
Theoretical Computer Science 352 (2006) 85–96
www.elsevier.com/locate/tcs

The DNF exception problem

Dhruv Mubayi1, György Turán2, Yi Zhao∗,3

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607, USA

Received 16 July 2004; received in revised form 7 October 2005; accepted 12 October 2005

Communicated by A.A. Razborov

Abstract

Given a disjunctive normal form (DNF) expression � and a set A of vectors satisfying the expression, called the set of exceptions,
we would like to update � to get a new DNF which is false on A, and otherwise is equivalent to �. Is there an algorithm with
running time polynomial in the number of variables, the size of the original formula and the number of exceptions, which produces
an updated formula of size bounded by a certain type of function of the same parameters?

We give an efficient updating algorithm, which shows that the previously known best upper bound for the size of the updated
expression is not optimal in order of magnitude. We then present a lower bound for the size of the updated formula in terms of
the parameters, which is the first known lower bound for this problem. We also consider the special case (studied previously in the
complexity theory of disjunctive normal forms) where the initial formula is identically true, and give efficient updating algorithms,
providing new upper bounds for the size of the updated expression.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Disjunctive normal form; Updating; Occam algorithms

1. Introduction

The problem of efficiently updating a rule in order to incorporate negative information comes up in many appli-
cations. Areas dealing with this issue from different angles include machine learning, computational learning theory,
nonmonotonic logic, belief revision, databases, term rewriting and logic programming. We consider this question in
the context of propositional logic, by looking at the basic case of disjunctive normal forms (DNFs).

A DNF over the variables x1, . . . , xn is a disjunction of terms, which are conjunctions of literals (variables or their
negations). The set of vectors satisfying a DNF � is denoted by T (�); the size of � is the number of its terms. The
minimal size of any DNF for a Boolean function f is denoted by Cov(f).

∗ Corresponding author. Tel.: +1 3124133748; fax: +1 3129961491.
E-mail address: yizhao@mathstat.gsu.edu (Y. Zhao).

1 Research partially supported by NSF Grants DMS-9970325, DMS-0400812, and an Alfred P. Sloan Research Fellowship.
2 Also affiliated with RGAI of the Hungarian Academy of Science, Szeged. Research partially supported by NSF Grants CCR-0100036, CCF-

0431059.
3 Research partially supported by NSA Grant H98230-05-1-0079, a Campus Research Board Grant and a VIGRE Postdoctoral Fellowship at

University of Illinois at Chicago.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.10.038

http://www.elsevier.com/locate/tcs
mailto:yizhao@mathstat.gsu.edu

86 D. Mubayi et al. / Theoretical Computer Science 352 (2006) 85 –96

We think of a DNF � as a database, representing, for example, a set of instances for which a certain property holds.
Assume that the database needs to be revised, as there is a set of instances A ⊆ T (�), called the set of exceptions to
�, which turn out not to have the property represented by �. The objective, then, is to compute a representation of the
modified database. In other words, we would like to compute a new DNF � representing the Boolean function �∧¬�A,
where �A is the characteristic function of A. We refer to this computational problem as the DNF exception problem.
(Note that besides deleting vectors from T (�), one could also consider the case of adding vectors to T (�). This can be
handled in a straightforward manner by adding distinct terms for each vector, and so it is not discussed any further.)

Finding a shortest representation of � is easily seen to include the problem of DNF minimization, which is known to be
hard to solve exactly or approximately [21,22]. Motivated by the connection of this problem to computational learning
theory (see below in more detail), we are interested in a different criterion: finding efficient algorithms producing a
DNF � of size bounded by a (possibly slowly increasing) function of the number of variables, the size of the original
DNF, and the number of exceptions.

We would like to determine the function

XC(n, m, r) = max{Cov(� ∧ ¬�A)},
where the maximum is taken over all n-variable DNFs � with at most m terms and all A ⊆ T (�) with |A|�r . In other
words, XC(n, m, r) is the maximal number of terms needed in an optimal DNF for a Boolean function obtained by
deleting at most r vectors from an at most m-term DNF over the variables x1, . . . , xn. We are also interested in finding
an efficient updating algorithm that produces a DNF of size close to this bound.

The DNF exception problem was first studied by Zhuravlev and Kogan [14,15,23] in the special case m = 1, in the
context of the complexity theory of DNF. If the initial DNF consists of a single term then it can be considered to be the
whole cube, and thus determining XC(n, 1, r) is equivalent to determining the maximal DNF complexity of n-variable
Boolean functions with r false points. In [23] it is shown that if r = log n−�(n), where �(n) → ∞ arbitrarily slowly,
then XC(n, 1, r) = (1 + o(1))n, and it is stated without proof 4 that

XC(n, 1, r)� 1
2n · r. (1)

[14] gives lower bounds for small r , and [15] gives an upper bound of the form O(n·r
log n

) for almost all sets if r is in

the range log n < r = o(2n/2). Recently, D’yakonov [8–10] obtained new results on this problem, with emphasis on
getting efficient updating algorithms for small values of r .

The general DNF exception problem was first considered by Board and Pitt [6] in their work on the relationship
between PAC learnability and Occam algorithms. (An Occam algorithm is a learning algorithm that performs data
compression in a certain sense. As we do not use these notions, we omit the definitions. See [13] for general background
in computational learning theory, and Li et al. [17] for more recent work on this relationship.) The conjecture, implicit
in [6], is that there is no upper bound for XC(n, m, r) of the form

p(n, m, log r) + q(n, log m, log r) · r, (2)

where p and q are arbitrary polynomials (in their terminology, DNF are not strongly closed under exception lists). If
the conjecture is false, i.e., there is an upper bound of form (2) for XC(n, m, r), and there is an efficient (polynomial
in n, m and r) algorithm producing an updated formula of size bounded by (2), then it would follow that the existence
of an Occam algorithm for DNF is necessary for the PAC learnability of DNF. It is known that the existence of an
Occam algorithm is sufficient for PAC learnability in general [5]. We note that the efficient learnability of DNF, both
in the PAC and the equivalence and membership query model [12], is one of the main open problems in computational
learning theory.

The notion of closure under exception lists comes up in computational learning theory in a different context as well,
in the work of Angluin and Kriķis [2,3] on learning with membership and equivalence queries which may contain lies.
They give the general upper bound

XC(n, m, r)�nmr. (3)

4 We have been informed by a referee that Kogan’s dissertation (Vych. Tsentr Akad. Nauk. SSSR, Computational Center of Academy of Science
USSR, Moscow, 1987) contains a proof of (1) and a result similar to Theorem 5b.

D. Mubayi et al. / Theoretical Computer Science 352 (2006) 85 –96 87

The proof of (3) in [2,3] gives an efficient algorithm to produce an updated formula of size bounded by (3). It is implicit
in a remark of Angluin and Kriķis that (1) immediately gives an improvement of (3) by a factor 1

2 , but for their purposes
it is sufficient to have (3), which has a short proof. It may be the case that (3) is ‘almost optimal’. This would imply
that, indeed, DNF are not strongly closed under exception lists. As far as we know, there are no previous lower bounds
for XC(n, m, r).

Now we turn to the description of the results of this paper. All our positive results give upper bounds for XC(n, m, r)

and, at the same time, also provide efficient algorithms to produce an updated formula of size within the stated bound.
In the formulation of these results, and their proofs, we only mention the upper bounds, as the algorithms themselves
are then easily derived. The negative results give lower bounds for XC(n, m, r).

Our first result shows that the upper bound (3) is not optimal up to a constant factor. The bound improves over (3)
by a factor of the order log n

n
when r is exponentially large.

Theorem 1. Suppose that r �n. Then

XC(n, m, r)�
⌈

m

�log r/log n�
⌉

r(n + 1).

Now we turn to lower bound results for XC(n, m, r). First, we observe the following simple linear lower bounds:

Proposition 2. (a) XC(n, 1, 1)�n.
(b) XC(n, m, r)�m for r �m�2n−2.
(c) XC(n, 1, r)� r

2 .

We obtain much stronger lower bounds in Theorems 3 and 4, where Theorem 3 Part (a) shows that (3) is in fact sharp
up to a constant factor in the special case r = 1. We write

(
n

�a

) = (
n
0

)+ (
n
1

)+ · · · + (
n
a

)
. In the statements (and proofs)

of these theorems, we omit floor and ceiling symbols.

Theorem 3. (a) For every 0 < ε < 1
4 there is an n0 such that for any n�n0 and m�(e(2ε2/27)n)/4,

XC(n, m, 1)�
(1

4 − ε
)
nm.

(b) For any 0 < � < � < 1 satisfying �2 + 3� < �, there is an n0 such that for any n�n0, m�(e(�2/3�)n)/4 and
0�� < min{�2 + 3�, � − �2 − 3�},

XC

(
n, m,

(
n

��n

))
�m

(
�
�n

)
(

�2n + 3�n

�n

) . (4)

After selecting appropriate � and � in Theorem 3 Part (b), we obtain the following lower bound.

Theorem 4. For any 0 < ε < 1
3 , there exist � > 0, and n0 such that

XC (n, m, r) �mr1/3−ε

for every n�n0 and m = r = (
n

��n

)
.

We now present improved upper bounds for the special case m = 1 considered in the above-mentioned papers
[8–10,14,15,23]. Theorem 5(a) is a slight improvement over (1). This improvement is of interest as it is sharp for
r = n, and thus it gives some evidence for a general conjecture for the exact value of XC(n, 1, r), when r is a binomial
coefficient (see Section 4). Theorem 5(b) improves the upper bound in (1) for large values of r .

88 D. Mubayi et al. / Theoretical Computer Science 352 (2006) 85 –96

Theorem 5. (a) For n�2 and r �2

XC(n, 1, r)� n − 1

2
r + 1.

(b)

XC(n, 1, r)�(n − �log2 r	 + 1)r.

Note that if r < 2(n+3)/2 then Part (a) gives a better bound, otherwise Part (b) gives a better bound.
We use the following notations in this paper. We write {0, 1}n for the n-dimensional hypercube. A subcube (or simply

cube) of {0, 1}n is represented by a sequence of length n, consisting of 0’s, 1’s and *’s. The number of the *’s is called
the dimension of the cube. Clearly the vectors satisfying a conjunction form a subcube, where 0’s (resp. 1’s) correspond
to negated (resp. unnegated) variables, and *’s correspond to variables which do not occur in the conjunction, either
negated or unnegated. Thus, for example, if n = 4, then the conjunction x2 ∧ x̄4 can also be written as ∗1∗0. We (ab)use
the terminology of a DNF for a Boolean function, or a cube cover of a subset of {0, 1}n interchangeably, whichever is
more convenient. Thus, corresponding to the definition of Cov(f) in the beginning of the paper, Cov(B) denotes the
minimal number of cubes covering a set B ⊆ {0, 1}n. Note that in a cube cover of �∧¬�A, the cubes are not required to
be disjoint, but they cannot contain any points in A. For a vector x ∈ {0, 1}n, the weight of x is the number of ones in x.
Let W� (resp. W��) be the set of vectors of {0, 1}n having weight � (resp. at most �). For a set S ∈ [n] = {1, 2, . . . , n},
the characteristic vector xS of S is a vector having 1 at coordinates i ∈ S and 0 otherwise.

The structure of the rest of the paper is as follows. Section 2 gives the proofs for the general DNF exception problem
and Section 3 gives the proofs for the case m = 1. Section 4 contains some remarks and open problems.

2. The general DNF exception problem

We prove Theorem 1 in Section 2.1, and the lower bounds, Proposition 2 and Theorems 3, 4, in Section 2.2. The
proof of Theorem 1 is based on partitioning the original set of cubes into groups, replacing each group with a set
of disjoint cubes, and deleting the exceptions in each group separately. The proof of Theorem 3 uses a construction
which associates a Boolean function to every family of subsets of [n]. It is shown that if the family has a certain
combinatorial property then a lower bound holds for the number of cubes required to cover the set remaining after all
vectors of bounded weight are deleted. A computation providing suitable values for the constants in Theorem 3 proves
Theorem 4.

2.1. Upper bound

There are standard procedures for writing a union of cubes as a disjoint union of cubes (see, e.g. [19]). These
procedures are polynomial in terms of the combined size of the input and the output. Lemma 6 recalls a bound provided
by these procedures. It is also known that writing a union of cubes as a disjoint union may require an exponential
blowup in the number of cubes [4,7], although there is a gap between the known lower and upper bounds. We apply
these procedures to a small number of cubes, so the resulting algorithm remains polynomial in the size of the input.
We use � to emphasize disjoint unions.

Lemma 6. (a) For any cubes C, C1, . . . , Ct , the difference C \⋃t
i=1Ci can be written as the disjoint union of at most

nt cubes.
(b) For any cubes C1, . . . , Ct , the union C1 ∪ · · · ∪ Ct can be written as the disjoint union of at most nt cubes.

Proof. Part (a). By induction on t , the case t = 1 holds since, e.g., {0, 1}m \ x̄1 ∧ · · · ∧ x̄k can be covered by k disjoint
cubes x1 � (x̄1 ∧ x2) � · · · � (x̄1 ∧ x̄2 ∧ · · · ∧ x̄k−1 ∧ xk). For the induction step we have

C

∖
t⋃

i=1
Ci =(C \ Ct)

∖
t−1⋃
i=1

Ci =
(

m⊔
j=1

Dj

)∖
t−1⋃
i=1

Ci =
m⊔

j=1

(
Dj

∖
t−1⋃
i=1

Ci

)
=

m⊔
j=1

(nj⊔
k=1

Dj,k

)
,

where m�n and nj �nt−1.

D. Mubayi et al. / Theoretical Computer Science 352 (2006) 85 –96 89

Part (b) follows from Part (a) after writing

t⋃
i=1

Ci =
t⊔

i=1

(
Ci

∖
i−1⋃
j=1

Cj

)
. �

Lemma 7. If C1, . . . , Cs are disjoint cubes and |A|�r , then

Cov ((C1 ∪ · · · ∪ Cs) \ A) �s + rn.

Proof. Let ri = |Ci ∩ A|. By (3) with m = 1 (or Theorem 5), we have Cov(Ci \ A)�nri . Hence

Cov((C1
⊔ · · ·⊔Cs)\A)�

s∑
i=1

max(1, rin)�
s∑

i=1
(1 + rin) = s + rn. �

Proof of Theorem 1. Given subcubes C1 ∪ · · · ∪ Cm of {0, 1}n, and an exception set A ⊆ {0, 1}n of size r , we want
to show

Cov(C1 ∪ · · · ∪ Cm \ A)�
⌈

m

�log r/log n�
⌉

r(n + 1). (5)

We arbitrarily divide the cubes Ci into �m
t
	 groups of at most t cubes each, where t = �log r/log n�. We then apply

Lemma 6 to obtain a disjoint cube cover (of size at most nt) of the cubes in each group. Finally when deleting A from
each group, we apply Lemma 7 and get a cube cover of size nt + rn. The sum of the sizes of the cube covers in all the
groups is at most �m

t
	(nt + rn). The bound (5) follows after substituting for t . �

2.2. Lower bounds

Proof of Proposition 2. For Part (a), note that if a cube contains both (1, 0, . . . , 0) and (0, 1, 0, . . . , 0), then it must
have ∗’s in its first two positions, and ∗’s or 0’s in the other positions. Thus the cube must contain 0, the all-zero vector
as well. Thus Cov({0, 1}n \ 0)�n, as each unit vector must be covered by a distinct cube. Hence XC(n, 1, 1)�n.

For Part (b), note that the vectors satisfying the (n− 1)-variable parity function x1 ⊕· · ·⊕ xn−1 in {0, 1}n form 2n−2

one-dimensional subcubes of pairwise distance at least 2. We take m of these subcubes and remove r vectors, each
from a different subcube. The remaining set still requires m cubes to be covered, thus XC(n, m, r)�m.

For Part (c), suppose that 2i−1 �r < 2i . We delete all vectors of even weight from a subcube C of dimension i and
r − 2i−1 vectors from {0, 1}n \ C. The remaining 2i−1 > r/2 vectors in C have odd weights, and each of them must
be covered by a different cube. �

Now we describe the combinatorial construction used in the proof of Theorem 3. For a set S ⊆ [n], we denote
by Cube(S) the cube obtained by changing all 1’s in its characteristic vector xS to *’s. Recall that the Turán number
T (d, u, v) is the minimal size of a family of v-subsets of [d] such that every u-subset of [d] contains at least one
subset from the family, where v�u�d (see, e.g. [11]). Determining T (d, u, v) is a major open problem in extremal
combinatorics, but we only use the trivial case T (d, u + 1, 1) = d − u and the simple bound (see, e.g. [11])

T (d, u, v)�

(
d

v

)
(

u

v

) . (6)

Lemma 8. Given nonnegative integers �� t < d , let S1, . . . , Sm be subsets of [n] such that |Si |�d and |Si ∩ Sj |� t

for every 1� i < j �m. Then

Cov

(⋃
i

Cube(Si) \ W��

)
�mT (d, t + 1, � + 1).

90 D. Mubayi et al. / Theoretical Computer Science 352 (2006) 85 –96

The following claim is the first step towards the proof of Lemma 8.

Proposition 9. Let S1, . . . , Sm be subsets of [n] such that |Si ∩ Sj |� t whenever i �= j . If x ∈ Cube(Si) and y ∈
Cube(Sj) (i �= j) are two vectors of weight t + 1, then there is no cube C ⊆ ⋃

i Cube(Si) containing both x and y.

Proof. Suppose instead, that x, y ∈ C for some cube C ⊆ ⋃
i Cube(Si). Then, since C is a cube, the vector x ∨ y (the

componentwise ∨ of x and y) also belongs to C.As C ⊆ ⋃
i Cube(Si), there exists 1�k�m such that x∨y ∈ Cube(Sk).

Recall that Cube(E) is a cube having *’s at coordinates � ∈ E and 0 otherwise. Hence Cube(Si) has *’s wherever x has
a 1, while Cube(Sk) has *’s wherever x ∨ y has a 1. Therefore, Cube(Si) and Cube(Sk) have at least t + 1 (the weight
of x) common *’s, or |Sk ∩ Si |� t + 1. By assumption, this happens only if k = i. By repeating the same arguments
to y, we obtain that k = j . This gives i = j , a contradiction. �

Proof of Lemma 8. From Proposition 9 we know that vectors of weight t + 1 in different sets Cube(Si) have to be
covered by different cubes. Let Bi denote the set of vectors of weight t +1 in Cube(Si), for 1� i�m. Lemma 8 follows
if we show that covering all the points from Bi by cubes disjoint from W�� requires at least T (d, t + 1, � + 1) cubes.

In fact, consider a cube C covering some points from Bi , which is disjoint from W��. Since Cube(Si) has 0’s outside
Si , we may assume w.l.o.g. that C also has 0’s outside Si . Indeed, as C contains points from Bi , it cannot have 1’s
outside Si ; if it has *’s outside Si then these can be changed to 0’s without losing any points from Bi . Furthermore,
C must have at least � + 1 1’s, otherwise it contains a vector of weight at most �. After changing some 1’s to *’s if
necessary, we may assume that C has exactly � + 1 1’s inside Si . Then C contains a vector v ∈ Cube(Si) of weight
t + 1 if and only if the set of coordinates at which C equals 1 is a subset of the set of coordinates at which v equals 1.

Therefore, the sets of size � + 1 associated with the cubes covering Bi have the property that every size t + 1
subset of Si contains at least one of them. The minimal number of such sets is exactly the Turán number T (d, t + 1,

� + 1). �

The following proposition follows by simple probabilistic arguments.

Proposition 10. Given 0 < � < � < 1, for sufficiently large n, if

m < min
{
(e(�2/3�)n)/4, e(�2/6�2

)n
}

then there exist (�n)-element subsets A1, A2, . . . , Am such that |Ai ∩ Aj |�(�2 + 3�)n for all i �= j .

Proof. Assume that n is sufficiently large. We first obtain random subsets A′
1, . . . , A

′
m of [n] as follows. For each j �n,

we let j be a member of A′
i with probability �. Thus the expectation Exp(|A′

i |) = �n for every A′
i and Exp(|A′

i ∩A′
j |) =

�2n for every pair A′
i �= A′

j . Let BIN(n, p) denote the sum of n independent variables, each equal to 1 with probability
p and 0 otherwise. The Chernoff bound (see, e.g. [1, Theorem A.11]) gives

Pr(|BIN(n, p) − pn| > t) < 2e−t2/3pn and Pr(BIN(n, p) > pn + t) < e−t2/3pn.

We therefore have

Pr(||A′
i | − �n| > �n) < 2e−(�2/3�)n and Pr(|A′

i ∩ A′
j | > �2n + �n) < e−(�2/3�2

)n.

When m < min
{
(e(�2/3�)n)/4, e(�2/6�2

)n
}

, we have

2me−(�2/3�)n +
(m

2

)
e−(�2/3�2

)n <
1

2
+ 1

2
= 1.

Then there are sets A′
1, . . . , A

′
m satisfying ||A′

i |−�n|��n for all i and |A′
i ∩A′

j |�(�2 +�)n for all i �= j . After adding
or removing at most �n elements from each A′

i , we obtain new sets A1, . . . , Am of size exactly �n and for all i �= j ,

|Ai ∩ Aj |�(�2 + �)n + �n + �n = �2n + 3�n. �

D. Mubayi et al. / Theoretical Computer Science 352 (2006) 85 –96 91

Proof of Theorem 3. To prove Part (a), given 0 < ε < 1
4 , we apply Proposition 10 with � = 1

2 and � = ε/3. When

m < (e(�2/3�)n)/4 = (e(2ε2/27)n)/4, we obtain (n/2)-element sets A1, . . . , Am such that |Ai ∩ Aj |�(1
4 + ε)n for all

i �= j . Next we apply Lemma 8 to A1, . . . , Am where d = n/2, t = (1
4 + ε)n and � = 0 (here we need ε < 1

4 to
guarantee t < d). It follows directly from the definition that T (d, t + 1, 1) = d − t . Thus we conclude that

XC(n, m, 1)�Cov

(
m⋃

i=1
Cube(Ai) \ 0

)
�mT

(n

2
,
n

4
+ εn + 1, 1

)
=
(

1

4
− ε

)
nm.

To prove Part (b), we first apply Proposition 10 and obtain (�n)-element sets A1, . . . , Am such that |Ai ∩Aj |�(�2 +
3�)n for all i �= j . Next we apply Lemma 8 to Ai in which d = �n, t = (�2 + 3�)n and � = �n (here we need
���2 + 3� < � and n large to guarantee that �� t < d). This gives

XC

(
n, m,

(
n

��n

))
�mT (�n, �2n + 3�n + 1, �n + 1).

The desired lower bound now follows from (6),

XC

(
n, m,

(
n

��n

))
�m

(
�n�n + 1

)(
�2n + 3�n + 1�n + 1

) = m

(
�n

�n

)
(

�2n + 3�n

�n

) �n − �n

�2n + 3�n + 1
> m

(
�n

�n

)
(

�2n + 3�n

�n

) ,

where the last inequality uses the assumption that � < � − �2 − 3� and n is large. �

Proof of Theorem 4. Let us first recall the entropy function

h(x) = −x ln x − (1 − x) ln(1 − x), 0 < x < 1

(for the convenience of later computation, we use ln, instead of log2).
Our proof consists of two steps. In Step 1, we assume that �, �, � satisfy the condition of Theorem 3 and in addition,

�� min{ 1
3 , (�2 + 3�)/2}. The goal of this step is to prove

XC

(
n, m,

(
n

��n

))
> m

(
n

��n

)�0

, (7)

where

�0 = �0(�, �, �) = �h(�/�) − (�2 + 3�)h(�/(�2 + 3�))

h(�)
.

In Step 2 we will specify the values of �, �, � which lead to the conclusion of Theorem 4.
Step 1: Using Stirling’s formula, we write(n

�n

)
= 1 + o(1)√

2	�(1 − �)n
enh(�) as n → ∞. (8)

Applying (8) twice and using the assumption ��(�2 + 3�)/2, we have(
�n

�n

)
(

�2n + 3�n

�n

) = (1 + o(1))

√
�(�2 + 3� − �)

(� − �)(�2 + 3�)

e�nh(�/�)

e(�2+3�)nh(�/(�2+3�))
>

1√
2

· e�nh(�/�)−(�2+3�)nh(�/(�2+3�)).

Applying this to (4) and using the definition of �0, we have

XC

(
n, m,

(
n

��n

))
> m

1√
2

· e(�h(�/�)−(�2+3�)h(�/(�2+3�)))n = m√
2
(enh(�))�0 .

92 D. Mubayi et al. / Theoretical Computer Science 352 (2006) 85 –96

For any 0 < c < 1, we know that xh(c
x
) is an increasing function for x > c. Therefore, �2 + 3� < � < 1 implies

that 0 < �0 < 1 and in particular, (�(1 − �)n/2)�0 > 8 for large n. Applying (8) again, we finally obtain

XC

(
n, m,

(
n

��n

))
>

m√
2

2
√

2

(
2√

2	�(1 − �)n
enh(�)

)�0

> 2m
(n

�n

)�0
> m

(
n

��n

)�0

,

where the last inequality holds because �0 < 1 and
(

n
��n

)
�2
(

n
�n

)
for �� 1

3 .

Step 2: We specify the values of �, �, � which lead to the conclusion of Theorem 4. In order to have
(

n
��n

) = r = m <

(e(�2/3�)n)/4 for all large n, it suffices to have h(�)� �2

3� or ��
√

3�h(�). We thus let � = �p,
� = √

3�ph(�) and � > 0 be very small. It is easy to see that all the constraints in Theorem 3 Part (b) and Step
1 hold, i.e., �2 + 3� < � and � < min{ 1

3 , (�2 + 3�)/2, � − �2 − 3�}. We claim that it suffices to have

lim
�→0

�0

(
�p,

√
3�ph(�), �

)
= p for every p < 1/3. (9)

In fact, assume (9) holds and 0 < ε < 1
3 . We let p = 1

3 − ε/2 and choose � > 0 small enough such that
�0(�

p,
√

3�ph(�), �)� 1
3 − ε and all the constraints hold. The desired bound in Theorem 4 immediately follows

from (7).
To facilitate the proof of (9), we define

�(�, �) = �0

(
�,
√

3�h(�), �
)

, �1(�, �) = �0(�, 0, �),

and prove the following propositions.

Proposition 11. lim�→0 �1(�
p, �) − �(�p, �) = 0 for any p < 1

3 .

Proposition 12. lim�→0 �1(�
p, �) = p for any p < 1.

Proof of Proposition 11. Since

�1(�
p, �) − �(�p, �) =

(
�2p + 3

√
3�ph(�)

)
h
(
�/
(
�2p + 3

√
3�ph(�)

))− �2ph(�/�2p)

h(�)
,

it suffices to show that
 := (�2p + 3
√

3�ph(�)) h
(

�
�2p+3

√
3�ph(�)

)
= �2ph(�1−2p) + o(h(�)).

Using the Taylor series, we know that as x → 0

h(x) = −x ln x + x + o(x) = −x ln x(1 + o(1)). (10)

When p < 1
3 we have h(�) = o(�3p) and 3

√
3�ph(�) = o(�2p). Consequently

h

(
�

�2p + 3
√

3�ph(�)

)
= h

(
�

�2p + o(�2p)

)
= h(�1−2p + o(�1−2p)).

Thus

 = �2p(1 + o(1)) · h(�1−2p + o(�1−2p)).

Now we need to express h(x + o(x)) in terms of h(x) (as x → 0). Since ln x is continuous at x = 1, we have
ln(x + o(x)) = ln x + o(1). This and (10) imply that

h(x + o(x)) = −(x + o(x)) ln(x + o(x)) + (x + o(x)) + o(x)

= −(x + o(x))(ln x + o(1)) + o(x ln x)

= −x ln x + o(x ln x)

= h(x) + o(h(x)).

D. Mubayi et al. / Theoretical Computer Science 352 (2006) 85 –96 93

Therefore,

 = �2p(1 + o(1)) · (h(�1−2p) + o(h(�1−2p))) = �2ph(�1−2p) + o(h(�)),

where the last equality holds because o(�2ph(�1−2p)) = o(h(�)). �

Proof of Proposition 12. Using (10), we know that as � → 0,

�ph(�1−p) = �p(−�1−p ln �1−p + o(�1−p ln �1−p))

= (p − 1)� ln � + o(� ln �).

Consequently

�ph(�1−p) − �2ph(�1−2p) = (p − 1)� ln � + o(� ln �) − ((2p − 1)� ln � + o(� ln �))

= −p� ln � + o(� ln �)

and

�1(�
p, �) = �ph(�1−p) − �2ph(�1−2p)

h(�)
= −p� ln � + o(� ln �)

h(�)
→ p as � → 0. �

The proof of Theorem 4 is now completed. �

Remark. It seems that 1
3 is actually the maximum of �0 in our range of the parameters. Although we do not prove this,

we know that this maximum is not near 1 by the following arguments. First, because xh(c/x) is an increasing function
of x and ��

√
3�h(�), we know that max �0(�, �, �) = max �(�, �). Secondly,

max �(�, �)� max
���2

�1(�, �) = max
�

�1
(√

�, �
) = max

�

√
�h
(√

�
)

h(�)
� max

0<x<1

xh(x)

h(x2)
= G,

where G =
√

5−1
2 = 0.618 . . . is the golden ratio.

3. The exception problem for a single cube

In this section we consider the special case m = 1 of the exception problem. It may be assumed w.l.o.g. that the cube
is the whole cube {0, 1}n. We write the set A of exception vectors as {a1, a2, . . . , ar} ⊆ {0, 1}n. We look for a minimal
cube cover of {0, 1}n \ A.

We will use two particular cubes Ei = xi , and Oi = x̄i ∧xi+1 for 1� i�n (with cyclic indexing, i.e., On = x̄n ∧x1).
If necessary, we may emphasize the dimension n by writing En

i , On
i instead of Ei, Oi .

Let M denote the r × n matrix whose ith row is ai . First, let us make two simple observations.

Observation 1. Switching 0’s and 1’s within a column, or switching two columns of M does not change the covering
number.

Observation 2. If there is a column which is identically 0 or 1, meaning that A is contained in a half-cube, then a
covering may be obtained by taking a minimal covering in the corresponding half-cube and adding the other half-cube.
For example, suppose that the nth column of M is 0 and let a′

i be the restriction of ai on the first n − 1 coordinates.
If {0, 1}n−1 \ {a′

1, . . . , a
′
r} has a cover C′

1 ∪ · · · ∪ C′
t , then {0, 1}n \ A can be covered by C1 ∪ · · · ∪ Ct ∪ En, where

Ci = C′
i ∧ x̄n.

Proof of Theorem 5, Part (a). To prove XC(n, 1, r)� n−1
2 r + 1 for r �2, we do induction on r and n.

The assertion trivially holds for n = 1. When r = 2, using Observation 1, we may assume that a1 = 0 and
a2 = 1 . . . 10 . . . 0 (the first d coordinates are 1’s). When d = 1, E2 ∪ · · · ∪ En is a cover of size n − 1. When d > 1,
we first observe that Od

1 , . . . , Od
d is a cover for {0, 1}d \ {0, 1}. Next, we apply Observation 2 repeatedly extending this

to a cover for {0, 1}n \ {a1, a2} by adding n − d additional cubes. Thus XC(n, 1, 2)�d + n − d = n.

94 D. Mubayi et al. / Theoretical Computer Science 352 (2006) 85 –96

Now assume r > 2. Let rj = |{1� i�r : aij = 0}| for j = 1, . . . , n.
Case 1. There exists a j0 such that either rj0 = 0 or rj0 = r .
Using Observation 1 we may assume j0 = n. Let a′

i denote the restriction of ai on the first n − 1 coordinates. By
induction hypothesis (on n), there exists a cube cover of size m� n−2

2 r +1 covering {0, 1}n−1 \ {a′
1, . . . , a

′
r}. As shown

in Observation 2, we may extend it to a cover for {0, 1}n \ {a1, . . . , ar} by adding one more cube. The size of the new
cover m + 1 is at most n−2

2 r + 2� n−1
2 r + 1 (using r �2).

Case 2. There exists j0 such that 2�rj0 �r − 2.
Again assume that j0 = n and define a′

i as in Case 1. Let A0 denote the set of vectors a′
i at which ain = 0 and

A1 = A − A0. Since rn �2 and r − rn �2, using induction hypothesis (on r), we find cubes C′
1, . . . , C

′
m1

covering
{0, 1}n \ A0 and D′

1, . . . , D
′
m2

covering {0, 1}n \ A1, where m1 = (n − 2)rn/2 + 1 and m2 = (n − 2)(r − rn)/2 + 1.
Therefore, {0, 1}n \ A can be covered by

⋃m1
i=1Ci ∪⋃m2

i=1Di with Ci = C′
i ∧ x̄n and Di = D′

i ∧ xn. The size of this
cover, m1 + m2 is at most n−2

2 rn + 1 + n−2
2 (r − rn) + 1� n−1

2 r + 1.
Case 3. For every j = 1, . . . , n either rj = 1 or rj = r − 1.
Applying Observation 1, we may assume that rj = r − 1 for all j , i.e., each column of M has exactly one 1 and

r − 1 0’s. We consider the following two subcases.
Case 3a. ai �= 0 for all i.
In this case we must have r �n. We may assume that there exist 0 = n0 < n1 < · · · < nr−1 < nr = n which divide

the integer interval [n] into r blocks B1, B2, . . . , Br (Bi = [ni−1 + 1, ni]) such that columns in the ith block have a 1
in the ith position:

a1 =
B1︷ ︸︸ ︷

1 · · · 1 0 · · · · · · · · · 0

a2 = 0 · · · 0

B2︷ ︸︸ ︷
1 · · · 1 0 · · · · · · 0

an = 0 · · · · · · · · · 0

Br︷ ︸︸ ︷
1 · · · 1

A short case analysis (which we omit) shows that {0, 1}n\{ai}ri=1 is covered by the following cubes: Cij = xni+1∧xnj +1
for 0� i < j �r − 1, Ok = x̄k ∧ xk+1 for all k �= n1, . . . , nr and D = x̄n1 ∧ x̄n2 ∧ · · · ∧ x̄n. Hence we get a covering
of size

(
r
2

)+ n − r + 1� n−1
2 r + 1 (using r �2).

Case 3b. ai = 0 for some i.
In this case r �n+1. When r = n+1, A consists of all the vectors of weight at most 1. Cubes xi ∧xj , 1� i < j �n

give a covering of size
(
n
2

)
< n−1

2 (n + 1) + 1. When r �n, we first assume that ar = 0. Similar to what was shown
in Case 3a, there are 0 = n0 < n1 < · · · < nr−1 = n such that ai (i < r) has values 1 exactly in the block
Bi = [ni−1 + 1, ni]. It is not hard to see that {0, 1}n \ A is covered by the union of the following cubes: Ok for all
k �= n1, . . . , nr−1, Di = xni−1+1 ∧ x̄ni

for i = 1, . . . , r − 1 and

Cij = ∗ · · · ∗
Bi︷ ︸︸ ︷

1 · · · 1 ∗ · · · ∗
Bj︷ ︸︸ ︷

1 · · · 1 ∗ · · · ∗,

for 1� i < j �r − 1. Hence we get a covering of size n − (r − 1) + r − 1 + (
r−1

2

) = (
r
2

) + n − r + 1� n−1
2 r + 1

cubes (using r �2). �

Proof of Theorem 5, Part (b). We first recall Angluin and Kriķis’ proof of (3). They used a complete binary tree T

of depth n to represent cubes: the root (at level 0) is {0, 1}n; for 0� i < n, a cube C in the ith level has left child
C ∧ xi+1 and right child C ∧ x̄i+1. In other words, the ith level consists of cubes z1 ∧ z2 ∧ · · · ∧ zi with zi ∈ {xi, x̄i}
and the leaves are all vectors in {0, 1}n. Consider a set A of an exception vectors. Let TA be the union of paths from
the root to all elements in A. It is easy to see that the cubes C whose parent is contained in TA but C /∈ TA make up a
cover of {0, 1}n \ A. The size of this cover is equal to the number of vertices with precisely one child in TA. Clearly
this number is at most |TA| < n|A|, Angluin and Kriķis thus concluded that XC(n, 1, r)�n r and consequently (3).
The following lemma gives a better (in fact, tight) bound on the number of vertices with one child and Theorem 5 Part
(b) thus follows. �

D. Mubayi et al. / Theoretical Computer Science 352 (2006) 85 –96 95

Lemma 13. Suppose that T is a binary tree with r leaves, all having depth n. Then the number of vertices with one
child is at most (n − �log r	 + 1)r .

Proof of Lemma 13. Suppose that T is a tree that satisfies the hypothesis and has as many nodes with one child as
possible. Let Li be the set of vertices in its ith level and li = |Li |. We observe that for 1� i�n − 1, if li < li+1,
then li−1 = li/2. Otherwise, there must exist v ∈ Li and u ∈ Li−1 such that v has two children w, w′ and u has
one child. Remove the edge (v, w′), add a new vertex v′ in the ith level and add two edges (w′, v′) and (v′, u). The
new tree T ′ still satisfies the hypothesis and has one more vertex with one child, a contradiction. This means that
{l0, l1, . . . , ln} = {1, 2, 4, . . . , 2i , r, . . . , r}, where i = �log r	 − 1. Consequently, the number of vertices with one
child is less than (n − i)r = (n − �log r	 + 1)r . �

4. Further remarks and open problems

It would be of interest to show that DNF are not strongly closed under exception lists, or to strengthen Theorem 4
by improving the exponent of r in the lower bound. The construction of Theorem 3 uses DNF containing only negated
variables. It would be interesting to know, what are the best possible bounds for this class of DNF (or, equivalently, for
monotone DNF).

If we delete every vector of weight k from {0, 1}n, then every vector of weight k − 1 and k + 1 requires a different
cube to cover it, and consequently XC

(
n, 1,

(
n
k

))
�
(

n
k+1

)+ (
n

k−1

)
for 0�k < n. Theorem 5, Part (a) implies that this

inequality becomes an equality for k = 1. It is easy to see that the equality holds for k = 0 as well. We conjecture that
this is the case for every k, i.e., XC

(
n, 1,

(
n
k

)) = (
n

k+1

)+ (
n

k−1

)
for 0�k < n.

If the exceptions in the DNF exception problem are cubes instead of points then the number of cubes needed to cover
the updated set can be exponential in the number of cubes deleted.This is shown by the example Cov ({0, 1}n \ ((x1 ∧ x2)

∨ · · · ∨ (xn−1 ∧ xn))) = 2
n
2 .

Exception problems could also be studied over other standard machine learning domains, such as first-order logic,
geometry and automata. In [20] a quantitative version is given of a special case of the seminal result of Lassez and
Marriott [16] over the domain of first-order terms.

Note added in proof. In the recent paper M. Alekhnovich, M. Braverman, V. Feldman, A. Klivans, T. Pitassi: Learn-
ability and automatizability, 45. FOCS (2004), 621–630 it is shown that if NP �= RP then DNF are not properly
polynomially PAC learnable, solving a longstanding open problem. Their proof does not use the Occam algorithm
approach discussed in the Introduction.

References

[1] N. Alon, J.H. Spencer, The Probabilistic Method, second ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-
Interscience [Wiley], New York, 2000.

[2] D. Angluin, M. Kriķis, Learning with malicious membership queries and exceptions, seventh Ann. ACM Conf. on Computional Learning
Theory (COLT), 1994, pp. 57–66.

[3] D. Angluin, M. Kriķis, R.H. Sloan, Gy. Turán, Malicious omissions and errors in answers to membership queries, Machine Learning 28 (1997)
211–255.

[4] M.O. Ball, G.L. Nemhauser, Matroids and a reliability analysis problem, Math. Oper. Res. 4 (1979) 132–143.
[5] A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth, Occam’s razor, Inform. Process. Lett. 24 (1987) 377–380.
[6] R. Board, L. Pitt, On the necessity of Occam algorithms, Theoret. Comput. Sci. 100 (1992) 157–184.
[7] Y. Brandman, A. Orlitsky, J. Hennessy, A spectral lower bound technique for the size of decision trees and two-level AND/OR circuits, IEEE

Trans. Comput. 39 (1990) 282–287.
[8] A.G. D’yakonov, Implementation of a class of Boolean functions with a small number of zeros by irredundant disjunctive normal forms, Comput.

Math. Math. Phys. 41 (2001) 775–782.
[9] A.G. D’yakonov, Test approach to the implementation of Boolean functions with few zeros by disjunctive normal forms, Comput. Math. Math.

Phys. 42 (2002) 924–928.
[10] A.G. D’yakonov, Construction of disjunctive normal forms in logical recognition algorithms, Comput. Math. Math. Phys. 42 (2002)

1899–1907.
[11] Z. Füredi, Turán type problems, in: A.D. Keedwell (Ed.), Surveys in Combinatorics, London Mathematical Society Lecture Note Series, Vol.

166, Cambridge University Press, Cambridge, 1991, pp. 253–300.

96 D. Mubayi et al. / Theoretical Computer Science 352 (2006) 85 –96

[12] L. Hellerstein, V. Raghavan, Exact learning of DNF formulas using DNF hypotheses, 34 ACM STOC, 2002, pp. 465–473.
[13] M.J. Kearns, U.V. Vazirani, An Introduction to Computational Learning Theory, MIT Press, Cambridge, MA, 1994.
[14] A.Y. Kogan, On lower bounds for the complexity of disjunctive normal forms for Boolean functions with a small number of zeros, USSR

Comput. Math. Math. Phys. 27 (1987) 175–181.
[15] A.Y. Kogan, Disjunctive normal forms for Boolean functions with a small number of zeros, USSR Comput. Math. Math. Phys. 27 (1987)

185–190.
[16] J.-L. Lassez, K. Marriott, Explicit representation of terms defined by counterexamples, J. Automat. Reason. 3 (1987) 301–317.
[17] M. Li, J. Tromp, P. Vitányi, Sharpening Occam’s razor, Inf. Process Lett. 85 (2003) 267–274.
[19] W.G. Schneeweiss, Boolean Functions: With Engineering Applications and Computer Programs, Springer, Berlin, 1989.
[20] R.H. Sloan, I. Tsapara, Gy. Turán, On a result of Lassez and Marriott, in preparation.
[21] C. Umans, The minimum equivalent DNF problem and shortest implicants, 39 FOCS, 1998, pp. 556–563.
[22] C. Umans, Hardness of approximating �p

2 minimization problems, 40 FOCS, 1999, pp. 465–474.
[23] Y.I. Zhuravlev, A.Y. Kogan, Realization of Boolean functions with a small number of zeros by disjunctive normal forms, and related problems,

Soviet Math. Dokl. 32 (1985) 771–775.

