by Kühn and Osthus [14]. The 
exact value of t2(n, Y3,2) was determined recently by Czygrinow, DeBiasio, and Nagle 



222 J. Han, Y. Zhao / Journal of Combinatorial Theory, Series A 132 (2015) 194–223
[2]. We [8] determined t1(n, Y3,2) very recently. The key lemma in our proof, Lemma 2.8, 
shows that every k-graph H on n vertices with δk−1(H) ≥ ( 1

2k−b −o(1))n either contains 
an almost perfect Yk,b-tiling or is in the extremal case. Naturally this raises a question: 
what is tk−1(n, Yk,b)? Mycroft [17] recently proved a general result on tiling k-partite 
k-graphs, which implies that tk−1(n, Yk,b) = n

2k−b + o(n). The lower bound comes from 
the following construction. Let H0 be the k-graph on n ∈ (2k − b)N vertices such that 
V (H0) = A ∪B with |A| = n

2k−b − 1, and E(H0) consists of all k-sets intersecting A and 
some k-subsets of B such that H0[B] contains no copy of Yk,b. Thus, δk−1(H0) ≥ n

2k−b−1. 
Since every copy of Yk,b contains at least one vertex in A, there is no perfect Yk,b-tiling 
in H0. We believe that one can find a matching upper bound by the absorbing method 
(similar to the proof in [2]). In fact, since we already proved Lemma 2.8, it suffices to 
prove an absorbing lemma and the extremal case.
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