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of Keevash and Sudakov relating to the Turán number of the
expanded triangle.
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1. Introduction

A perfect matching in a hypergraph H is a collection of vertex-disjoint edges of H which cover
the vertex set V (H) of H . It is unlikely that there exists a characterisation of all those k-uniform
hypergraphs that contain a perfect matching for k � 3. Indeed, Garey and Johnson [6] showed that
the decision problem whether a k-uniform hypergraph contains a perfect matching is NP-complete
for k � 3. (In contrast, a theorem of Tutte [24] gives a characterisation of all those graphs which
contain a perfect matching.) It is natural therefore to seek simple sufficient conditions that ensure a
perfect matching in a k-uniform hypergraph.

Given a k-uniform hypergraph H with an �-element vertex set S (where 0 � � � k − 1) we define
dH (S) to be the number of edges containing S . The minimum �-degree δ�(H) of H is the minimum of
dH (S) over all �-element sets of vertices in H . Clearly δ0(H) is the number of edges in H . We also
refer to δ1(H) as the minimum vertex degree of H and δk−1(H) the minimum codegree of H .

One of the earliest results on perfect matchings was given by Daykin and Häggkvist [4], who
showed that a k-uniform hypergraph H on n vertices contains a perfect matching provided that
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δ1(H) � (1 − 1/k)
(n−1

k−1

)
. Recently there has been much interest in establishing minimum �-degree

thresholds that force a perfect matching in a k-uniform hypergraph. See [19] for a survey on
matchings (and Hamilton cycles) in hypergraphs. In particular, Rödl, Ruciński and Szemerédi [22]
determined the minimum codegree threshold that ensures a perfect matching in a k-uniform hyper-
graph for all k � 3. The threshold is n/2 − k + C , where C ∈ {3/2,2,5/2,3} depends on the values
of n and k. This improved bounds given in [13,21]. A k-partite version was proved by Aharoni, Geor-
gakopoulos and Sprüssel [1].

Kühn, Osthus and Treglown [14] and independently Khan [11] determined the precise minimum
vertex degree threshold that forces a perfect matching in a 3-uniform hypergraph. (This improved
on an “asymptotically exact” result of Hàn, Person and Schacht [8].) Recently a 3-partite version was
proved by Lo and Markström [15]. Khan [12] has also determined the exact minimum vertex degree
threshold for 4-uniform hypergraphs. (Lo and Markström [16] have a proof of an approximate ver-
sion of this result.) For k � 5, the precise minimum vertex degree threshold which ensures a perfect
matching in a k-uniform hypergraph is not known.

The situation for �-degrees where 1 < � < k − 1 is also still open. Hàn, Person and Schacht [8]
provided conditions on δ�(H) that ensure a perfect matching in the case when 1 � � < k/2. These
bounds were subsequently lowered by Markström and Ruciński [17]. Recently, Alon et al. [2] gave
a connection between the minimum �-degree that forces a perfect matching in a k-uniform hyper-
graph and the minimum �-degree that forces a perfect fractional matching. As a consequence of this
result they determined, asymptotically, the minimum �-degree which forces a perfect matching in a
k-uniform hypergraph for the following values of (k, �): (4,1), (5,1), (5,2), (6,2), and (7,3).

Pikhurko [18] showed that if � � k/2 and H is a k-uniform hypergraph whose order n is divisi-
ble by k then H has a perfect matching provided that δ�(H) � (1/2 + o(1))

( n
k−�

)
. This result is best

possible up to the o(1)-term (see the constructions in Hext(n,k) below).
In this paper we strengthen Pikhurko’s result for k-uniform hypergraphs when 4 divides k. In order

to state our results, we need more definitions. Fix a set V of n vertices. Given a partition V into non-
empty sets A, B , let Eodd(A, B) (Eeven(A, B)) denote the family of all k-element subsets of V that
intersect A in an odd (even) number of vertices. (Notice that the ordering of the vertex classes A, B
is important.) Define Bn,k(A, B) to be the k-uniform hypergraph with vertex set V = A ∪ B and edge
set Eodd(A, B). Note that the complement Bn,k(A, B) of Bn,k(A, B) has edge set Eeven(A, B).

Suppose n,k ∈ N such that k divides n and k � 2. Define Hext(n,k) to be the collection of the
following hypergraphs. First, Hext(n,k) contains all hypergraphs Bn,k(A, B) where |A| is odd. Second,
if n/k is odd then Hext(n,k) also contains all hypergraphs Bn,k(A, B) where |A| is even; if n/k is even
then Hext(n,k) also contains all hypergraphs Bn,k(A, B) where |A| is odd.

It is easy to see that no hypergraph in Hext(n,k) contains a perfect matching. Indeed, first assume
that |A| is even and n/k is odd. Since every edge of Bn,k(A, B) intersects A in an odd number of
vertices, one cannot cover A with an odd number of disjoint odd sets. Similarly Bn,k(A, B) does not
contain a perfect matching if |A| is odd and n/k is even. Finally, if |A| is odd then since every edge of
Bn,k(A, B) intersects A in an even number of vertices, Bn,k(A, B) does not contain a perfect matching.

Given � ∈ N such that k/2 � � � k − 1 define δ(n,k, �) to be the maximum of the minimum �-
degrees among all the hypergraphs in Hext(n,k). For example, it is not hard to see that

δ(n,k,k − 1) =

⎧⎪⎨
⎪⎩

n/2 − k + 2 if k/2 is even and n/k is odd,

n/2 − k + 3/2 if k is odd and (n − 1)/2 is odd,

n/2 − k + 1/2 if k is odd and (n − 1)/2 is even,

n/2 − k + 1 otherwise.

(1)

The following is our main result.

Theorem 1.1. Suppose r, � ∈ N such that 2r � � � 4r − 1. Then there exists an n0 ∈N such that the following
holds. Suppose H is a 4r-uniform hypergraph on n � n0 vertices where 4r divides n. If

δ�(H) > δ(n,4r, �)

then H contains a perfect matching.
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As explained before, the minimum �-degree condition in Theorem 1.1 is best possible. When k
is divisible by 4, Theorem 1.1 and (1) together give the aforementioned result of Rödl, Ruciński and
Szemerédi [22].

In general, the precise value of δ(n,k, �) is unknown because it is not known what value of |A|
maximizes the minimum �-degree of Bn,k(A, B) (or Bn,k(A, B)). Clearly one needs to know the degree
of every �-tuple of vertices from Bn,k(A, B) to establish the minimum �-degree of Bn,k(A, B). Further,
if one knows this then one can compute the total number of edges in Bn,k(A, B). However, for even k,
it is shown in [10, Section 3.1] that finding the value of |A| that maximizes the number of edges in
Bn,k(A, B) is equivalent to finding the minima of binary Krawtchouk polynomials, which is an open
problem. Thus, this would suggest that calculating δ(n,k, �) is likely a challenging task.

In Appendix A we give a tight upper bound on δ(n,4,2), which together with Theorem 1.1 gives
the minimum 2-degree threshold that forces a perfect matching in a 4-uniform hypergraph. This
result was recently independently proven by Czygrinow and Kamat [3].

Theorem 1.2. There exists an n0 ∈ N such that the following holds. Suppose that H is a 4-uniform hypergraph
on n � n0 vertices where n is divisible by 4. If

δ2(H) >
n2

4
− 5n

4
−

√
n − 3

2
+ 3

2

then H contains a perfect matching. Furthermore, this minimum degree condition is best possible.

Note that Theorem 1.2, together with the results of Rödl, Ruciński and Szemerédi [22] and
Khan [12], characterize the minimum �-degree threshold that forces a perfect matching in a 4-uniform
hypergraph for all 1 � �� 3.

The overall strategy for the proof of Theorem 1.1 is similar to that of Rödl, Ruciński and Sze-
merédi in [22], which in turn is typical for proving sharp results. Indeed, we split the argument
into ‘extremal’ and ‘non-extremal’ cases, and use the absorbing method developed by Rödl, Ruciński
and Szemerédi [20] in the non-extremal case. However, our non-extremal case is somewhat different
from [22]. We concentrate on the � = 2r case and study the structure of an auxiliary graph G(H),
whose vertices are all 2r-subsets of V (H), and two 2r-sets U , W are joined by an edge if and only if
U ∪ W ∈ E(H). Furthermore, we use the hypergraph removal lemma (see e.g. [7,23]) and a structural
result of Keevash and Sudakov [10].

In fact, the proof of Theorem 1.1 is such that most of the argument extends to a more general
setting. For example, we deal with the extremal case for k-uniform hypergraphs for all integers k � 2.
Several parts of the non-extremal case also generalize to 2r-uniform hypergraphs (where r ∈N). Thus,
it seems likely that our methods may be useful in making Pikhurko’s result exact for k-uniform hy-
pergraphs for all k � 2.

Conjecture 1.3. Suppose k, � ∈ N such that k/2 � �� k − 1. Then there exists an n0 ∈ N such that the follow-
ing holds. Suppose H is a k-uniform hypergraph on n � n0 vertices where k divides n. If

δ�(H) > δ(n,k, �)

then H contains a perfect matching.

2. Notation and preliminaries

2.1. Definitions and notation

Given a set X and an integer r � 2, we write
(X

r

)
for the set of all r-element subsets (r-subsets,

for short) of X . Let k, � ∈ N. Suppose H = (V , E) is a k-uniform hypergraph. Let {v1, . . . , vl} be an
�-subset of V (H). Often we will use the notation v , for example, to abbreviate {v1 · · · v�}. When it
is clear from the context we may also write v1 · · · v� (i.e. we drop the brackets). Given v ∈ (V (H)

�

)
,
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we write NH (v) or N(v) to denote the neighborhood of v , that is, the family of those (k − �)-subsets
of V (H) which, together with v , form an edge in H . Then |NH (v)| = dH (v). When considering �-
degree together with �′-degree for some �′ �= �, the following proposition is very useful (the proof is
a standard counting argument, which we omit).

Proposition 2.1. Let 0 � �� �′ < k and H be a k-uniform hypergraph. If δ�′ (H) � x
(n−�′

k−�′
)

for some 0 � x � 1,

then δ�(H) � x
(n−�

k−�

)
.

We denote the complement of H by H . That is, H := (V (H),
(V (H)

k

) \ E(H)). Given a set A ⊆ V (H),

H[A] denotes the k-uniform subhypergraph of H induced by A, namely, H[A] := (A, E(H) ∩ (A
k

)
). We

define H \ A := H[V (H) \ A]. Given B ⊆ E(H), we define H[B] := (V (H), B).
Let ε > 0. Suppose that H and H ′ are k-uniform hypergraphs on n vertices. We say that H is

ε-close to H ′ , and write H = H ′ ± εnk , if H becomes a copy of H ′ after adding and deleting at most
εnk edges. More precisely, let A	B := (A \ B) ∪ (B \ A) denote the symmetric difference of two sets A
and B . Then H is ε-close to H ′ if there is an isomorphic copy H̃ of H such that V (H̃) = V (H ′) and
|E(H̃)	E(H ′)| � εnk .

Given a graph G , x ∈ V (G) and Y ⊆ V (G), we denote by dG(x, Y ) the number of vertices y ∈ Y
such that xy ∈ E(G). A bipartite graph is called balanced if its vertex classes have equal size.

We will often write 0 < a1 
 a2 
 a3 to mean that we can choose the constants a1, a2, a3 from
right to left. More precisely, there are increasing functions f and g such that, given a3, whenever
we choose some a2 � f (a3) and a1 � g(a2), all calculations needed in our proof are valid. Hierarchies
with more constants are defined in the obvious way. Throughout the paper we omit floors and ceilings
whenever this does not affect the argument.

2.2. The extremal graphs Bn,k and Bn,k(t)

Given a k-uniform hypergraph H and a partition A, B of V (H), an edge e of H is called an Ar Bk−r

edge if |e ∩ A| = r and |e ∩ B| = k − r. An Ar Bk−r edge is called an (A, B)-even edge if r is even;
otherwise we call such an edge (A, B)-odd. We refer to such edges as even and odd respectively when
it is clear from the context what our partition of V (H) is. Two edges of H have the same parity if both
are even or both are odd. As defined earlier, Eodd(A, B) (Eeven(A, B)) is the family of all (A, B)-odd
(-even) edges.

Suppose that n ∈ N such that n � k � 2. Let A, B be a partition of a set of n vertices. Recall that
Bn,k(A, B) is the k-uniform hypergraph with vertex set A ∪ B and edge set Eodd(A, B), and its com-
plement Bn,k(A, B) has edge set Eeven(A, B). When |A| = �n/2� and |B| = n/2�, we simply denote
Bn,k(A, B) by Bn,k , and Bn,k(A, B) by Bn,k . When |A| = �n/2�+ t and |B| = n/2�− t for some integer
t such that −�n/2� < t < n/2�, we may denote Bn,k(A, B) by Bn,k(t). We refer to A and B as the
vertex classes of Bn,k and Bn,k(t).

2.3. Absorbing sets

Following the ideas of Rödl, Ruciński and Szemerédi [20,22], we define absorbing sets as follows:
Given a k-uniform hypergraph H , a set S ⊆ V (H) is called an absorbing set for Q ⊆ V (H), if both H[S]
and H[S ∪ Q ] contain perfect matchings. In this case, if the matching covering S is M , we also say M
absorbs Q .

When constructing our absorbing sets in Section 5 we will use the following Chernoff bound
for binomial distributions (see e.g. [9, Corollary 2.3]). Recall that the binomial random variable with
parameters (n, p) is the sum of n independent Bernoulli variables, each taking value 1 with probability
p or 0 with probability 1 − p.

Proposition 2.2. Suppose X has binomial distribution and 0 < a < 3/2. Then P(|X − EX | � aEX) �
2e− a2

3 EX .
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2.4. Two structural results for hypergraphs

In Section 5.3 we will show that if our hypergraph H does not contain a certain type of absorbing
set then H is in the extremal case. To deduce this, we will obtain structural information about two
auxiliary (hyper)graphs. This will in turn provide structural information about H . The following two
powerful results will be required for this.

Theorem 2.3 (Hypergraph Removal Lemma). (See [7,23].) Let γ > 0 and k, t ∈ N such that 2 � k � t. Given
any k-uniform hypergraph F on t vertices, there exists α = α(F , γ ) > 0 and n0 = n0(F , γ ) ∈ N such that the
following holds. Suppose H is a k-uniform hypergraph on n � n0 vertices such that H contains at most αnt

copies of F . Then H can be made F -free by deleting at most γnk edges.

Given r ∈ N, let C2r
3 denote the expanded 2r-uniform triangle. That is, C2r

3 consists of three disjoint
sets P1, P2, P3 of vertices of size r, and the edges P1 ∪ P2, P2 ∪ P3, P3 ∪ P1. Keevash and Sudakov [10]
used the following theorem to prove a conjecture of Frankl [5] concerning the Turán number of C2r

3 .

Theorem 2.4. (See [10].) For every γ > 0 and r ∈ N, there exists β = β(γ , r) > 0 such that if H is a C2r
3 -free

2r-uniform hypergraph on n vertices with

e(H) >

(
1

2
− β

)(
n

2r

)
,

then H = Bn,2r ± γn2r .

3. Proof of Theorem 1.1

Most of the paper is devoted to the proof of the following two results: we will prove Theorem 3.1
in Section 5 and Theorem 3.2 in Section 4.

Theorem 3.1. Let ε > 0 and r, � ∈ N such that 2r � � � 4r − 1. Then there exist α, ξ > 0 and n0 ∈ N such
that the following holds. Suppose that H is a 4r-uniform hypergraph on n � n0 vertices where 4r divides n. If

δ�(H)�
(

1

2
− α

)(
n − �

4r − �

)

then H is ε-close to Bn,4r or Bn,4r , or H contains a matching M of size |M| � ξn/(4r) that absorbs any set
W ⊆ V (H) \ V (M) such that |W | ∈ 4rN with |W |� ξ2n.

Notice that the minimum �-degree condition in Theorem 3.1 is weaker than that in Theorem 1.1.
Theorem 3.1 says that either H contains a reasonably small absorbing set which can absorb any small
set of vertices or H is ‘close’ to Bn,4r or Bn,4r . The next result shows that in the latter, ‘extremal case’,
H contains a perfect matching.

Theorem 3.2. Given 1 � �� k − 1, there exist ε > 0 and n0 ∈ N such that the following holds. Suppose that H
is a k-uniform hypergraph on n � n0 vertices such that n is divisible by k. If δ�(H) > δ(n,k, �) and H is ε-close
to Bn,k or Bn,k, then H contains a perfect matching.

The following result of Markström and Ruciński [17] is needed in the ‘non-extremal’ case.

Theorem 3.3. (See [17, Lemma 2].) For each integer k � 3, every 1 � � � k − 2 and every γ > 0 there exists
an n0 ∈ N such that the following holds. Suppose that H is a k-uniform hypergraph on n � n0 vertices such
that
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δ�(H) �
(

k − �

k
− 1

k(k−�)
+ γ

)(
n − �

k − �

)
.

Then H contains a matching covering all but at most
√

n vertices.

In [17], Markström and Ruciński only stated Theorem 3.3 for 1 � � < k/2. In fact, their proof
works for all values of � such that 1 � � � k − 2. In the case when � = k − 1, we need a result of Rödl,
Ruciński and Szemerédi [22, Fact 2.1]: if δk−1(H) � n/k, then H contains a matching covering all but
at most k2 vertices in H .

We now show that, to prove Theorem 1.1, it suffices to prove Theorems 3.1 and 3.2.

Proof of Theorem 1.1. Let ε be as in Theorem 3.2 and α, ξ be as in Theorem 3.1. That is,

0 < α,ξ 
 ε 
 1/r.

Assume that 2r � � � 4r − 1. Consider any sufficiently large 4r-uniform hypergraph H on n vertices
such that 4r divides n and

δ�(H) > δ(n,4r, �).

For any k � 2, it is clear that δk−1(Bn,k) � n/2 − (k − 1). Thus, by Proposition 2.1, δ�(Bn,4r) �
(1/2−α)

( n−�
4r−�

)
. Consequently δ�(H) � (1/2−α)

( n−�
4r−�

)
. Theorem 3.1 implies that either H is ε-close to

Bn,k or Bn,k or H contains a matching M of size |M| � ξn/(4r) that absorbs any set W ⊆ V (H)\ V (M)

such that |W | ∈ 4rN with |W | � ξ2n. In the former case Theorem 3.2 implies that H contains a perfect
matching. In the latter case set H ′ := H\V (M) and n′ := |V (H ′)|. Since � � 2r, α, ξ 
 1/r and n is
sufficiently large,

δ�

(
H ′) � δ�(H) − ∣∣V (M)

∣∣( n

4r − � − 1

)
�

(
4r − �

4r
− 1

(4r)(4r−�)
+ α

)(
n′ − �

4r − �

)
.

Hence, if �� 4r −2, Theorem 3.3 implies that H ′ contains a matching M ′ covering all but at most
√

n′
vertices in H ′ . If � = 4r − 1, then since δ�(H ′) � n′/(4r), Fact 2.1 from [22] implies that H ′ contains a
matching M ′ covering all but at most (4r)2 vertices in H ′ . In both cases set W := V (H ′)\V (M ′). Then
|W | � √

n′ � ξ2n. By definition of M , there is a matching M ′′ in H which covers V (M) ∪ W . Thus,
M ′ ∪ M ′′ is a perfect matching of H , as desired. �
4. The extremal case

In this section we prove Theorem 3.2: for sufficiently small ε > 0 and sufficiently large n ∈ kN, any
k-uniform n-vertex hypergraph H with δ�(H) > δ(n,k, �) and which is ε-close to Bn,k or Bn,k contains
a perfect matching. Recall that δ(n,k, �) is the maximum of the minimum �-degrees among all the
hypergraphs in Hext(n,k), and Hext(n,k) contains all hypergraphs Bn,k(A, B) with |A| odd, and all
hypergraphs Bn,k(A, B) where n/k is odd and |A| is even, and where n/k is even and |A| is odd.

Given two k-uniform hypergraphs H and H ′ on n vertices, we say H ε-contains H ′ if, after adding
at most εnk edges to H , the resulting hypergraph contains a copy of H ′ . More precisely, H ε-contains
H ′ if there is an isomorphic copy H̃ of H such that V (H̃) = V (H ′) and |E(H ′) \ E(H̃)| � εnk . Trivially
if H is ε-close to H ′ , then H ε-contains H ′ .

The following theorem thus implies Theorem 3.2.

Theorem 4.1. Given 1 � �� k − 1, there exist ε > 0 and n0 ∈N such that the following holds. Suppose that H
is a k-uniform hypergraph on n � n0 vertices such that n is divisible by k. Then H contains a perfect matching
if the following holds:

• δ�(H) > δ(n,k, �);
• H ε-contains Bn,k or Bn,k.
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Furthermore, by modifying the proof of Theorem 4.1 slightly one can obtain another structural
extremal case result (we omit its proof).

Theorem 4.2. Given an integer k � 2, there exist ε > 0 and n0 ∈ N such that the following holds. Suppose
that H is a k-uniform hypergraph on n � n0 vertices such that n is divisible by k. Then H contains a perfect
matching if the following holds.

(i) δ1(H) � ( 1
2 − ε)

(n−1
k−1

)
;

(ii) Under any partition A, B of V (H), there always exist at least one (A, B)-even edge and at least one
(A, B)-odd edge;

(iii) H ε-contains Bn,k or Bn,k.

The rest of this section is devoted to the proof of Theorem 4.1.

4.1. Preliminaries and proof outline

Given a set A, we denote by K k(A) the complete k-uniform hypergraph on A (the superscript k
is often omitted). Given integers 0 � r � k and two disjoint sets A and B , let K k

r (A, B) or simply
Kr(A, B) denote the k-uniform hypergraph on A ∪ B whose edges are all k-sets intersecting A with
precisely r vertices.

Let H , H ′ be two k-uniform hypergraphs on the same vertex set V . Let H ′ \ H := (V , E(H ′)\ E(H)).
Suppose that 0 � α � 1 and |V | = n. A vertex v ∈ V is called α-good in H (otherwise α-bad) with
respect to H ′ if dH ′\H (v) � αnk−1. Sometimes we also say that v is α-good (in H) with respect to
E(H ′).

We use the following result [22, Fact 4.1] and include a proof for completeness.

Lemma 4.3. Let k, r ∈ N such that k � 2 and r � k. Let 0 < α < 1
k(2k(k−1))k−1 . Suppose that H is a k-uniform

hypergraph on V = A ∪ B such that |A| = tr, |B| = t(k − r) for some integer t � 2(k − 1), and every vertex of
H is α-good with respect to K k

r (A, B). Then H contains a perfect matching.

Proof. Let M be a largest matching of H consisting of only Ar Bk−r edges. Set m := |M| and n :=
|V | = tk. We claim that m = t , namely, M is a perfect matching of H . Suppose m < t instead. Let
A0 := A \ V (M) and B0 := B \ V (M). Then |A0| = (t − m)r � r and |B0| = (t − m)(k − r) � k − r. The
maximality of M implies that there are no Ar

0 Bk−r
0 edges. Fix v ∈ A0. Since v is α-good with respect

to K k
r (A, B), it follows that

(|A0|−1
r−1

)(|B0|
k−r

)
� αnk−1, which implies that

( |A0|
r

)r−1( |B0|
k − r

)k−r

� αnk−1

and thus, (t − m)k−1 � α(tk)k−1. Since α < 1/(2k)k−1, this implies that t − m � t/2 or m � t/2.
Fix a k-set S = {v1, v2, . . . , vk} with v1, . . . , vr ∈ A0 and vr+1, . . . , vk ∈ B0. Given a vertex v ∈ V ,

we call a collection e1, . . . , ek−1 of k − 1 distinct edges feasible for v if every k-set T with v ∈ T ,
|T ∩ei| = 1 for all 1 � i � k−1 and |T ∩ A| = r is an edge of H . We claim that there are k−1 (distinct)
edges e1, . . . , ek−1 of M that are feasible for all the vertices of S . This contradicts the maximality of
M since it is easy to see that

⋃k−1
i=1 ei ∪ S contains k disjoint Ar Bk−r edges of H .

To find k − 1 feasible edges for all the vertices of S , we consider all (k − 1)-tuples of M . There
are

( |M|
k−1

)
�

( t/2
k−1

)
(k − 1)-tuples of M . Since each vi is α-good, at most αnk−1 (k − 1)-sets that are

neighbors of v in K k
r (A, B) are not neighbors of vi in H . Thus at most αnk−1 (k − 1)-tuples of M

are not feasible for vi . In total, at most kαnk−1 (k − 1)-tuples of M are not feasible for at least one
vertex of S . Since t/2 � k − 1 and α < 1

k(2k(k−1))k−1 , we have
( t/2

k−1

)
� ( t

2(k−1)
)k−1 > kαnk−1. Hence

there always exists a (k − 1)-tuple of M feasible for all the vertices of S . �
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To derive Corollary 4.5, we also need a simple claim.

Claim 4.4. Let H and H ′ be two k-uniform hypergraphs on an n-vertex set V . Suppose that α > 0 and v is
α-good in H with respect to H ′ . Let H ′′ be a subgraph of H ′ on U ⊂ V such that v ∈ U and |U | � cn for some
c > 0. Then v is α′-good in H[U ] with respect to H ′′ , where α′ := α/ck−1 .

Proof. This follows from

dH ′′\H[U ](v) � dH ′\H (v) � αnk−1 = α′(cn)k−1 � α′|U |k−1. �
Corollary 4.5. Given an even integer k � 2, there exist α > 0 and n0 ∈ N such that the following holds for
all n � n0 with n ∈ 2kN. Suppose that H is an n-vertex k-uniform hypergraph with a partition A, B of V (H)

such that |A| = |B| = n/2. If every vertex of H is α-good with respect to Bn,k(A, B), then H contains a perfect
matching.

Furthermore, if k/2 is odd, then n ∈ 2kN can be weakened to n ∈ kN.

Proof. First assume that n ∈ 2kN. Then |A| = |B| is divisible by k. We arbitrarily partition A into
two subsets A1 of size |A|/k and A2 of size |A|(k − 1)/k, and partition B into two subsets B1 of
size |B|(k − 1)/k and B2 of size |B|/k. Let Hi = H[Ai ∪ Bi] for i = 1,2. Since all the vertices of H
are α-good with respect to Bn,k(A, B), by Claim 4.4, all the vertices in A1 ∪ B1 are α′-good in H1

with respect to K1(A1, B1), where α′ := 2k−1α. Similarly, every vertex in A2 ∪ B2 is α′-good in H2
with respect to K1(A2, B2). As α′ 
 1/k, we can apply Lemma 4.3 to H1 and H2 obtaining a perfect
matching M1 of H1 and a perfect matching M2 of H2. Thus M1 ∪ M2 is a perfect matching of H .

Second assume that k/2 is odd and n ∈ kN. Then |A| = |B| is divisible by k/2. Since every vertex
of H is α-good with respect to Kk/2(A, B), we can apply Lemma 4.3 with r = k/2 obtaining a perfect
matching of H . �

Now we give an outline of our proof of Theorem 4.1.

Step 1: Since H ε-contains Bn,k (or Bn,k), all but at most ε1n vertices in H are ε2-good with respect
to Bn,k (or Bn,k) for some ε 
 ε1 
 ε2. Denote the set of ε2-bad vertices by V 0. Let A and
B denote the vertex classes of Bn,k (or Bn,k). We move the vertices of V 0 to the other side
(from A to B or from B to A) and denote the resulting sets by A1 and B1.

Step 2: In some cases, we will obtain a special edge e0, which is an (A1, B1)-even edge when H
ε-contains Bn,k or an (A1, B1)-odd edge when H ε-contains Bn,k . Note that e0 may contain
vertices of V 0.

Step 3: We remove a matching M1 of size |M1| � ε1n containing all the vertices in V 0 \ e0. Denote
the resulting sets by A2 and B2.

Step 4: We remove a small matching from H[A2 ∪ B2] such that the resulting sets A3, B3 satisfy:
• If k is even and H ε-contains Bn,k , then |A3| ≡ 0 (mod k).
• If k is even and H ε-contains Bn,k , then |A3| = |B3|. Furthermore, if k is divisible by 4, we

also need |A3| ≡ 0 (mod k).
• If k is odd, then |A3| ≡ 0 (mod k − 1).
In many cases the special edge e0 is needed in this step.

Step 5: If e0 was introduced in Step 2 but not used in Step 4 and e0 ∩ V 0 �= ∅, we remove a small
matching containing all the vertices in e0 ∩ V 0 while preserving the property mentioned in
Step 4.

Step 6: We apply Lemma 4.3 or Corollary 4.5 to H[A3 ∪ B3] and find a perfect matching of H[A3 ∪ B3].

In the next three subsections, we give details of these steps based on the three cases listed in Step 4.
Full details for each step are only given when the step is needed at the first time. Note that Steps 1
and 3 are essentially the same for all the three cases but Steps 2 and 5 are not necessary in some
cases.
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Indeed, we may only apply Step 2 in the case when, after applying Step 1, (i) H ε-contains Bn,k and
Bn,k(A1, B1) ∈ Hext(n,k) or; (ii) H ε-contains Bn,k and Bn,k(A1, B1) ∈ Hext(n,k). In these cases, we
will need to use the condition that δ�(H) > δ(n,k, �) to ensure H contains our desired edge e0. This
is the only place in the proof of Theorem 4.1 (and in fact, the only part of the proof of Theorem 1.1)
where we use the full force of our minimum �-degree condition.

The edge e0 acts as a “parity-breaker”, helping us to construct our desired perfect matching. How-
ever, if H does not satisfy (i) or (ii) then no parity-breaking edge is required, and so we do not need
Step 2.

4.2. k is even and H ε-contains Bn,k

In this subsection, we prove Theorem 4.1 under the assumption that k is even and H ε-contains

Bn,k , where 0 < ε 
 1/k. Define ε1 := k
1
2 ε

2
3 and ε2 := k

1
2 ε

1
3 . Let H be a k-uniform hypergraph

on an n-vertex set V for sufficiently large n ∈ kN. Note that n is even because k is even. Sup-
pose that H ε-contains Bn,k , namely, there exists a partition A, B of V such that |A| = |B| = n/2,
Bn,k = (V , Eeven(A, B)) and |Eeven(A, B) \ E(H)| � εnk .

Step 1: Recall that a vertex v ∈ V (H) is ε2-bad with respect to Bn,k if dBn,k\H (v) > ε2nk−1. In

other words, if v is ε2-good then all but at most ε2nk−1 of the (A, B)-even edges that contain v
belong to H . We observe that at most ε1n vertices in H are ε2-bad. Otherwise

k
∣∣E(Bn,k) \ E(H)

∣∣ =
∑
v∈V

∣∣NBn,k
(v) \ NH (v)

∣∣ > ε2nk−1ε1n = kεnk,

contradicting the assumption that |Eeven(A, B) \ E(H)| � εnk .
Let A0 and B0 denote the sets of ε2-bad vertices in A and in B , respectively, and set V 0 := A0 ∪ B0.

Then |A0| + |B0| = |V 0| � ε1n. Notice that δ1(H) � ( 1
2 − ε)

(n−1
k−1

)
by Proposition 2.1. Consider v ∈ V 0.

We know that dBn,k
(v) � ( 1

2 + ε)
(n−1

k−1

)
. Since dBn,k\H (v) > ε2nk−1, it follows that

dH\Bn,k
(v) �

(
1

2
− ε

)(
n − 1

k − 1

)
− (

dBn,k
(v) − ε2nk−1) � ε2nk−1 − 2ε

(
n − 1

k − 1

)
� ε2

2
nk−1. (2)

In other words, v lies in at least ε2nk−1/2 (A, B)-odd edges in H .
Define A1 := (A \ A0) ∪ B0 and B1 := (B \ B0) ∪ A0. Then A1, B1 is a partition of V (H) with

|A1|, |B1|� (1/2 − ε1)n.
We now separate cases based on the parity of |A1|.
First assume that |A1| is even. Then Bn,k(A1, B1) /∈ Hext(n,k). Thus, we do not need Step 2 (and

therefore Step 5) in this case.
Step 3: We remove a matching M1 from H such that

• |M1| = |V 0| � ε1n;
• each edge of M1 contains exactly one vertex of V 0;
• all the edges of M1 are (A1, B1)-even.

To find M1, we consider the vertices of V 0 in an arbitrary order and apply the following simple claim
repeatedly.

Claim 4.6. Let k � 2 be an integer and α1 , α2 be constants such that α2 > α1/(k − 2)! � 0 (here 0! := 1).
Let H be a k-uniform hypergraph on n vertices such that dH (v) � α2nk−1 and |U | � α1n for some U ⊂ V (H)

with v /∈ U . Then v lies in an edge disjoint from U .

Proof. There are at most α1n
(n−2

k−2

)
� α1

(k−2)!n
k−1 edges of H containing v and at least one vertex

from U . Since α2 > α1/(k − 2)!, there exists an edge containing v and no vertex of U . �
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Suppose that we have found i edges in M1 and consider the next vertex v ∈ V 0. Then |V 0 ∪
V (M1)| � kε1n. Because of (2) and ε1 
 ε2, we can apply Claim 4.6 with U = (V 0 \ {v}) ∪ V (M1)

to find an (A, B)-odd edge containing v but no other vertex of V 0 and which is disjoint from the
existing edges of M1. By the definition of A1, B1, any (A, B)-odd edge containing v and no other
vertex of V 0 is an (A1, B1)-even edge. We thus add this edge to M1. At the end of this process, let
A2 := A1 \ V (M1) and B2 := B1 \ V (M1).

Step 4: Since |A1| is even, the third property of M1 implies that s := |A2| (mod k) is also even.
If s �= 0, we remove an As

2 Bk−s
2 edge e2. Such an edge exists because all the vertices in A2 ∪ B2 are

ε2-good with respect to Bn,k . More precisely, since A2 ⊆ A, B2 ⊆ B , and |A2|, |B2| � ( 1
2 − (k + 1)ε1)n,

Claim 4.4 implies that all the vertices in A2 ∪ B2 are 2ε2-good with respect to Ks(A2, B2). As ε2 
 1/k
and consequently

2ε2nk−1 <

(
( 1

2 − (k + 1)ε1)n − 1

s − 1

)(
( 1

2 − (k + 1)ε1)n

k − s

)
,

there exists an As
2 Bk−s

2 edge containing any vertex in A2.
Let A3 := A2 \e2 and B3 := B2 \e2. Then |A3| ≡ 0 (mod k). Since |A3|+|B3| ≡ |A|+|B| ≡ 0 (mod k),

we have |B3| ≡ 0 (mod k).
Step 6: Since |A3| � (1/2 − 2kε1)n � n/3, by Claim 4.4, all the vertices of A3 are (3k−1ε2)-good

in H[A3] with respect to Bn,k[A3] = K k(A3), the complete k-uniform hypergraph on A3. As ε2 
 1/k,
by Lemma 4.3 (with r = k), there is a perfect matching M3 of H[A3]. Similarly we can find a perfect
matching M ′

3 of H[B3] (note that Bn,k[B3] = K k(B3) because k is even). The union M1 ∪{e2}∪M3 ∪M ′
3

is the desired perfect matching of H .
Now assume that |A1| is odd. In this case we need Step 2 (but not Step 5). Note that Bn,k(A1, B1) ∈

Hext(n,k) since |A1| is odd. As δ�(H) > δ(n,k, �) � δ�(Bn,k(A1, B1)), we can find an (A1, B1)-odd
edge e0. We apply Step 3 as before though now we require that M1 is chosen to be disjoint from e0. In
particular, this means M1 is chosen to cover V 0\e0. After Step 3, we let A′

2 := A2 \e0 and B ′
2 := B2 \e0.

Then s := |A′
2| (mod k) is even. The rest of the argument is the same as in the case when |A1| is even.

4.3. k is even and H ε-contains Bn,k

Assume that k is even, and n is sufficiently large and divisible by k (thus n is also even). Recall
that Bn,k is the k-uniform hypergraph whose vertex set is partitioned into A ∪ B such that |A| =
|B| = n/2 and whose edge set Eodd(A, B) consists of all k-sets that intersect A in an odd number of
vertices. Suppose that H is a k-uniform hypergraph on n vertices such that H ε-contains Bn,k , namely,
|Eodd(A, B) \ E(H)| � εnk .

Step 1 is the same as in Section 4.2, except for replacing Bn,k by Bn,k . Therefore again A0 and B0
denote the sets of ε2-bad vertices in A and B respectively and V 0 := A0 ∪ B0, A1 := (A\A0) ∪ B0 and
B1 := (B\B0) ∪ A0.

If Bn,k(A1, B1) ∈ Hext(n,k) then as δ�(H) > δ�(Bn,k(A1, B1)), we can apply Step 2. That is, H con-
tains an (A1, B1)-even edge e0. Then r0 := |e0 ∩ A1| is even. If Bn,k(A1, B1) /∈ Hext(n,k) then we do
not apply Step 2. (So in what follows, we take e0 = ∅ in this case.)

In Step 3, we remove a matching M1 such that

• |M1| = |V 0\e0| � ε1n;
• each edge of M1 contains exactly one vertex of V 0\e0;
• all the edges of M1 are (A1, B1)-odd and are disjoint from e0.

Further, in the case when Bn,k(A1, B1) /∈Hext(n,k) we add at most 3 extra (A1, B1)-odd edges to M1
to ensure that M1 is a matching with |M1| divisible by 4. Set A2 := A1 \ V (M1) and B2 := B1 \ V (M1).
Without loss of generality, assume that |A2| � |B2|. Let d := |A2| − |B2|. Then d is even because
|A2| + |B2| is even. We also know that d � k|M1| + 2|V 0| � (k + 2)ε1n + 3k. We now separate cases
based on the parity of k/2.
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4.3.1. k/2 is even

Step 4: We remove a matching M2 that consists of d/2 Ak/2+1
2 Bk/2−1

2 edges that are disjoint from
M1 and e0 (note that k/2 + 1 and k/2 − 1 are odd). In a similar way to Step 4 of Section 4.2, these
edges exist because all the vertices in (A2 ∪ B2) \ e0 are ε2-good with respect to Bn,k . The resulting
sets A3 := A2 \ V (M2) and B3 := B2 \ V (M2) thus have the same size

|A2| − d

2

(
k

2
+ 1

)
= |B2| − d

2

(
k

2
− 1

)
.

Let s := |A3| = |B3| (mod k). Since |A3| + |B3| ≡ 0 (mod k), it follows that either s = 0 or s = k/2.
Notice that if Bn,k(A1, B1) /∈Hext(n,k), then s = 0. Indeed, suppose not. Then s = k/2 and so |A3| =

|B3| = km + k/2 for some m ∈ N. Thus, |A3| + |B3| = 2km + k. Hence, (|A3| + |B3|)/k is odd but |A3|
is even. Since the edges in M1 ∪ M2 are (A1, B1)-odd, this implies that either (|A1| + |B1|)/k = n/k
is odd and |A1| is even or n/k is even and |A1| is odd. In both cases this implies that Bn,k(A1, B1) ∈
Hext(n,k), a contradiction.

Case 1a: s = 0. If e0 ∩ V 0 = ∅, then we proceed to Step 6 directly. Since |A3| = |B3| ≡ 0 (mod k) and
|A3|, |B3| � ( 1

2 − 2k2ε1)n, we can apply Corollary 4.5 obtaining a perfect matching M3 of H[A3 ∪ B3].
Consequently M1 ∪ M2 ∪ M3 is the desired perfect matching of H . (Note that this covers the case
when Bn,k(A1, B1) /∈Hext(n,k), since s = 0 and e0 = ∅ in this case.)

If e0 ∩ V 0 �= ∅, then we need Step 5, in which we remove a small matching containing all the
vertices of e0 ∩ V 0. Let v ∈ e0 ∩ V 0. By a similar calculation as in (2), v is contained in at least
ε2nk−1/2 (A, B)-even edges. Applying Claim 4.6 with U = V (M1 ∪ M2) ∪ (e0\v), we find an (A, B)-
even edge of H[A3 ∪ B3] containing v . Since v changes ‘side’ (from A to B1 or from B to A1), and by
the choice of U , this edge is an Ar

3 Bk−r
3 edge for some odd r. To keep the numbers of the remaining

vertices in A3 and B3 the same and divisible by k, when we remove an Ar
3 Bk−r

3 edge e containing v

we immediately remove an Ak−r
3 Br

3 edge disjoint from e (such an edge exists because all the vertices
in (A3 ∪ B3) \ e0 are ε2-good with respect to Bn,k). Repeat this process for all the vertices in e0 ∩ V 0.
Denote by M3 the set of all removed edges in this step. Then |M3| � 2k. Let A4 := A3 \ V (M3) and
B4 := B3 \ V (M3). Then |A4| = |B4| ≡ 0 (mod k). Finally in Step 6 we find a perfect matching M4 of
H[A4 ∪ B4] by Corollary 4.5. Thus M1 ∪ M2 ∪ M3 ∪ M4 is the desired perfect matching of H .

Case 1b: s = k/2. Recall that |e0 ∩ A1| = r0 for some even r0. Thus, |e0 ∩ A3| = r0. We continue
on Step 4 as follows. If r0 � k/2, then we remove e0 together with k

2 − r0 disjoint Ak/2+1
3 Bk/2−1

3

edges; otherwise we remove e0 together with r0 − k
2 disjoint Ak/2−1

3 Bk/2+1
3 edges. Denote by M3

the set of these removed edges. Let A4 := A3 \ V (M3) and B4 := B3 \ V (M3). It is easy to see that
|A4| = |B4| = |A3| − (| k

2 − r0| + 1) k
2 . Since s = k/2 and k/2, r0 are even, we have |A4| ≡ 0 (mod k).

Since e0 has been used, we now skip Step 5 and proceed to Step 6. As in Case 1a, we find a perfect
matching M4 of H[A4 ∪ B4] by Corollary 4.5. Consequently M1 ∪ M2 ∪ M3 ∪ M4 is the desired perfect
matching of H .

4.3.2. k/2 is odd
Recall that d := |A2| − |B2| � 0 is even. We will separate cases based on the parity of d/2. Firstly

though, notice that if Bn,k(A1, B1) /∈ Hext(n,k) then d is divisible by 4. Indeed, suppose instead that
d ≡ 2 (mod 4). First consider the case when |A2| + |B2| is divisible by 4. Since |M1| is divisible by
4, this implies that |A1| + |B1| = n is divisible by 4. But since k is not divisible by 4, this implies
that n/k is even. Further, since d ≡ 2 (mod 4), we derive that |A2| is odd. Since |A1 \ A2| is even,
this implies that |A1| is odd. Therefore Bn,k(A1, B1) ∈ Hext(n,k), a contradiction. Second assume that
|A2| + |B2| ≡ 2 (mod 4) (recall that |A2| + |B2| is even). Since |M1| is divisible by 4, this implies that
n ≡ 2 (mod 4). As k is even, this implies that n/k is odd. So as d ≡ 2 (mod 4), we derive that |A2| is
even, and consequently |A1| is even. Therefore Bn,k(A1, B1) ∈Hext(n,k), a contradiction.

Case 2a: 4 divides d. In Step 4, we remove d/4 disjoint Ak/2+2
2 Bk/2−2

2 edges (these edges exists
because k/2 + 2 is odd and all the vertices (A2 ∪ B2) \ e0 are ε2-good with respect to Bn,k). Denote
by M2 the set of these edges. Let A3 := A2 \ V (M2) and B3 := B2 \ V (M2). Then
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|A3| = |A2| − d

4

(
k

2
+ 2

)
= |B2| − d

4

(
k

2
− 2

)
= |B3|.

If e0 ∩ V 0 = ∅, then we proceed to Step 6. Claim 4.4 implies that all the vertices in H[A3 ∪ B3] are 2ε2-
good with respect to Eodd(A3, B3). Since k/2 is odd, we can apply the second assertion in Corollary 4.5
and find a perfect matching M3 in H[A3 ∪ B3] (here we do not require |A3| = |B3| ≡ 0 (mod k)).
Thus, M1 ∪ M2 ∪ M3 is our desired perfect matching in H . (Note that this covers the case when
Bn,k(A1, B1) /∈Hext(n,k), since e0 = ∅ in this case.)

If e0 ∩ V 0 �= ∅, we need to apply Step 5. As in Case 1a, we remove a matching M3 of size at most
2k containing all the vertices of e0 ∩ V 0 such that A4 := A3 \ V (M3) and B4 := B3 \ V (M3) have the
same size. Finally in Step 6 we find a perfect matching M4 of H[A4 ∪ B4] by the second assertion in
Corollary 4.5. Thus, M1 ∪ M2 ∪ M3 ∪ M4 is a perfect matching in H .

Case 2b: d ≡ 2 (mod 4). We remove e0 immediately. Let A′
2 := A2 \ e0 and B ′

2 := B2 \ e0. Since
k ≡ 2 (mod 4) and r0 is even, we have k − 2r0 ≡ 2 (mod 4). Consequently |A′

2| − |B ′
2| = (|A2| − r0) −

(|B2| − k + r0) = d + (k − 2r0) ≡ 0 (mod 4). We then follow the procedure of Case 2a (since e0 has
been removed, we can skip Step 5).

4.4. k is odd

Let H be a k-uniform hypergraph such that it ε-contains Bn,k or Bn,k .
Recall that Bn,k is the n-vertex k-uniform hypergraph on V = A ∪ B such that |A| = �n/2�,

|B| = n/2�, with edge set Eeven(A, B). Since k is odd, Bn,k can be viewed as the n-vertex k-uniform
hypergraph on V = A ∪ B such that |A| = n/2�, |B| = �n/2�, with edge set Eeven(A, B). We thus
assume that V (H) = A ∪ B such that either |A| = �n/2� or |A| = n/2� and |Eeven(A, B) \ E(H)| � εnk .

Our Step 1 is the same as in Section 4.2. After applying Step 1 we have a partition A1, B1 of
V (H). If Bn,k(A1, B1) /∈ Hext(n,k) then, by definition of Hext(n,k), |A1| is even. Thus, in this case
|A1| mod k − 1 is even.

If |A1| mod k − 1 is odd, then we need Step 2: find an (A1, B1)-odd edge e0. Note that in this
case Bn,k(A1, B1) ∈ Hext(n,k), and thus our minimum �-degree condition ensures we can find such
an edge e0.

Our Step 3 is again the same as in Section 4.2. (Note though, if |A1| mod k − 1 is odd, then we
introduced e0. Thus in this case we select M1 to cover V 0\e0 so that M1 is disjoint from e0.) Since
each edge in the matching M1 is an Ar

1 Bk−r
1 edge for some even r � k − 1, it follows that |A1| mod

k − 1 and |A2| mod k − 1 have the same parity.
Assume that |A2| ≡ s (mod k − 1). In Step 4, if s is even, then we simply remove an arbitrary

As
2 Bk−s

2 edge e2 and let M2 = {e2}. If s is odd, then we remove e0, which is an Ar0
2 Bk−r0

2 edge for some
odd r0. Set A′

2 := A2\e0. Thus, |A′
2| ≡ s − r0 mod k − 1 and since s, r0 are odd, s′ := |A′

2| mod k − 1 is

even. Select an arbitrary As′
2 Bk−s′

2 edge e2 that is disjoint from e0 and set M2 = {e0, e2}.
Let A3 := A2 \ V (M2) and B3 := B2 \ V (M2). The choice of M2 is such that |A3| ≡ 0 (mod k−1). We

skip Step 5 and proceed to Step 6. Arbitrarily partition B3 into B1
3 and B2

3 such that |B1
3| = |A3|/(k−1)

(this is possible because |A3| ≈ |B3| ≈ n/2). Note that |A3| + |B3| ≡ 0 mod k. Hence, as |A3| + |B1
3| =

k|A3|/(k − 1) ≡ 0 mod k, we have that |B2
3| ≡ 0 mod k. Let H1 := H[A3 ∪ B1

3] and H2 := H[B2
3]. Since

|A3|+ |B1
3| � (1/2 − 2kε1)nk/(k − 1) � n/2, by Claim 4.4, all the vertices of H1 are (2k−1ε2)-good with

respect to Kk−1(A3, B1
3). Since k � 3 (because k � 2 is odd), we have |B2

3| ≈ n
2

k−2
k−1 � n

2k . By Claim 4.4,

all the vertices of H2 are ((2k)k−1ε2)-good with respect to K k[B2
3]. We therefore apply Lemma 4.3

to H1 (with r = k − 1) and to H2 (with r = k) to obtain a perfect matching M3 of H1 and a perfect
matching M ′

3 of H2. Thus M1 ∪ M2 ∪ M3 ∪ M ′
3 is a perfect matching of H . �

5. The non-extremal case

In this section we prove Theorem 3.1. Let α > 0 and r, � ∈ N such that 2r � � � 4r − 1. Given a
4r-uniform hypergraph H on n vertices such that δ�(H) � ( 1

2 − α)
( n−�

4r−�

)
, by Proposition 2.1, we have

δ2r(H) � ( 1
2 − α)

(n−2r
2r

)
. Thus, in order to prove Theorem 3.1 it suffices to prove the following result.
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Theorem 5.1. Given any ε > 0 and r ∈ N, there exist α, ξ > 0 and n0 ∈ N such that the following holds.
Suppose that H is a 4r-uniform hypergraph on n � n0 vertices where 4r divides n. If

δ2r(H)�
(

1

2
− α

)(
n − 2r

2r

)

then H is ε-close to Bn,4r or Bn,4r , or H contains a matching M of size |M| � ξn/(4r) that absorbs any set
W ⊆ V (H) \ V (M) such that |W | ∈ 4rN with |W |� ξ2n.

Theorem 5.1 immediately follows from Lemmas 5.2–5.4. Following the ideas in [20,22], we first
show in Lemma 5.2 that in order to find the absorbing set described in Theorem 5.1, it suffices to
prove that there are at least ξn8r absorbing 8r-sets for every fixed 4r-set from V (H).

Lemma 5.2 (Absorbing Lemma). Given 0 < ξ 
 1 and an integer k � 2, there exists an n0 ∈ N such that the
following holds. Consider a k-uniform hypergraph H on n � n0 vertices. Suppose that any k-set of vertices
Q ⊆ V (H) can be absorbed by at least ξn2k 2k-sets of vertices from V (H). Then H contains a matching M of
size |M| � ξn/k that absorbs any set W ⊆ V (H)\V (M) such that |W | ∈ kN and |W | � ξ2n.

Given a 2r-uniform hypergraph H (for some r � 2), we define the graph G(H) with vertex set(V (H)
r

)
in which two vertices x1 · · · xr, y1 · · · yr ∈ V (G(H)) are adjacent if and only if x1 · · · xr y1 · · · yr ∈

E(H). When it is clear from the context, we will often refer to G(H) as G .

Lemma 5.3 (Lemma on G). Given any β > 0 and an integer r � 2, there exist α, ξ > 0, and n0 ∈ N such that
the following holds. Suppose that H is a 2r-uniform hypergraph on n � n0 vertices so that 2r divides n and

δr(H) �
(

1

2
− α

)(
n − r

r

)
.

Set G := G(H) and N := (n
r

)
(then N is even because 2r divides n). Then at least one of the following assertions

holds.

• G = K N
2 , N

2
± βN2 or G = K N

2 , N
2

± βN2; in other words, either G or G becomes a copy of K N
2 , N

2
after

adding or deleting at most βN2 edges.
• There are at least ξn4r absorbing 4r-sets in

(V (H)
4r

)
for every 2r-subset of V (H).

Lemma 5.4. Given any ε > 0 and r ∈ N, there exist β > 0 and n0 ∈ N such that the following holds. Suppose
that H is a 4r-uniform hypergraph on n � n0 vertices where 4r divides n. Suppose further that G := G(H)

satisfies G = K N
2 , N

2
± βN2 or G = K N

2 , N
2

± βN2 , where N := ( n
2r

)
. Then H is ε-close to Bn,4r or Bn,4r .

Notice we have stated Lemmas 5.2 and 5.3 in a more general setting than we require. (That is, we
consider k-uniform hypergraphs in Lemma 5.2 for all k � 2 and 2r-uniform hypergraphs in Lemma 5.3
for r � 2.) However, for Lemma 5.4, our proof is such that we can only consider 4r-uniform hy-
pergraphs for r ∈ N. (This is the main obstacle in extending our proof to work for all 2r-uniform
hypergraphs.) The rest of the section is devoted to the proof of Lemmas 5.2–5.4.

5.1. Proof of Lemma 5.2

For a k-set Q ⊆ V (H), let L Q denote the family of all absorbing 2k-sets for Q . By assumption,
|L Q | � ξn2k . Let F be the family of 2k-sets obtained by selecting each of the

( n
2k

)
elements of

(V (H)
2k

)
independently with probability p := ξ/n2k−1. Then

E
(|F |) = p

(
n

2k

)
<

ξ

(2k)!n and E
(|L Q ∩ F |)� pξn2k = ξ2n

for every set Q ⊆ (V (H)
k

)
.
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Since n is sufficiently large, Proposition 2.2 implies that with high probability we have

|F | � 2E
(|F |) <

2ξ

(2k)!n, (3)

|L Q ∩ F | � 1

2
E

(|L Q ∩ F |)� ξ2

2
n for all Q ∈

(
V (H)

k

)
. (4)

Let Y be the number of intersecting pairs of members of F . Then

E(Y ) � p2
(

n

2k

)
2k

(
n

2k − 1

)
� ξ2n

(2k − 1)!(2k − 1)! .

By Markov’s bound, the probability that Y � 2ξ2

(2k−1)!(2k−1)!n is at least 1
2 . Therefore we can find a family

F of 2k-sets satisfying (3) and (4) and having at most 2ξ2

(2k−1)!(2k−1)!n intersecting pairs. Removing all
non-absorbing 2k-sets and one set from each of the intersecting pairs in F , we obtain a family F ′ of
disjoint absorbing 2k-sets such that |F ′| � |F |� 2ξ

(2k)!n � ξn/2k and for all Q ∈ (V (H)
k

)
,

∣∣L Q ∩ F ′∣∣ � ξ2

2
n − 2ξ2

(2k − 1)!(2k − 1)!n >
ξ2

k
n. (5)

Since F ′ consists of disjoint absorbing sets and each absorbing set is covered by a matching, V (F ′)
is covered by a matching M . Now let W ⊆ V (H)\V (F ′) be a set of at most ξ2n vertices such that
|W | = k� for some � ∈ N. We arbitrarily partition W into k-sets Q 1, . . . , Q � . Because of (5), we are
able to absorb each Q i with a different 2k-set from L Q i ∩ F ′ . Therefore V (F ′) ∪ W is covered by a
matching, as desired.

5.2. Proof of Lemma 5.3

Given β > 0, we choose additional constants γ ,α, ξ such that

0 < ξ 
 α 
 γ 
 β. (6)

Without loss of generality we may assume that β 
 1/r. We also assume that n is sufficiently large.
Let Q ⊆ V (H) be a 2r-set. It is easy to see that if Q has at least γ 3n2r absorbing 2r-sets then

Q has at least ξn4r absorbing 4r-sets. Indeed, let P be an absorbing 2r-set for Q . Then P ∪ e is an
absorbing 4r-set for Q for any edge e ∈ E(H − (P ∪ Q )). Since n is sufficiently large,

∣∣E(H)
∣∣ �

(
1

2
− α

)(
n − r

r

)
×

(n
r

)
(2r

r

) =
(

1

2
− α

)(
n

2r

)
.

Hence, as n is sufficiently large, there are at least(
1

2
− α

)(
n

2r

)
− 4r

(
n

2r − 1

)
� n2r

4(2r)!
edges in H − (P ∪ Q ). Since an absorbing 4r-set may be counted at most

(4r
2r

)
times when counting

the number of P , e, there are at least

γ 3n2r × n2r

4(2r)! × 1(4r
2r

) (6)

� ξn4r

absorbing 4r-sets for Q .
Therefore, in order to prove Lemma 5.3, it suffices to prove the following two claims.

Claim 5.5. If either of the following cases holds, then we can find γ 3n2r absorbing 2r-sets or γ 3n4r absorbing
4r-sets for every 2r-set Q ∈ (V (H)

2r

)
.
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Fig. 1. The (i) absorbing 2r-set and (ii) absorbing 4r-set in the case when r = 2.

Case (a): For any r-tuple a ∈ (V (H)
r

)
, there are at least ( 1

2 + γ )
(n

r

)
r-tuples b ∈ (V (H)

r

)
such that |NH (a) ∩

NH (b)| � γ
(n

r

)
.

Case (b): |{a ∈ (V (H)
r

)
: dH (a) � ( 1

2 + γ )
(n

r

)}|� 2γ
(n

r

)
.

Claim 5.6. If neither Case (a) or Case (b) holds, then G = K N
2 , N

2
± βN2 or G = K N

2 , N
2

± βN2 .

Proof of Claim 5.5. Given a 2r-set Q = {x1, . . . , xr, y1, . . . , yr} ⊆ V (H), we will consider two types of
absorbing sets for Q :

Absorbing 2r-sets: These consist of a single edge x′
1 · · · x′

r y′
1 · · · y′

r ∈ E(H) with the property that both
x1 · · · xr x′

1 · · · x′
r and y1 · · · yr y′

1 · · · y′
r are edges of H .

Absorbing 4r-sets: These consist of distinct vertices x′
1, . . . , x′

r , y′
1, . . . , y′

r , w ′
1, . . . , w ′

r , z′
1, . . . , z′

r ∈
V (H) such that x′

1 · · · x′
r w ′

1 · · · w ′
r , y′

1 · · · y′
r z′

1 · · · z′
r and w ′

1 · · · w ′
r z′

1 · · · z′
r are edges in H . Further-

more, x1 · · · xr x′
1 · · · x′

r and y1 · · · yr y′
1 · · · y′

r are also edges of H (see Fig. 1).

Write x := x1 · · · xr and y := y1 · · · yr . For any two (not necessarily disjoint) r-tuples a, b ∈ (V (H)
r

)
we call a a good r-tuple for b if |NH (a) ∩ NH (b)| � γ

(n
r

)
/2. We first observe that Q has at least γ 3n2r

absorbing 2r-sets if there are

at least
γ

2

(
n

r

)
good r-tuples in NH (x) for y,

or at least
γ

2

(
n

r

)
good r-tuples in NH (y) for x. (7)

Indeed, assume that there are at least γ
(n

r

)
/2 good r-tuples in NH (x) for y. There are at most

r
( n

r−1

)
r-tuples in

(V (H)
r

)
that contain at least one element from {y1, . . . , yr}. So there are at least

γ
(n

r

)
/2 − r

( n
r−1

)
r-tuples in NH (x) that are good for y and disjoint from y. Let us pick such an r-

tuple x′ = (x′
1 · · · x′

r). Thus, |NH (x′) ∩ NH (y)| � γ
(n

r

)
/2. We pick y′ = (y′

1 · · · y′
r) ∈ NH (x′) ∩ NH (y) such

that y′ is disjoint from x. Note that there are at least γ
(n

r

)
/2 − r

( n
r−1

)
choices for y′ . Notice that

the 2r-set {x′
1, . . . , x′

r, y′
1, . . . , y′

r} is an absorbing set for Q since x′
1 · · · x′

r y′
1 · · · y′

r , x1 · · · xr x′
1 · · · x′

r and

y1 · · · yr y′
1 · · · y′

r are edges in H . Since an absorbing 2r-set may be counted
(2r

r

)
times, this argument

implies that there are at least

(
γ

2

(
n

r

)
− r

(
n

r − 1

))2 1(2r) � γ 3n2r
r
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absorbing 2r-sets for Q . We reach the same conclusion when there are at least γ
(n

r

)
/2 good r-tuples

in NH (y) for x.

Now assume that Case (a) holds. This implies that there are at least ( 1
2 +γ )

(n
r

)
good r-tuples for x.

By the minimum r-degree condition, dH (y) � ( 1
2 − α)

(n
r

)
. So there are at least (γ − α)

(n
r

)
� γ

(n
r

)
/2 r-

tuples in NH (y) that are good for x. Thus (7) holds and consequently Q has at least γ 3n2r absorbing
2r-sets.

Next assume Case (b) holds. Let Λ := {a ∈ (V (H)
r

)
: dH (a) � ( 1

2 + γ )
(n

r

)}. So by assumption, |Λ| �
2γ

(n
r

)
. We also assume that (7) fails (otherwise we are done). Every r-tuple a ∈ Λ is good for arbitrary

b ∈ (V (H)
r

)
because |NH (a)∩ NH (b)| � (γ −α)

(n
r

)
� γ

(n
r

)
/2. Hence |Λ∩ NH (y)| < γ

(n
r

)
/2. On the other

hand, less than γ
(n

r

)
/2 r-tuples in NH (x) are good for y and consequently at least ( 1

2 − α)
(n

r

) − γ
2

(n
r

)
r-tuples x′ ∈ NH (x) satisfy |NH (x′) ∩ NH (y)| < γ

(n
r

)
/2. We pick such an r-tuple x′ that is disjoint

from y; there are at least ( 1
2 − α)

(n
r

) − γ
2

(n
r

) − r
( n

r−1

)
� ( 1

2 − γ )
(n

r

)
r-tuples with this property. Since

∣∣NH
(
x′) ∪ NH (y)

∣∣ � 2

(
1

2
− α

)(
n

r

)
− γ

2

(
n

r

)
�

(
n

r

)
− γ

(
n

r

)
,

it follows that

∣∣Λ ∩ NH
(
x′)∣∣ � |Λ| − ∣∣Λ ∩ NH (y)

∣∣ − ∣∣(NH
(
x′) ∪ NH (y)

)∣∣
� 2γ

(
n

r

)
− γ

2

(
n

r

)
− γ

(
n

r

)
= γ

2

(
n

r

)
. (8)

Now pick any w ′ ∈ Λ ∩ NH (x′) that is disjoint from Q . (Note there are at least γ
2

(n
r

) − 2r
( n

r−1

)
� γ

3

(n
r

)
choices for w ′ .) Next pick an r-tuple y′ ∈ NH (y) such that y′ is disjoint from x, x′ and w ′ . (There are

at least ( 1
2 − α)

(n
r

) − 6r
( n

r−1

)
� ( 1

2 − γ )
(n

r

)
choices for y′ here.) By the definition of Λ, there are at

least (γ −α)
(n

r

)
pairs in NH (w ′) ∩ NH (y′). We pick z′ ∈ NH (w ′)∩ NH (y′) such that z′ is disjoint from

x, y and x′ . (There are at least (γ − α)
(n

r

) − 6r
( n

r−1

)
� γ

(n
r

)
/2 choices for z′ here.)

Let S denote the 4r-set consisting of the vertices contained in x′ , y′ , w ′ and z′ . By the choice of
x′ , y′ , w ′ and z′ , S is an absorbing 4r-set for Q .

In summary, there are at least ( 1
2 − γ )

(n
r

)
choices for x′ , at least γ

3

(n
r

)
choices for w ′ , at least

( 1
2 −γ )

(n
r

)
choices for y′ and at least γ

2

(n
r

)
choices for z′ . Since each absorbing 4r-set may be counted(4r

r

)(3r
r

)(2r
r

)
times, there are at least

[(
1

2
− γ

)(
n

r

)]2
γ

3

(
n

r

)
γ

2

(
n

r

)
× 1(4r

r

)(3r
r

)(2r
r

) (6)

� γ 3n4r

absorbing 4r-sets for Q , as desired. �
Claim 5.6 follows from the following lemma (by letting G = G(H)) immediately.

Lemma 5.7. For any β > 0, there exist γ > 0 and n0 ∈N such that following holds. Let G = (V , E) be a graph
on an even N � n0 number of vertices such that δ(G) � (1/2 − γ )N. In addition, G satisfies

(a) There exists a ∈ V such that at most ( 1
2 + γ )N vertices b ∈ V satisfy |N(a) ∩ N(b)| � γ N.

(b) |{v ∈ V : d(v) � ( 1
2 + γ )N}| < 2γ N.

Then either G = KN/2,N/2 ± βN2 or G = KN/2,N/2 ± βN2 .

Proof. Let A := N(a) and B := {b ∈ V : |A ∩ N(b)| < γ N}. Then |A|� ( 1
2 − γ )N and |B| � ( 1

2 − γ )N .
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We also need an upper bound on |A|. Fix b ∈ B . Since |N(b)| � ( 1
2 − γ )N , we have

|A| +
(

1

2
− γ

)
N � |A| + ∣∣N(b)

∣∣ = ∣∣A ∪ N(b)
∣∣ + ∣∣A ∩ N(b)

∣∣� N + γ N,

which gives |A|� ( 1
2 + 2γ )N .

Let e(A, B) denote the number of ordered pairs a,b such that a ∈ A, b ∈ B , and ab ∈ E . (Therefore,
if a,b ∈ A ∩ B and ab ∈ E then ab counts twice to the value of e(A, B).) By the definition of B , we
have e(A, B)� γ N|B|. Since δ(G) � ( 1

2 − γ )N we have that

e( Ā, B) � (1/2 − 2γ )N|B|, (9)

where, as usual Ā := V \ A. Next we show that e( Ā, B̄) is very small.

Claim 5.8. e( Ā, B̄)� 8
√

γ | Ā||B̄|.

Proof. Assume for a contradiction that the claim is false. Set A1 := {x ∈ Ā: d(x, B̄) � 4
√

γ |B̄|}. By
assumption

8
√

γ | Ā||B̄| � e( Ā, B̄) � |A1||B̄| + 4
√

γ |B̄|| Ā|,
which gives that |A1| � 4

√
γ | Ā|. By (9), as | Ā| � ( 1

2 + γ )N , we derive that

e( Ā, B) �
(

1

2
− 2γ

)
N|B| � (1 − 6γ )

(
1

2
+ γ

)
N|B|� (1 − 6γ )| Ā||B|. (10)

Let A2 := {x ∈ Ā: d(x, B) � (1−3
√

γ )|B|}. We claim that |A2| � (1−3
√

γ )| Ā|. Indeed, for convenience,
consider ē( Ā, B), the number of ordered pairs a,b such that a ∈ Ā, b ∈ B , and ab /∈ E . If |A2| < (1 −
3
√

γ )| Ā|, then ē( Ā, B) � 3
√

γ | Ā|3√
γ |B| = 9γ | Ā||B|, contradicting (10).

Let A0 := A1 ∩ A2. We have |A0| � (4
√

γ − 3
√

γ )| Ā|. Since | Ā| � N/3 and γ � 1/36, we derive
that |A0| �√

γ N/3 � 2γ N . For every x ∈ A0, we have

d(x) = d(x, B) + d(x, B̄)

� (1 − 3
√

γ )|B| + 4
√

γ |B̄| = (1 − 7
√

γ )|B| + 4
√

γ N

�
(

1

2
− 7

2

√
γ + 4

√
γ − γ

)
N �

(
1

2
+ γ

)
N.

(The penultimate inequality follows since |B| � ( 1
2 − γ )N .) This is a contradiction to the assump-

tion (b). �
Now we go back to the proof of Lemma 5.7. We separate the cases by whether |A ∪ B| � γ 1/4N or

not.
First assume that |A ∪ B| � γ 1/4N . Since ( 1

2 −γ )N � |A|� ( 1
2 +2γ )N , we can find a set V 1 ⊆ V (G)

of size N/2 such that |V 1	A| � 2γ N . Let V 2 := V (G)\V 1. Thus,

e(V 1, V 2) � e(A ∩ V 1, B ∩ V 2) + e(V 1 \ A, V 2) + e(V 1, V 2 ∩ A) + e
(

V 1, V 2 \ (A ∪ B)
)

� e(A, B) +
(

|V 1 \ A| N

2
+ |V 2 ∩ A| N

2

)
+ |A ∪ B| N

2

� γ N|B| + 2γ N
N

2
+ γ 1/4N

N

2
� γ 1/4N2.

Since δ(G) � ( 1
2 − γ )N , we derive that for i = 1,2,
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2e(V i) = e(V i, V i) �
N

2

(
1

2
− γ

)
N − γ 1/4N2 � N2

4
− 2γ 1/4N2.

Thus, we can delete at most γ 1/4N2 edges between V 1 and V 2 and add at most γ 1/4N2 edges in
each of V 1 and V 2 to turn G into a graph consisting of two vertex-disjoint cliques; one on V 1, the
other on V 2. In other words, G = KN/2,N/2 ± 3γ 1/4N2.

Now assume that |A ∪ B| � γ 1/4N . Then |B \ A| � | Ā| − γ 1/4N � ( 1
2 + γ − γ 1/4)N . By Claim 5.8,

e(B \ A, A ∪ B)� e( Ā, B̄) � 8
√

γ | Ā||B̄| � 8
√

γ N2. Together with e(B \ A, A)� e(B, A)� |B|γ N � γ N2,
it gives that

|B \ A|
(

1

2
− γ

)
N � e(B \ A, V ) � e(B \ A, B \ A) + e(B \ A, A) + e(B \ A, A ∪ B)

� |B \ A|
(

1

2
+ γ − γ 1/4

)
N + γ N2 + 8

√
γ N2.

This implies that (γ 1/4 − 2γ )N|B \ A| � 9
√

γ N2 and so |B \ A| � 10γ 1/4 N . Similarly we can show
that |A \ B|� 10γ 1/4 N . Now pick a set V 1 ⊆ V (G) of size N/2 such that |V 1 ∩ A| is maximized. Thus,
|V 1 \ A| � γ N . Then, as e(A ∩ B, A) � e(B, A)� γ N2, we have

e(V 1) � e(V 1 \ A, V 1) + e(A) � e(V 1 \ A, V 1) + e(A ∩ B, A) + e(A \ B)

� γ
N2

2
+ γ N2 + 1

2

(
10γ 1/4N

)2 � 52
√

γ N2.

Let V 2 := V (G)\V 1. Since δ(G) � ( 1
2 − γ )N , we have

e(V 1, V 2) �
N

2

(
1

2
− γ

)
N − 52

√
γ N2 � N2

4
− 53

√
γ N2.

Further, by Claim 5.8 and since |A ∩ V 2| = |A\V 1| � 2γ N ,

e(V 2) � e(A ∩ V 2, V 2) + e( Ā) � e(A ∩ V 2, V 2) + e( Ā ∩ B̄, Ā) + e( Ā ∩ B)

� |A ∩ V 2| N

2
+ e(B̄, Ā) + e(B \ A)

� 2γ
N2

2
+ 8

√
γ N2 + 1

2

(
10γ 1/4N

)2 � 59
√

γ N2.

Hence, we can add at most 53
√

γ N2 edges between V 1 and V 2 and delete at most 52
√

γ N2 +
59

√
γ N2 edges inside V 1 and V 2 to turn G into a complete balanced bipartite graph. In other words,

G = KN/2,N/2 ± 164
√

γ N2.
Since γ 
 β we conclude that either G = K N

2 , N
2

± βN2 or G = K N
2 , N

2
± βN2, as desired. �

This completes the proof of Lemma 5.3.

5.3. Proof of Lemma 5.4

We need the following structural result and prove it by applying Theorems 2.3 and 2.4.

Lemma 5.9 (Structure Lemma). For any η > 0 and r ∈N, there exist δ > 0 and n0 ∈N such that the following
holds. Suppose that K is a complete 2r-uniform hypergraph on n � n0 vertices whose edge set is partitioned
into two sets R (red) and B (blue). Let Ω denote the collection of all 4r-subsets S ⊆ V (K ) such that there exists
a partition of S = P1 ∪ P2 ∪ P3 ∪ P4 where |Pi | = r for all 1 � i � 4 and such that exactly one of the four
2r-sets P1 ∪ P2 , P2 ∪ P3 , P3 ∪ P4 , P4 ∪ P1 is in R or B (the other three are in the other color class). Suppose
that
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(i) |R|, |B|� ( 1
2 − δ)

( n
2r

)
and;

(ii) |Ω| � δn4r .

Then either K [R] = Bn,2r ± ηn2r or K [B] = Bn,2r ± ηn2r .

Proof. Given η > 0 define additional constants δ, δ1, ε such that

0 < δ 
 δ1 
 ε 
 η,1/r. (11)

Let C2r
4 denote the expanded 2r-uniform 4-cycle. That is, C2r

4 consists of four disjoint sets P1, P2,
P3, P4 of vertices of size r, and the edges P1 ∪ P2, P2 ∪ P3, P3 ∪ P4, P4 ∪ P1. We call a 2-colored
copy of C2r

4 bad if exactly one of its four edges is in R or B (and the other three are in the other

color class). A 4r-set S ∈ (V (K )
4r

)
is bad if K [S] contains a bad C2r

4 . Thus (ii) says that the number of
bad 4r-sets is at most δn4r .

Observe that if T1 is red copy of C2r
3 and T2 is a blue copy of C2r

3 such that T1 and T2 are vertex-
disjoint, then there exists at least one bad copy of C2r

4 whose vertex set is contained in V (T1)∪ V (T2):
Let a, b, c denote the r-tuples in V (T1) such that a ∪ b, b ∪ c, c ∪ a ∈ E(T1). Define x, y, z ⊆ V (T2)

analogously. If there is a v ∈ {a,b, c} such that v ∪ w1 ∈ R and v ∪ w2 ∈ B for some w1, w2 ∈ {x, y, z},

then we obtained our desired bad copy of C2r
4 . For example, if a ∪ x ∈ B and a ∪ z ∈ R , then the edges

a ∪ x, x ∪ y, y ∪ z ∈ B and a ∪ z ∈ R induce a bad copy of C2r
4 . Similarly, if there exists v ∈ {x, y, z}

such that v ∪ w1 ∈ R and v ∪ w2 ∈ B for some w1, w2 ∈ {a,b, c}, then we obtain a bad copy of C2r
4 . If

neither of these two cases holds, then all the edges of the form v ∪ w receive the same color, say red
(where v ∈ {a,b, c} and w ∈ {x, y, z}). But then a ∪ b,a ∪ x,b ∪ y ∈ R and x ∪ y ∈ B induce a bad copy

of C2r
4 .

Assume for a contradiction that K contains at least δ1n3r red copies of C2r
3 and at least δ1n3r

blue copies of C2r
3 . For each red copy T of C2r

3 in K , there are at most 3r
( n

3r−1

)(3r
2r

)(2r
r

)
blue copies

of C2r
3 in K which contain at least one vertex from V (T ). (The

(3r
2r

)(2r
r

)
term comes from the fact

that, given any 3r-set V ⊆ V (K ), there are
(3r

2r

)(2r
r

)
copies of C2r

3 in K [V ].) So there are at least

δ1n3r − 3r
( n

3r−1

)(3r
2r

)(2r
r

)
� δ1n3r/2 blue C2r

3 in K that are disjoint from T . Hence, there are at least

δ2
1n6r/2 pairs T1, T2 of vertex-disjoint copies of C2r

3 such that T1 is red and T2 is blue.

Now consider any bad copy C of C2r
4 . There are

(n−4r
2r

)
6r-subsets of V (K ) which contain V (C). For

each such 6r-set S , there are
(6r

3r

)(3r
2r

)2(2r
r

)2
pairs T ′ , T ′′ of vertex-disjoint copies of C2r

3 in K such that
V (T ′) ∪ V (T ′′) = S . Together, this all implies that the number of bad 4r-sets is at least

δ2
1

2
n6r × 1(n−4r

2r

)(6r
3r

)(3r
2r

)2(2r
r

)2

(11)
> δn4r,

a contradiction to (ii) as desired.
Thus, there are less than δ1n3r blue C2r

3 in K or less than δ1n3r red C2r
3 in K . Without loss of

generality we assume there are less than δ1n3r blue C2r
3 in K . So (i) implies that K [B] is an n-vertex

2r-uniform hypergraph with at least (1/2 − δ)
( n

2r

)
edges and less than δ1n3r copies of C2r

3 . To show
K [B] = Bn,2r ± ηn2r , we will use Theorems 2.3 and 2.4.

Since δ1 
 ε, Theorem 2.3 implies that we may remove at most εn2r edges from K [B] to obtain a
C2r

3 -free hypergraph K ′[B]. As ε 
 η and

e
(

K ′[B]) �
(

1

2
− δ

)(
n

2r

)
− εn2r �

(
1

2
− √

ε

)(
n

2r

)

we may apply Theorem 2.4 to obtain that K ′[B] = Bn,2r ± ηn2r/2. Consequently, K [B] = Bn,2r ± ηn2r ,
as desired. �
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Given two disjoint vertex sets R and B we define K R,B to be the complete bipartite graph with
vertex classes R and B .

Proof of Lemma 5.4. Given ε > 0 we define additional constants β , η such that

0 < β 
 η 
 ε,1/r. (12)

Further assume that n is sufficiently large.
By assumption, either G = K N

2 , N
2

± βN2 or G = K N
2 , N

2
± βN2, where N := ( n

2r

)
. It suffices to show

that if G = K N
2 , N

2
±2βN2 then H = Bn,4r ±εn4r . Indeed, the edge set of G contain the edge set of G(H)

and all the pairs of intersecting 2r-subsets of V (H). Since there are O (n4r−1) pairs of intersecting 2r-
subsets of V (H), if G = K N

2 , N
2

±βN2, then G(H) = K N
2 , N

2
±2βN2, which implies that H = Bn,4r ±εn4r ,

equivalently, H = Bn,4r ± εn4r , as desired.
Assume that G = K N

2 , N
2

± 2βN2, namely, there is partition R, B of V (G) = (V (H)
2r

)
such that |R| =

|B| = N/2 and |E(G)	E(K R,B)| � 2βN2. Let K (H) denote the complete 2r-uniform hypergraph whose
vertex set is V (H). Since R, B is a partition of

(V (H)
2r

)
we may view R and B as the color classes of a

2-coloring of the edge set of K (H). Let K [R] denote the spanning subhypergraph of K (H) induced by
the edges of R . Define K [B] analogously.

Given a 4r-set Q of vertices from V (H) we say that Q is bad if there exists a partition of Q =
P1 ∪ P2 ∪ P3 ∪ P4 where |Pi| = r for all 1 � i � 4 and such that exactly one of the four 2r-sets
P1 ∪ P2, P2 ∪ P3, P3 ∪ P4, P4 ∪ P1 receives one of the colors. First assume that this color is B .
Without loss of generality, assume that P1 ∪ P2, P2 ∪ P3, P3 ∪ P4 ∈ R and P4 ∪ P1 ∈ B . If Q ∈ E(H),
then {P1 ∪ P2, P3 ∪ P4} ∈ E(G) ∩ (R

2

)
. On the other hand, if Q /∈ E(H), then {P4 ∪ P1, P2 ∪ P3} ∈

E(G) ∩ E(K R,B). Therefore, one of {P1 ∪ P2, P3 ∪ P4} and {P4 ∪ P1, P2 ∪ P3} is in E(G)	E(K R,B).
The same holds when exactly one of P1 ∪ P2, P2 ∪ P3, P3 ∪ P4, P4 ∪ P1 is colored R . Clearly two
distinct bad 4r-sets lead to two different members of E(G)	E(K R,B). Since |E(G)	E(K R,B)| � 2βN2,
the number of bad 4r-sets is at most 2βN2.

Since β 
 η, we may apply Lemma 5.9 to K (H) to obtain that either K [R] = Bn,2r ± ηn2r or
K [B] = Bn,2r ± ηn2r . Since the roles of K [R] and K [B] are interchangeable, we may assume that
K [R] = Bn,2r ± ηn2r . Let X, Y denote a partition of V (H) such that |E(K [R])	E(Bn,2r[X, Y ])| � ηn2r .
We now use the structural information we have about G and K [R] to piece together that of H .

Claim 5.10. H = Bn,4r ± εn4r .

Recall that given a 2r-tuple x ∈ (V (H)
2r

)
we say that x is even if x contains an even number of

elements from X (and so an even number of elements from Y ). Otherwise, we say that x is odd. Thus,
the edge set of Bn,2r[X, Y ] is precisely the set of odd 2r-tuples.

Our ultimate aim is to show that∣∣E(H)	E
(
Bn,4r[X, Y ])∣∣ � εn4r . (13)

First we show that |E(H)\E(Bn,4r[X, Y ])|� εn4r/2. Consider any 4r-tuple Q from E(H)\E(Bn,4r[X,

Y ]). Since Q /∈ E(Bn,4r[X, Y ]) (thus |Q ∩ X | is even), Q can be partitioned into 2r-tuples x, y such
that both x and y are even. (For example, if |Q ∩ X | � 2r, then let x be a 2r-subset of Q ∩ X ;
otherwise let x be a 2r-subset of Q ∩ Y . Since |Q ∩ X | is even, y is even.) As Q ∈ E(H) we have that
{x, y} ∈ E(G). Thus,∣∣E(H)\E

(
Bn,4r[X, Y ])∣∣� |Σ |,

where Σ is the set of all disjoint pairs of 2r-tuples w, z ∈ (V (H)
2r

)
such that w and z are even and

{w, z} ∈ E(G).

Since K [R] = Bn,2r[X, Y ] ± ηn2r , there are at most
(ηn2r

2

)
� η2n4r pairs {w, z} ∈ Σ such that

w, z ∈ R . Similarly, there are at most ηn2r |B| � ηn4r pairs (w, z) ∈ Σ such that w ∈ B and z ∈ R .
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Given any pair (w, z) ∈ Σ such that w, z ∈ B , by definition of Σ , we have {w, z} ∈ E(G). However,
G = K R,B ± 2βN2, so there are most 2βN2 � 2βn4r such pairs in Σ . Together, this all implies that
|Σ | � (η2 + η + 2β)n4r � εn4r/2. So indeed, |E(H)\E(Bn,4r[X, Y ])|� εn4r/2.

Next we show that |E(Bn,4r[X, Y ])\E(H)| � εn4r/2. Consider any 4r-tuple Q from E(Bn,4r[X, Y ])\
E(H). Since Q ∈ E(Bn,4r[X, Y ]), Q can be partitioned into 2r-tuples x, y such that x is even and y is
odd. (For example, if |Q ∩ X |� 2r, then let x be a 2r-subset of Q ∩ X ; otherwise let x be a 2r-subset
of Q ∩ Y . Since |Q ∩ X | is odd, y is odd.) As Q /∈ E(H) we have that {x, y} ∈ E(G). Thus,

∣∣E
(
Bn,4r[X, Y ])\E(H)

∣∣ � |Γ |,
where Γ is the set of all disjoint pairs of 2r-tuples w, z ∈ (V (H)

2r

)
such that w is even, z is odd and

{w, z} ∈ E(G).
Since K [R] = Bn,2r[X, Y ] ± ηn2r , we have that K [B] = Bn,2r[X, Y ] ± ηn2r . Thus, there are at most

ηn2r
( n

2r

)
� ηn4r pairs {w, z} ∈ Γ such that w is even and w ∈ R . Similarly, there are at most ηn4r

pairs {w, z} ∈ Γ such that z is odd and z ∈ B . Given any pair {w, z} ∈ Γ such that w ∈ R is odd
and z ∈ B is even, by definition of Γ , {w, z} ∈ E(G). However, G = K R,B ± 2βN2, so there are most
2βN2 � 2βn4r such pairs in Γ . Together this all implies that |Γ | � (2η + η + 2β)n4r � εn4r/2. So
indeed, |E(Bn,4r[X, Y ])\E(H)| � εn4r/2. Therefore (13) is satisfied, as desired. �
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Appendix A

In this section we prove Theorem 1.2. Because of Theorem 1.1, it suffices to prove the following
fact.

Fact A.1. For all n � 12 divisible by 4,

δ(n,4,2) � n2

4
− 5n

4
−

√
n − 3

2
+ 3

2
.

Furthermore, there are infinitely many values of n such that the following holds:

• δ(n,4,2) = δ2(Bn,4(t)) = n2

4 − 5n
4 −

√
n−3
2 + 3

2 for some t;
• Bn,4(t) does not contain a perfect matching.

Proof. Suppose that n ∈ N is divisible by 4 and let t be an integer such that 0 � t < n/2. Denote the
vertex classes of Bn,4(t) by A and B . Therefore |A| = n/2 + t and |B| = n/2 − t .

Given distinct v1, v2 ∈ A,

dBn,4(t)(v1 v2) = (n/2 + t − 2)(n/2 − t) = n2

4
− n − t2 + 2t.

Given distinct w1, w2 ∈ B ,

dBn,4(t)(w1 w2) = (n/2 + t)(n/2 − t − 2) = n2

4
− n − t2 − 2t.

Given any v1 ∈ A and w1 ∈ B ,
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dBn,4(t)(v1 w1) =
(

n/2 + t − 1

2

)
+

(
n/2 − t − 1

2

)

= 1

2

[
(n/2 + t − 1)(n/2 + t − 2) + (n/2 − t − 1)(n/2 − t − 2)

]

= n2

4
− 3n

2
+ t2 + 2.

Thus, dBn,4(t)(v1 v2) � dBn,4(t)(w1 w2) for all v1, v2 ∈ A and w1, w2 ∈ B . Notice that n2/4 − n − t2 − 2t

decreases as t increases and that n4/4 − 3n/2 + t2 + 2 increases as t increases (for t � 0). For fixed n
consider the equation

n2

4
− n − t2

1 − 2t1 = n2

4
− 3n

2
+ t2

1 + 2 where t1 � 0.

It gives that t2
1 + t1 + (1 − n/4) = 0 and so

t1 = −1 + √
n − 3

2
.

This analysis implies that, for all 0 � t < n/2,

δ2
(
Bn,4(t)

)
� n2

4
− 3n

2
+ t2

1 + 2 = n2

4
− 5n

4
−

√
n − 3

2
+ 3

2
. (14)

Further, since Bn,4(t) is isomorphic to Bn,4(−t) for all 0 � t < n/2, (14) holds for all −n/2 < t < n/2.
Now consider Bn,4(t) for any 0 � t < n/2 and assume A and B are the vertex classes of Bn,4(t).

Given distinct v1, v2 ∈ A,

dBn,4(t)(v1 v2) =
(

n/2 + t − 2

2

)
+

(
n/2 − t

2

)

= 1

2

[
(n/2 + t − 2)(n/2 + t − 3) + (n/2 − t)(n/2 − t − 1)

]

= n2

4
− 3n

2
+ t2 − 2t + 3.

Given distinct w1, w2 ∈ B ,

dBn,4(t)(w1 w2) =
(

n/2 − t − 2

2

)
+

(
n/2 + t

2

)
= n2

4
− 3n

2
+ t2 + 2t + 3.

Given any v1 ∈ A and w1 ∈ B ,

dBn,4(t)(v1 w1) = (n/2 + t − 1)(n/2 − t − 1) = n2

4
− n − t2 + 1.

Notice that dBn,4(t)(v1 v2) � dBn,4(t)(w1 w2) for all v1, v2 ∈ A and w1, w2 ∈ B . Further, when t � 1,

n2/4 − 3n/2 + t2 − 2t + 3 increases as t increases and that n2/4 − n − t2 + 1 decreases as t increases.
Thus, for a fixed n the value of t � 1 which maximizes the minimum 2-degree of Bn,4(t) satisfies

n2/4 − 3n/2 + t2 − 2t + 3 = n2/4 − n − t2 + 1,

which gives that t2 − t + (1 − n/4) = 0. Therefore as t � 1 we have that

t = 1 + √
n − 3

2
.

This analysis implies that, for all 1 � t < n/2,
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δ2
(
Bn,4(t)

)
� n2

4
− n −

(
1 + √

n − 3

2

)2

+ 1 = n2

4
− 5n

4
−

√
n − 3

2
+ 3

2
. (15)

It is easy to see that δ2(Bn,4(0)) = n2

4 − 3n
2 + 3 � n2

4 − 5n
4 −

√
n−3
2 + 3

2 when n � 12. Thus (15) holds
for all 0 � t < n/2. Since Bn,4(t) is isomorphic to Bn,4(−t) for all 0 � t < n/2, (15) actually holds for
all −n/2 < t < n/2. Thus, (14) and (15) imply that

δ(n,4,2) � n2

4
− 5n

4
−

√
n − 3

2
+ 3

2
,

as desired.
Notice that there are values of n such that n is divisible by 4 and where (1 + √

n − 3)/2 is an
odd integer. Indeed, let n := (4m + 1)2s + 3 for some m, s ∈ N. Then n = (4m + 1)2s + 3 ≡ 1 + 3 ≡
0 mod 4. Since (4m + 1)s is odd, clearly (1 + √

n − 3)/2 = (1 + (4m + 1)s)/2 is an integer. Further
if (1 + (4m + 1)s)/2 = 2x for some x ∈ N then (4m + 1)s = 4x − 1 ≡ 3 mod 4, a contradiction as
(4m + 1)s ≡ 1 mod 4. Hence (1 + √

n − 3)/2 is odd.
For values of n where n is divisible by 4 and where t := (1 +√

n − 3)/2 is an odd integer, we have
that

δ2
(
Bn,4(t)

) = n2

4
− n − t2 + 1 = n2

4
− 5n

4
−

√
n − 3

2
+ 3

2
.

Note though that |A| = n/2 + t is odd, therefore, Bn,4(t) ∈ Hext(n,4) and so it does not contain a
perfect matching. Thus, the second part of Fact A.1 is proven. �
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