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Abstract. Let k ě 2 and n1 ě n2 ě n3 ě n4 be integers such that n4 is sufficiently larger than
k. We determine the maximum number of edges of a 4-partite graph with parts of sizes n1, . . . , n4

that does not contain k vertex-disjoint triangles. For any r ą t ě 3, we give a conjecture on the
maximum number of edges of an r-partite graph that does not contain k vertex-disjoint cliques Kt.

1. Introduction

Given two graphs G and F , we say that G is F -free if G does not contain F as a subgraph. Let
Kt denote a complete graph on t vertices, and Tn,t denote a balanced complete t-partite graph on
n vertices (now known as the Turán graph). In 1941, Turán [9] proved that Tn,t has the maximum
number of edges among all Kt`1-free graphs (the case t “ 2 was previously solved by Mantel [7]).
Turán’s result initiates the study of Extremal Graph Theory, an important area of research in
modern Combinatorics (see the monograph of Bollobás [3]). Let kKt denote k disjoint copies of Kt.
Simonovits [8] studied the Turán problem for kKt and showed that when n is sufficiently large, the
(unique) extremal graph on n vertices is the join of Kk´1 and the Turán graph Tn´k`1,t´1.

In this paper we consider Turán problems in multi-partite graphs. Let Kn1,n2,...,nr denote the
complete r-partite graph on parts of sizes n1, n2, . . . , nr. This variant of the Turán problem was first
considered by Zarankiewicz [11], who was interested in the case of forbidding Ks,t in (subgraphs of)
Ka,b. Formally, given graphs H and F , we define expH,F q as the maximum number of edges in an
F -free subgraph of H. Bollobás, Erdős, and Straus [2] (see also [3, Page 544]) proved the following
result. For any subset I Ď rrs, write nI :“

ř

iPI ni.

Theorem 1.1. [2] The extremal number expKn1,...,nr ,Ktq is equal to

max
P

ÿ

I‰I 1PP
nI ¨ nI 1 ,

where the maximum is taken over all partitions P of rrs into t´ 1 parts.

The problem of forbidding disjoint copies of cliques in multi-partite graphs has been studied re-
cently. Chen, Li and Tu [4] determined expKn1,n2 , kK2q and De Silva, Heysse and Young [5] showed
that expKn1,...,nr , kK2q “ pk ´ 1qpn1 ` ¨ ¨ ¨ ` nr´1q for n1 ě ¨ ¨ ¨ ě nr. De Silva, Heysse, Kapi-
low, Schenfisch and Young [6] determined expKn1,...,nr , kKrq and raised the question of determining
expKn1,...,nr , kKtq when r ą t. After giving another proof of Theorem 1.1, Bennett, English and
Talanda-Fisher [1] reiterated this question.

Problem 1.2. [6] Determine expKn1,...,nr , kKtq when r ą t.

Jie Han is partially supported by a Simons Collaboration Grant 630884. Yi Zhao is partially supported by an NSF
grant DMS 1700622 and Simons Collaboration Grant 710094.

1



2 JIE HAN AND YI ZHAO

In this paper we solve Problem 1.2 for r “ 4 and t “ 3 when all ni’s are sufficiently large. To
state our result, for k ě 1, we define a function of positive integers n1 ě n2 ě n3 ě n4:

gkpn1, n2, n3, n4q :“ max tpn1 ` n4qpn2 ` n3q ` pk ´ 1qn1, n1pn2 ` n3 ` n4q ` pk ´ 1qpn2 ` n3qu

“

"

pn1 ` n4qpn2 ` n3q ` pk ´ 1qn1 if n1 ď n2 ` n3,
n1pn2 ` n3 ` n4q ` pk ´ 1qpn2 ` n3q, if n1 ą n2 ` n3.

When G is a 4-partite graph with parts of sizes n1 ě n2 ě n3 ě n4, we define gkpGq :“
gkpn1, n2, n3, n4q. For arbitrary positive integers a, b, c, d, we define gkpa, b, c, dq “ gkpa1, a2, a3, a4q,
where a1 ě a2 ě a3 ě a4 is a reordering of a, b, c, d.

Theorem 1.3. Given k ě 1, there exists N0pkq such that if G is a kK3-free 4-partite graph with
parts of sizes n1 ě n2 ě n3 ě n4 ě 6k2 and n1`n2`n3`n4 ě N0pkq, then epGq ď gkpn1, n2, n3, n4q.
In other words, expKn1,n2,n3,n4 , kK3q ď gkpn1, n2, n3, n4q.

Theorem 1.3 is tight due to two constructions G1 and G2 below. In fact, a subgraph of G2 was
given by De Silva et al. [6] as a potential extremal construction; later Wagner [10] realized that G1

was a better construction for the n1 “ n2 “ n3 “ n4 case. Let n1 ě n2 ě n3 ě n4 ě k. We define
two 4-partite graphs with parts V1, . . . , V4 such that |Vi| “ ni. Fix a set Z of k ´ 1 vertices in V4.
Let

G1 :“ KV1YV4, V2YV3 YKZ, V1 and G2 :“ KV1, V2YV3YV4 YKZ, V2YV3 ,

where KV1,...,Vr denotes the complete r-partite graph with parts V1, . . . , Vr. Note that each triangle
must intersect Z and thus both G1 and G2 are kK3-free. Moreover, epG1q “ pn1 ` n4qpn2 ` n3q `

pk ´ 1qn1 and epG2q “ n1pn2 ` n3 ` n4q ` pk ´ 1qpn2 ` n3q. Thus epG2q ď epG1q if and only if
n1 ď n2 ` n3 and equality holds when n1 “ n2 ` n3.

V1

V3V2

V4
V1

V3V2

V4Z
Z

Figure 1. The extremal graphs G1 and G2

Our proof uses a progressive induction (an induction without a base case) on the total number of
vertices and a standard induction on k that uses Theorem 1.1 as the base case.

We conjecture an answer to Problem 1.2 in general, which includes all aforementioned results
[1, 4, 5] and Theorem 1.3.

Conjecture 1.4. Given r ą t ě 3 and k ě 2, let n1, . . . , nr be sufficiently large. For I Ď rrs,
write mI :“ miniPI ni. Given a partition P of rrs, let nP :“ maxIPPtnI ´mIu. The Turán number
expKn1,...,nr , kKtq is equal to

max
P

#

pk ´ 1qnP `
ÿ

I‰I 1PP
nI ¨ nI 1

+

, (1.1)



3

where the maximum is taken over all partitions P of rrs into t´ 1 parts.

The bound (1.1) is achieved by the following graph. Given integers k, t and n1, . . . , nr with r ą t
and ni ě k for all i, let P be a partition of rrs into t ´ 1 parts that maximizes (1.1). Let G be
an r-partite graph whose parts have sizes n1, . . . , nr. Partition G into t ´ 1 parts according to P,
namely, let VI “

Ť

iPI Vi for every I P P and include all edges between VI and VI 1 for all I ‰ I 1 P P.
In addition, let I0 P P such that nP “ nI0 ´mI0 and let Vi0 be the smallest part in VI0 . We choose
a set Z Ď Vi0 of k ´ 1 vertices and add all edges between Z and VI0zVi0 .

Verifying Conjecture 1.4 seems hard due to the complexity of (1.1) – we shall discuss this in the
last section.

Notation. Given a graph G “ pV,Eq, let |G| denote the order of G. Suppose A,B are two disjoint
subsets of V . Let epAq :“ epGrAsq be the number of edges of G in A and epA,Bq be the number of
edges of G with one end in A and the other in B. Moreover, let GzA :“ GrV zAs. Denote by

epA;Gq :“ epGq ´ epGzAq,

the number of edges of G incident to A. Given a vertex x, let Npxq denote the set of neighbors of
x. For vertices x, y and z, we often write xyz for tx, y, zu. We sometimes abuse this notation by
using xy P AˆB to indicate that x P A and y P B. Given an r-partite graph G, a crossing set is a
set that contains at most one vertex from each part of G.

2. Proof of Theorem 1.3

In this section we prove Theorem 1.3. Define two sequences N0pkq and M0pkq recursively by
letting N0p1q “ 1,

M0pkq “ maxt72pk ´ 1q3, 96k2, N0pk ´ 1q ` 3u, and N0pkq “M0pkq
2 (2.1)

for k ě 2. Given a 4-partite graph G, let v4pGq denote the size of the smallest part of G. Define
ϕpGq :“ epGq ´ gkpGq. The following theorem is the main step in the proof of Theorem 1.3.

Theorem 2.1. Suppose k ě 2 and Theorem 1.3 holds for k´ 1. Let G be a 4-partite graph of order
|G| ąM0pkq and with v4pGq ě 6k2. If G is kK3-free and ϕpGq ą 0, then we can find a subgraph G1

of G such that |G| ´ 2 ď |G1| ď |G| ´ 1, v4pG
1q ě 6k2, and ϕpG1q ą ϕpGq.

Theorem 1.3 nows follows from Theorem 2.1 by an induction on k and a progressive induction on
|G| (e.g., used in [8]).

Proof of Theorem 1.3. The base case k “ 1 follows from Theorem 1.1 with N0p1q “ 1. Let k ě 2
and G be a 4-partite graph of order |G| ě N0pkq and with v4pGq ě 6k2. Suppose G is kK3-free
and ϕpGq ą 0. By Theorem 2.1, we find a subgraph G1 Ă G such that |G| ´ 2 ď |G1| ď |G| ´ 1,
v4pG1q ě 6k2, and ϕpG1q ą ϕpGq ě 1. Repeating this process, we obtain subgraphs G1 Ą G2 Ą

G3 Ą ¨ ¨ ¨ Ą Gt such that |G| ´ 2i ď |Gi| ď |G| ´ i and ϕpGiq ą i for i “ 1, . . . , t. We stop at Gt

because |Gt| ďM0pkq. Hence,

t ě
|G| ´ |Gt|

2
ě

N0pkq ´M0pkq

2
“

M0pkq
2 ´M0pkq

2
“

ˆ

M0pkq

2

˙

.

Consequently, ϕpGtq ą
`

M0pkq
2

˘

. However, this is impossible because ϕpGtq ď epGtq ď
`

M0pkq
2

˘

. �

The rest of this section is devoted to the proof of Theorem 2.1.

Proof of Theorem 2.1. Let k ě 2 and suppose that
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(˚) for any pk´ 1qK3-free 4-partite graph G̃ with part sizes n11 ě n12 ě n13 ě n14 ě 6pk´ 1q2 and
ř

iPr4s n
1
i ě N0pk ´ 1q, we have epG̃q ď gk´1pn

1
1, n

1
2, n

1
3, n

1
4q.

Let G be a 4-partite graph of order |G| ąM0pkq and with parts of size n1 ě n2 ě n3 ě n4 ě 6k2.
Assume that G is kK3-free and ϕpGq ą 0. Without loss of generality, we assume that G contains
k´1 disjoint triangles – otherwise we keep adding edges to G until it contains k´1 disjoint triangles
(as a result, ϕpGq increases). Our goal is to show that there exists a crossing set T Ă V pGq of size
at most 2 such that ϕpGq ă ϕpGzT q and v4pGzT q ě 6k2.

We proceed in the following cases. It is easy to see that these cases cover all possibilities. In each
case we verify v4pGzT q ě 6k2 immediately.
Case 0. n1 ą n2`n3. We will select a one-element set T Ă V1. Since n1 ą 2n4, we have n1´1 ą n4

and thus v4pGzT q “ n4 ě 6k2.
We assume n1 ď n2 ` n3 in the remaining cases.

Case 1. n1 ą n3 and n2 ą n4. We will select a crossing set T Ă V1YV2. Since n1´1 ě n2´1 ě n4,
we have v4pGzT q “ n4 ě 6k2.
Case 2. n1 “ n2 “ n3 ě n4 ą 6k2. We select a one-element set T Ă V pGq. Then v4pGzT q ě
n4 ´ 1 ě 6k2.
Case 3. n1 “ n2 “ n3 ą n4 “ 6k2. We will select a one-element set T Ă V1 Y V2 Y V3. Since
n3 ´ 1 ě n4, we have v4pGzT q “ n4 “ 6k2.
Case 4. n1 ą n2 “ n3 “ n4. We will select a one-element set T Ă V1. Since n1 ą n4, v4pGzT q “
n4 ě 6k2.

It remains to show ϕpGq ă ϕpGzT q in Cases 0–4. This is actually easy in Case 0.
Case 0. Recall that ϕpGq “ epGq ´ gkpn1, n2, n3, n4q ą 0. Since n1 ą n2 ` n3,

gkpn1, n2, n3, n4q “ n1pn2 ` n3 ` n4q ` pk ´ 1qpn2 ` n3q.

First assume that some vertex v P V1 satisfies dpvq ă n2`n3`n4. Let T “ tvu. Since n1´1 ě n2`n3,

gkpn1 ´ 1, n2, n3, n4q “ pn1 ´ 1qpn2 ` n3 ` n4q ` pk ´ 1qpn2 ` n3q

“ gkpn1, n2, n3, n4q ´ pn2 ` n3 ` n4q.

It follows that

ϕpGztvuq “ epGq ´ dpvq ´ gkpn1 ´ 1, n2, n3, n4q ą epGq ´ gkpn1, n2, n3, n4q “ ϕpGq,

as desired. Otherwise, GrV1, V2 Y V3 Y V4s must be complete. Since G is kK3-free, it follows that
GrV2 Y V3 Y V4s contains no matching of size k. The result of [5] or a simple induction on k1 yields
that epGrV2YV3YV4sq ď pk´1qpn2`n3q. This shows that epGq ď n1pn2`n3`n4q`pk´1qpn2`n3q,
namely, ϕpGq “ 0, a contradiction.

In the rest of the proof we assume n1 ď n2 ` n3 and will resolve Cases 1–4.
One difficulty in these cases is that, after we delete a set T Ď V pGq, the sizes of the four parts

of GzT may not follow the order in G. For instance, suppose n1 ď n2 ` n3 and T “ tvu Ď V1.
If n1 ą n2, then the order of the part sizes of GzT is n1 ´ 1 ě n2 ě n3 ě n4, the same as in G.
However, when n1 “ n2 ą n3 ě n4, the order of the part sizes of GzT is n2 ě n1´ 1 ě n3 ě n4, and
the degree estimates we obtain are quite different. Another complication comes from the fact that
there are two possible extremal graphs. Even under the assumption that n1 ď n2`n3, we still have
to consider the possibility of n11 ą n12 ` n13 in GzT , where n11, n

1
2, n

1
3, n

1
4 are the part sizes of GzT .

1If there is a vertex of degree at least 2k ´ 1, then we can delete it and apply induction; otherwise, as the size of the
maximum matching is k ´ 1, there are at most 2pk ´ 1qp2k ´ 1q ď pk ´ 1qpn2 ` n3q edges (using k ! n3 ď n2).
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Although a case analysis is inevitable, we study the structure of G in Section 2.1 and use it to
simplify the presentation of the proofs of Cases 1–4 in Section 2.2.

2.1. Preparation. We first give several preliminary results. An edge of G is called rich if it is
contained in at least k triangles whose third vertices are located in the same part of V pGq. We
show that every triangle in G must contain a rich edge and G contains at most 6pk´ 1q2 rich edges.
Let Z be the set of vertices incident to at least one rich edge. Thus, not only is GzZ triangle-free,
but also every edge in GzZ is not contained in any triangle of G because such a triangle would not
contain any rich edge.

We shall use the following simple fact.

Fact 2.2. Let G be a 4-partite graph with parts V1, . . . , V4 and suppose x P V1 and y P V2. Let
ni :“ |Vi| for i P r4s. Then x and y have at least dpxq ` dpyq ´

ř

iPr4s ni common neighbors in G. In

particular, if x and y have no common neighbor, then dpxq`dpyq “
ř

iPr4s ni implies that xy P EpGq,

V2 Ď Npxq and V1 Ď Npyq. Moreover, if dpxq ` dpyq ě
ř

iPr4s ni ` 2k ´ 1, then xy is rich.

Proof. Note that |Npxq X pV3 Y V4q| “ dpxq ´ |Npxq X V2| ě dpxq ´ n2 and |Npyq X pV3 Y V4q| “

dpyq ´ |Npyq X V1| ě dpyq ´ n1. Let m denote the number of common neighbors of x and y. Then
m ě |Npxq X pV3 Y V4q| ` |Npyq X pV3 Y V4q| ´ n3 ´ n4 ě dpxq ` dpyq ´

ř

iPr4s ni. So the first part

of the fact follows. In particular, if m “ 0, then dpxq ` dpyq ď
ř

iPr4s ni. Moreover, if the equality

holds, then the inequalities in previous calculations must be equalities. In particular, V2 Ď Npxq
and V1 Ď Npyq, which also imply that xy P EpGq.

For the “moreover” part, note that dpxq ` dpyq ě
ř

iPr4s ni ` 2k ´ 1 implies that x and y have at

least 2k ´ 1 common neighbors and thus at least k common neighbors in one part. Therefore xy is
rich. �

Recall that we have assumed that ϕpGq ą 0 and n1 ď n2 ` n3. Thus,

epGq ą gkpn1, n2, n3, n4q “ pn1 ` n4qpn2 ` n3q ` pk ´ 1qn1. (2.2)

Let R be the subgraph of G induced by the rich edges of G, and let Z “ V pRq be the set of the
vertices of G that are incident to at least one rich edge.

Claim 2.3. Suppose (˚), (2.2), and G is kK3-free. Then the following assertions hold:

piq every vertex is contained in at most k ´ 1 edges of R whose other ends are located in the
same part of G; in particular, the maximum degree of R is at most 3k ´ 3;

piiq epRq ď 6pk ´ 1q2 and |Z| ď 6pk ´ 1q2;
piiiq every triangle in G contains an edge in R.

Proof. We first show piq ñ piiq. Note that if R has a matching of size k, then we can greedily
build k vertex-disjoint triangles by extending each rich edge in the matching. This contradicts the
assumption that G is kK3-free. Therefore, the largest matching in R is of size at most k ´ 1 and
consequently, R has a vertex cover of size at most 2pk´ 1q. If the maximum degree of R is at most
3k´3, then epRq ď 2pk´1qp3k´4q`k´1 ă 6pk´1q2 and |Z| ď 2pk´1qp3k´4q`2pk´1q “ 6pk´1q2,
confirming piiq.

To see piq, we assume that some vertex v is incident to k rich edges whose other ends are in the
same part of G. If there is a copy S of pk ´ 1qK3 in Gztvu, then we can pick a rich edge in GzS
that contains v and then extend this rich edge to a triangle that does not intersect S. This gives a
kK3 in G, a contradiction. Thus, we infer that Gztvu is pk ´ 1qK3-free.

Let n11 ě n12 ě n13 ě n14 be the sizes of four parts of Gztvu. By (˚), we have epGztvuq ď
gk´1pn

1
1, n

1
2, n

1
3, n

1
4q. To estimate gk´1pn

1
1, n

1
2, n

1
3, n

1
4q, we first observe that there exists i0 P r4s such
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that n1i “ ni for all i ‰ i0 and ni0 “ ni0 ´ 1; and furthermore, n1i “ |Viztvu| for i P r4s after
relabeling V1, V2, V3, V4 if necessary (but maintaining ni “ |Vi|). This is obvious when v P Vi0 and
ni0 ą ni0`1. Otherwise, for example, assume that v P V1 and n1 “ n2 ą n3 (other cases are similar).
Then n11 “ n2 “ n1 and n12 “ n1 ´ 1 “ n2 ´ 1. After relabeling V1 and V2, we have v P V2, and
n1i “ |Viztvu| for i P r4s.

By the definition of g, we consider two cases. When n11 ď n12 ` n13, we have

gk´1pn
1
1, n

1
2, n

1
3, n

1
4q “ pn

1
1 ` n14qpn

1
2 ` n13q ` pk ´ 2qn11

ď

"

pn1 ` n4 ´ 1qpn2 ` n3q ` pk ´ 2qn1 if v P V1 Y V4,
pn1 ` n4qpn2 ` n3 ´ 1q ` pk ´ 2qn1, if v P V2 Y V3.

(2.3)

Together with (2.2) and (˚), this implies that

dGpvq “ epGq ´ epGztvuq ą gkpn1, n2, n3, n4q ´ gk´1pn
1
1, n

1
2, n

1
3, n

1
4q

ě

"

n1 ` n2 ` n3 if v P V1 Y V4,
2n1 ` n4, if v P V2 Y V3,

which is impossible. When n11 ą n12 ` n13, it must be the case when n1 “ n2 ` n3 and n1i0 “ ni0 ´ 1
for i0 P t2, 3u. Thus

gk´1pn
1
1, n

1
2, n

1
3, n

1
4q “ n11pn

1
2 ` n13 ` n14q ` pk ´ 2qpn12 ` n13q

“ pn2 ` n3qpn1 ` n4 ´ 1q ` pk ´ 2qpn1 ´ 1q.

Together with (2.2) and (˚), this implies that dGpvq ą n1 ` n2 ` n3, which is impossible for any
v P V pGq.

To see piiiq, let S be a triangle in G and consider GzS. Since G is kK3-free, GzS is pk ´ 1qK3-
free. By (˚), we have epGzSq ď gk´1pn

1
1, n

1
2, n

1
3, n

1
4q where n11 ě n12 ě n13 ě n14 are the sizes of parts

of GzS. We observe that there exists i0 P r4s such that n1i “ ni ´ 1 for i ‰ i0 and n1i0 “ ni0 ;
furthermore, n1i “ |VizS| after relabeling V1, V2, V3, V4 if necessary (while maintaining ni “ |Vi|).
This is obvious when S Ă

Ť

i‰i0
Vi and either i0 “ 1 or ni0´1 ą ni0 . Otherwise, for example, assume

that S Ă V1YV2YV3 and n2 ą n3 “ n4 (other cases are similar). We have n11 “ n1´1, n12 “ n2´1,
n13 “ n4 “ n3 and n14 “ n3 ´ 1 “ n4 ´ 1. After swapping V3 and V4, we have S Ă V1 Y V2 Y V4.

If n11 ď n12 ` n13. then gk´1pn
1
1, n

1
2, n

1
3, n

1
4q “ pn

1
1 ` n14qpn

1
2 ` n13q ` pk ´ 2qn11. By our observation

on the values of n11, n
1
2, n

1
3, n

1
4, it follows that

gk´1pn
1
1, n

1
2, n

1
3, n

1
4q ď max

j“1,2
tpn1 ` n4 ´ jqpn2 ` n3 ´ p3´ jqqu ` pk ´ 2qn1.

If n11 ą n12 ` n13, then gk´1pn
1
1, n

1
2, n

1
3, n

1
4q “ n11pn

1
2 ` n13 ` n14q ` pk ´ 2qpn12 ` n13q. In this case, we

must have n1 “ n2 ` n3 ´ t for t “ 0, 1, n12 “ n2 ´ 1, and n13 “ n3 ´ 1. Thus n1i “ ni ´ 1 either for
i P r3s or for i P t2, 3, 4u, and consequently

gk´1pn
1
1, n

1
2, n

1
3, n

1
4q ď maxtpn1 ´ 1qpn2 ` n3 ` n4 ´ 2q ` pk ´ 2qpn2 ` n3 ´ 2q,

n1pn2 ` n3 ` n4 ´ 3q ` pk ´ 2qpn2 ` n3 ´ 2q.

Since n1 “ n2 ` n3 ´ t for t “ 0, 1, it follows that

gk´1pn
1
1, n

1
2, n

1
3, n

1
4q ď max

j“1,2,3
tpn2 ` n3 ´ p3´ jqqpn1 ` n4 ´ jqu ` pk ´ 2qpn1 ´ 1q.

Putting all cases together with epGzSq ď gk´1pn
1
1, n

1
2, n

1
3, n

1
4q, we conclude that

epGzSq ď max
j“1,2,3

tpn1 ` n4 ´ jqpn2 ` n3 ´ p3´ jqqu ` pk ´ 2qn1. (2.4)
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Recall that epS;Gq :“ epGq ´ epGzSq. We next claim that epS;Gq ě 3
2

ř

iPr4s ni ` 3k. Indeed, if

the maximum in (2.4) is achieved by j “ 1, 2, then, together with (2.2), it gives

epS;Gq ą
ÿ

iPr4s

ni `mintn1 ` n4, n2 ` n3u ` n1 ´ 2 ě
3

2

ÿ

iPr4s

ni ` n4 ´ 2 ě
3

2

ÿ

iPr4s

ni ` 3k,

where we used n4 ě 6k2 in the last inequality. Otherwise, the maximum in (2.4) is achieved by
j “ 3, that is, epGzSq ď pn1 ` n4 ´ 3qpn2 ` n3q ` pk ´ 2qn1. By (2.2), we get

epS;Gq ą pn1 ` n4qpn2 ` n3q ` pk ´ 1qn1 ´ pn1 ` n4 ´ 3qpn2 ` n3q ´ pk ´ 2qn1

“ n1 ` 3n2 ` 3n3 ě
3

2

ÿ

iPr4s

ni `
n4

2
ě

3

2

ÿ

iPr4s

ni ` 3k,

where we used the assumption n2 ` n3 ě n1 and n2, n3 ě n4.
Let S “ xyz and note that dpxq ` dpyq ` dpzq “ epS;Gq ` 3. By averaging, without loss of

generality, we may assume that

dpxq ` dpyq ě
2

3

¨

˝

3

2

ÿ

iPr4s

ni ` 3k

˛

‚“
ÿ

iPr4s

ni ` 2k.

By the moreover part of Fact 2.2, xy is rich and we are done. �

For two disjoint sets A,B Ď V pGq, let dpA,Bq “ epA,Bq{p|A||B|q be the density of the bipartite
graph with parts A and B. A pair pVi, Vjq is called full if dpVizZ, Vjq “ dpVjzZ, Viq “ 1; pVi, Vjq is
called empty if epVizZ, Vjq “ epVi, VjzZq “ 0. We have the following observation.

Observation 2.4. For distinct i, j, t P r4s, if dpVizZ, Vjq “ dpVizZ, Vtq “ 1, then pVj , Vtq must be
empty because any edge in pVj , Vtq but not in pVj XZ, VtXZq will create a triangle with at most one
vertex in Z, contradicting piiiq. In particular, if both pVi, Vjq and pVi, Vtq are full, then pVj , Vtq is
empty.

Claim 2.5. Fix i ‰ j P r4s. If dpxq ` dpyq ě
ř

iPr4s ni for every edge xy P Vi ˆ Vj, then either

‚ epVizZ, VjzZq “ 0 (this is weaker than pVi, Vjq being empty) or
‚ dpVizZ, Vjq “ dpVjzZ, Viq “ 1, and dpxq ` dpyq “

ř

iPr4s ni.

Moreover, if dpxq ` dpyq ą
ř

iPr4s ni for every edge xy P Vi ˆ Vj, then pVi, Vjq is empty.

Proof. Assume that ti, j, t, `u “ r4s. Suppose there is an edge xy P pVizZq ˆ pVjzZq. Note that if x
and y have a common neighbor z, then as x, y R Z, none of the edges of xyz is rich, contradicting piiiq.
Thus, x and y have no common neighbor. By Fact 2.2, dpxq ` dpyq ď

ř

iPr4s ni. If dpxq ` dpyq ě
ř

iPr4s ni, then Fact 2.2 implies that Vj Ď Npxq and Vi Ď Npyq. In particular, xy1 P EpGq for every

y1 P VjzZ. Applying the same argument to the edge xy1, we obtain that Vi Ď Npy1q. Similarly, we
can derive that Vj Ď Npx1q for every x1 P VizZ. Thus, dpVizZ, Vjq “ dpVjzZ, Viq “ 1.

Now assume dpxq ` dpyq ą
ř

iPr4s ni for every edge xy P Vi ˆ Vj . If epVizZ, VjzZq ‰ 0, then

the arguments in the previous paragraph provide a contradiction. Suppose there is an edge xy P
pViXZqˆ pVjzZq. As dpxq` dpyq ą

ř

iPr4s ni, x and y have some common neighbors in VtYV`. But

since y R Z, by piiiq, their common neighbors must be in pVtYV`qXZ. Since epVizZ, VjzZq “ 0, we
know that NpyqXVi Ď ViXZ. Altogether, we obtain that dpxq`dpyq ď nj`nt`n``|Z| ă

ř

iPr4s ni,

a contradiction. Analogous arguments show that there is no edge in pVizZq ˆ pVj X Zq. Thus,
epVizZ, Vjq “ epVi, VjzZq “ 0, that is, pVi, Vjq is empty. �
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Consider a set T Ď V pGq defined in Cases 1–4 and let n11, n
1
2, n

1
3, n

1
4 denote the sizes of the parts

of GzT . Then ϕpGq ă ϕpGzT q is equivalent to

epGq ´ gkpn1, n2, n3, n4q ă epGzT q ´ gkpn
1
1, n

1
2, n

1
3, n

1
4q,

or epT ;Gq ă gkpn1, n2, n3, n4q ´ gkpn
1
1, n

1
2, n

1
3, n

1
4q. We will prove by contradiction, assuming that

ϕpGq ě ϕpGzT q, equivalently,

epT ;Gq ě pn1 ` n4qpn2 ` n3q ` pk ´ 1qn1 ´ gkpn
1
1, n

1
2, n

1
3, n

1
4q (2.5)

for every T Ď V pGq defined in Cases 1–4.
The case when T “ tvu Ď V1 occurs in all four cases so we consider it before the cases. Since

n1 ď n2 ` n3, we have three possibilities:

‚ if n1 ą n2, then gkpn1 ´ 1, n2, n3, n4q “ pn1 ´ 1` n4qpn2 ` n3q ` pk ´ 1qpn1 ´ 1q;
‚ if n1 “ n2 ą n4, then gkpn1 ´ 1, n2, n3, n4q “ pn1 ` n4qpn2 ` n3 ´ 1q ` pk ´ 1qn1;
‚ if n1 “ n4, then gkpn1 ´ 1, n2, n3, n4q “ pn1 ` n4 ´ 1qpn2 ` n3q ` pk ´ 1qn1;

Thus (2.5) implies that for every v P V1,

dpvq ě

"

n2 ` n3 ` k ´ 1, if n1 ą n2,
n1 ` n4, if n1 “ n2.

(2.6)

2.2. Proof of Cases 1–4. After these preparations, we return to the proof of Cases 1–4. Recall
that n1 ď n2 ` n3 in all these cases. Recall also that ni ě 6k2 for i P r4s, so we can always assume
that VizZ ‰ H. Moreover, by (2.1), we have M0pkq ě N0pk ´ 1q ` 3, and thus we can apply
the induction hypothesis (˚) on any pk ´ 1qK3-free subgraph GzS, whenever |S| ď 3 (and thus
v4pGzSq ě 6k2 ´ 3 ě 6pk ´ 1q2).

Case 1. n1 ą n3 and n2 ą n4.
In this case (2.5) holds for every crossing set T “ xy P V1 ˆ V2. Since the part sizes of Gztx, yu

are n1 ´ 1 ě tn2 ´ 1, n3u ě n4. By (2.5), we have

epxy;Gq ě pn1 ` n4qpn2 ` n3q ` pk ´ 1qn1 ´ ppn1 ` n4 ´ 1qpn2 ` n3 ´ 1q ` pk ´ 1qpn1 ´ 1qq

“
ÿ

iPr4s

ni ` k ´ 2.

If xy P EpGq, then dpxq`dpyq “ epxy;Gq`1 ě
ř

iPr4s ni`k´1 ą
ř

iPr4s ni. By Claim 2.5, pV1, V2q is

empty. For every x P V1zZ, we thus have dpxq ď n3`n4 ă mintn2`n3, n1`n4u, contradicting (2.6).

Case 2. n1 “ n2 “ n3 ě n4 ą 6k2.
In this case (2.5) holds for any one-element set T Ă V pGq. Write n1 “ n2 “ n3 “ n. For any

x P V1 Y V2 Y V3, by (2.5), we have

dpxq “ eptxu;Gq ě 2npn` n4q ` pk ´ 1qn´ gkpn, n, n´ 1, n4q,

where gkpn, n, n ´ 1, n4q “ p2n ´ 1qpn ` n4q ` pk ´ 1qn if n ą n4 and gkpn, n, n ´ 1, n4q “ 2npn `
n4 ´ 1q ` pk ´ 1qn if n “ n4. Thus, we have dpxq ě mint2n, n` n4u “ n` n4. Similarly, for y P V4,
by (2.5), we have

dpyq “ eptyu;Gq ě 2npn` n4q ` pk ´ 1qn´
`

2npn` n4 ´ 1q ` pk ´ 1qn
˘

“ 2n. (2.7)

These together imply dpxq ` dpyq ě
ř

ni for every edge xy P pV1 Y V2 Y V3q ˆ V4. For i “ 1, 2, 3,
Claim 2.5 implies that either pVi, V4q is full or epVizZ, V4zZq “ 0. If epVizZ, V4zZq “ 0 holds for
at least two values of i P t1, 2, 3u, then for every y P V4zZ, we have dpyq ď n ` |Z| ă 2n (as
n ěM0pkq{4 ą 6k2), contradicting (2.7).
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This implies that at least two of pV1, V4q, pV2, V4q, and pV3, V4q must be full. Without loss of
generality, assume pV1, V4q and pV2, V4q are full. By Observation 2.4, pV1, V2q is empty. Next, we
claim that pV3, V4q is empty. Indeed, let x P V2zZ and recall that dpxq ě n ` n4. Since pV1, V2q

is empty, we have dpxq ď n ` n4. Thus, dpxq “ n ` n4 and in particular V3 Ď Npxq. Since this
holds for every x P V2zZ, it follows that dpV2zZ, V3q “ 1. Thus pV3, V4q is empty by Observation 2.4.
Together with piiq, we infer

epGq “ epGrZsq ` epV zZ;Gq ă

ˆ

|Z|

2

˙

` pn1 ` n2qpn3 ` n4q ď pn1 ` n2qpn3 ` n4q ` pk ´ 1qn1,

contradicting (2.2), The previous inequality follows from
`

|Z|
2

˘

ď 18pk ´ 1q4 ď pk ´ 1qn1, which
follows from n1 ěM0pkq{4 and (2.1).

Case 3. n1 “ n2 “ n3 ą n4 “ 6k2.
Write n1 “ n2 “ n3 “ n. We assume that

n1 ě 30k2, (2.8)

as otherwise
ř

ni ď 3 ¨ 30k2 ` 6k2 ď M0pkq by (2.1), contradicting the assumption |G| ą M0pkq.
By (2.6) and the similarity of V1, V2, and V3, we have dpxq ě n` n4 for every x P V1 Y V2 Y V3. We
claim that for y P V4,

dpyq ď 2n` 2k ´ 1. (2.9)

Otherwise, pick k neighbors x1, . . . , xk of y from the same part of G. For each i, since dpxiq ě n`n4,
we have dpxiq`dpyq ě

ř

ni`2k´1, yielding that xiy is rich by Fact 2.2. However, this contradicts piq.

Claim. The graph GrV1 Y V2 Y V3s is K3-free.

Proof. Suppose instead, there exists a triangle xyz P V1ˆV2ˆV3. Without loss of generality, assume
that dpxq ě dpyq ě dpzq. We first claim that

dpxq ` dpyq ` dpzq ě 5n` 2n4 ` k. (2.10)

Otherwise dpxq`dpyq`dpzq ď 5n`2n4`k´1 and epxyz;Gq “ dpxq`dpyq`dpzq´3 ď 5n`2n4`k´4.
Then, by (2.2),

epGztx, y, zuq “ epGq ´ epxyz;Gq ą gkpn, n, n, n4q ´ p5n` 2n4 ` k ´ 4q

“ 2npn` n4q ` pk ´ 1qn´ p5n` 2n4 ` k ´ 4q

“ p2n´ 2qpn´ 1` n4q ` pk ´ 2qpn´ 1q

“ gk´1pn´ 1, n´ 1, n´ 1, n4q.

By induction hypothesis (˚), we obtain a copy of pk´1qK3 in Gztx, y, zu. Together with the triangle
xyz, this contradicts the assumption G is kK3-free.

We next claim that at least two of xy, yz, xz are rich and thus all x, y, z P Z. Indeed, if dpxq ă
2n` n4 ´ k, then by (2.10),

dpyq ` dpzq ą 5n` 2n4 ` k ´ p2n` n4 ´ kq “ 3n` n4 ` 2k ą
ÿ

ni ` 2k ´ 1.

By Fact 2.2, yz is rich. Since dpxq is the largest, this argument implies that all three edges of xyz
are rich, as desired. Otherwise, dpxq ě 2n` n4 ´ k and recall that dpyq ě dpzq ě n` n4. Thus

dpxq ` dpyq ě dpxq ` dpzq ě 3n` 2n4 ´ k ě
ÿ

ni ` 2k ´ 1

because n4 “ 6k2 ě 3k ´ 1. By Fact 2.2, both xy and xz are rich, as desired.
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The claim in the previous paragraph applies to all triangles in V1 Y V2 Y V3. Therefore, all the
common neighbors of x and y in V1YV2YV3 are in Z and consequently, |NpxqXNpyq| ď |Z|`|V4| ď

6k2 ` n4, and consequently, dpxq ` dpyq ď
ř

ni ` 6k2 ` n4 “ 3n ` 2n4 ` 6k2. On the other hand,
(2.10) and the assumption dpxq ě dpyq ě dpzq imply that

dpxq ` dpyq ě
2

3
p5n` 2n4 ` kq “

10

3
n`

4

3
n4 `

2

3
k ą 3n` 2n4 ` 6k2 (2.11)

because n ě 30k2 “ 2n4 ` 18k2 by (2.8). This gives a contradiction. �

By the claim, GrV1YV2YV3s is K3-free, and thus has at most 2n2 edges by Theorem 1.1. Together
with (2.9) and (2.8), we obtain that

epGq ď 2n2 ` n4 ¨ p2n` 2k ´ 1q “ 2npn` n4q ` p2k ´ 1qn4 ă 2npn` n4q ` pk ´ 1qn,

contradicting (2.2).

Case 4. n1 ą n2 “ n3 “ n4.
Assume n2 “ n3 “ n4 “ n and recall that n1 ď 2n. We first claim that

dpxq ď 3n for all x P V1, and dpyq ď n1 ` n` k ´ 1 for all y P V2 Y V3 Y V4. (2.12)

Indeed, the bound dpxq ď 3n for x P V1 is trivial. Suppose to the contrary, that there is a vertex
y P V2 Y V3 Y V4 with dpyq ě n1 ` n` k. It follows that |Npyq X V1| ě dpyq ´ 2n ě k. Assume that
x1, . . . , xk P Npyq X V1. By (2.6), we have dpxjq ě 2n ` k ´ 1. Thus, we infer that dpxjq ` dpyq ě
n1 ` 3n` 2k ´ 1. By Fact 2.2, we have x1y, . . . , xky P EpRq. However, this contradicts piq.

We next claim that there is no rich edge in V1 ˆ pV2 Y V3 Y V4q. Suppose to the contrary, that
xy P V1ˆpV2YV3YV4q is a rich edge. By (2.12), we have epxy;Gq “ dpxq`dpyq´1 ď n1`4n`k´2.
By (2.2), it follows that

epGztx, yuq “ epGq ´ epxy;Gq ą 2npn1 ` nq ` pk ´ 1qn1 ´ pn1 ` 4n` k ´ 2q

“ 2npn1 ` n´ 2q ` pk ´ 2qpn1 ´ 1q

“ gk´1pn1 ´ 1, n, n, n´ 1q.

By induction hypothesis (˚), Gztx, yu contains a copy S of pk ´ 1qK3. Since xy is rich, we can find
a triangle in GzS containing xy, contradicting the assumption that G is kK3-free.

Now we show that there is no triangle intersecting V1. Suppose to the contrary, there is a triangle
xyz with x P V1. If dpxq ` dpzq ě n1 ` 3n` 2k ´ 1, then, by Fact 2.2, xy is rich, contradicting our
earlier claim. We thus assume that dpxq`dpzq ă n1`3n`2k´1. Together with (2.12), it gives that
dpxq ` dpyq ` dpzq ă 2n1` 4n` 3k´ 2, and epxyz;Gq “ dpxq ` dpyq ` dpzq ´ 3 ă 2n1` 4n` 3k´ 5.
By (2.2), it follows that

epGztx, y, zuq “ epGq ´ epxyz;Gq ą 2npn1 ` nq ` pk ´ 1qn1 ´ p2n1 ` 4n` 3k ´ 5q

“ pn1 ` n´ 2qp2n´ 1q ` pk ´ 2qpn1 ´ 1q ` n´ 2k ` 1

“ gk´1pn1 ´ 1, n, n´ 1, n´ 1q ` n´ 2k ` 1.

By (˚), Gztx, y, zu contains a copy of pk ´ 1qK3. Together with the triangle xyz, this contradicts
the assumption that G is kK3-free.

We assumed that G contains k ´ 1 disjoint triangles. Let T1 be a triangle of G. By the claim of
the previous paragraph, T1 must be in V2YV3YV4. Moreover, by piiiq, T1 must contain a rich edge
xy. Below we show that

epGztx, yuq ą gk´1pn1, n, n´ 1, n´ 1q. (2.13)
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Then, by (˚), Gztx, yu contains a copy S of pk ´ 1qK3. Since xy is rich, we can find a triangle in
GzS containing xy, contradicting the assumption that G is kK3-free.

We first assume that n1 “ 2n. If dpxq ` dpyq ą 6n, then x and y have a common neighbor in
V1, contradicting the earlier claim that there is no triangle intersecting V1. We thus assume that
dpxq ` dpyq ď 6n. Thus epxy;Gq ď 6n´ 1. By (2.2), it follows that

epGztx, yuq ą gkp2n, n, n, nq ´ p6n´ 1q

“ 3n ¨ 2n` 2npk ´ 1q ´ p6n´ 1q

“ 2np3n´ 2q ` pk ´ 2qp2n´ 1q ` k ´ 1

“ gk´1p2n, n, n´ 1, n´ 1q ` k ´ 1.

Thus (2.13) holds. Second, assume n1 ă 2n. By (2.12), we have epxy;Gq “ dpxq ` dpyq ´ 1 ď
2pn1 ` n` k ´ 1q ´ 1. By (2.2), it follows that

epGztx, yuq ą gkpn1, n, n, nq ´ p2n1 ` 2n` 2k ´ 3q

“ pn1 ` nq2n` pk ´ 1qn1 ´ p2n1 ` 2n` 2k ´ 3q

“ pn1 ` n´ 1qp2n´ 1q ` pk ´ 2qn1 ` n´ 2k ` 2

“ gk´1pn1, n, n´ 1, n´ 1q ` n´ 2k ` 2.

Thus (2.13) holds.
The proof of Theorem 2.1 is now completed. �

3. Concluding remarks

In this paper we solved Problem 1.2 for r “ 4 and t “ 3 when all ni’s are large. The idea in our
proof should be helpful for proving Conjecture 1.4 in general. However, to determine the maximum
in (1.1), there are quite a few cases to consider even when r “ 5 and t “ 3. Indeed, suppose
n1 ě n2 ě ¨ ¨ ¨ ě n5 and tI, I 1u is the bipartition of r5s that attained the maximum in (1.1). Assume
1 P I. Depending on the values of n1, . . . , n5, it is possible to have

I “ t1u or t1, 2u or t1, 3u or t1, 4u or t1, 5u or t1, 4, 5u.

Another open problem is to find the smallest N0pkq such that Theorem 1.3 holds. The N0pkq
provided in our proof is a double exponential function of k. Indeed, by (2.1) and N0p1q “ 1, we
have M0p2q “ 96 ¨ 22 “ 384 and N0p2q “ 3842. It is easy to see that N0pkq “ pN0pk ´ 1q ` 3q2 for
k ě 3. Thus N0pk ´ 1q2 ď N0pkq ď 2N0pk ´ 1q2 for k ě 3. It follows that

N0p2q
2k´2

ď N0pkq ď
`

2N0p2q
˘2k´2

.

It is interesting to know whether one can reduce N0pkq to a polynomial function (or even a linear
function) of k.
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