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Abstract. An intersecting family of sets is trivial if all of its members share a common element. Hilton
and Milner proved a strong stability result for the celebrated Erdős–Ko–Rado theorem: when n > 2k, every

non-trivial intersecting family of k-subsets of [n] has at most
(n−1
k−1

)
−

(n−k−1
k−1

)
+ 1 members. One extremal

family HMn,k consists of a k-set S and all k-subsets of [n] containing a fixed element x 6∈ S and at least one

element of S. We prove a degree version of the Hilton–Milner theorem: if n = Ω(k2) and F is a non-trivial

intersecting family of k-subsets of [n], then δ(F ) ≤ δ(HMn.k), where δ(F) denotes the minimum (vertex)

degree of F . Our proof uses several fundamental results in extremal set theory, the concept of kernels, and
a new variant of the Erdős–Ko–Rado theorem.

1. Introduction

A family F of sets is called intersecting if A∩B 6= ∅ for all A,B ∈ F . A fundamental problem in extremal
set theory is to study the properties of intersecting families. For positive integers k, n, let [n] = {1, 2, . . . , n}
and

(
V
k

)
denote the family of all k-element subsets (k-subsets) of V . We call a family on V k-uniform if it is a

subfamily of
(
V
k

)
. A full star is a family that consists of all the k-subsets of [n] that contains a fixed element.

We call an intersecting family F trivial if it is a subfamily of a full star. The celebrated Erdős–Ko–Rado
(EKR) theorem [3] states that, when n ≥ 2k, every k-uniform intersecting family on [n] has at most

(
n−1
k−1
)

members, and the full star shows that the bound
(
n−1
k−1
)

is best possible. Hilton and Milner [14] proved the
uniqueness of the extremal family in a stronger sense: if n > 2k, every non-trivial intersecting family of
k-subsets of [n] has at most

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1 members. It is easy to see that the equality holds for the

following family, denoted by HMn,k, which consists of a k-set S and all k-subsets of [n] containing a fixed
element x 6∈ S and at least one vertex of S. For more results on intersecting families, see a recent survey by
Frankl and Tokushige [10].

Given a family F and x ∈ V (F), we denote by F(x) the subfamily of F consisting of all the members
of F that contain x, i.e., F(x) := {F ∈ F : x ∈ F}. Let dF (x) := |F(x)| be the degree of x. Let
∆(F) := maxx dF (x) and δ(F) := minx dF (x) denote the maximum and minimum degree of F , respectively.
There were extremal problems in set theory that considered the maximum or minimum degree of families
satisfying certain properties. For example, Frankl [7] extended the Hilton–Milner theorem by giving sharp
upper bounds on the size of intersecting families with certain maximum degree. Bollobás, Daykin, and Erdős
[1] studied the minimum degree version of a well-known conjecture of Erdős [2] on matchings.

Huang and Zhao [15] recently proved a minimum degree version of the EKR theorem, which states that,
if n > 2k and F is a k-uniform intersecting family on [n], then δ(F) ≤

(
n−2
k−2
)
, and the equality holds only

if F is a full star. This result implies the EKR theorem immediately: given a k-uniform intersecting family
F , by recursively deleting elements with the smallest degree until 2k elements are left, we derive that

|F| ≤
(
n− 2

k − 2

)
+

(
n− 3

k − 2

)
+ · · ·+

(
2k − 1

k − 2

)
+

(
2k − 1

k − 1

)
=

(
n− 1

k − 1

)
.

Frankl and Tokushige [11] gave a different proof of the result of [15] for n ≥ 3k. Generally speaking, a
minimum degree condition forces the sets of a family to be distributed somewhat evenly and thus the size
of a family that is required to satisfy a property might be smaller than the one without degree condition.
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Unless the extremal family is very regular, an extremal problem under the minimum degree condition seems
harder than the original extremal problem because one cannot directly apply the shifting method (a powerful
tool in extremal set theory).

In this paper we study the minimum degree version of the Hilton–Milner theorem.

Theorem 1. Suppose k ≥ 4 and n ≥ ck2, where c = 30 for k = 4, 5 and c = 4 for k ≥ 6. If F ⊆
(
[n]
k

)
is a

non-trivial intersecting family, then δ(F) ≤ δ(HMn,k) =
(
n−2
k−2
)
−
(
n−k−2
k−2

)
.

Han and Kohayakawa [12] recently determined the maximum size of a non-trivial intersecting family that

is not a subfamily of HMn,k, which is
(
n−1
k−1
)
−
(
n−k−1
k−1

)
−
(
n−k−2
k−2

)
+ 2. Later Kostochka and Mubayi [17]

determined the maximum size of a non-trivial intersecting family that is not a subfamily of HMn,k or the
extremal families given in [12] for sufficiently large n. Furthermore, Kostochka and Mubayi [17, Theorem 8]
characterized all maximal intersecting 3-uniform families F on [n] for n ≥ 7 and |F| ≥ 11. Using a different
approach, Polcyn and Ruciński [18, Theorem 4] characterized all maximal intersecting 3-uniform families
F on [n] for n ≥ 7, in particular, there are fifteen such families, including the full star and HMn,3. It is
straightforward to check that all these families have minimum degree at most 3 – this gives the following
proposition.

Proposition 2. If n ≥ 7 and F ⊆
(
[n]
3

)
is a non-trivial intersecting family, then δ(F) ≤ δ(HMn,3) = 3.

In order to prove Theorem 1, we prove a new variant of the EKR theorem, which is closely related to the
EKR theorem for direct products given by Frankl (see Theorem 7).

Theorem 3. Given integers k ≥ 3, ` ≥ 4, and m ≥ k`, let T1, T2, T3 be three disjoint `-subsets of [m].
If F is a k-uniform intersecting family on [m] such that every member intersects all of T1, T2, T3, then
|F| ≤ `2

(
m−3
k−3

)
.

Theorem 3 becomes trivial when ` = 1 because every family F of k-sets that intersect T1, T2, T3 satisfies
|F| ≤

(
m−3
k−3

)
. Our bound in Theorem 3 is asymptotically tight because a star with a center in T1 ∪ T2 ∪ T3

contains about `2
(
m−3
k−3

)
k-sets that intersect T1, T2, T3.

It was shown in [15] that one can derive the minimum degree version of the EKR theorem for n = Ω(k2)
by using the Hilton–Milner Theorem and simple averaging arguments (thus the difficulty of the result in
[15] lies in deriving the tight bound n ≥ 2k + 1). However, we can not use this naive approach to prove
Theorem 1 for sufficiently large n. Indeed, let F be a non-trivial intersecting family that is not a subfamily
of HMn,k. The result of Han and Kohayakawa [12] says that |F| is asymptotically at most (k−1)

(
n−2
k−2
)
, and

in turn, the average degree of F is asymptotically at most k(k−1)
k−2

(
n−3
k−3
)
. Unfortunately, this is much larger

than δ(HMn,k) ≈ k
(
n−3
k−3
)

as k is fixed and n is sufficiently large.

Our proof of Theorem 1 applies several fundamental results in extremal set theory as well as Theorem 3.
The following is an outline of our proof. Let F be a non-trivial intersecting family such that δ(F) >
δ(HMn,k). For every u ∈ [n], we obtain a lower bound for |F \ F(u)| by applying the assumption on δ(F)
and the Frankl–Wilson theorem [5, 19] on the maximum size of t-intersecting families. If k = 4, 5, then we
derive a contradiction by considering the kernel of F (a concept introduced by Frankl [6]). When k ≥ 6, we
separate two cases based on ∆(F). When ∆(F) is large, assume that |F(u)| = ∆(F) and let F2 := F \F(u).
A result of Frankl [9] implies that F(u) contains three edges Ei := {u} ∪ Ti, i ∈ [3], where T1, T2, T3 are
pairwise disjoint. Since F2 is intersecting and every member of F2 meets each of T1, T2, T3, Theorem 3 gives
an upper bound on |F2|, which contradicts the lower bound that we derived earlier. When ∆(F) is small,
we apply the aforementioned result of Frankl [7] to obtain an upper bound on |F|, which contradicts the
assumption on δ(F).

2. Tools

2.1. Results that we need. Given a positive integer t, a family F of sets is called t-intersecting if |A∩B| ≥ t
for all A,B ∈ F . A t-intersecting EKR theorem was proved in [3] for sufficiently large n. Later Frankl [5]
(for t ≥ 15) and Wilson [19] (for all t) determined the exact threshold for n.
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Theorem 4. [5, 19] Let n ≥ (t+ 1)(k− t+ 1) and let F be a k-uniform t-intersecting families on [n]. Then
|F| ≤

(
n−t
k−t
)
.

As mentioned in Section 1, Frankl [7] determined the maximum possible size of an intersecting family
under a maximum degree condition.

Theorem 5. [7] Suppose n > 2k, 3 ≤ i ≤ k + 1, F ⊆
(
[n]
k

)
is intersecting. If ∆(F) ≤

(
n−1
k−1
)
−
(
n−i
k−1
)
, then

|F| ≤
(
n−1
k−1
)
−
(
n−i
k−1
)

+
(

n−i
k−i+1

)
.

Given a k-uniform family F , a matching of size s is a collection of s vertex-disjoint sets of F . A well-known

conjecture of Erdős [2] states that if n ≥ (s+ 1)k and F ⊆
(
[n]
k

)
satisfies |F| > max{

(
n
k

)
−
(
n−s
k

)
,
(
k(s+1)−1

k

)
},

then F contains a matching of size s+ 1. Frankl [9] verified this conjecture for n ≥ (2s+ 1)k − s.

Theorem 6. [9] Let n ≥ (2s+ 1)k − s and let F ⊆
(
[n]
k

)
. If |F| >

(
n
k

)
−
(
n−s
k

)
, then F contains a matching

of size s+ 1.

Frankl [8] proved an EKR theorem for direct products.

Theorem 7. [8] Suppose n = n1 + · · ·+ nd and k = k1 + · · ·+ kd, where ni ≥ ki are positive integers. Let
X1 ∪ · · · ∪Xd be a partition of [n] with |Xi| = ni, and

H =

{
F ∈

(
[n]

k

)
: |F ∩Xi| = ki for i = 1, . . . , d

}
.

If ni ≥ 2ki for all i and F ⊆ H is intersecting, then

|F|
|H|
≤ max

i

ki
ni
.

Note that the d = 1 case of Theorem 7 is the EKR theorem.

2.2. Kernels of intersecting families. Frankl introduced the concept of kernels (and called them bases)

for intersecting families in [6]. Given F ⊆
(
V
k

)
, a set S ⊆ V is called a cover of F if S ∩A 6= ∅ for all A ∈ F .

For example, if F is intersecting, then every member of F is a cover. Given an intersecting family F , we
define its kernel K as

K := {S : S is a cover of F and any S′ ( S is not a cover of F}.

An intersecting family F is called maximal if F ∪ {G} is not intersecting for any k-set G 6∈ F . Note that,
when proving Theorem 1, we may assume that F is maximal because otherwise we can add more k-sets to
F such that the resulting intersecting family is still non-trivial and satisfies the minimum degree condition.
We observe the following fact on the kernels.

Fact 8. If n ≥ 2k and F ∈
(
[n]
k

)
is a maximal intersecting family, then K is also intersecting.

Proof. Suppose there are K1,K2 ∈ K such that K1 ∩K2 = ∅. Since n ≥ 2k, we can find two disjoint k-sets
F1, F2 on [n] such that Ki ⊆ Fi for i = 1, 2. For i = 1, 2, since Ki is a cover of F , Fi intersects all members
of F . Since F is maximal, we derive that F1, F2 ∈ F . This contradicts the assumption that F1, F2 are
disjoint. �

For i ∈ [k], let Ki := K∩
(
[n]
i

)
. If an intersecting family F is non-trivial, then K1 = ∅. Below we prove an

upper bound for |Ki|, 3 ≤ i ≤ k, where the i = k case was given by Erdős and Lovász [4].

Lemma 9. For 3 ≤ i ≤ k, we have |Ki| ≤ ki.

In order to prove Lemma 9, We use a result of H̊astad, Jukna, and Pudlák [13, Lemma 3.4]. Given a
family F , the cover number of F , denoted by τ(F), is the size of the smallest cover of F .

Lemma 10. [13] If F is an i-uniform family with |F| > ki, then there exists a set Y such that τ(FY ) ≥ k+1,
where FY := {F \ Y : F ∈ F , F ⊇ Y }.
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Proof of Lemma 9. Suppose |Ki| > ki for some 3 ≤ i ≤ k. Then by Lemma 10, there exists a set Y such
that τ((Ki)Y ) ≥ k + 1. In particular, (Ki)Y is nonempty, namely, there exists K ∈ Ki such that Y ( K.
By the definition of K, this implies that Y is not a cover of F , so there exists F ∈ F such that F ∩ Y = ∅.
Since each member of Ki is a cover of F , each of them intersects F . This implies that τ((Ki)Y ) ≤ |F | = k,
a contradiction. �

3. Proof of Theorem 3

In this section we derive Theorem 3 from Theorem 7.

Proof of Theorem 3. Let Fr consist of all the subsets of F that intersect with T1 ∪ T2 ∪ T3 in exactly r
elements. Then F = F3 ∪ F4 ∪ · · · ∪ Fk. Let X1 = T1, X2 = T2, X3 = T3, X4 = [m] \ (T1 ∪ T2 ∪ T3), and
k1 = k2 = k3 = 1, k4 = k − 3. Since m ≥ k`, we have 1/` ≥ (k − 3)/(m − 3`). Since ` ≥ 2, we can apply
Theorem 7 to conclude that

|F3| ≤ `3
(
m− 3`

k − 3

)
· 1

`
= `2

(
m− 3`

k − 3

)
.

Note that a set S ∈ F4 intersects T1, T2, T3 with either 1, 1, 2 or 1, 2, 1 or 2, 1, 1 elements. We partition
F4 into three subfamilies accordingly. Our assumption implies

k − 4

m− 3`
≤ 2

`
≤ 1

2
.

We can apply Theorem 7 to each subfamily of F4 and obtain that

|F4| ≤ 3

(
`

2

)
`2
(
m− 3`

k − 4

)
· 2

`
= 3(`− 1)`2

(
m− 3`

k − 4

)
.

Finally, for 5 ≤ r ≤ k, we claim that |Fr| ≤ `2
(
3`−3
r−3

)(
m−3`
k−r

)
. Indeed, let X1 = T1∪T2∪T3, X2 = [m]\X1,

k1 = r and k2 = k− r. Note that |X2| = m− 3` ≥ 2(k− r) and r/(3`) ≥ (k− r)/(m− 3`). If |X1| = 3` ≥ 2r,
then Theorem 7 gives that

|Fr| ≤
(

3`− 1

r − 1

)(
m− 3`

k − r

)
< `2

(
3`− 3

r − 3

)(
m− 3`

k − r

)
.

When 3` ≤ 2r, we have r ≥ 6 because ` ≥ 4. Hence,(
3`

r

)
<

(3`)3

r(r − 1)(r − 2)

(
3`− 3

r − 3

)
≤ 18`2

(r − 1)(r − 2)

(
3`− 3

r − 3

)
< `2

(
3`− 3

r − 3

)
,

and the trivial bound on |Fr| gives that

|Fr| ≤
(

3`

r

)(
m− 3`

k − r

)
< `2

(
3`− 3

r − 3

)(
m− 3`

k − r

)
as claimed. Summing up the bounds for |F3|, |F4| and |Fr| for r ≥ 5, we have

|F| = |F3|+ |F4|+
k∑

r=5

|Fr|

≤ `2
(
m− 3`

k − 3

)
+ 3(`− 1)`2

(
m− 3`

k − 4

)
+ `2

k∑
r=5

(
3`− 3

r − 3

)(
m− 3`

k − r

)
= `2

(
m− 3

k − 3

)
,

because
(
m−3
k−3

)
=
∑k−3

i=0

(
m−3l
k−3−i

)(
3l−3
i

)
. �
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4. Proof of Theorem 1

We start with some simple estimates. First, for n ≥ ck2, c ≥ 1 and 1 ≤ t ≤ k − 1, we have(
n−2k+t−1

k−2
)(

n−t−1
k−2

) =
(n− 2k + t− 1) · · · (n− 3k + t+ 2)

(n− t− 1) · · · (n− t− k + 2)
≥
(

1− 2k − 2t

n− t− k + 2

)k−2

≥ 1− 2(k − t)(k − 2)

n− t− k + 2
≥ c− 2

c
. (4.1)

Similarly, one can show that
(
n−k−2
k−3

)
≥ c−1

c

(
n−3
k−3
)
. Second, if δ(F) >

(
n−2
k−2
)
−
(
n−k−2
k−2

)
, then we have

|F| > n

k

((
n− 2

k − 2

)
−
(
n− k − 2

k − 2

))
> n

(
n− k − 2

k − 3

)
≥ (c− 1)n

c

(
n− 3

k − 3

)
>

(c− 1)

c
(k − 2)

(
n− 2

k − 2

)
. (4.2)

Lemma 11. Suppose k ≥ 4 and n ≥ 4k2, F ⊆
(
[n]
k

)
is a non-trivial intersecting family such that δ(F) >

δ(HMn,k) =
(
n−2
k−2
)
−
(
n−k−2
k−2

)
. Then for any u ∈ [n],

(i) there exists E,E′ ∈ F such that u /∈ E ∪ E′ and |E ∩ E′| = 1;
(ii) |F \ F(u)| > k−2

2

(
n−2
k−2
)
.

Proof. Given u ∈ [n], write F1 = F(u) and F2 = F \ F1. If |F2| = 1, then F ⊆ HMn,k, and thus
δ(F) ≤ δ(HMn,k), a contradiction. So assume that |F2| ≥ 2.

Let t = min |E ∩ E′| among all distinct E,E′ ∈ F2. Obviously 1 ≤ t ≤ k − 1, and F2 is a t-intersecting
family on [2, n]. Then since n > 4k2 ≥ (k − t + 1)(t + 1) + 1, we get |F2| ≤

(
n−t−1
k−t

)
by Theorem 4. Note

that there exist E,E′ ∈ F2 such that |E ∩ E′| = t. Since every set in F1 must intersect both E and E′, for
every x 6∈ E ∪ E′ ∪ {u}, by the inclusion-exclusion principle, we have

|F1(x)| ≤
(
n− 2

k − 2

)
− 2

(
n− k − 2

k − 2

)
+

(
n− 2k + t− 2

k − 2

)
. (4.3)

Let X = [n] \ (E ∪ E′ ∪ {u}) and thus |X| = n− 1− (2k − t). Suppose x ∈ X attains the minimum degree
in F2 among all elements of X. Since |F(x)| = |F1(x)|+ |F2(x)| > δ(HMn,k), by (4.3) we have

|F2(x)| >
(
n− k − 2

k − 2

)
−
(
n− 2k + t− 2

k − 2

)
.

By the definition of x we get

|F2| >
|X|
k − t

((
n− k − 2

k − 2

)
−
(
n− 2k + t− 2

k − 2

))
≥ |X|(k − t)

k − t

(
n− 2k + t− 2

k − 3

)
= (k − 2)

(
n− 2k + t− 1

k − 2

)
,

where the factor k − t comes from the fact that every member F ∈ F2 is counted at most k − t times –
because |F ∩ E1| ≥ t. By (4.1) with c = 4 and k ≥ 4, we get

|F2| >
k − 2

2

(
n− t− 1

k − 2

)
≥
(
n− t− 1

k − 2

)
,

which, together with |F2| ≤
(
n−t−1
k−t

)
, implies that t = 1, so (i) holds. Since t = 1, the first inequality above

gives (ii). �

Proof of Theorem 1. First assume that k ≥ 6 and n ≥ 4k2. Suppose F ⊆
(
[n]
k

)
is a non-trivial intersecting

family such that δ(F) > δ(HMn,k) =
(
n−2
k−2
)
−
(
n−k−2
k−2

)
. Suppose u ∈ [n] attains the maximum degree of

F and write F ′ := F \ F(u). If |F(u)| >
(
n−1
k−1
)
−
(
n−3
k−1
)
, then by Theorem 6, the (k − 1)-uniform family

{E \ {u} : E ∈ F(u)} contains a matching M = {T1, T2, T3} of size 3. Every member of F ′ must intersect
each of T1, T2, T3. By Theorem 3, we have |F ′| ≤ (k − 1)2

(
n−4
k−3
)
. On the other hand, Lemma 11 Part (ii)
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implies that |F ′| > k−2
2

(
n−2
k−2
)

= n−2
2

(
n−3
k−3
)
> 2(k − 1)2

(
n−3
k−3
)

because n ≥ 4k2 ≥ 4(k − 1)2 + 2. This gives a
contradiction.

We thus assume that |∆(F)| ≤
(
n−1
k−1
)
−
(
n−3
k−1
)
. By Theorem 5,

|F| ≤
(
n− 1

k − 1

)
−
(
n− 3

k − 1

)
+

(
n− 3

k − 2

)
=

3n− 2k − 2

n− 2

(
n− 2

k − 2

)
≤ 3

(
n− 2

k − 2

)
.

Since δ(F) >
(
n−2
k−2
)
−
(
n−k−2
k−2

)
, by (4.2), we have |F| > 3

4 (k − 2)
(
n−2
k−2
)
. The upper and lower bounds for |F|

together imply k < 6, a contradiction.

Now assume that k = 4, 5 and n ≥ 30k2. Since F is intersecting, each member of F is a cover of F and

thus contains as a subset a minimal cover, which is a member of the kernel K. Thus |F| ≤
∑k

i=1 |Ki|
(
n−i
k−i
)
.

We know K1 = ∅ because F is non-trivial. We observe that |K2| ≤ 1 – otherwise assume uv, uv′ ∈ K2

(recall that K2 is intersecting). By the definition of K2, every E ∈ F \F(u) contains both v and v′ so every
E,E′ ∈ F \ F(u) satisfy that |E ∩ E′| ≥ 2, contradicting Lemma 11 Part (i). By Lemma 9,

|F| ≤
(
n− 2

k − 2

)
+

k∑
i=3

ki
(
n− i
k − i

)
.

Since n ≥ 30k2, for any 3 ≤ i ≤ k, we have

ki−2
(
n− i
k − i

)
=

(
n− 2

k − 2

)
· ki−2 · k − 2

n− 2
· k − 3

n− 3
· · · k − i+ 1

n− i+ 1
≤
(
n− 2

k − 2

)
1

30i−2
.

Thus

|F| ≤
(
n− 2

k − 2

)
+ k2

(
n− 2

k − 2

) k∑
i=3

1

30i−2
≤
(
n− 2

k − 2

)(
1 +

k2

29

)
.

On the other hand, by (4.2), we have |F| > 29
30 (k − 2)

(
n−2
k−2
)
> 28

29 (k − 2)
(
n−2
k−2
)
. Hence, 28(k − 2) < 29 + k2,

contradicting 4 ≤ k ≤ 5. This completes the proof of Theorem 1. �

5. Concluding Remarks

The main question arising from our work is whether Theorem 1 holds for all n ≥ 2k + 1. Proposition 2
confirms this for k = 3. Another question is whether the following generalization of Theorems 3 and 7 is
true. We say a family H of sets has the EKR property if the largest intersecting subfamily of H is trivial.

Conjecture 12. Suppose n = n1 + · · · + nd and k ≥ k1 + · · · + kd, where ni > ki ≥ 0 are integers. Let
X1 ∪ · · · ∪Xd be a partition of [n] with |Xi| = ni, and

H :=

{
F ⊆

(
[n]

k

)
: |F ∩Xi| ≥ ki for i = 1, . . . , d

}
.

If ni ≥ 2ki for all i and ni > k −
∑d

j=1 kj + ki for all but at most one i ∈ [d] such that ki > 0, then H has
the EKR property.

The assumptions on ni cannot be relaxed for the following reasons. If ni < 2ki for some i, then H itself is

intersecting and |H(x)| < |H| for any x ∈ [n]. If ni ≤ k−
∑d

j=1 kj +ki for distinct i1, i2 such that ki1 , ki2 > 0,

then for any x ∈ [n], the union of H(x) and {F ∈ H : Xi1 ⊆ F or Xi2 ⊆ F} is a larger intersecting family
than H(x).

When k = k1 + · · · + kd, Conjecture 12 follows from Theorem 7, in particular, the d = 1 case is the
EKR theorem. A recent result of Katona [16] confirms Conjecture 12 for the case d = 2 and n1, n2 ≥
9(k −min{k1, k2})2. We can prove Conjecture 12 in the following case.

Theorem 13. Given positive integers d ≤ k, 2 ≤ t1 ≤ t2 ≤ · · · ≤ td with t2 ≥ k− d+ 2, there exists n0 such
that the followings holds for all n ≥ n0. If T1, . . . , Td are disjoint subsets of [n] such that |Ti| = ti for all i,
then

H :=

{
F ⊆

(
[n]

k

)
: |F ∩ Ti| ≥ 1 for i = 1, . . . , d

}
has the EKR property.
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We omit the proof of Theorem 13 here because the purpose of this paper is to prove Theorem 1. Moreover,
when d = 3 and t1 = t2 = t3 = k− 1, our n0 is Ω(k4) so we cannot replace Theorem 3 by Theorem 13 in our
main proof. Nevertheless, it would be interesting to know the smallest n0 such that Theorem 13 holds.
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