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Abstract. We study the maximum number of r-vertex cliques in (r − 1)-uniform hy-

pergraphs not containing complete r-partite hypergraphs K
(r−1)
r (a1, . . . , ar). By using

the hypergraph removal lemma, we show that this maximum is o(nr−1/(a1···ar−1)). This
immediately implies the corresponding results of Mubayi and Mukherjee and of Balogh,
Jiang, and Luo for graphs. We also provide a lower bound by using hypergraph Turán
numbers.

1. Introduction

Given integers r ≥ 2 and n > 0 and two r-uniform hypergraphs T and F , let ex(n, T, F )
denote the maximum number of copies of T in any F -free (i.e., not containing F as a
subgraph) r-uniform hypergraph on n vertices. The case when T is an edge (i.e., T = K2)
is the Turán problem ex(n, F ). The parameter ex(n, T, F ) has been studied for different
choices of graphs T and F by many authors (for example, see [1, 2, 4, 7, 9, 10, 14, 18]).

Given an r-uniform hypergraph F with vertex set V (F ) = {v1, . . . , vℓ}, let F (a1, . . . , aℓ)
denote a blowup of F , i.e., the hypergraph obtained from F by replacing each vertex vi by a
set Vi of size ai, and every edge {vi1 , . . . , vir} by a complete r-partite r-uniform hypergraph
on the vertex sets Vi1 , . . . , Vir . If a1 = · · · = aℓ = a, then we denote F (a1, . . . , aℓ) by F (a).

For r ≤ ℓ, we denote by K
(r)
ℓ (a1, . . . , aℓ) the complete ℓ-partite r-uniform hypergraph with

a1, . . . , aℓ vertices in its parts. We often omit the superscript when r = 2, for example,
K3 is a graph triangle and K3(1, a, b) is a complete tripartite graph with parts of size 1,
a and b.

In this note, we consider the parameter ex(n, T, F ), when T is an r-uniform hypergraph,
and F is a blowup of T . This problem is related to the following classical result of Erdős

[5] on the Turán number ex(n,K
(r)
r (a1, . . . , ar)). It states that given integers r ≥ 2 and

1 ≤ a1 ≤ · · · ≤ ar,

ex(n,K(r)
r (a1, . . . , ar)) = O(nr−1/(a1···ar−1)). (1)

Note that the r = 2 case of (2) follows from a result of Kövari, Sós, and Turán [15].
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Given 2 ≤ s ≤ r and an r-uniform hypergraph F , the s-uniform shadow ∂(s)F of F is
an s-uniform hypergraph on V (F ) whose edge set consists all s-subsets A ⊆ V (F ) such
that A ⊆ B for some edge B ∈ F . We observe the following simple fact (and will prove
it in Section 2).

Fact 1. Given r ≥ 3 and an r-uniform hypergraph F , we have

ex(n,Kr, ∂
(2)F ) ≤ · · · ≤ ex(n,K(r−1)

r , ∂(r−1)F ) ≤ ex(n, F ).

Fact 1 and (1) together imply that, given positive integers r ≥ 3 and a1 ≤ · · · ≤ ar,

ex(n,K(r−1)
r , K(r−1)

r (a1, . . . , ar)) ≤ ex(n,K(r)
r (a1, . . . , ar)) = O(nr−1/(a1···ar−1)). (2)

Using the triangle removal lemma, Mubayi and Mukherjee [18] showed that for any 1 ≤
a ≤ b, ex(n,K3, K3(1, a, b)) = o(n3−1/a).1 Our main result extends this to hypergraphs.

Theorem 2. Given positive integers r ≥ 3 and a1 ≤ · · · ≤ ar, we have,

ex(n,K(r−1)
r , K(r−1)

r (a1, . . . , ar)) = o(nr−1/(a1···ar−1)). (3)

Further, given integers a ≥ 1, ℓ ≥ r, and any (r− 1)-uniform hypergraph F on ℓ vertices,

ex(n, F, F (a)) = o
(
nℓ− 1

aℓ−1

)
. (4)

Very recently and independently, Balogh, Jiang, and Luo [2] proved that for any integers
r ≥ 3 and 1 ≤ a1 ≤ · · · ≤ ar,

ex(n,Kr, Kr(a1, . . . , ar)) = o(nr−1/(a1···ar−1)). (5)

Note that Fact 1 and Theorem 2 together imply (5).

Both (3) and (5) generalize the result of [18] and all three proofs are similar in the sense
that they all reduce the problem to an application of the removal lemma. While in [2],
the authors remarked that the proof idea in [18] seemed not to work when proving (5)
for r > 3 and a1 > 1, here we present a proof of Theorem 2 (which also implies (5)) by
taking an approach along the lines of [18].

The following lower bound complements Theorem 2 and will be proved in Section 3.
Note that similar constructions (for graphs) appeared in [2, 18].

Proposition 3. Given integers 1 ≤ a1 ≤ · · · ≤ ar,

ex(n,K(r−1)
r , K(r−1)

r (a1, . . . , ar)) = Ω
(
n · ex

(
n, K

(r−1)
r−1 (a1, . . . , ar−1)

))
. (6)

Observe that if a1 = · · · = ar−1 = 1 and ar ≥ 2, then the right hand side of (6) is
zero and hence the lower bound is trivial. In this case, a construction in [8] implies the
following lower bound. Let rr(n) denotes the size of the largest subset of [n] that does
not contain an arithmetic progression of length r.

Proposition 4. For every r ≥ 3,

ex(n,K(r−1)
r , K(r−1)

r (1, . . . , 1, 2)) ≥ nr−2rr(n).

For the proof of Proposition 4, see Section 3.

1It was mentioned in [2, 18] that this result was also proved by several other researchers.
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2. Proof of Fact 1 and Theorem 2

In this section, we will prove Fact 1 and Theorem 2.

Proof of Fact 1. It suffices to show that, for every 2 ≤ s ≤ r − 1,

ex(n,K(s)
r , ∂(s)F ) ≤ ex(n,K(s+1)

r , ∂(s+1)F ),

(trivially ∂(r)F = F ). Indeed, let G be an ∂(s)F -free s-graph on [n] with ex(n,K
(s)
r , ∂(s)F )

copies of K
(s)
r . Let H be the (s + 1)-graph on [n] whose edges are (s + 1)-sets that span

a copy of K
(s)
s+1 in G. We claim that H is ∂(s+1)F -free. Suppose instead, that H contains

a copy of ∂(s+1)F on some set S ⊂ [n] under a bijection ϕ : V (F ) → S. Consider an s-set
A ∈ ∂(s)F . We know A ⊂ B for some B ∈ ∂(s+1)F . Thus, ϕ(B) ∈ H by the definition of
ϕ and consequently, ϕ(A) ∈ G by the definition of H. This implies that S spans a copy
of ∂(s)F in G, contradicting that G is ∂(s)F -free.

Furthermore, it is easy to see that for any r-subset S ⊂ [n], S spans a copy of K
(s)
r in

G if and only if S spans a copy of K
(s+1)
r in H. Thus, the number of K

(s+1)
r in H equals

to ex(n,K
(s)
r , ∂(s)F ), the number of K

(s)
r in G. Since H is ∂(s+1)F -free, we conclude that

ex(n,K
(s)
r , ∂(s)F ) ≤ ex(n,K

(s+1)
r , ∂(s+1)F ). □

Before proving Theorem 2, we will fix some notation that we use for the rest of the
section. We call r-uniform hypergraphs r-graphs. Given an (r− 1)-graph G and a vertex
v ∈ V (G), let G(v) be the (r − 1)-graph with vertex set V (G) \ {v}, and

{v1, . . . , vr−1} ∈ G(v) if {v, v1, . . . , vr−1} induces K(r−1)
r in G.

For a positive integer a, let G(v1)∩· · ·∩G(va) be the (r−1)-graph with vertex set V (G)\
{v1, . . . , va} and edge set consisting of all {w1, . . . , wr−1} such that {vi, w1, . . . , wr−1}
induces a K

(r−1)
r for every i ∈ {1, . . . , a}.

In the following proofs we will use the hypergraph removal lemma, which we state
below.

Lemma 5 (Hypergraph Removal Lemma [19, 11]). For every r ≥ 3, ε > 0 there exists
δ > 0 such that for every (r− 1)-uniform hypergraph G on n vertices the following holds.

If G contains at least εnr−1 edge disjoint copies of K
(r−1)
r , then it must contain at least

δnr copies of K
(r−1)
r .

We also need the following simple claim.

Claim 6. For every positive integer b, r ≥ 3 and (r − 1)-graph G on n vertices, the

following holds. If I is a collection of cliques K
(r−1)
r of G such that every edge e ∈ G is

contained in less than b cliques of I , then G contains at least |I |
r(b−1)

edge disjoint copies

of K
(r−1)
r .

Proof. For G and I satisfying the above assumptions, let I1 ⊆ I be a maximum

collection of pairwise edge disjoint cliques K
(r−1)
r in I and let E be the union of edge
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sets of the cliques in I1. Clearly |E | = r · |I1|. Since by assumption, each edge e ∈ E is

contained in at most b−1 cliques K
(r−1)
r in I , there are at most (b−1)r|I1| cliques in I

containing some edge of E . Due to the maximality of I1, it follows that |I | ≤ (b−1)r|I1|
and thus |I1| ≥ |I |

(b−1)r
. □

Now we prove Theorem 2.

Proof of Theorem 2. Fix r ≥ 3 and integers a1 ≤ · · · ≤ ar. We first consider the case when

ar−1 = 1. Let ε > 0, and let G be a K
(r−1)
r (1, . . . , 1, ar)-free (r − 1)-graph on n vertices,

i.e., every edge of G is in at most (ar−1) copies of K
(r−1)
r . Assume by contradiction, that

the collection I of all K
(r−1)
r in G has size at least εnr−1. In view of Claim 6, G must

contain at least ε′nr−1 edge disjoint copies of K
(r−1)
r where ε′ = ((ar − 1)r)−1ε. By the

hypergraph removal lemma, this implies that there exists some δ > 0 (depending on ε′)

such that G contains δnr copies of K
(r−1)
r . However, this contradicts (2).

Next, we consider the case where ar−1 ≥ 2. Let G be a K
(r−1)
r (a1, . . . , ar)-free (r − 1)-

graph on n vertices. First we will show that for every {v1, . . . , var−1} ⊆ V (G), the (r−1)-

graph G(v1)∩· · ·∩G(var−1) is K
(r−1)
r−1 (a1, . . . , ar−2, ar)-free. Indeed, given {v1, . . . , var−1} ⊆

V (G), assume by contradiction, that the (r − 1)-graph G(v1) ∩ · · · ∩G(var−1) contains a

copy of K
(r−1)
r−1 (a1, . . . , ar−2, ar) with the vertex set V1 ⊔V2 · · · ⊔Vr−2 ⊔Vr, where |Vi| = ai.

Let Vr−1 := {v1, . . . , var−1}. Then the r-partite graph on V1⊔V2 · · ·⊔Vr in G forms a copy

of K
(r−1)
r (a1, . . . , ar), a contradiction.

Consequently, for every {v1, . . . , var−1} ⊆ V (G),

|G(v1) ∩ · · · ∩G(var−1)| ≤ ex(n,K
(r−1)
r−1 (a1, . . . , ar−2, ar)) = O

(
n
r−1− 1

a1a2···ar−2

)
. (7)

Our goal is using the above fact to obtain a large collection of edge disjoint K
(r−1)
r in G.

To this end we consider the family A , elements of which are collections of ar−1 copies of

K
(r−1)
r that share an edge of G. More formally,

A := {{T1, . . . , Tar−1} : Ti
∼= K(r−1)

r and T1, T2, . . . , Tar−1 share an edge of G}.

Next we give an upper bound on the size of A . Given any element in A , there exists
vertices {v1, . . . , var−1} ⊆ V (G), and an edge e ∈ G (in particular, e ∈ G(v1) ∩ · · · ∩
G(var−1)), such that e ∪ {vi} form a K

(r−1)
r for every 1 ≤ i ≤ ar−1. Consequently,

the cardinality of A can be bounded by the number of pairs ({v1, . . . , var−1}, e) with
e ∈ G(v1) ∩ · · · ∩G(var−1). Thus in view of (7),

|A | ≤
(

n

ar−1

)
|G(v1) ∩ · · · ∩G(var−1)| ≤ nar−1O

(
n
r−1− 1

a1a2···ar−2

)
. (8)

In order to prove (3) of Theorem 2, assume by contradiction, that G contains N =

Ω(nr−1/(a1···ar−1)) copies of K
(r−1)
r . We will find a collection I of cliques K

(r−1)
r in G

satisfying

|I | = Ω(nr−1) and I (ar−1) ∩ A = ∅, (9)
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i.e., for every S ⊆ I with |S| = ar−1, S is not an element of A . Note that if |A | ≤ N/2,

then one can obtain I from the collection of K
(r−1)
r in G, by deleting a copy of K

(r−1)
r for

each element of A . Thus, I (ar−1) ∩ A = ∅ and |I | is at least N/2 = Ω(nr−1/(a1···ar−1))
which is bigger than Ω(nr−1).

Now we consider the case where |A | ≥ N/2. Let I be a random subset of copies of

K
(r−1)
r where each copy of K

(r−1)
r in G is chosen with probability p > 0 independently.

Let I(ar−1) denote the collection of ar−1-subsets of I. We have that,

E[|I| − |A ∩ I(ar−1)|] = pN − par−1|A |.
Let p be chosen such that, par−1|A | = pN/2, which implies

p =

(
N

2|A |

) 1
ar−1−1

≤ 1, (since N ≤ 2|A |) and pN =
N

ar−1
ar−1−1

(2|A |)
1

ar−1−1

.

Consequently, there exists a choice of I ′ such that,

|I ′| − |A ∩ I ′(ar−1)| ≥ pN

2
.

Let I ⊆ I ′ be the collection of K
(r−1)
r of G formed by deleting one K

(r−1)
r in I ′ from

every ar−1 subset in A ∩ I ′(ar−1). Consequently, A ∩ I (ar−1) is empty. Further,

|I | ≥ pN

2
=

1

2

N
ar−1

ar−1−1

(2|A |)
1

ar−1−1

. (10)

Using the value of N (by assumption) and |A | in (8), the exponent of n in the RHS of
(10) is equal to(

r − 1

a1a2a3 · · · ar−1

)
ar−1

ar−1 − 1
−
(
ar−1 + r − 1− 1

a1 · · · ar−2

)
1

ar−1 − 1

=
ar−1r − ar−1 − (r − 1)

ar−1 − 1
= r − 1,

which implies |I | = Ω(nr−1). Hence I satisfies (9).

Next we obtain a family of edge disjoint K
(r−1)
r in G from I . By construction, I is a

collection of cliques K
(r−1)
r in G such that every edge e ∈ G is contained in less than ar−1

cliques of I . In view of Claim 6, this implies that G contains at least |I |/r(ar−1 − 1)

edge disjoint copies of K
(r−1)
r . Since |I | = Ω(nr−1), this implies that G contains Ω(nr−1)

copies of edge disjoint K
(r−1)
r .

To summarise, this implies that given any ε > 0, and (r−1)-graph G on n vertices that

is K
(r−1)
r (a1, . . . , ar)-free the following holds. Assuming by contradiction that G contains

N = εnr−1/(a1···ar−1) copies of K
(r−1)
r , there exists some ε′ > 0 (depending only on ε, r, ai)

such that G contains ε′nr−1 edge disjoint copies of K
(r−1)
r . By the hypergraph removal

lemma, this implies that there exists some δ > 0 (depending only on ε, r, ai) such that

G contains δnr copies of K
(r−1)
r . In view of (2), however, this implies that G contains

K
(r−1)
r (a1, . . . , ar). Thus (3) holds.
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Now we prove the upper bound in (4) on ex(n, F, F (a)) for any given (r − 1)-graph
F . Label the vertices of F v1, . . . , vℓ. Let G be an F (a)-free (r − 1)-graph on n vertices,

and assume by contradiction, that G contains N = Ω(nℓ− 1

aℓ−1 ) copies of F . Given an
ℓ-partition of V (G) = W1 ⊔ · · · ⊔Wℓ, we call a set X ⊆ V (G) crossing if |X ∩Wi| ≤ 1 for
1 ≤ i ≤ ℓ. We call a copy of F in G on a vertex set {x1, . . . , xℓ} aligned with respect to
W1 ⊔W2 ⊔ · · · ⊔Wℓ if

(1) xi ∈ Wi for i = 1, 2, . . . , ℓ, and
(2) xi 7→ vi is an isomorphism.

We will denote such a copy by
−→
F . A simple averaging argument yields that there exists

a partition of V (G) = W1 ⊔ · · · ⊔Wℓ with at least ℓ−ℓN copies of
−→
F .

Let H be an auxiliary ℓ-partite (ℓ − 1)-graph with vertex set W1 ⊔ · · · ⊔Wℓ. Let the

edges of H be those crossing (ℓ− 1)-tuples that extend to a copy of
−→
F . Formally,

H =
ℓ⊔

i=1

{
(xj)j∈[ℓ]\{i} : there exists xi ∈ Wi such that (x1, . . . , xℓ) is a copy of

−→
F
}
.

Note that each aligned copy
−→
F in G forms a K

(ℓ−1)
ℓ in H . Consequently, the number of

copies of K
(ℓ−1)
ℓ in H is at least (ℓ−ℓ)N = Ω(nℓ− 1

aℓ−1 ).

By the first part of Theorem 2, this implies that H contains a copy of K
(ℓ−1)
ℓ (a) with

vertex sets Ui ⊆ Wi for 1 ≤ i ≤ ℓ. Let (x1, . . . , xℓ) ∈ U1 × · · · × Uℓ. Since ℓ ≥ r, for every
edge {vi1 , . . . , vir−1} of F , there exists an ℓ−1 subset S ⊆ [ℓ] such that {i1, . . . , ir−1} ⊆ S.

By definition of H , the tuple (xs : s ∈ S) must extend to some copy of
−→
F , which implies

{xi1 , . . . , xir−1} must be an edge in G.

Consequently, for every (x1, . . . , xℓ) ∈ U1 × · · · × Uℓ, we have that the subgraph of G

induced by {x1, . . . , xℓ} contains an aligned copy
−→
F . This implies that G contains a copy

of F (a), contradicting the assumption that G is F (a)-free. □

3. Lower Bound Constructions

In this section, we will prove Propositions 3 and 4.

Proof of Proposition 3. We construct an (r − 1)-graph H whose vertex set is partitioned
into A ⊔B such that

• |A| = ⌊n/r⌋ and |B| = ⌈(r − 1)n/r⌉;
• H[B] is K

(r−1)
r−1 (a1, . . . , ar−1)-free and has ex(⌈ r−1

r
n⌉, K(r−1)

r−1 (a1, . . . , ar−1)) edges;
• every vertex of A and every (r − 2)-subset of B form an edge and there are no
other edges intersecting A. In other words, the link of every vertex in A is the
complete (r − 2)-graph on the vertex set B.

The number of K
(r−1)
r is at least ⌊n

r
⌋ex(⌈ r−1

r
n⌉, K(r−1)

r−1 (a1, . . . , ar−1)) because every vertex

of A together with any edge of B forms a copy of K
(r−1)
r . It remains to show that H
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contains no K
(r−1)
r (a1, . . . , ar). Assume by contradiction, it does. Since there is no edge

containing two vertices from A, and a1 ≤ a2 ≤ · · · ≤ ar, the subgraph induced by H on

B needs to contain a K
(r−1)
r−1 (a1, . . . , ar−1), thus contradicting the construction of H. □

The proof of Proposition 4 is based on a construction given in [8].

Proof of Proposition 4. In the proof of [8, Proposition 2.1], it was shown that for every
r ≥ 3, there exists an r-partite r-graph H with parts V1, . . . , Vr satisfying the following
properties.

(1) For every {x1, . . . , xr−1} ⊆ V (H), there exists at most one edge in H containing
{x1, . . . , xr−1}.

(2) For every collection of subsets {{xi, yi} ⊆ Vi : 1 ≤ i ≤ r}, there exists 1 ≤ i ≤ r
such that {x1, . . . , xr} \ {xi} ∪ {yi} is not an edge of H.

(3) H has (r − 1)rn vertices and nr−2rr(n) edges.

Let G be the (r − 1)-uniform shadow of H, i.e., G = ∂(r−1)H. We claim that G is

K
(r−1)
r (1, . . . , 1, 2)-free and contains nr−2rr(n) copies of K

(r−1)
r . Since G is the shadow of

H, the number of copies of K
(r−1)
r in G is at least the number of edges in H.

While the edges of H correspond to a collection of edge disjoint cliques (“real cliques”)

in G, we will now show that G contains no other cliques K
(r−1)
r . Assume by contradiction

that {x1, . . . , xr} induces such a “fake clique” K
(r−1)
r , i.e., {x1, . . . , xr} /∈ H but induces

a K
(r−1)
r in G. Since every edge of this clique belongs to some “real clique”, for every

1 ≤ i ≤ r, there must exist yi ̸= xi in Vi such that {x1, . . . , xr} \ {xi} ∪ {yi} ∈ H,

contradicting (2). Consequently, by (1), no two K
(r−1)
r in G share an edge and hence G

is K
(r−1)
r (1, . . . , 1, 2)-free. □

4. Concluding remarks

As mentioned earlier, in the case where a1 = · · · = ar−1 = 1 and ar ≥ 2 the lower
bound in (6) is trivial. We ask if there are other sequences of integers a1 ≤ · · · ≤ ar for
which (6) can be improved.

Question 7. Given integer r ≥ 3, for what sequence of integers 1 ≤ a1 ≤ · · · ≤ ar,

ex(n,K(r−1)
r , K(r−1)

r (a1, . . . , ar)) ≥ n1+ε · ex
(
n, K

(r−1)
r−1 (a1, . . . , ar−1)

)
for some ε = ε(n) > 0?

The order of magnitude for ex(n,K
(r−1)
r , K

(r−1)
r (a1, . . . , ar)) is not known in any non-

trivial case. The case when r ≥ 3 and a1 = · · · = ar = 2 is related to a problem of Erdős,
see, e.g., [3, 12, 13]. Theorem 2 and Proposition 3, together with the lower bound in [3]
imply that

Ω

(
n
r−

⌈
2r−1−1

r−1

⌉−1
)

≤ ex(n,K(r−1)
r , K(r−1)

r (2, . . . , 2)) ≤ o
(
nr− 1

2r−1

)
.
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It was conjectured in [17], that ex(n,K
(r−1)
r−1 (a1, . . . , ar−1)) = Ω(nr−1−1/(a1···ar−2)). This

was confirmed for some cases in [16, 17, 20]. If this conjecture is true, then Theorem 2
and Proposition 3 would imply that,

Ω(nr−1/(a1···ar−2)) ≤ ex(n,K(r−1)
r , K(r−1)

r (a1, . . . , ar)) ≤ o(nr−1/(a1···ar−1)).

When a1 = · · · = ar = a ≥ 2, one can obtain that ex(n,K
(r−1)
r−1 (a)) = Ω

(
n
r−1− (r−1)(a−1)

ar−1−1

)
by using the probabilistic deletion method [6]. Together with Proposition 3 and Theorem
2, this gives

Ω
(
n
r− (r−1)(a−1)

ar−1−1

)
≤ ex(n,K(r−1)

r , K(r−1)
r (a)) ≤ o

(
nr− 1

ar−1

)
.

When a1 = 1 and a2 = · · · = ar = a ≥ 2, instead of Proposition 3, one can employ
the deletion method directly to an random (r − 1)-uniform hypergraph on n vertices by

removing copies of K
(r−1)
r (1, a, . . . , a). Together with Theorem 2, this implies that

Ω
(
nr− r(r−1)

ar−2

)
≤ ex(n,K(r−1)

r , K(r−1)
r (1, a, . . . , a)) ≤ o(nr− 1

ar−2 ).

It would be interesting to improve the gaps in any of the above cases.
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Mat. Kutató Int. Közl., 7:459–464, 1962.
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