FORBIDDING HAMILTON CYCLES IN UNIFORM HYPERGRAPHS

JIE HAN AND YI ZHAO

Abstract

For $1 \leq d \leq \ell<k$, we give a new lower bound for the minimum d-degree threshold that guarantees a Hamilton ℓ-cycle in k-uniform hypergraphs. When $k \geq 4$ and $d<\ell=k-1$, this bound is larger than the conjectured minimum d-degree threshold for perfect matchings and thus disproves a wellknown conjecture of Rödl and Ruciński. Our (simple) construction generalizes a construction of Katona and Kierstead and the space barrier for Hamilton cycles.

1. Introduction

The study of Hamilton cycles is an important topic in graph theory. A classical result of Dirac [4] states that every graph on $n \geq 3$ vertices with minimum degree $n / 2$ contains a Hamilton cycle. In recent years, researchers have worked on extending this theorem to hypergraphs - see recent surveys [16, 18, 26,

To define Hamilton cycles in hypergraphs, we need the following definitions. Given $k \geq 2$, a k-uniform hypergraph (in short, k-graph) consists of a vertex set V and an edge set $E \subseteq\binom{V}{k}$, where every edge is a k-element subset of V. Given a k-graph H with a set S of d vertices (where $1 \leq d \leq k-1$) we define $\operatorname{deg}_{H}(S)$ to be the number of edges containing S (the subscript H is omitted if it is clear from the context). The minimum d-degree $\delta_{d}(H)$ of H is the minimum of $\operatorname{deg}_{H}(S)$ over all d-vertex sets S in H. For $1 \leq \ell \leq k-1$, a k-graph is a called an ℓ-cycle if its vertices can be ordered cyclically such that each of its edges consists of k consecutive vertices and every two consecutive edges (in the natural order of the edges) share exactly ℓ vertices. In k-graphs, a $(k-1)$-cycle is often called a tight cycle. We say that a k-graph contains a Hamilton ℓ-cycle if it contains an ℓ-cycle as a spanning subhypergraph. Note that a Hamilton ℓ-cycle of a k-graph on n vertices contains exactly $n /(k-\ell)$ edges, implying that $k-\ell$ divides n.

Let $1 \leq d, \ell \leq k-1$. For $n \in(k-\ell) \mathbb{N}$, we define $h_{d}^{\ell}(k, n)$ to be the smallest integer h such that every n-vertex k-graph H satisfying $\delta_{d}(H) \geq h$ contains a Hamilton ℓ-cycle. Note that whenever we write $h_{d}^{\ell}(k, n)$, we always assume that $1 \leq d \leq k-1$. Moreover, we often write $h_{d}(k, n)$ instead of $h_{d}^{k-1}(k, n)$ for simplicity. Similarly, for $n \in k \mathbb{N}$, we define $m_{d}(k, n)$ to be the smallest integer m such that every n-vertex k-graph H satisfying $\delta_{d}(H) \geq m$ contains a perfect matching. The problem of determining $m_{d}(k, n)$ has attracted much attention recently and the asymptotic value of $m_{d}(k, n)$ is conjectured as follows. Note that the $o(1)$ term refers to a function that tends to 0 as $n \rightarrow \infty$ throughout the paper.
Conjecture 1.1. [6, 15] For $1 \leq d \leq k-1$ and $k \mid n$,

$$
m_{d}(k, n)=\left(\max \left\{\frac{1}{2}, 1-\left(1-\frac{1}{k}\right)^{k-d}\right\}+o(1)\right)\binom{n-d}{k-d}
$$

Conjecture 1.1 has been confirmed [1, 17] for $\min \{k-4, k / 2\} \leq d \leq k-1$ (the exact values of $m_{d}(k, n)$ are also known in some cases, e.g., [23, 25]). On the other hand, $h_{d}^{\ell}(k, n)$ has also been extensively studied [2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 22, 24]. In particular, Rödl, Ruciński and Szemerédi [20, 22] showed that $h_{k-1}(k, n)=(1 / 2+o(1)) n$. The same authors proved in [21] that $m_{k-1}(k, n)=(1 / 2+o(1)) n$ (later they determined $m_{k-1}(k, n)$ exactly [23]). This suggests that the values of $h_{d}(k, n)$ and $m_{d}(k, n)$ are closely related and inspires Rödl and Ruciński to make the following conjecture.

Conjecture 1.2. [18, Conjecture 2.18] Let $k \geq 3$ and $1 \leq d \leq k-2$. Then

$$
h_{d}(k, n)=m_{d}(k, n)+o\left(n^{k-d}\right) .
$$

Date: June 4, 2016.
1991 Mathematics Subject Classification. Primary 05C45, 05C65.
Key words and phrases. Hamilton cycles, hypergraphs.
The first author is supported by FAPESP (Proc. 2014/18641-5, 2015/07869-8). The second author is partially supported by NSF grant DMS-1400073.

By using the value of $m_{d}(k, n)$ from Conjecture 1.1. Kühn and Osthus stated this conjecture explicitly for the case $d=1$.
Conjecture 1.3. [16, Conjecture 5.3] Let $k \geq 3$. Then

$$
h_{1}(k, n)=\left(1-\left(1-\frac{1}{k}\right)^{k-1}+o(1)\right)\binom{n-1}{k-1}
$$

In this note we provide new lower bounds for $h_{d}^{\ell}(k, n)$ when $d \leq \ell$.
Theorem 1.4. Let $1 \leq d \leq k-1$ and $t=k-d$, then

$$
h_{d}(k, n) \geq\left(1-\binom{t}{\lfloor t / 2\rfloor} \frac{\lceil t / 2\rceil^{\lceil t / 2\rceil}(\lfloor t / 2\rfloor+1)^{\lfloor t / 2\rfloor}}{(t+1)^{t}}+o(1)\right)\binom{n}{t}
$$

Theorem 1.5. Let $1 \leq d \leq \ell \leq k-1$ and $t=k-d$. Then

$$
h_{d}^{\ell}(k, n) \geq\left(1-b_{t, k-\ell} 2^{-t}+o(1)\right)\binom{n}{t}
$$

where $b_{t, k-\ell}$ equals to the largest sum of $k-\ell$ consecutive binomial coefficients taken from $\left\{\binom{t}{0}, \ldots,\binom{t}{t}\right\}$.
Theorem 1.4 disproves both Conjectures 1.2 and 1.3 .
Corollary 1.6. For all k,

$$
h_{k-2}(k, n) \geq\left(\begin{array}{l}
5 \\
9
\end{array} o(1)\right)\binom{n}{2}, h_{k-3}(k, n) \geq\left(\frac{5}{8}+o(1)\right)\binom{n}{3}, h_{k-4}(k, n) \geq\left(\frac{409}{625}+o(1)\right)\binom{n}{4}
$$

and in general, for any $1 \leq d \leq k-1$,

$$
\begin{equation*}
h_{d}(k, n)>\left(1-\frac{1}{\sqrt{3(k-d) / 2+1}}\right)\binom{n}{k-d} . \tag{1.1}
\end{equation*}
$$

These bounds imply that Conjecture 1.2 is false when $k \geq 4$ and $\min \{k-4, k / 2\} \leq d \leq k-2$, and Conjecture 1.3 is false whenever $k \geq 4$.

We will prove Theorem 1.4, Theorem 1.5, and Corollary 1.6 in the next section.
We believe that Conjecture 1.2 is false whenever $k \geq 4$ but due to our limited knowledge on $m_{d}(k, n)$, we can only disprove Conjecture 1.2 for the cases when $m_{d}(k, n)$ is known.

This bound $h_{k-2}(k, n) \geq\left(\frac{5}{9}+o(1)\right)\binom{n}{2}$ coincides with the value of $m_{1}(3, n)-$ it was shown in [6] that $m_{1}(3, n)=(5 / 9+o(1))\binom{n}{2}$, and it was widely believed that $h_{1}(3, n)=(5 / 9+o(1))\binom{n}{2}$, e.g., see [19]. On the other hand, it is known [17] that $m_{2}(4, n)=\left(\frac{1}{2}+o(1)\right)\binom{n}{2}$, which is smaller than $\frac{5}{9}\binom{n}{2}$. Therefore $k=4$ and $d=2$ is the smallest case when Theorem 1.4 disproves Conjecture 1.2. More importantly, 1.1) shows that $h_{d}(k, n) /\binom{n}{k-d}$ tends to one as $k-d$ tends to ∞. For example, as k becomes sufficiently large, $h_{k-\ln k}(k, n)$ is close to $\binom{n-d}{k-d}$, the trivial upper bound. In contrast, Conjecture 1.1 suggests that there exists $c>0$ independent of k and $d(c=1 / e$, where $e=2.718 \ldots$, if Conjecture 1.1 is true) such that $m_{d}(k, n) \leq(1-c)\binom{n-d}{k-d}$.

Similarly, by Theorem 1.5. if $k-\ell=o(\sqrt{t}), h_{d}^{\ell}(k, n) /\binom{n}{t}$ tends to one as t tends to ∞ because

$$
1-b_{t, k-\ell} 2^{-t} \geq 1-\frac{k-\ell}{2^{t}}\binom{t}{\lfloor t / 2\rfloor} \approx 1-\frac{o(\sqrt{t})}{\sqrt{\pi t / 2}}
$$

Theorem 1.5 also implies the following special case: suppose k is odd and $\ell=d=k-2$. Then $t=2$ and $b_{t, k-\ell}=b_{2,2}=3$, and consequently $h_{k-2}^{k-2}(k, n) \geq\left(\frac{1}{4}+o(1)\right)\binom{n}{2}$. Previously it was only known that $h_{k-2}^{k-2}(k, n) \geq\left(1-\left(\frac{k}{k+1}\right)^{2}+o(1)\right)\binom{n}{2}$ by (2.1) with $a=\lceil k /(k-\ell)\rceil=(k+1) / 2$ from Section 2 . When k is large, the bound provided by Theorem 1.5 is much better.

Finally, we do not know if Theorems 1.4 and 1.5 are best possible. Glebov, Person, and Weps [5] gave a general upper bound (far away from our lower bounds)

$$
h_{d}^{\ell}(k, n) \leq\left(1-\frac{1}{c k^{3 k-3}}\right)\binom{n-d}{k-d}
$$

where c is a constant independent of d, ℓ, k, n.

2. The proofs

Before proving our results, it is instructive to recall the so-called space barrier. Throughout the paper, we write $X \dot{\cup} Y$ for $X \cup Y$ when sets X, Y are disjoint.
Proposition 2.1. [13] Let $H=(V, E)$ be an n-vertex k-graph such that $V=X \dot{\cup} Y$ and $E=\left\{e \in\binom{V}{k}\right.$: $e \cap X \neq \emptyset\}$. Suppose $|X|<\frac{1}{a(k-\ell)} n$, where $a:=\lceil k /(k-\ell)\rceil$, then H does not contain a Hamilton ℓ-cycle.

A proof of Proposition 2.1 can be found in [13, Proposition 2.2] and is actually included in our proof of Proposition 2.2 below. It is not hard to see that Proposition 2.1 shows that

$$
\begin{equation*}
h_{d}^{\ell}(k, n) \geq\left(1-\left(1-\frac{1}{a(k-\ell)}\right)^{k-d}+o(1)\right)\binom{n-d}{k-d} \tag{2.1}
\end{equation*}
$$

Now we state our construction for Hamilton cycles - it generalizes the one given by Katona and Kierstead [11, Theorem 3] (where $j=\lfloor k / 2\rfloor$) and the space barrier (where $j=\ell+1-k$) simultaneously. The special case with $k=3, \ell=2, j=1$, and $|X|=n / 3$ appears in [19, Construction 2].

Proposition 2.2. Given an integer j such that $\ell+1-k \leq j \leq k$, let $H=(V, E)$ be an n-vertex k-graph such that $V=X \dot{\cup} Y$ and $E=\left\{e \in\binom{V}{k}:|e \cap X| \notin\{j, j+1, \ldots, j+k-\ell-1\}\right.$. Suppose $\frac{j-1}{a^{\prime}(k-\ell)} n<|X|<\frac{j+k-\ell}{a(k-\ell)} n$, where $a^{\prime}:=\lfloor k /(k-\ell)\rfloor$ and $a:=\lceil k /(k-\ell)\rceil$, then H does not contain a Hamilton ℓ-cycle.

Proof. Suppose instead, that H contains a Hamilton ℓ-cycle C. Then all edges e of C satisfy $|e \cap X| \notin$ $\{j, j+1, \ldots, j+k-\ell-1\}$. We claim that either all edges e of C satisfy $|e \cap X| \leq j-1$ or all edges e of C satisfy $|e \cap X| \geq j+k-\ell$. Otherwise, there must be two consecutive edges e_{1}, e_{2} in C such that $\left|e_{1} \cap X\right| \leq j-1$ and $\left|e_{2} \cap X\right| \geq j+k-\ell$. However, since $\left|e_{1} \cap e_{2}\right|=\ell$, we have $\| e_{1} \cap X\left|-\left|e_{2} \cap X\right|\right| \leq k-\ell$, a contradiction.

Observe that every vertex of H is contained in either a or a^{\prime} edges of C and C contains $\frac{n}{k-\ell}$ edges. This implies that

$$
a^{\prime}|X| \leq \sum_{e \in C}|e \cap X| \leq a|X|
$$

On the other hand, we have $\sum_{e \in C}|e \cap X|<(j-1) \frac{n}{k-\ell}$ or $\sum_{e \in C}|e \cap X|>(j+k-\ell) \frac{n}{k-\ell}$. In either case, we get a contradiction with the assumption $\frac{j-1}{a^{\prime}(k-\ell)} n<|X|<\frac{j+k-\ell}{a(k-\ell)} n$.

Note that by reducing the lower and upper bounds for $|X|$ by small constants, we can conclude that H actually contains no Hamilton ℓ-path.

In the proofs of Theorems 1.4 and 1.5 . we will consider binomial coefficients $\binom{p}{q}$ with $q<0$ - in this case $\binom{p}{q}=0$. We will conveniently write $|X|=x n$, where $0<x<1$, instead of $|X|=\lfloor x n\rfloor$ - this does not affect our calculations as n is sufficiently large.

In the proofs of Theorem 1.4 we apply Proposition 2.2 with j and x such that $\frac{j-1}{k}<x<\frac{j+1}{k}$. Note that (when $j \leq k, 1 \leq d \leq k-1$, and $t=k-d$) $\frac{j-1}{k}<x<\frac{j+1}{k}$ implies that $\frac{j-d}{t+1}<x<\frac{j+1}{t+1}$, in particular,

$$
\begin{equation*}
j-d \leq\lfloor x(t+1)\rfloor \leq j \tag{2.2}
\end{equation*}
$$

Proof of Theorem 1.4. Let $x=\lceil t / 2\rceil /(t+1)$ n 1 Since $\bigcup_{j=1}^{k-1}\left(\frac{j-1}{k}, \frac{j+1}{k}\right)=(0,1)$ and $1 / 3 \leq \frac{\lceil t / 2\rceil}{t+1} \leq 1 / 2$, there exists an integer $j \in[k-1]$ such that $\frac{j-1}{k}<\frac{\mid t / 2\rceil}{t+1}<\frac{j+1}{k}$. Let $H=(V, E)$ be an n-vertex k-graph such that $V=X \dot{\cup} Y,|X|=x n$ and $E=\left\{e \in\binom{V}{k}:|e \cap X| \neq j\right\}$. Since $\frac{j-1}{k} n<|X|<\frac{j+1}{k} n, H$ contains no tight Hamilton cycle by Proposition 2.2 with $\ell=k-1$.

Now let us compute $\delta_{d}(H)$. For $0 \leq i \leq d$, let S_{i} be any d-vertex subset of V that contains exactly i vertices in X. By the definition of H,

$$
\operatorname{deg}_{H}\left(S_{i}\right)=\binom{n-d}{t}-\binom{|X|-i}{j-i}\binom{|Y|-(d-i)}{t-j+i}
$$

[^0]Note that this holds for $i>j$ or $i<j-t$ trivially. So we have

$$
\begin{aligned}
\delta_{d}(H) & =\min _{0 \leq i \leq d}\left\{\binom{n-d}{t}-\binom{|X|-i}{j-i}\binom{|Y|-(d-i)}{t-j+i}\right\} \\
& =\binom{n}{t}-\max _{j-d \leq i^{\prime} \leq j}\left\{\binom{|X|}{i^{\prime}}\binom{|Y|}{t-i^{\prime}}\right\}+o\left(n^{t}\right)
\end{aligned}
$$

Write $|X|=x n$ and $|Y|=y n$. When $0 \leq i^{\prime} \leq t$, we have

$$
\binom{|X|}{i^{\prime}}\binom{|Y|}{t-i^{\prime}}=\frac{(x n)^{i^{\prime}}(y n)^{t-i^{\prime}}}{i^{\prime}!\left(t-i^{\prime}\right)!}+o\left(n^{t}\right)=\binom{t}{i^{\prime}} x^{i^{\prime}} y^{t-i^{\prime}}\binom{n}{t}+o\left(n^{t}\right) .
$$

When $i^{\prime}<0$ or $i^{\prime}>t$, we have $\binom{|X|}{i^{\prime}}\binom{|Y|}{t-i^{\prime}}=0=\binom{t}{i^{\prime}} x^{i^{\prime}} y^{t-i^{\prime}}\binom{n}{t}$. In all cases, we have

$$
\begin{equation*}
\delta_{d}(H)=\binom{n}{t}-\max _{j-d \leq i^{\prime} \leq j}\left\{\binom{t}{i^{\prime}} x^{i^{\prime}} y^{t-i^{\prime}}\right\}\binom{n}{t}+o\left(n^{t}\right) . \tag{2.3}
\end{equation*}
$$

Let $a_{i}:=\binom{t}{i} x^{i} y^{t-i}$. Since $x=\lceil t / 2\rceil /(t+1)$ and $y=1-x$, it is easy to see that $\max _{0 \leq i \leq t} a_{i}=a_{\lceil t / 2\rceil}$ (e.g., by observing $\frac{a_{i}}{a_{i+1}}=\frac{y}{x} \cdot \frac{i+1}{t-i}$ for $0 \leq i<t$). Moreover, by 2.2 , we have $j-d \leq\lceil t / 2\rceil \leq j$. Therefore,

$$
\max _{j-d \leq i \leq j}\left\{a_{i}\right\}=a_{\lceil t / 2\rceil}=\binom{t}{\lceil t / 2\rceil} \frac{\lceil t / 2\rceil^{\lceil t / 2\rceil}(\lfloor t / 2\rfloor+1)^{\lfloor t / 2\rfloor}}{(t+1)^{t}}
$$

and we complete the proof by substituting it into (2.3).

Now we turn to the proof of Theorem 1.5, in which we assume that $|X|=n / 2$, though a further improvement of the lower bound may be possible by considering other values of $|X|$.

Proof of Theorem 1.5. The proof is similar to the one of Theorem 1.4 Let $H=(V, E)$ be an n-vertex k-graph such that $V=X \dot{\cup} Y,|X|=n / 2$ and $E=\left\{e \in\binom{V}{k}:|e \cap X| \notin\{\lceil\ell / 2\rceil, \ldots,\lceil\ell / 2\rceil+k-\ell-1\}\right\}$. Note that

$$
\begin{aligned}
a^{\prime}(k-\ell) & =\left\lfloor\frac{k}{k-\ell}\right\rfloor(k-\ell) \geq k-(k-\ell-1)=\ell+1>2(\lceil\ell / 2\rceil-1), \text { and } \\
a(k-\ell) & =\left\lceil\frac{k}{k-\ell}\right\rceil(k-\ell) \leq k+(k-\ell-1)<2(k-\lfloor\ell / 2\rfloor)=2(\lceil\ell / 2\rceil+k-\ell) .
\end{aligned}
$$

So we have

$$
\frac{\lceil\ell / 2\rceil-1}{a^{\prime}(k-\ell)} n<|X|=\frac{n}{2}<\frac{\lceil\ell / 2\rceil+k-\ell}{a(k-\ell)} n
$$

Thus, H contains no Hamilton ℓ-cycle by Proposition 2.2 .
Fix $1 \leq d \leq k-1$ and let $t=k-d$. Now we compute $\delta_{d}(H)$. For $0 \leq i \leq d$, let S_{i} be any d-vertex subset of V that contains exactly i vertices in X. It is easy to see that

$$
\operatorname{deg}_{H}\left(S_{i}\right)=\binom{n}{t}-\sum_{p=i^{\prime}}^{i^{\prime}+k-\ell-1}\binom{|X|}{p}\binom{|Y|}{t-p}+o\left(n^{t}\right)
$$

where $i^{\prime}=\lceil\ell / 2\rceil-i$. Using $|X|=|Y|=n / 2$ and the similar calculations in the proof of Theorem 1.4, we get

$$
\operatorname{deg}_{H}\left(S_{i}\right)=\binom{n}{t}-\sum_{p=i^{\prime}}^{i^{\prime}+k-\ell-1}\binom{t}{p} \frac{1}{2^{t}}\binom{n}{t}+o\left(n^{t}\right)
$$

By the definition of $b_{t, k-\ell}$, we have

$$
\delta_{d}(H)=\min _{0 \leq i \leq d} \operatorname{deg}_{H}\left(S_{i}\right) \geq\binom{ n}{t}-b_{t, k-\ell} 2^{-t}\binom{n}{t}+o\left(n^{t}\right) .
$$

Corollary 1.6 follows from Theorem 1.4 via simple calculations.

Proof of Corollary 1.6. Let $t=k-d$ and

$$
f(t):=\binom{t}{\lfloor t / 2\rfloor} \frac{\lceil t / 2\rceil^{\lceil t / 2\rceil}(\lfloor t / 2\rfloor+1)^{\lfloor t / 2\rfloor}}{(t+1)^{t}} .
$$

Theorem 1.4 states that $h_{k-t}(k, n) \geq(1-f(t)+o(1))\binom{n}{t}$ for any $1 \leq t \leq k-1$. Since

$$
f(2)=\frac{4}{9}, \quad f(3)=\frac{3}{8}, \quad \text { and } \quad f(4)=\frac{216}{625}
$$

the bounds for $h_{k-t}(k, n), t=2,3,4$, are immediate. To see 1.1 , it suffices to show that for $t \geq 1$,

$$
\begin{equation*}
1-f(t)>1-\frac{1}{\sqrt{3 t / 2+1}} \tag{2.4}
\end{equation*}
$$

When t is odd, $\frac{\lceil t / 2\rceil^{\lceil t / 2\rceil}(\lfloor t / 2\rfloor+1)^{\lfloor t / 2\rfloor}}{(t+1)^{t}}=1 / 2^{t}$; when t is even, $\lceil t / 2\rceil^{\lceil t / 2\rceil}(\lfloor t / 2\rfloor+1)^{\lfloor t / 2\rfloor}<\left(\frac{t+1}{2}\right)^{t}$. Thus, for all t, we have

$$
f(t) \leq\binom{ t}{\lfloor t / 2\rfloor} \frac{1}{2^{t}}
$$

where a strict inequality holds for all even t. Now we use the fact $\binom{2 m}{m} \leq 2^{2 m} / \sqrt{3 m+1}$, which holds for all integers $m \geq 1$. Thus, for all even t, we have $f(t) \leq 1 / \sqrt{3 t / 2+1}$; for all odd t,

$$
f(t) \leq\binom{ t}{\lfloor t / 2\rfloor} \frac{1}{2^{t}}=\frac{1}{2}\binom{t+1}{\lfloor t / 2\rfloor+1} \frac{1}{2^{t}} \leq \frac{1}{\sqrt{3(t+1) / 2+1}}<\frac{1}{\sqrt{3 t / 2+1}}
$$

Hence $f(t) \leq 1 / \sqrt{3 t / 2+1}$ for all $t \geq 1$. Moreover, by the computation above, regardless of the parity of t, the strict inequality always holds and thus 2.4 is proved.

We next show that whenever $k \geq 4$ and $2 \leq t \leq k-1$,

$$
1-f(t)>\max \left\{\frac{1}{2}, 1-\left(1-\frac{1}{k}\right)^{t}\right\}
$$

This implies that Conjecture 1.3 fails for $k \geq 4$, and Conjecture 1.2 fails for $k \geq 4$ and $\min \{k-4, k / 2\} \leq$ $d \leq k-2$ (because $m_{d}(k, n) /\binom{n}{k-d}=\max \left\{\frac{1}{2}, 1-\left(1-\frac{1}{k}\right)^{k-d}\right\}+o(1)$ in this case). It suffices to show that for $k \geq 4$ and $2 \leq t \leq k-1$,

$$
f(t)<1 / 2 \text { and } f(t)<\left(1-\frac{1}{k}\right)^{t}
$$

The first inequality immediately follows from (2.4) and $1 / \sqrt{3 t / 2+1} \leq 1 / 2$. For the second inequality, note that

$$
f(t)<\frac{1}{\sqrt{3 t / 2+1}}<\frac{1}{e}<\left(1-\frac{1}{k}\right)^{k-1} \leq\left(1-\frac{1}{k}\right)^{t}
$$

for all $t \geq 5$. For $t=2,3$ and all $k \geq 4$, one can verify $f(t)<(3 / 4)^{t} \leq\left(1-\frac{1}{k}\right)^{t}$ easily. Also, for $t=4$ and all $k \geq 5$, we have $f(4)<(4 / 5)^{4} \leq\left(1-\frac{1}{k}\right)^{4}$.

Acknowledgement

We thank two referees for their valuable comments.

References

[1] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, and B. Sudakov. Large matchings in uniform hypergraphs and the conjecture of Erdős and Samuels. J. Combin. Theory Ser. A, 119(6):1200-1215, 2012.
[2] E. Buß, H. Hàn, and M. Schacht. Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs. J. Combin. Theory Ser. B, 103(6):658-678, 2013.
[3] A. Czygrinow and T. Molla. Tight codegree condition for the existence of loose Hamilton cycles in 3-graphs. SIAM J. Discrete Math., 28(1):67-76, 2014.
[4] G. A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc. (3), 2:69-81, 1952.
[5] R. Glebov, Y. Person, and W. Weps. On extremal hypergraphs for Hamiltonian cycles. European J. Combin., 33(4):544-555, 2012.
[6] H. Hàn, Y. Person, and M. Schacht. On perfect matchings in uniform hypergraphs with large minimum vertex degree. SIAM J. Discrete Math, 23:732-748, 2009.
[7] H. Hàn and M. Schacht. Dirac-type results for loose Hamilton cycles in uniform hypergraphs. Journal of Combinatorial Theory. Series B, 100:332-346, 2010.
[8] J. Han and Y. Zhao. Minimum degree conditions for Hamilton ($k / 2$)-cycles in k-uniform hypergraphs. manuscript.
[9] J. Han and Y. Zhao. Minimum codegree threshold for Hamilton ℓ-cycles in k-uniform hypergraphs. Journal of Combinatorial Theory, Series A, 132:194-223, 2015.
[10] J. Han and Y. Zhao. Minimum vertex degree threshold for loose hamilton cycles in 3-uniform hypergraphs. Journal of Combinatorial Theory, Series B, 114:70-96, 2015.
[11] G. Katona and H. Kierstead. Hamiltonian chains in hypergraphs. Journal of Graph Theory, 30(2):205-212, 1999.
[12] P. Keevash, D. Kühn, R. Mycroft, and D. Osthus. Loose Hamilton cycles in hypergraphs. Discrete Mathematics, 311(7):544559, 2011.
[13] D. Kühn, R. Mycroft, and D. Osthus. Hamilton ℓ-cycles in uniform hypergraphs. Journal of Combinatorial Theory. Series A, 117(7):910-927, 2010.
[14] D. Kühn and D. Osthus. Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree. Journal of Combinatorial Theory. Series B, 96(6):767-821, 2006.
[15] D. Kühn and D. Osthus. Embedding large subgraphs into dense graphs. In Surveys in combinatorics 2009, volume 365 of London Math. Soc. Lecture Note Ser., pages 137-167. Cambridge Univ. Press, Cambridge, 2009.
[16] D. Kühn and D. Osthus. Hamilton cycles in graphs and hypergraphs: an extremal perspective. Proceedings of the International Congress of Mathematicians 2014, Seoul, Korea, Vol 4:381-406, 2014.
[17] O. Pikhurko. Perfect matchings and K_{4}^{3}-tilings in hypergraphs of large codegree. Graphs Combin., 24(4):391-404, 2008.
[18] V. Rödl and A. Ruciński. Dirac-type questions for hypergraphs - a survey (or more problems for endre to solve). An Irregular Mind, Bolyai Soc. Math. Studies 21:561-590, 2010.
[19] V. Rödl and A. Ruciński. Families of triples with high minimum degree are Hamiltonian. Discuss. Math. Graph Theory, 34(2):361-381, 2014.
[20] V. Rödl, A. Ruciński, and E. Szemerédi. A Dirac-type theorem for 3-uniform hypergraphs. Combinatorics, Probability and Computing, 15(1-2):229-251, 2006.
[21] V. Rödl, A. Ruciński, and E. Szemerédi. Perfect matchings in uniform hypergraphs with large minimum degree. European J. Combin., 27(8):1333-1349, 2006.
[22] V. Rödl, A. Ruciński, and E. Szemerédi. An approximate Dirac-type theorem for k-uniform hypergraphs. Combinatorica, 28(2):229-260, 2008.
[23] V. Rödl, A. Ruciński, and E. Szemerédi. Perfect matchings in large uniform hypergraphs with large minimum collective degree. J. Combin. Theory Ser. A, 116(3):613-636, 2009.
[24] V. Rödl, A. Ruciński, and E. Szemerédi. Dirac-type conditions for Hamiltonian paths and cycles in 3-uniform hypergraphs. Advances in Mathematics, 227(3):1225-1299, 2011.
[25] A. Treglown and Y. Zhao. Exact minimum degree thresholds for perfect matchings in uniform hypergraphs II. J. Combin. Theory Ser. A, 120(7):1463-1482, 2013.
[26] Y. Zhao. Recent advances on dirac-type problems for hypergraphs. In Recent Trends in Combinatorics, volume 159 of the IMA Volumes in Mathematics and its Applications. Springer, New York, 2016.

Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, 05508-090, São Paulo, Brazil

E-mail address, Jie Han: jhan@ime.usp.br
Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
E-mail address, Yi Zhao: yzhao6@gsu.edu

[^0]: ${ }^{1}$ It can be shown that among all $0<x<1$ and $0 \leq j \leq k$ such that $\frac{j-1}{k}<x<\frac{j+1}{k}$, our choice of x and j minimizes $\max _{j-d \leq i \leq j}\binom{t}{i} x^{i}(1-x)^{t-i}$, and thus maximizes $\delta_{d}(H)$ in 2.3.

