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1. Introduction

A central question in graph theory is to establish conditions that ensure a (hyper)graph H contains
some spanning (hyper)graph F. Of course, it is desirable to fully characterize those (hyper)graphs H
that contain a spanning copy of a given (hyper)graph F. Tutte’s theorem [22] characterizes those
graphs with a perfect matching. (A perfect matching in a (hyper)graph H is a collection of vertex-
disjoint edges of H which cover the vertex set V(H) of H.) However, for some (hyper)graphs F it is
unlikely that such a characterization exists. Indeed, for many (hyper)graphs F the decision problem
of whether a (hyper)graph H contains F is NP-complete. For example, in contrast to the graph case,
the decision problem whether a k-uniform hypergraph contains a perfect matching is NP-complete
for k > 3 (see [7,4]). Thus, it is desirable to find sufficient conditions that ensure a perfect matching
in a k-uniform hypergraph.
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Given a k-uniform hypergraph H with an ¢-element vertex set S (where 0 < ¢ <k — 1) we define
dy(S) to be the number of edges containing S. The minimum £-degree §;(H) of H is the minimum of
dy(S) over all £-element sets S of vertices in H. Clearly 8o(H) is the number of edges in H. We also
refer to §1(H) as the minimum vertex degree of H and 8y_1(H) the minimum codegree of H.

Over the last few years there has been a strong focus in establishing minimum ¢-degree thresholds
that force a perfect matching in a k-uniform hypergraph. See [16] for a survey on matchings (and
Hamilton cycles) in hypergraphs. In particular, Rodl, Rucinski and Szemerédi [19] determined the
minimum codegree threshold that ensures a perfect matching in a k-uniform hypergraph on n vertices
for all k > 3. The threshold is n/2 —k+ C, where C € {3/2,2,5/2, 3} depends on the values of n and k.
This improved bounds given in [11,18].

Less is known about minimum vertex degree thresholds that force a perfect matching. One of the
earliest results on perfect matchings was given by Daykin and Haggkvist [3], who showed that a k-
uniform hypergraph H on n vertices contains a perfect matching provided that §;(H) > (1— l/k)(Z:}).
Han, Person and Schacht [6] determined, asymptotically, the minimum vertex degree that forces a
perfect matching in a 3-uniform hypergraph. Kiihn, Osthus and Treglown [12] and independently
Khan [9] made this result exact. Khan [10] has also determined the exact minimum vertex degree
threshold for 4-uniform hypergraphs. For k > 5, the precise minimum vertex degree threshold which
ensures a perfect matching in a k-uniform hypergraph is not known.

The situation for ¢-degrees where 1 < ¢ <k — 1 is also still open. Han, Person and Schacht [6]
provided conditions on §,(H) that ensure a perfect matching in the case when 1 < ¢ < k/2. These
bounds were subsequently lowered by Markstrom and Rucinski [14]. Alon et al. [1] gave a connec-
tion between the minimum ¢-degree that forces a perfect matching in a k-uniform hypergraph and
the minimum ¢-degree that forces a perfect fractional matching. As a consequence of this result they
determined, asymptotically, the minimum ¢-degree which forces a perfect matching in a k-uniform
hypergraph for the following values of (k, £): (4,1), (5,1), (5,2), (6,2), and (7, 3).

Pikhurko [15] showed that if ¢ > k/2 and H is a k-uniform hypergraph whose order n is divisi-
ble by k then H has a perfect matching provided that 8,(H) > (1/2 4 0(1))(," ). This result is best
possible up to the o(1)-term (see the constructions in Hex:(n, k) below).

In this paper we make Pikhurko’s result exact. In order to state our main result, we need some
more definitions. Fix a set V of n vertices. Given a partition of V into non-empty sets A, B, let
E’édd(A, B) (EX,.n(A, B)) denote the family of all k-element subsets of V that intersect A in an odd
(even) number of vertices. (Notice that the ordering of the vertex classes A, B is important.) When
it is clear from the context, we write, for example, Eoqq(A, B). Define B, (A, B) to be the k-uniform
hypergraph with vertex set V = A U B and edge set Eyqq(A, B). Note that the complement E’n,k(A, B)
of By (A, B) has edge set Eeyen(A, B).

Suppose n, k € N such that k divides n. Define Hex: (11, k) to be the collection of the following hy-
pergraphs: Hexc(n, k) contains all hypergraphs En,k(A, B) where |A| is odd. Further, if n/k is odd then
Hext(n, k) also contains all hypergraphs B, x(A, B) where |A]| is even; if n/k is even then Hext(n, k)
also contains all hypergraphs B, (A, B) where |A| is odd.

It is easy to see that no hypergraph in Hex:(n, k) contains a perfect matching. Indeed, first assume
that |A] is even and n/k is odd. Since every edge of By (A, B) intersects A in an odd number of
vertices, one cannot cover A with an odd number of disjoint odd sets. Similarly By (A, B) does not
contain a perfect matching if |A| is odd and n/k is even. Finally, if |A| is odd then since every edge of
B,k(A, B) intersects A in an even number of vertices, Bn,k(A, B) does not contain a perfect matching.

Given ¢ € N such that k/2 < £ <k — 1 define §(n,k, £) to be the maximum of the minimum ¢-
degrees among all the hypergraphs in Hexc(n, k). For example, it is not hard to see that

n/2—k+2 ifk/2 is even and n/k is odd,
n/2—-k+3/2 ifkisoddand (n—1)/2is odd,
n/2—-k+1/2 ifkisoddand (n—1)/2iseven,
n/2—k+1 otherwise.

s(nk,k—1) = (11)

The following is our main result.
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Theorem 1.1. Let k, ¢ € N such that k > 3 and k/2 < € < k — 1. Then there exists an ng € N such that the
following holds. Suppose H is a k-uniform hypergraph on n > ng vertices where k divides n. If

S¢(H) > 8(n,k, ¢)

then H contains a perfect matching.

In [21], we proved Theorem 1.1 in the case when 4 divides k. Independently to this, Czygrinow
and Kamat [2] proved Theorem 1.1 in the case when k =4 and ¢ = 2. To prove Theorem 1.1 we use
several ideas and results from [21]. In particular, the so-called ‘extremal’ case of Theorem 1.1 was
proved in [21] for all values of k. However, in some parts of the proof of the ‘non-extremal’ case we
use a very different approach to that in [21]. We discuss this in more detail in Section 4.

As explained before, the minimum ¢-degree condition in Theorem 1.1 is best possible. Theorem 1.1
and (1.1) together give the aforementioned result of Rodl, Rucifski and Szemerédi [19].

In general, the precise value of §(n, k, £) is unknown because it is not known what value of |A|
maximizes the minimum ¢-degree of B, (A, B) (or Bnyk(A, B)). (See [21] for a discussion on this.)
However, in [21] we gave a tight upper bound on §(n, 4, 2).

2. Notation and preliminaries

2.1. Definitions and notation

Given a set X and r € N, we write ()r() for the set of all r-element subsets (r-subsets, for short)
of X. Given a set S and an element x, we often write S — {x} as S—x and SU{x} as S+ x. Let k e N.
A k-uniform hypergraph H consists of a set of vertices V (H) and a set of edges E(H) C (ViH)). So in
the case when k=1, E(H) C V(H). (The notion of a 1-uniform hypergraph will be used in Section 5.)

Let k, £ € N. Suppose H = (V(H), E(H)) is a k-uniform hypergraph. Let {vq,..., v¢} be an £-subset
of V(H). Often we write it as v1...v, (i.e. we drop the brackets and commas), or simply v. Given
Ve (V(ZH)). we write Ny(v) or N(v) to denote the neighborhood of v, that is, the family of those
(k — £)-subsets of V(H) which, together with v, form an edge in H. Then |[Ny(v)| =dy(v). Given a
vertex v € V(H), we define Ny (v) and dy(v) analogously.

We denote the complement of H by H. That is, H := (V (H), (Vi’”) \ E(H)). Given a set A C V(H),
H[A] denotes the k-uniform subhypergraph of H induced by A, namely, H[A] := (A, E(H)N ('2)). Given
B C E(H), we define H[B]:= (V (H), B).

Let A, B be sets and let m be a positive real. Let AAB := (A\ B) U (B \ A) denote the symmetric
difference of A and B. We write A=B +m if |AAB| <m.

Let &€ > 0. Suppose that H and H’ are k-uniform hypergraphs on n vertices. We say that H is &-
close to H', and write H = H’ + en¥, if H becomes a copy of H’ after adding and deleting at most en*
edges. More precisely, H is e-close to H’ if there is an isomorphic copy H of H such that V(H) =
V(H’) and |[E(H)AE(H")| < enk.

Given a graph G, x € V(G) and Y C V(G), we denote by d¢(x, Y) the number of vertices y € Y
such that xy € E(G). Given disjoint A, B C V(G) we let e(A, B) denote the number of edges in G with
one endpoint in A and one endpoint in B. Further, we let K4 p denote the complete bipartite graph
with vertex classes A and B.

We will often write 0 < a; < a; < as to mean that we can choose the constants ai, ay, az from
right to left. More precisely, there are increasing functions f and g such that, given a3, whenever
we choose some a < f(as) and a; < g(ay), all calculations needed in our proof are valid. Hierarchies
with more constants are defined in the obvious way. Throughout the paper we omit floors and ceilings
whenever this does not affect the argument.

2.2. The extremal graph By, and absorbing sets

Suppose that n,k € N such that n > k. Let A, B be a partition of a set of n vertices. Recall that
Bn.k(A, B) is the k-uniform hypergraph with vertex set AU B and edge set Eyqq(A, B), and its com-
plement Bn’k(A, B) has edge set Eeven(A, B). (Note that By 1(A, B) has edge set A and Bn.1(A, B) has
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edge set B.) When |A| = [n/2] and |B| = [n/2], we simply denote 3, (A, B) by Bk, and Bn,k(A, B)
by Bn,k-

Following the ideas of R6dl, Rucifiski and Szemerédi [17,19], we define absorbing sets as follows:
Given a k-uniform hypergraph H, a set S C V(H) is called an absorbing set for Q C V (H), if both H[S]
and H[S U Q] contain perfect matchings. In this case, if the matching covering S is M, we also say M
absorbs Q.

2.3. Useful results

When considering ¢-degree together with ¢'-degree for some ¢’ # ¢, the following proposition is
very useful (the proof is a standard counting argument, which we omit).

Proposition 2.1. Let 0 < £ < ¢/ < k and H be a k-uniform hypergraph. If §, (H) > X(Z:ﬁ:) forsome 0 <x<1,
then 8, (H) > x(} ).

The following two results are applied in Section 5.2. Given an r-uniform hypergraph F = (V, E)
with two distinct vertices u,v € V, define Dr(u, v) as the family of (r + 1)-subsets S € (TL) such
that u,v e S and either S—ue€Eand S—v¢E, or S—u¢E and S— v € E. Note that Dp(u,v) =
Df(v,u) =D (u,v), where F is the complement of F.

Lemma 2.2. Given any r € N and 0 < o < 1 there exists an ng € N such that the following holds. Let F =
(V, E) be an r-uniform hypergraph on n > ng vertices with edge density p := |E|/('rl) €la,1—a]l. Then

> |DF(V,\/’)|>0[(]—0[)<r_T_]). (2.1)

v.v1e(y)

In particular, there exist two vertices v, v’ € V such that |Dr (v, v')| > (1 —a)n™~1/(r + DL

Proof. If r =1 then the second assertion is trivial. If r > 2, the second assertion follows by an aver-
aging argument: if the first assertion holds, then there exist two vertices v and v’ in V such that

a(l—a)( n
() \r+d

since n is sufficiently large.

We prove the first assertion by double counting and the Kruskal-Katona theorem. Let m denote
the left-hand side of (2.1), that is, the number of (r + 1)-subsets S C V that contains two labeled
vertices v # v/ such that exactly one of S—v and S — v’ is in E. For 0 <i <r+1, let t; denote the
number of (r + 1)-subsets of V that span exactly i edges of F. It is easy to see that

2(0—2)---(n—r1) n1

[De(v. V)2 i T

):oe(l—a)

r+1 r
|E|(n—r):i‘iri and m=>) ir+1-it.
i=1 i=1
Thus,
.
m> it =E|(n—1) — (r + Diry1. (2.2)

i=1

A version of the Kruskal-Katona theorem by Lovasz [13] states that given a family A of k-element
sets, if |.A] > (;) for some real number x, then the size of its shadow 0.4 is greater than (. *,).

This implies that if an r-uniform hypergraph has at most (’r‘) edges, then t,;1, the number of the
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(r + 1)-cliques in the hypergraph, is at most (,};). Since [E| = p(}) < (pl/r”r'”_l), we derive that

Vrpr— . .
tr < (° rr":{ 1). Substituting this into (2.2), we have that

n pVm+r—1
p(r>(n—r)—(r+1)( F1 >
n re n .
p(r_H)(r—H)—p r (r+1)<r+1> —o(n")

_ _ S yr n _ r
=p(1-p )(r+l)<r+1) o(n").

Since p € [, 1 — «], we have that

m

WV

p(1=p"") = minfa(1—a'), 1 —a)(1- 1 -a)/")}.

Using the fact that 1—a!/" > (1 —a)/r, this minimum is at least a(1 — &) /r. As n is sufficiently large,
this gives that

m}a(l—a)r—:1<ril>—O(nr)2a(1—a)<ril>. O

Proposition 2.3. Forr e N,0 < c < 1andn — oo,

cn (1—-o)n n" . —
) (r_i>< i >:2—r!(1+(2c—1))—0(n ),

0<i<r, i even

3 (rcji) ((l —ic)n> _ ;_rrv(l —@e—1) o).

0<i<r, i odd

Proof. Throughout the proof we assume that 0 <i <r. We observe that

( cn ) ((1 - C)n> _@ Aot ey (C_”)r<r> (i) “o().
r—i i (r—1i)! i! r! \i c
>+Y)

(Ze B2 (-2
(Z-2 ) ~men () = (-5 = ()
0 () =

> () -3E-()

i odd

Since

we have

The two desired equalities follow immediately. O
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3. Proof of Theorem 1.1
Most of the paper is devoted to proving the following result.

Theorem 3.1. Let € > 0 and k, £ € N such that k > 3 and k/2 < £ < k — 1. Then there exist «, & > 0 and
no € N such that the following holds. Suppose that H is a k-uniform hypergraph on n > ng vertices. If

1 ¢
s (-0)1)

then H is -close to By  or Z_S‘n,k, or H contains a matching M of size |M| < &n/k that absorbs any set W C
V(H)\ V(M) such that |W| € kN with |W| < £%n.

We prove Theorem 3.1 in Section 5. Once Theorem 3.1 is proven, we can derive Theorem 1.1 in the
same way as described in [21]. For completeness, we include the proof here.

Theorem 3.2. (See [21, Theorem 4.1].) Given 1 < £ < k — 1, there exist ¢ > 0 and ng € N such that the
following holds. Suppose that H is a k-uniform hypergraph on n > ng vertices such that n is divisible by k. If
8¢(H) > 8(n, k, £) and H is e-close to By, i or By k, then H contains a perfect matching.

Theorem 3.2 ensures a perfect matching when our hypergraph H is ‘close’ to one of the ‘extremal’
hypergraphs By x and B, . When H is non-extremal we will apply the following result of Markstrém
and Rucinski [14] to ensure an ‘almost’ perfect matching in H.

Theorem 3.3. (See [ 14, Lemma 2].) For each integer k > 3, every 1 < £ < k — 2 and every y > 0 there exists
an ng € N such that the following holds. Suppose that H is a k-uniform hypergraph on n > ng vertices such

that
k—1¢ 1 n—~¢
S¢(H) > <T — W +y><k—€>.

Then H contains a matching covering all but at most /n vertices.

In [14], Markstréom and Rucifiski only stated Theorem 3.3 for 1 < € < k/2. In fact, their proof
works for all values of ¢ such that 1 < ¢ <k — 2. In the case when ¢ =k — 1, we need a result of
R&dl, Rucinski and Szemerédi [19, Fact 2.1]: Suppose H is a k-uniform hypergraph on n vertices. If
8k_1(H) >n/k, then H contains a matching covering all but at most k% vertices in H.

Proof of Theorem 1.1. Let € be as in Theorem 3.2 and «, & be as in Theorem 3.1. That is,

O<ou, & Kek1/k

Assume that k/2 < £ <k — 1. Suppose that n is sufficiently large and k divides n. Consider any k-
uniform hypergraph H on n vertices such that

S8¢(H) > 8(n,k, 0).

By the definition of Hex:(n, k), there exists a k-uniform hypergraph B, (A, B) € Hext(n, k) with
|Al € {[n/2], In/2] 4+ 1}. Clearly 8x_1 (B, k(A, B)) > n/2 — k. Thus, by Proposition 2.1, §;(By k(A, B)) >
1/2— a)(Z:f). Consequently 8,(H) > (1/2 — a)(Z:f). Theorem 3.1 implies that either H is e-close to
By x or En,k or H contains a matching M of size |M| < én/k that absorbs any set W € V(H) \ V(M)
such that |W| € kN with |W| < £2n. In the former case Theorem 3.2 implies that H contains a perfect
matching. In the latter case set H := H[V(H) \ V(M)] and n’ := |V (H’)|. Since £ > k/2, o, & < 1/k
and n is sufficiently large,



A. Treglown, Y. Zhao / Journal of Combinatorial Theory, Series A 120 (2013) 1463-1482 1469

’ n k—¢ 1 n—t
8¢(H') > 8¢(H) — |V(M)’(k—z— 1) g (T k=D +a><k—€>'

Therefore, if £ <k — 2, Theorem 3.3 implies that H' contains a matching M’ covering all but at most
/n’ vertices in H'. If £ =k — 1, then since 8;(H’) > n’/k, Fact 2.1 from [19] implies that H’ contains
a matching M’ covering all but at most k? vertices in H’. In both cases set W := V (H")\V (M’). Then
|W| < v/ < £2n. By definition of M, there is a matching M” in H which covers V(M) U W. Hence,
M’ UM” is a perfect matching of H, as desired. O

4. Outline of the proof of Theorem 3.1

In [21] we proved Theorem 3.1 in the case when k is divisible by 4. In this section we give an
overview of the proof of Theorem 3.1 and explain how our method differs to that used in [21].

4.1. The method used in [21]

Let k € N be divisible by 4. Consider a k-uniform hypergraph H as in Theorem 3.1. Define the graph

G’ with vertex set (‘?{(/I;)) in which two vertices x, y € V(G’) are adjacent if and only if xU y € E(H).

Set N :=|G’|. In [21] the proof splits into two main steps.

Step 1. We prove that G’ or G’ is ‘close’ to Kny2,n/2 O H contains the matching M as desired in
Theorem 3.1.

Step 2. If G’ or G’ is ‘close’ to Kny2,n/2 then we prove that H is e-close to By or Bn,k.

Notice that we cannot adopt quite the same approach as above to prove Theorem 3.1 for all values
of k. Indeed, to define G’ we require that k is even. Moreover, the proof of Step 2 in [21] uses
that k is divisible by 4: Since G’ or G’ is ‘close’ to KnNy2,N/2, We obtain a ‘natural’ partition R, B of
V(G = (\1{(/}21)) where |R| = |B| = N/2. Consider a complete k/2-uniform hypergraph K whose vertex
set is V(H). Thus, E(K) = (Vk%)) Hence, we can view the partition R, B of (Vk(/;)) as a 2-coloring
of E(K). We then apply the hypergraph removal lemma (see e.g. [5,20]) together with a result of
Keevash and Sudakov [8] to obtain structure in K. (We show that K[R] or K[B] is ‘close’ to By k/2.)
This structure in K together with the fact that G’ or G’ is ‘close’ to Kny/2,n/2 implies that H is e-close
to By or Bn,k. Crucially, the result of Keevash and Sudakov concerns hypergraphs of even uniformity.
Thus, we require that K has even uniformity and hence, that k is divisible by 4.

Actually, in hindsight, we could have generalized our result in [21] to all even k if we had adapted
the proof of the result of Keevash and Sudakov to show directly that if G’ or G’ is ‘close’ to K N/2,N/2

then H is e-close to By or E’n,k (rather than applying their result to K).
4.2. The new method

Let H be a k-uniform hypergraph on n vertices as in Theorem 3.1. To prove Theorem 3.1 we
introduce a bipartite analog of G'. Set r:= [k/2], I := [k/2], X" := (V(rH)) and Y™ := (Vﬁf{)) Further,
let N:= (7) and N’ := (). Define the bipartite graph G as follows: G has vertex classes X" and Y".

Two vertices x1...x, € X" and y1...yy € Y" are adjacent in G if and only if xq...%:y1...yr € E(H).
The proof again splits into two main parts.

Step 1. We prove that G is ‘close’ to the disjoint union of two copies of Ky/ /2 or H contains the
matching M as desired in Theorem 3.1.

Step 2. If G is ‘close’ to the disjoint union of two copies of Ky/ n/2 then we prove that H is e-close
to By or Byk.
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Step 1 can be proved using a similar approach to the corresponding step in [21]. Step 2, however,
is tackled in a different way. Indeed, we do not consider an auxiliary hypergraph K as in [21]. Instead,
we obtain structure in H through direct arguments on the graph G.

5. Proof of Theorem 3.1

In this section we prove Theorem 3.1. Let &« > 0 and k, £ € N such that k >3 and k/2 <£<k—1.
Given a k-uniform hypergraph H on n vertices such that 8,(H) > (5 — &) (;~ e) by Proposition 2.1, we

have §,(H) > (2 (x)(k r) where r := [k/27. Hence, in order to prove Theorem 3.1 it suffices to prove
the following result.

Theorem 5.1. Given any € > 0 and integer k > 3, there exist o, & > 0 and ng € N such that the following
holds. Set r := [k/2]. Suppose that H is a k-uniform hypergraph on n > ng vertices. If

S CH) > 1 ) n—r
ans (1) (1)

then H is -close to By  or Bn,k, or H contains a matching M of size M| < &n/k that absorbs any set W C
V(H) \ V(M) such that |W| € kN with |W| < £2n.

Theorem 5.1 immediately follows from Lemmas 5.2-5.4. The following lemma from [21] states that
in order to find the absorbing set described in Theorem 5.1, it suffices to prove that there are at least
£n?k absorbing 2k-sets for every fixed k-set from V (H).

Lemma 5.2. (See [21, Lemma 5.2].) Given 0 < § <« 1 and an integer k > 2, there exists an ng € N such that
the following holds. Consider a k-uniform hypergraph H on n > ng vertices. Suppose that any k-set of vertices
Q C V(H) can be absorbed by at least £n2* 2k-sets of vertices from V (H). Then H contains a matching M of
size M| < £n/k that absorbs any set W € V (H)\V (M) such that |W| € kN and |W| < &2n.

Throughout this section we will use the following notation. Let k > 3
[k/2] and r’ :=k —r. Given a k-uniform hypergraph H, define X" := (
N:=(}) and N":= (7).

Given a k-uniform hypergraph H, we define the bipartite graph G(H) as follows: G(H) has vertex
classes X" and Y". Two vertices X1 ...x, € X" and y1...yp, € Y" are adjacent in G(H) if and only if
X1...XY1...Yr € E(H). When it is clear from the context, we will often refer to G(H) as G.

Let k > 3 and n be positive integers. Denote by B, i the bipartite graph with vertex classes X and
Y of sizes N and N’ respectively which satisfies the following properties:

be an mteger and set r:=
(r ) and Y" := (V(H)) Set

e X1, Xy is a partition of X such that |X1| =[N/2] and |X2| = [N/2];

e Y1, Yy is a partition of Y such that |Y{|=[N’/2] and |Y2| = [N'/2];

e B, i[X1,Y1] and Bpk[X2, Y2] are complete bipartite graphs. Further, there are no other edges
in Bn,k-

Lemma 5.3. Given any 8 > 0 and an integer k > 3, there exist «, & > 0 and ng € N such that the following
holds. Suppose that H is a k-uniform hypergraph on n > ng vertices so that

5 (H) > 1 n—r
>|lz—«a .
' 2 k—r
Set G := G(H). Then at least one of the following assertions holds:

e G = By £ BNN’; in other words, G becomes a copy of By, i after adding or deleting at most BNN' edges;
o There are at least én%* absorbing 2k-sets in (V(H)) for every k-subset of V (H).
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Lemma 5.4. Given any ¢ > 0 and integer k > 3, there exist 8 > 0 and ng € N such that the following holds.
Suppose that H is a k-uniform hypergraph on n > ng vertices. Suppose further that G := G(H) satisfies G =
Bk £ BNN'. Then H is e-close to By x or By .

The rest of the section is devoted to the proof of Lemmas 5.3 and 5.4.
5.1. Proof of Lemma 5.3
Given B > 0, we choose additional constants y, «, & such that

D<ika<ky<p. (5.1)

Without loss of generality we may assume that 8 < 1/k. We also assume that n is sufficiently large.
We have that

5. (Hy > (X n=r) S (150 (" 5.2
: ”(5‘“><k—r>/(5‘ “)(w) 52)

and so by Proposition 2.1,

s (H) > (X =\ S (1 o0\ (" 53
= (5-e)(i20)= (G-)() 5

Let Q C V(H) be a k-set. It is easy to see that if Q has at least y3nk absorbing k-sets then Q has
at least £n2* absorbing 2k-sets. Indeed, let P be an absorbing k-set for Q. Then P Ue is an absorbing
2k-set for Q for any edge e € E(H — (P U Q)). Note that

|E(H)| > G —a)(;:::) x%: (% —a)(Z)

Thus, as n is sufficiently large, there are at least

1 n o n - nk
(5“")@_ ‘(k—1>/m

edges in H — (P U Q). Since an absorbing 2k-set may be counted at most (Zkk) times when counting
the number of P, e, there are at least

k 5.1)
3.k, N 1« 2k
n"x ——xX—— 2= &n

Y G < @ 2 £
absorbing 2k-sets for Q.

Therefore, in order to prove Lemma 5.3, it suffices to prove the following two claims.
Claim 5.5. If either of the following cases holds, then we can find y3n" absorbing k-sets or y3n2"
2k-sets for every k-set Q € (V(kH)).

absorbing

Case (a): For any r-tuple a € (V(TH)), there are at least (§ + y)(!) r-tuples b € (V(rH)) such that [Ny (a) N
Nu®)| =y (})-
Case (b): lfae ("IP): du@ > G+ () =2r ().

Claim 5.6. If neither Case (a) or Case (b) holds, then G = B, + BNN'.

Proof of Claim 5.5. We argue in a similar way to the proof of Claim 5.5 in [21]. Given a k-set Q =
{X1,.... %, ¥1,..., ¥r} € V(H), we will consider two types of absorbing sets for Q :
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Fig. 1. The (i) absorbing k-set and (ii) absorbing 2k-set in the case when k =5.

Absorbing k-sets: These consist of a single edge x;...x.y} ...y, € E(H) with the property that both
X1...XXy...x and yi...yry) ...y, are edges of H.

Absorbing 2k-sets: These consist of distinct vertices x{,....x;, ¥},.... ¥, Wi,.... W), Z],...,7 €
V(H) such that xj...x.w}...w, y{...y.2;...z. and w)...w.Z|...z are edges in H.
Furthermore, X1 ...X-x]...x and y1...yry} ...y, are also edges of H (see Fig. 1).

Write X :=%7...X% and y := y1...yr. For any two (not necessarily disjoint) r-tuples g, b € (V(TH))
we call a a good r-tuple for b if [Ny (@) N Ny (b)| > y () /2. We first observe that Q has at least y3nk
absorbing k-sets if there are

at least % (:) good r-tuples in Ny (x) for y. (5.4)
Indeed, assume that (5.4) holds. There are at most r(.";) r-tuples in (V(rH)) that contain at least one
element from {y1, ..., y}. Therefore, there are at least y(})/2—r(,",) r-tuples in Ny (x) that are good
for y and disjoint from y. Let us pick such an r-tuple x' = x; ...x.. Thus, [INg(X') NNy (y)| > y(f,)/Z.
We pick y'=y}...y., € Ny(x) N Ny(y) such that y’ is disjoint from x. Note that there are at least
y(p)/2—71'(.",) choices for y’. Notice that the k-set {x,...,x],y},..., y.} is an absorbing set for Q
since X ...X Y} ... Y., X1 ... XXy ... X and yq...y:y] ...y, are edges in H. Since an absorbing k-set
may be counted (’;) times, this argument implies that there are at least

GO DG )=

absorbing k-sets for Q.

Now assume that Case (a) holds. This implies that there are at least (% +)(}) good r-tuples for y.
By (5.3), du(x) = (1/2 — 2a)(}). So there are at least (y —2a)(}) >y (})/2 r-tuples in Ny (x) that are
good for y. Thus, (5.4) holds and consequently Q has at least y3nk absorbing k-sets.

Next assume that Case (b) holds. For any two (not necessarily disjoint) r’-tuples a,b € (Vif'”) we
call a a good r'-tuple for b if [Ny(a) N Ny (b)| > y(})/2. By arguing in an identical fashion as before,
note that Q has at least y3n* absorbing k-sets if there are

at least % (:/) good r’-tuples in Ny ) for x. (5.5)

Let A:={ae (Vﬁf'”): dy(a) > (% +¥)(})}. So by assumption, |A| > 2y (}). Note that every a € A
is good for arbitrary b € (VT)) since [Ng(@)| > (1/2+ y)(}). INu(b)| > (1/2 — 2)(}) and therefore
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INH(@ NN (b)| = (v —2)(}) = ¥ (})/2. Thus, if [AN Ny (y)| > y(7)/2 then (5.5) is satisfied. There-
fore, we may assume that [A NNy (y)| < ¥ (p)/2.

We also assume that (5.4) fails (otherwise we are done). Thus, less than y( )/2 r-tuples in Ny (x)
are good for y and consequently, at least (3 —2a0)(}) — % (7) r-tuples X' € Ny (x) satisfy [Ny (x) N
Nu(y)| <y (})/2. We pick such an r-tuple x’ that is disjoint from y; there are at least G -2 -

2™ —r(,",) = & —)(7) r-tuples with this property. Since

wiromeal (3 -2)(2)-30)+ () o)

it follows that

|ANNy(X)| > 1Al = |[ANNu ()| = [(Nu(¥') UNu(D))]

n y (n n\ _y(n
> 2y<r’) a 5(#) - y(r/) T2 <r’>' (56)

Now pick any w' € AN Ny (x') that is disjoint from Q. (Note there are at least & () —k(," ) > L))
choices for w’.) Next pick an r/—tuple X/ € Ny(y) such that X is disjoint from x, ¥ and w’. (There
are at least (3 —2a) (1) —2k(.,",) = (3 — ¥)(0) choices for y' here.) By the definition of A, there are
at least (y — 2a)(") r-sets in NH(W’) ﬂ Ny (y'). We pick z' € Ny (w') N Ny (y") such that Z' is disjoint
from x, y and x'. (There are at least (y — Za)( ) —2k(,";) = ¥ (7)/2 choices for z' here.)

Let S denote the 2k-set consisting of the vertices contained in x’, y’, w’' and z'. By the choice of
X, X w’ and Z, S is an absorbing 2k-set for Q.

In summary, there are at least (l ¥)(}) choices for x, at least % (7)) choices for w’, at least

— y)(r) choices for y and at least ¥ ( ) choices for Z'. Since each absorbing 2k-set may be counted

(Zrk) (Zkr,_r) (;) times, there are at least

G O3 C)50) g = v

r r r

absorbing 2k-sets for Q, as desired. O

Proof of Claim 5.6. Note that by (5.2) and (5.3),
dc(x) > (1/2—y)N' forallxe X" and dg(y)>(1/2—y)N forallye y". (5.7)
Further by assumption, the following conditions hold:
(i) The,re exists a vertex a € X" such that at most (% + y)N vertices b € X" satisfy |[Ng(a) N Ng(b)| >
N’;
(ii) |)1v eY": dg(v) > (2 +Y)N}| <2yN'.

Let B’ :=Ng(a) € Y" and A” :={x e X": |B'NNg(x)| < yN'}. Then |B'| > (% —y)N" and |A”| >
1
(z —V)N.
We also need an upper bound on |B’|. Fix x € A”. Since |N¢(x)| > (% —y)N’, we have

1
|B’|+(E—y>N’ |B'| +|N¢(®)| = |[B"UN¢(x)|+|B'NNc(®)| <N+ yN,

which gives |B’| < (% +2y)N'.
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By the definition of A”, we have e(A”, B’) < yN’|A”|. Thus, (5.7) implies that

e(A”,B") > (1/2 —2y)N'|A"|, (5.8)

where B” := Y™ \ B’. Next we show that e(A’, B”) is very small, where A’ := X"\ A”.
Claim 5.7.e(A’, B") < 8.,/7|A'||B".

Proof. Assume for a contradiction that the claim is false. Set By :={x € B”: dg(x, A") > 4./7|A’|}. By
assumption

BUTIA[B| < (A B) < IBiI|A + 4y7 ][5,
which gives that |By| > 4,/7|B"|. By (5.8), as |B”| < (3 +y)N’, we derive that

" " ] ! " 1 4 " " "
e(A”,B )><5—2y)N]A \>(1—6y)(5+y>N|A | > (1 —6y)|A"||B"]. (5.9)

Let By :={x e B": dg(x,A”) > (1 —3/¥)|A”|}. We claim that |Bz| > (1 — 3,/¥)|B”|. Indeed, con-
sider e(A”, B") := |A"||B"| —e(A", B"). If | Bz| < (1—3/7)|B"|, then &(A”, B") >3./¥|B"|3/7|A"| =
9y|A”||B”|, contradicting (5.9).

Let Bg := B N B,. We have that [Bg| > (4,/¥ —3./¥)IB"| = ./¥|B"|. Since |B”"| > N'/3 and y <
1/36, we derive that |Bg| > ,/¥N’/3 > 2y N'. For every x € Bo, we have

de(x) =dg(x, A") +dg(x, A")
> (1 =3/V)|A"|+4yV|A | = -1yP)|A"|+4y¥N

1 7 1
><5—5\/7+4\/7—V>N2<5+V>N.

(The penultimate inequality follows since |A”| > (% — y)N.) This is a contradiction to (ii). O

Recall that e(A”, B’) < yN'|A”| < Yy NN'. Thus, by (5.7)
e(A,B')=e(X",B")—e(A”,B') > (1/2—y)N|B'| —yNN' > (1/2 — 4y)N|B’|. (5.10)

(The last inequality follows since |B’| > (1/2 — y)N'.) Therefore, as e(A’, B") < |A’||B’|, we have |A’| >
(1/2 — 4y)N.

Pick a set X’ € X" of size [N/2] such that |X' N A’| is maximized. Similarly, pick a set Y/ € Y of
size [N’/2] such that |Y’ N B’| is maximized. Set X" := X"\ X’ and Y :=Y" \ Y.

Claim 5.8. The following conditions hold:

e e(X',Y) > |X'||Y'| - BNN'/4;
o (X", Y") = |X"||Y"| - BNN'/4;
e e(X,Y"),e(X",Y') < BNN'/4.

Proof. Since |A’ N X'| > (1/2 — 4y)N, we have |A” N X'| < [N/2] — (1/2 — 4y)N < 5y N. Further,
IB'NY'|>(1/2—y)N and so [B” NY'| < [N'/2] — (1/2 — y)N' < 2y N'. Hence,

(5.8)
e(X”, Y//) EG(AN, B//) _ |A//\X//|N/ _ |B// \ Y//|N > (1/2 —2)/)N/|AN| _ 7)/NN/

> (1/4—9y)NN" > |X"||Y"| — BNN'/4.

(The penultimate inequality follows as |A”| > (1/2 — y)N.) Note that |A"\ X'| < YN as |A| <
(1/24 y)N and |B"\ Y| <2yN as |B'| < (1/2+2y)N'. Thus,
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(5.10)
e(X,Y')>e(A,B)—|A\X|N'=|B'\Y|N > (1/2—4y)N|B’|—3yNN’
> (1/4—6y)NN" > |X'||Y'| — BNN'/4.
(The penultimate inequality follows as |B’| > (1/2 — y)N'.) Since |A’| > (1/2 —4y)N, | X"\ A’| <5yN.
Further, |B”| > (1/2 —2y)N’ and so |Y” \ B”| <2y N’. Thus, by Claim 5.7,
e(X',Y")<e(A',B")+|X'\A’|N'+|Y"\ B"|N <8y|A"||B"| + 7y NN' < BNN'/4.
Since |A”| > (1/2 — y)N, | X"\ A”| < y N. Further, |B’| > (1/2 — y)N’ and so |Y"\ B’| > 2y N’. Hence,
e(X",Y')<e(A”,B')+|X"\A"IN +|Y'\ B'|N < yN'|A"| +3yNN'<BNN'/4. O
Claim 5.8 immediately implies that G = B, £ BNN’, as desired. O

5.2. Proof of Lemma 5.4

Define constants 8, 81, n and ng € N so that

O<1l/npkKBKPpr<KnKe, 1/k. (5.11)

Let H and G be as in the statement of the lemma. Throughout this section, when it is clear from the
context, we will write V for the vertex set V(H) and E for the edge set E(/H). Note that r > 2 and
> 1 as k > 3. Since G is a bipartite graph with vertex classes X" and Y™, and G = B, & BNN’,

there exists a partition X1, X of X" and a partition Y7, Y, of Y" so that

o |X1|=T[N/21, | X2l = LN/2], |Y1]=[N'/2], and |Y2| = [N'/2];
o |[E(G)AE(Kx, v, UKx,.v,)| < BNN’, in other words, G becomes the disjoint union of two complete
bipartite graphs Ky, vy, and Kx, vy, after adding or removing at most SNN’ edges.

Throughout the proof, we assume that By, y = Kx,.y, U Kx,.v,-
We call a k-subset S of V bad if there are two partitions P, P’ and Q, Q' of S such that both of
the following conditions hold:

(1) PP’ € E(By k), namely, either P € X; and P’ € Yj or P € X and P’ € Y;
(2) QQ' ¢ E(By), namely, either Q € X; and Q" €Y, or Q € Xz and Q' € Y;.

Claim 5.9. At most BNN’ k-subsets of V are bad.

Proof. Let S C V be a bad k-set and let P, P’ and Q, Q' be partitions of S as in the definition of
a bad k-set. If S € E(H), then QQ’ € E(G) \ E(By); otherwise PP’ € E(B, k) \ E(G). In either case
S gives rise to an edge from E(G)AE(By ). Furthermore, two different bad k-sets give two different
edges of E(G)AE(Bp)- Since |E(G)AE(Bn k)| < BNN’, the number of bad k-sets is at most SNN'. O

Viewing X7, X, as the colors of r-subsets of V, we define the color function ¢: X" — {X1, X3}

with ¢ (P) = X; if P € X;. Similarly we define  : Y" = {Y1, Y2} such that ¥ (Q)=Y;if Q €Y;. Given
two distinct vertices u, v € V, we define two symmetric functions®

74
C(u,v):= {Se <r+1>' u,ves, ¢(S—u):¢(5—v)},

D(u,v):= {Se( v >: u,ves, ¢(S—u)7é¢(5—v)}.
r+1

3 It looks simpler to define C, D, C’, D’ functions as the families of (r — 1)-sets or (' — 1)-sets instead, e.g., C'(u,v) = (T €

(YMYI: (T +u) = (T + v)). However, when k =3 (thus r’ = 1), this new definition defines C'(u,v) = for all u,v eV,
while our present definition of C’(u, v) returns {uv} when ¥ (u) = (v) and ¢ otherwise.
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Similarly, we define
C'(u,v):=3Se v ru,vesS, Yy S—-—u)=y(S—-v)
’ - r/ —‘,—1 . ’ ) - )

/ P V . — —
D'(u,v):= {Se (r/—}-l)' u,veSsS, v(S—u)#=¢(S v)}.

Note that the definition of D(u, v) is different to the definition of Dr(u, v) stated in Section 2.3. Thus,
when referring to the latter parameter we never omit the subscript. Note that

n—2 , , n—2
|C(u, v)| + |D@, v)|= <r_ 1) and |C'(u,v)|+|D'(u,v)| = <r/_ 1). (5.12)

Claim 5.10. All but at most $1n? pairs of vertices u, v € V satisfy the following two properties:

(i) IC(u, v)| < B’ if and only if |C'(u, v)| < " 1
(ii) |D(u, v)| < pin"~ if and only if |D'(u, v)| < pyn” .

Proof. Suppose for a contradiction that the claim is false. Consider two vertices u, v € V such that
(i) fails. Suppose that |C(u, v)| < Bin"~! but |C'(u, v)| > ﬁmr’*] (the other case can be proven anal-
ogously). By (5.12), we have |D(u, v)| > ('rl:f) — Bin"~!. We claim that P U Q is a bad k-set for all
P eD(u,v) and Q € C'(u, v) such that PN Q = {u, v}. Indeed, P € D(u, v) implies that one of P —u
and P — v is in Xy and the other is in X3, and Q € C'(u, v) implies that Q —u and Q — v are both
in Y; for some i € {1,2}. If PN Q = {u, v}, then precisely one of the two pairs {P —u, Q — v} and
{P —v,Q —u}is in E(Byk). Thus, by definition, the k-set P U Q is bad.

Next consider a pair of vertices u,v € V that fails (ii). Suppose that |D(u,v)| < gin"~! but
D’(u,v) > gin” ! (again, the other case can be proven analogously). By (5.12), |C(u, v)| > (';:12) -
B!, A similar argument to before yields that P’ U Q’ is a bad k-set for all P’ € C(u,v) and
Q' € D'(u,v) such that P’ NQ ' = {u, v}.

Note that given any (' — 1)-set, at most (' — 1)(,",) (r — 1)-subsets of V are not disjoint from
this set. Thus, given any (' + 1)-set Q that contains u and v, at most (r' — 1)(rfz) (r+1)-sets P that
contains u and v satisfy P N Q # {u, v}. Further, note that (’rl:f) —pin = = 1D(.",) = i
Therefore, when considering all possible pairs of vertices u, v € V that fail (i) or (ii), we obtain at

least
pin? x pin"™ 1 x " =1 a1y (n\ (n
ky (k—2 = 'B r r
()=

r—1

k—2

bad k-sets as a k-set may be counted at most (12‘) (7

) times. This contradicts Claim 5.9. O

We call an (unordered) pair of vertices u,v € V consistent if u, v satisfy both (i) and (ii) from
Claim 5.10. Thus, all but at most Bin? pairs of vertices from V are consistent. We call two vertices
u,v eV similar if |Cu,v)| < pin"~1 or |[D(u, v)| < gin’~ L.

Claim 5.11. Less than B1n? pairs of vertices u, v € V are consistent but not similar.

Proof. Let u, v € V be consistent but not similar. Thus, |C(u, V)| > Bin"~! and |D(u, v)| > Bin"~\.
Since u, v are consistent, |C(u, v)| > Bin"~! implies that |C'(u, v)| > ﬂlnr"1. As seen in the proof of
Claim 5.10, P U Q is a bad k-set for all P € D(u, v) and Q € C'(u, v) such that P N Q = {u, v}. Thus,
if there are at least ﬁlnz pairs of vertices u, v € V that are not similar but are consistent, then the
number of bad k-subsets of V is at least
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pin?(Bin — (' = D(,"))pin" ! 51 (n\ (n
- > B s
e Lo
2)\r—-1

contradicting Claim 5.9. O

Let vg € V be a vertex such that at least (1 — 481)n vertices of V are both consistent and similar
to vg: such a vertex vg exists because otherwise at least 4,31n2/2 = 2ﬁ1n2 pairs of vertices are not
consistent or are not similar, contradicting Claim 5.10 or Claim 5.11. Let V be the set of vertices in
V that are not consistent or not similar to vg. (Note that vo € Vg.) The choice of vy implies that
|Vo| < 4B1n. Define

Vii={veV\ Vo [D(v,vo)|<Bin" '} and Vy:={veV\Vq |[C(v,vo)|<pn '}

Note that V1 NV, =@ otherwise by (5.12), it implies that (”’2

"~7) <2pin""!, a contradiction.

Claim 5.12. The following properties hold:

(@) |D(v,v)| <3 and |D'(v,v')| < 3B1n" ! for all pairs of distinct vertices v, v’ € V such that
v,veViorv,v eVy;
(b) |C(v,v)| <31 Land |C'(v,v')| <3Bn" ! forallv e Vyand v/ € V>.

Proof. Let A denote the set of (r — 1)-subsets of V that contain vo and let A’ denote the set of
(r' —1)-subsets of V that contain vq. Consider distinct v, v/ € V —vg and suppose TU{v, v’} € D(v, V')
for some (r — 1)-subset T of V — {v, v’}. Then either T € A or T CV — {vg, v, v'}. In the latter case,
as T+ v and T + v/ have different colors, one of them has the same color as T + vg and the other
has a different color to T + vq. Thus, either (i) T U {v, vo} € D(v,vg) and T U {v’, vo} € C(V/, vp) or
(ii) TU{v, vo} € C(v,vp) and T U {v’, vo} € D(V/, vo). This implies that

|D(v,v')| < |D(v,vo)| + |D(v', vo)| + Al and

|D(v.v')| <[C(v,vo)| + |C(v'. vo)| + Al (513)

for all distinct v, v/ € V. An analogous argument implies that
|D'(v,v')| < |D'(v.vo)| + |D'(V/, vo)| + |4'| and
|D'(v.v')| <|C'(v.vo)| + |C'(V'. vo) | + | A (5.14)

for all distinct v, v/ e V.
Consider any distinct v, v/ € V1. By the definition of V1 and (5.13), we have

|D(v,v')| < |D(v,vo)| + |D(v', vo)| + Al < 38"

As v, vg and v/, vq are both consistent pairs, the fact that v, v/ € V1 implies that |D’(v, vg)| < ;8111T"1
and |D’(v’, vo)| < gin” ~'. Thus, by (5.14) we have that |D’(v, v')| < 280" ~1 4+ |A’| < 380" 1.
Next consider any distinct v, v’ € V5. By the definition of V, and (5.13), we have

|D(v. V)| <|C(v,vo)| +|C(V/, vo)| + Al < 380",

We can show that |D’(v, v/)| < 3Bin" ! as before.

Consider any v € Vq and v’ € V,. Suppose that T €V — {vp, v, v’} is an (r — 1)-set such that
TU{v,v'}CC(v,v).So T+ v and T + v’/ have the same color. Hence, T + v¢ has either a different
color to T + v or the same color as T + v’. Thus,

|C(v. V)| <|D(v, vo)| + [C(V/, vo)| + Al < 30",

where the second inequality follows by the definitions of V; and V3. An analogous argument gives
that |C'(v,v)| <380 1. O
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Once we have obtained more information we will prove that |V| and |V;| are close to n/2. How-
ever, to prove Claim 5.14 we first require the following weaker lower bounds on |V1| and |V;|.

Claim 5.13. | V1], [V2] > 5.

Proof. Suppose that |V \ V1| =cn for some c. Let us consider

m:= Z |D(v, V)| < Z |D(v, V)| + Z |D(v,v')].

VV'G(‘;) VV/E(Vz1) v¢Vy,veVv

By Claim 5.12(a), the first term is at most (5)38in"~! < 2gin"*!. The second term is at most
en([)n < G5! Together this gives that m < (281 +¢/(r — Hhn'*.

On the other hand, the definition of B, yields |Xi| = [( )/2] Applying Lemma 2.2 to the r-
uniform hypergraph F := (V, Xy), we derive that m > (§ — o) (1) = 5(ri1>' (note that Dp(v, V') =
D(v, V") for any distinct v and v’). Together with the upper bound for m, it follows that

c 1 c 1

281 + > and so > ,
r—1! 50+ 1)! r—1! 100+ 1!

since 81 <« 1/r. This implies that c> m Since V \ V1 = VU V; and |Vo| < 481n, we derive

that |V3| > m —4p1n > 20 = (again using B1 < 1/r). An analogous argument implies that |V1| >

_n_
20r2 "
Given two disjoint subsets U1, Uz € V and two integers i, j > 0, we call an (i + j)-subset S €V

an UiUé—set, and write S € U%Ué, if SNUq|=iand |SNUz| =j. Let ap :=+/B1 and a1 =0 +
%(20r3)rﬁ1 for 0<i<r. Set ny :=|V4| and ny :=|V3|.

Claim 5.14.

(1) Foralli=0,...,r, atleast (1 — ai)(”rl__ii)(”iz) V{’ivé-sets arein X, where j; € {1, 2} and jiz1 # jis
(2) Foralli=0,...,r, atleast (1 — o) (" ) (") VI ~'Vi-sets arein Y ;, where j. e {1,2} and j i
i 1 2 Ji i i+1 i

r'—i

Proof. We only prove the first assertion as the proof for the second is analogous (even in the case
when 1’ = 1). We proceed by induction on i. We first apply Lemma 2.2 to the r-uniform hypergraph
F with vertex set V; and edge set X1 N (Vr]) If F has edge density p € [ag, 1 — ap], then there
are vertices v, v’ € V1 such that |Dg(v, V)| > ap(1 — ao)nr’l/(r + 1)!. However, by Claim 5.12(a),
ID(v,v")| < 3B1n" 1. Since og = /B1 < 1/r and ny >n/20r? by Claim 5.13, we have

,)| > ap(1 —Oto)nq_1 > oo(1 —ap) -
(r+1)! (r+1)!(20r2)r-1

a contradiction. Thus, p > 1—ag or p <ap. If p > 1 —ap, then at least (1 — ao)("}) r-subsets of V;
are in X; and we set jo:=1.If p <o, then at most arg("}}) r-subsets of V are in X;. Thus, at least
(1 —a)("}!) r-subsets of Vy are in X and we set jo :=2.

For the induction step, we actually prove that there are vertices v1, ..., v; € V¢ such that for each
0<i<r, atleast (1 —ap)( ')(”f) (Vi \{v1,...,vi)'"'Vi-sets are in Xj,, where j; = jo if i is even
and j; =3 — jo if i is odd. Suppose this assertion holds for some 0 <i <r. By an averaging argument,
there exists a vertex vi;1 € V1 \{v1,...,v;} and at least

(1 —m)("l _4i> ("?) "l _q —m)("‘ - 1)("?)
r—i iJn—i r—i—1 i

(r—1)-sets P e (V1 \{vy,..., v,q_l})r*"*1 Vé such that {v;;1} U P € Xj,. This implies that

3" > [D(v, V)| = |DF(v, >30T,




A. Treglown, Y. Zhao / Journal of Combinatorial Theory, Series A 120 (2013) 1463-1482 1479

{uevy, Pe(vy \{V1,---,Vi+1})r7i7]V§3 ugP, {(vip1}UP e X}

>(1- aa("rl__ i__ll) (”Z)mz —i).

Since viyq € V1, given any u € V,, we have |C(vi1, u)| <38n" ! by Claim 5.12(b). Thus,

el
|{u€V2,P€(V]\{V],...,V,’_;,.]})r vl {upUPeXs_jl
nm—i—1\/n
><1—ai><1 . )(?)(nz—n—aﬁmf—]nz
r—i—1 i
Let m;,1 be the number of (Vq\ {vy,...,vig )" ~"! V;“—sets in X3_j,. We thus have
n]—i—l ny le—i 3ﬂ1 r—1
mijy1 = (1 —aj . A ———n n
12 ( l)<r—1—1)<l>1+1 i+1 2

) n1—i—1 np ﬂ
2(1_al)(r—i—1)(i+1>_—1n

_l’_
It is easy to see that (%!~ [)(t) >n|"'nb /" for 0 <t <r. Claim 5.13 states that nq,ny >
quently,

(m — f) (n2> > <L>r andso 1’ < (20r3)r<n1 —t) (112)’
r—t )\t 20r3 r—t )\t
for all 0 <t <r. Therefore,
i1 > {1 = ai)<nr]— . 11> <i 121) B % (20r3)r(nrl— . 11> <i 121>
i—1 np
—(1—al+1>( 1—1>(i+1>’

as desired. O

n
2 552 Conse

Set o 1= maxo<i<r &, N1 := )" +4p; and i :=ny +ny = |V1 U Va|.
Claim 5.15. | V1|, |V2| > (1 — ny)n/2.
Proof. We have that i > (1 — 4B1)n since |Vo| < 4B1n. Let ¢ :=ny/fi. It suffices to show that 1 71—
Q)" << 31+ (o)) because this implies that

1
m=ci>o(1- Q)1 —4pn> (1 - m)—

and ny = (1 -0 > $(1— Q)1 —4B)n > (1 — n1)n/2.
Without loss of generality, assume that jo =1 in the statement of Claim 5.14. Thus,

x> Y (1—ai)<”r1__ii><"f>><l—a) ) (r”_li)<"f>—o(nr*1).

0<i<r, i even 0<i<r, i even

Hence, by Proposition 2.3, |X1]| > (1 — oz)g—rr!(l +2c—1)") — 0@ 1), which implies that

X1] > (1= a1 = 4B 21+ 2c = 1)) = 0 ("),

If 2c—1)" > 2«a, then
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1—a)(1=4)"(14+Q2c—1D") =14 a/2,
since 81 = oco < a? « 1/r. Consequently, |X;| > (1 +oz/4)§—rr!. This contradicts the assumption |X;| =
r(H1< 2r' Thus,

2c—1" <2¢. (5.15)

If ¢ >1/2, then (5.15) implies that ¢ < (1 4+ (2a)!/")/2 and we are done. Otherwise assume that
c<1/2.1f r is even, then (5.15) implies that (1 —2c)" = (2c — 1)" < 2« and so ¢ > (1 — 2a)'/") /2. If
r is odd, then we apply Claim 5.14 and Proposition 2.3 obtaining that

nq —i ny n’ r r—1
X2 > 1—q >1-a)—(1—-QR2c—-1))—0 .
X2 ‘Z‘ ( o(r_l.)(l.) (1—0)s(1-@c=D) -0
0<i<r, i odd
If1-— (Zc —1D'=14+(1-2c)" > 1+ 2, then we obtain a contradiction as before because |X,| =

L(7)J < 4. Hence, (1 —2¢)" <2« and consequently ¢ > (1 — (2«)'/")/2, as required. O

By Claim 5.15, there exists a partition Vi, V) of V such that |V{| = |n/2], |V)| = [n/2] and
[VinV/| > (1 —n1)n/2 for each i =1, 2.

Claim 5.16. The hypergraph (V, X1) is n-close to B, ;(V{, V3) or Bnr(V!, V1), and the hypergraph (V, Y1)
is n-close to By (V1, V5) or By (V] V).

Proof. By Claim 5.14, at least

S ) R R

0<i<r, i even 0<igr, i even

r-subsets of V; UV, are in X;, and have an even number of vertices in V3, and at least (1 —
@) Y o<i<r. i odd (") (") — o) r-subsets of VUV, are in Xj, and have an odd number of
vertices in V5.

Suppose that r is odd. Set B := Bj (V1, V2). By definition,

nq ny — n ny
E®I= 2 <r—i>(i) and [EB= ) (r—i)(i)'
0<igr, i even 0<i<r, i odd

Claim 5.14 thus implies that
|[EB)NXjo| > (1 —a)|EMB)|—0(n™") and
|[EB)NXj,| >0 -a)|EB)|—0nT). (5.16)

It follows that

|[EB)\ Xjo| = [EB)| — |[EB) N Xjo| <a|EB)|+0(n") < 2a(rr'>.

On the other hand, letting Xj, := Xj, N (*\"°), we have
- n—1 - - n—1
[Xig \EB| < [Xjo \EB)|+ Vol ) <[Xjo NEB)|+4pin(

|[EB)| — [EB) N X, | +4,81r(n>

(5.16)

< «|EB)|+0(n"™ 1)+4ﬂ1r< ><20{<:>.

We thus derive that |[E(B)AXj,| < 4a(}).
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Note that at most Z%n vertices of V are not in (Vi N V]) U (V, NV)) and each edge in
E(B)AE(By,r(V1, V4)) must contain such a vertex. Hence,

! I n_l
|E(B)AE(Bnr (V1. V3))| < ’71”<r _ 1)'

Therefore,

PR n—1 n n
|E(Bn.r (V1. V5))AXjo| < mn o) Tl ) <ol )
Since jo € (1,2}, we conclude that (V, X1) is n-close to By (V}, V}) or Bur(V!, V%). The case when
r is even is analogous. Moreover, analogous arguments show that (V, Y1) is n-close to B, (V], V})
or By (V4,V5). O

Claim 5.17. H is e-close to By x (V{, V5) or Bux(V!, Vo).

Proof. Since we always consider the partition Vi, V) of V, we write, for example, 5, instead of
By k[V1, V4] throughout the proof. We call a set S €V even if |SN V]| is even. Otherwise we say
that S is odd. Thus, E(B; ) consists of all odd r-sets, and E(Bn_r/) consists of all even r’-sets. For
convenience, we use Xj, Y; to denote the hypergraphs (V, X;), (V,Y;) fori=1,2.

There are four possible cases:

We claim that H =B,y £ enk under Cases 2 and 3, and H = B, x & en* under Cases 1 and 4. Below
we show that H =B, + enk under Case 2. (The other cases are analogous.)
Assume that X; = By £nn" and Y; = By, » +nn" . Our goal is to show that |E(H)AE (B )| < enk.
First we show that [E(H) \ E(Bp )| < enk/2. Consider any k-set Q from E(H) \ E(By k). Since
Q ¢ E(By k) (and thus |Q NV{| is even), Q can be partitioned into (i) an even r-set x and an even r’'-
set y or (ii) an odd r-set x and an odd r’-set y. As Q € E(H), in both cases we have that {x, y} € E(G).
Thus,

|[ECH\EBni)| <1211+ | 23],

where X7 is the set of all disjoint w € X", z ¢ Y" such that w and z are even and {w, z} € E(G) and
3, is the set of all disjoint w € X", z€ Y" such that w and z are odd and {w, z} € E(G).

Since X1 = By, 0" (and thus X; = By r £ 1n"), there are at most nn' () < nn* pairs {w, z} € 24
such that w is not in X,. Since Y; = B, + nn", there are at most nn" () < nnk pairs {w, z} € T,
such that z is not in Y;. By the structure of G, at most B(")(") < Bn* pairs w € X2, z € Y7 are such
that {w, z} € E(G). Together, this implies that | Z;| < (n + n + B)n* < enk/4.

Since Xy = By £ nn’, there are at most nnr(f,) < nnk pairs {w, z} € X, such that w is not in X;.
Since Y, = B, » & nn", there are at most nn” (") < nn* pairs {w, z} € X, such that z is not in Y,. By
the structure of G, at most B(7) (") < pn* pairs w € X1, z € Y; are such that {w, z} € E(G). Together,
this implies that | 2| < (7 4+ n + B)nk < enk/4. So indeed, |E(H) \ E(Bn1)| < enk/2.

Next we show that [E(B,x) \ E(H)| < snk/Z. Consider any k-set Q from E(B,) \ E(H). Since
Q € E(By ) (and thus |[Q NV{| is odd), we can partition Q into (i) an even r-set x and an odd r'-set
y or (ii) an odd r-set x and an even r’-set y. As Q ¢ E(H), in both cases we have that {x, y} ¢ E(G).
Thus,
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|EBni) \ E()| < [T+ 112,

where I7 is the set of all disjoint w € X', z € Y™ such that w is even, z is odd and {w, z} ¢ E(G) and
I is the set of all disjoint w € X", z ¢ Y" such that w is odd, z is even and {w, z} ¢ E(G).

Since X3 = By,r & nn", there are at most nn'([}) < nn* pairs {w, z} € Il such that w is not in Xa.
Since Y = By, + nn’, there are at most nn" (") < mn* pairs {w, z} € I'l such that z is not in Y3. By
the structure of G, at most B(7)()) < Bnk pairs w € X, z € Y are such that {w, z} ¢ E(G). Together,
this implies that |I7| < (n + n + B)n* < enk/4.

Since X1 = By, +nn', there are at most nn'([) <
Since Yq = By £ nn”, there are at most nn” (}) < nn* pairs {w,z} € I such that z is not in Yj.
By the structure of G, at most B(7)(7) < pn* pairs w € Xy, z € Yy are such that {w,z} ¢ E(G). To-
gether, this implies that || < (7 + n + g)n* < enk/4. So indeed, [E(Bn) \ E(H)| < enk/2. Therefore
|[E(H)AE(Bpy)| < enk, as desired. O

nnk pairs {w, z} € I such that w is not in Xj.

This thus completes the proof of Lemma 5.4.
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