TURÁN NUMBER OF DISJOINT TRIANGLES IN 4-PARTITE GRAPHS

JIE HAN AND YI ZHAO

Abstract

Let $k \geqslant 2$ and $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant n_{4}$ be integers such that n_{4} is sufficiently larger than k. We determine the maximum number of edges of a 4 -partite graph with parts of sizes n_{1}, \ldots, n_{4} that does not contain k vertex-disjoint triangles. For any $r>t \geqslant 3$, we give a conjecture on the maximum number of edges of an r-partite graph that does not contain k vertex-disjoint cliques K_{t}.

1. Introduction

Given two graphs G and F, we say that G is F-free if G does not contain F as a subgraph. Let K_{t} denote a complete graph on t vertices, and $T_{n, t}$ denote a balanced complete t-partite graph on n vertices (now known as the Turán graph). In 1941, Turán [9] proved that $T_{n, t}$ has the maximum number of edges among all K_{t+1}-free graphs (the case $t=2$ was previously solved by Mantel [7]). Turán's result initiates the study of Extremal Graph Theory, an important area of research in modern Combinatorics (see the monograph of Bollobás [3]). Let $k K_{t}$ denote k disjoint copies of K_{t}. Simonovits [8] studied the Turán problem for $k K_{t}$ and showed that when n is sufficiently large, the (unique) extremal graph on n vertices is the join of K_{k-1} and the Turán graph $T_{n-k+1, t-1}$.

In this paper we consider Turán problems in multi-partite graphs. Let $K_{n_{1}, n_{2}, \ldots, n_{r}}$ denote the complete r-partite graph on parts of sizes $n_{1}, n_{2}, \ldots, n_{r}$. This variant of the Turán problem was first considered by Zarankiewicz [11], who was interested in the case of forbidding $K_{s, t}$ in (subgraphs of) $K_{a, b}$. Formally, given graphs H and F, we define $\operatorname{ex}(H, F)$ as the maximum number of edges in an F-free subgraph of H. Bollobás, Erdős, and Straus [2] (see also [3, Page 544]) proved the following result. For any subset $I \subseteq[r]$, write $n_{I}:=\sum_{i \in I} n_{i}$.
Theorem 1.1. [2] The extremal number $\operatorname{ex}\left(K_{n_{1}, \ldots, n_{r}}, K_{t}\right)$ is equal to

$$
\max _{\mathcal{P}} \sum_{I \neq I^{\prime} \in \mathcal{P}} n_{I} \cdot n_{I^{\prime}},
$$

where the maximum is taken over all partitions \mathcal{P} of $[r]$ into $t-1$ parts.
The problem of forbidding disjoint copies of cliques in multi-partite graphs has been studied recently. Chen, Li and Tu [4] determined $\mathrm{ex}\left(K_{n_{1}, n_{2}}, k K_{2}\right)$ and De Silva, Heysse and Young [5] showed that $\operatorname{ex}\left(K_{n_{1}, \ldots, n_{r}}, k K_{2}\right)=(k-1)\left(n_{1}+\cdots+n_{r-1}\right)$ for $n_{1} \geqslant \cdots \geqslant n_{r}$. De Silva, Heysse, Kapilow, Schenfisch and Young [6] determined $\operatorname{ex}\left(K_{n_{1}, \ldots, n_{r}}, k K_{r}\right)$ and raised the question of determining $\operatorname{ex}\left(K_{n_{1}, \ldots, n_{r}}, k K_{t}\right)$ when $r>t$. After giving another proof of Theorem 1.1, Bennett, English and Talanda-Fisher [1] reiterated this question.

Problem 1.2. [6] Determine $\operatorname{ex}\left(K_{n_{1}, \ldots, n_{r}}, k K_{t}\right)$ when $r>t$.

[^0]In this paper we solve Problem 1.2 for $r=4$ and $t=3$ when all n_{i} 's are sufficiently large. To state our result, for $k \geqslant 1$, we define a function of positive integers $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant n_{4}$:

$$
\begin{aligned}
g_{k}\left(n_{1}, n_{2}, n_{3}, n_{4}\right) & :=\max \left\{\left(n_{1}+n_{4}\right)\left(n_{2}+n_{3}\right)+(k-1) n_{1}, n_{1}\left(n_{2}+n_{3}+n_{4}\right)+(k-1)\left(n_{2}+n_{3}\right)\right\} \\
& = \begin{cases}\left(n_{1}+n_{4}\right)\left(n_{2}+n_{3}\right)+(k-1) n_{1} & \text { if } n_{1} \leqslant n_{2}+n_{3}, \\
n_{1}\left(n_{2}+n_{3}+n_{4}\right)+(k-1)\left(n_{2}+n_{3}\right), & \text { if } n_{1}>n_{2}+n_{3} .\end{cases}
\end{aligned}
$$

When G is a 4-partite graph with parts of sizes $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant n_{4}$, we define $g_{k}(G):=$ $g_{k}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$. For arbitrary positive integers a, b, c, d, we define $g_{k}(a, b, c, d)=g_{k}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, where $a_{1} \geqslant a_{2} \geqslant a_{3} \geqslant a_{4}$ is a reordering of a, b, c, d.
Theorem 1.3. Given $k \geqslant 1$, there exists $N_{0}(k)$ such that if G is a $k K_{3}$-free 4-partite graph with parts of sizes $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant n_{4} \geqslant 6 k^{2}$ and $n_{1}+n_{2}+n_{3}+n_{4} \geqslant N_{0}(k)$, then $e(G) \leqslant g_{k}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$. In other words, $\operatorname{ex}\left(K_{n_{1}, n_{2}, n_{3}, n_{4}}, k K_{3}\right) \leqslant g_{k}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$.

Theorem 1.3 is tight due to two constructions G_{1} and G_{2} below. In fact, a subgraph of G_{2} was given by De Silva et al. [6] as a potential extremal construction; later Wagner [10] realized that G_{1} was a better construction for the $n_{1}=n_{2}=n_{3}=n_{4}$ case. Let $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant n_{4} \geqslant k$. We define two 4-partite graphs with parts V_{1}, \ldots, V_{4} such that $\left|V_{i}\right|=n_{i}$. Fix a set Z of $k-1$ vertices in V_{4}. Let

$$
G_{1}:=K_{V_{1} \cup V_{4}, V_{2} \cup V_{3} \cup K_{Z, V_{1}} \text { and } G_{2}:=K_{V_{1}, V_{2} \cup V_{3} \cup V_{4}} \cup K_{Z, V_{2} \cup V_{3}}, ., ~ . ~}
$$

where $K_{V_{1}, \ldots, V_{r}}$ denotes the complete r-partite graph with parts V_{1}, \ldots, V_{r}. Note that each triangle must intersect Z and thus both G_{1} and G_{2} are $k K_{3}$-free. Moreover, $e\left(G_{1}\right)=\left(n_{1}+n_{4}\right)\left(n_{2}+n_{3}\right)+$ $(k-1) n_{1}$ and $e\left(G_{2}\right)=n_{1}\left(n_{2}+n_{3}+n_{4}\right)+(k-1)\left(n_{2}+n_{3}\right)$. Thus $e\left(G_{2}\right) \leqslant e\left(G_{1}\right)$ if and only if $n_{1} \leqslant n_{2}+n_{3}$ and equality holds when $n_{1}=n_{2}+n_{3}$.

Figure 1. The extremal graphs G_{1} and G_{2}
Our proof uses a progressive induction (an induction without a base case) on the total number of vertices and a standard induction on k that uses Theorem 1.1 as the base case.

We conjecture an answer to Problem 1.2 in general, which includes all aforementioned results [$1,4,5]$ and Theorem 1.3.
Conjecture 1.4. Given $r>t \geqslant 3$ and $k \geqslant 2$, let n_{1}, \ldots, n_{r} be sufficiently large. For $I \subseteq[r]$, write $m_{I}:=\min _{i \in I} n_{i}$. Given a partition \mathcal{P} of $[r]$, let $n_{\mathcal{P}}:=\max _{I \in \mathcal{P}}\left\{n_{I}-m_{I}\right\}$. The Turán number $\operatorname{ex}\left(K_{n_{1}, \ldots, n_{r}}, k K_{t}\right)$ is equal to

$$
\begin{equation*}
\max _{\mathcal{P}}\left\{(k-1) n_{\mathcal{P}}+\sum_{I \neq I^{\prime} \in \mathcal{P}} n_{I} \cdot n_{I^{\prime}}\right\}, \tag{1.1}
\end{equation*}
$$

where the maximum is taken over all partitions \mathcal{P} of $[r]$ into $t-1$ parts.
The bound (1.1) is achieved by the following graph. Given integers k, t and n_{1}, \ldots, n_{r} with $r>t$ and $n_{i} \geqslant k$ for all i, let \mathcal{P} be a partition of $[r]$ into $t-1$ parts that maximizes (1.1). Let G be an r-partite graph whose parts have sizes n_{1}, \ldots, n_{r}. Partition G into $t-1$ parts according to \mathcal{P}, namely, let $V_{I}=\bigcup_{i \in I} V_{i}$ for every $I \in \mathcal{P}$ and include all edges between V_{I} and $V_{I^{\prime}}$ for all $I \neq I^{\prime} \in \mathcal{P}$. In addition, let $I_{0} \in \mathcal{P}$ such that $n_{\mathcal{P}}=n_{I_{0}}-m_{I_{0}}$ and let $V_{i_{0}}$ be the smallest part in $V_{I_{0}}$. We choose a set $Z \subseteq V_{i_{0}}$ of $k-1$ vertices and add all edges between Z and $V_{I_{0}} \backslash V_{i_{0}}$.

Verifying Conjecture 1.4 seems hard due to the complexity of (1.1) - we shall discuss this in the last section.
Notation. Given a graph $G=(V, E)$, let $|G|$ denote the order of G. Suppose A, B are two disjoint subsets of V. Let $e(A):=e(G[A])$ be the number of edges of G in A and $e(A, B)$ be the number of edges of G with one end in A and the other in B. Moreover, let $G \backslash A:=G[V \backslash A]$. Denote by

$$
e(A ; G):=e(G)-e(G \backslash A),
$$

the number of edges of G incident to A. Given a vertex x, let $N(x)$ denote the set of neighbors of x. For vertices x, y and z, we often write $x y z$ for $\{x, y, z\}$. We sometimes abuse this notation by using $x y \in A \times B$ to indicate that $x \in A$ and $y \in B$. Given an r-partite graph G, a crossing set is a set that contains at most one vertex from each part of G.

2. Proof of Theorem 1.3

In this section we prove Theorem 1.3. Define two sequences $N_{0}(k)$ and $M_{0}(k)$ recursively by letting $N_{0}(1)=1$,

$$
\begin{equation*}
M_{0}(k)=\max \left\{72(k-1)^{3}, 96 k^{2}, N_{0}(k-1)+3\right\}, \quad \text { and } \quad N_{0}(k)=M_{0}(k)^{2} \tag{2.1}
\end{equation*}
$$

for $k \geqslant 2$. Given a 4 -partite graph G, let $v_{4}(G)$ denote the size of the smallest part of G. Define $\varphi(G):=e(G)-g_{k}(G)$. The following theorem is the main step in the proof of Theorem 1.3.

Theorem 2.1. Suppose $k \geqslant 2$ and Theorem 1.3 holds for $k-1$. Let G be a 4-partite graph of order $|G|>M_{0}(k)$ and with $v_{4}(G) \geqslant 6 k^{2}$. If G is $k K_{3}$-free and $\varphi(G)>0$, then we can find a subgraph G^{\prime} of G such that $|G|-2 \leqslant\left|G^{\prime}\right| \leqslant|G|-1, v_{4}\left(G^{\prime}\right) \geqslant 6 k^{2}$, and $\varphi\left(G^{\prime}\right)>\varphi(G)$.

Theorem 1.3 nows follows from Theorem 2.1 by an induction on k and a progressive induction on $|G|$ (e.g., used in [8]).
Proof of Theorem 1.3. The base case $k=1$ follows from Theorem 1.1 with $N_{0}(1)=1$. Let $k \geqslant 2$ and G be a 4 -partite graph of order $|G| \geqslant N_{0}(k)$ and with $v_{4}(G) \geqslant 6 k^{2}$. Suppose G is $k K_{3}$-free and $\varphi(G)>0$. By Theorem 2.1, we find a subgraph $G_{1} \subset G$ such that $|G|-2 \leqslant\left|G_{1}\right| \leqslant|G|-1$, $v_{4}\left(G_{1}\right) \geqslant 6 k^{2}$, and $\varphi\left(G_{1}\right)>\varphi(G) \geqslant 1$. Repeating this process, we obtain subgraphs $G_{1} \supset G_{2} \supset$ $G_{3} \supset \cdots \supset G_{t}$ such that $|G|-2 i \leqslant\left|G_{i}\right| \leqslant|G|-i$ and $\varphi\left(G_{i}\right)>i$ for $i=1, \ldots, t$. We stop at G_{t} because $\left|G_{t}\right| \leqslant M_{0}(k)$. Hence,

$$
t \geqslant \frac{|G|-\left|G_{t}\right|}{2} \geqslant \frac{N_{0}(k)-M_{0}(k)}{2}=\frac{M_{0}(k)^{2}-M_{0}(k)}{2}=\binom{M_{0}(k)}{2} .
$$

Consequently, $\varphi\left(G_{t}\right)>\binom{M_{0}(k)}{2}$. However, this is impossible because $\varphi\left(G_{t}\right) \leqslant e\left(G_{t}\right) \leqslant\binom{ M_{0}(k)}{2}$.
The rest of this section is devoted to the proof of Theorem 2.1.
Proof of Theorem 2.1. Let $k \geqslant 2$ and suppose that
(*) for any $(k-1) K_{3}$-free 4-partite graph \tilde{G} with part sizes $n_{1}^{\prime} \geqslant n_{2}^{\prime} \geqslant n_{3}^{\prime} \geqslant n_{4}^{\prime} \geqslant 6(k-1)^{2}$ and $\sum_{i \in[4]} n_{i}^{\prime} \geqslant N_{0}(k-1)$, we have $e(\tilde{G}) \leqslant g_{k-1}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right)$.
Let G be a 4-partite graph of order $|G|>M_{0}(k)$ and with parts of size $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant n_{4} \geqslant 6 k^{2}$. Assume that G is $k K_{3}$-free and $\varphi(G)>0$. Without loss of generality, we assume that G contains $k-1$ disjoint triangles - otherwise we keep adding edges to G until it contains $k-1$ disjoint triangles (as a result, $\varphi(G)$ increases). Our goal is to show that there exists a crossing set $T \subset V(G)$ of size at most 2 such that $\varphi(G)<\varphi(G \backslash T)$ and $v_{4}(G \backslash T) \geqslant 6 k^{2}$.

We proceed in the following cases. It is easy to see that these cases cover all possibilities. In each case we verify $v_{4}(G \backslash T) \geqslant 6 k^{2}$ immediately.
Case 0. $n_{1}>n_{2}+n_{3}$. We will select a one-element set $T \subset V_{1}$. Since $n_{1}>2 n_{4}$, we have $n_{1}-1>n_{4}$ and thus $v_{4}(G \backslash T)=n_{4} \geqslant 6 k^{2}$.

We assume $n_{1} \leqslant n_{2}+n_{3}$ in the remaining cases.
Case 1. $n_{1}>n_{3}$ and $n_{2}>n_{4}$. We will select a crossing set $T \subset V_{1} \cup V_{2}$. Since $n_{1}-1 \geqslant n_{2}-1 \geqslant n_{4}$, we have $v_{4}(G \backslash T)=n_{4} \geqslant 6 k^{2}$.
Case 2. $n_{1}=n_{2}=n_{3} \geqslant n_{4}>6 k^{2}$. We select a one-element set $T \subset V(G)$. Then $v_{4}(G \backslash T) \geqslant$ $n_{4}-1 \geqslant 6 k^{2}$.
Case 3. $n_{1}=n_{2}=n_{3}>n_{4}=6 k^{2}$. We will select a one-element set $T \subset V_{1} \cup V_{2} \cup V_{3}$. Since $n_{3}-1 \geqslant n_{4}$, we have $v_{4}(G \backslash T)=n_{4}=6 k^{2}$.
Case 4. $n_{1}>n_{2}=n_{3}=n_{4}$. We will select a one-element set $T \subset V_{1}$. Since $n_{1}>n_{4}, v_{4}(G \backslash T)=$ $n_{4} \geqslant 6 k^{2}$.

It remains to show $\varphi(G)<\varphi(G \backslash T)$ in Cases $\mathbf{0}-\mathbf{4}$. This is actually easy in Case 0.
Case 0. Recall that $\varphi(G)=e(G)-g_{k}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)>0$. Since $n_{1}>n_{2}+n_{3}$,

$$
g_{k}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=n_{1}\left(n_{2}+n_{3}+n_{4}\right)+(k-1)\left(n_{2}+n_{3}\right) .
$$

First assume that some vertex $v \in V_{1}$ satisfies $d(v)<n_{2}+n_{3}+n_{4}$. Let $T=\{v\}$. Since $n_{1}-1 \geqslant n_{2}+n_{3}$,

$$
\begin{aligned}
g_{k}\left(n_{1}-1, n_{2}, n_{3}, n_{4}\right) & =\left(n_{1}-1\right)\left(n_{2}+n_{3}+n_{4}\right)+(k-1)\left(n_{2}+n_{3}\right) \\
& =g_{k}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)-\left(n_{2}+n_{3}+n_{4}\right) .
\end{aligned}
$$

It follows that

$$
\varphi(G \backslash\{v\})=e(G)-d(v)-g_{k}\left(n_{1}-1, n_{2}, n_{3}, n_{4}\right)>e(G)-g_{k}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=\varphi(G)
$$

as desired. Otherwise, $G\left[V_{1}, V_{2} \cup V_{3} \cup V_{4}\right]$ must be complete. Since G is $k K_{3}$-free, it follows that $G\left[V_{2} \cup V_{3} \cup V_{4}\right]$ contains no matching of size k. The result of [5] or a simple induction on k^{1} yields that $e\left(G\left[V_{2} \cup V_{3} \cup V_{4}\right]\right) \leqslant(k-1)\left(n_{2}+n_{3}\right)$. This shows that $e(G) \leqslant n_{1}\left(n_{2}+n_{3}+n_{4}\right)+(k-1)\left(n_{2}+n_{3}\right)$, namely, $\varphi(G)=0$, a contradiction.

In the rest of the proof we assume $n_{1} \leqslant n_{2}+n_{3}$ and will resolve Cases 1-4.
One difficulty in these cases is that, after we delete a set $T \subseteq V(G)$, the sizes of the four parts of $G \backslash T$ may not follow the order in G. For instance, suppose $n_{1} \leqslant n_{2}+n_{3}$ and $T=\{v\} \subseteq V_{1}$. If $n_{1}>n_{2}$, then the order of the part sizes of $G \backslash T$ is $n_{1}-1 \geqslant n_{2} \geqslant n_{3} \geqslant n_{4}$, the same as in G. However, when $n_{1}=n_{2}>n_{3} \geqslant n_{4}$, the order of the part sizes of $G \backslash T$ is $n_{2} \geqslant n_{1}-1 \geqslant n_{3} \geqslant n_{4}$, and the degree estimates we obtain are quite different. Another complication comes from the fact that there are two possible extremal graphs. Even under the assumption that $n_{1} \leqslant n_{2}+n_{3}$, we still have to consider the possibility of $n_{1}^{\prime}>n_{2}^{\prime}+n_{3}^{\prime}$ in $G \backslash T$, where $n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}$ are the part sizes of $G \backslash T$.

[^1]Although a case analysis is inevitable, we study the structure of G in Section 2.1 and use it to simplify the presentation of the proofs of Cases $\mathbf{1 - 4}$ in Section 2.2.
2.1. Preparation. We first give several preliminary results. An edge of G is called rich if it is contained in at least k triangles whose third vertices are located in the same part of $V(G)$. We show that every triangle in G must contain a rich edge and G contains at most $6(k-1)^{2}$ rich edges. Let Z be the set of vertices incident to at least one rich edge. Thus, not only is $G \backslash Z$ triangle-free, but also every edge in $G \backslash Z$ is not contained in any triangle of G because such a triangle would not contain any rich edge.

We shall use the following simple fact.
Fact 2.2. Let G be a 4-partite graph with parts V_{1}, \ldots, V_{4} and suppose $x \in V_{1}$ and $y \in V_{2}$. Let $n_{i}:=\left|V_{i}\right|$ for $i \in[4]$. Then x and y have at least $d(x)+d(y)-\sum_{i \in[4]} n_{i}$ common neighbors in G. In particular, if x and y have no common neighbor, then $d(x)+d(y)=\sum_{i \in[4]} n_{i}$ implies that $x y \in E(G)$, $V_{2} \subseteq N(x)$ and $V_{1} \subseteq N(y)$. Moreover, if $d(x)+d(y) \geqslant \sum_{i \in[4]} n_{i}+2 k-1$, then $x y$ is rich.
Proof. Note that $\left|N(x) \cap\left(V_{3} \cup V_{4}\right)\right|=d(x)-\left|N(x) \cap V_{2}\right| \geqslant d(x)-n_{2}$ and $\left|N(y) \cap\left(V_{3} \cup V_{4}\right)\right|=$ $d(y)-\left|N(y) \cap V_{1}\right| \geqslant d(y)-n_{1}$. Let m denote the number of common neighbors of x and y. Then $m \geqslant\left|N(x) \cap\left(V_{3} \cup V_{4}\right)\right|+\left|N(y) \cap\left(V_{3} \cup V_{4}\right)\right|-n_{3}-n_{4} \geqslant d(x)+d(y)-\sum_{i \in[4]} n_{i}$. So the first part of the fact follows. In particular, if $m=0$, then $d(x)+d(y) \leqslant \sum_{i \in[4]} n_{i}$. Moreover, if the equality holds, then the inequalities in previous calculations must be equalities. In particular, $V_{2} \subseteq N(x)$ and $V_{1} \subseteq N(y)$, which also imply that $x y \in E(G)$.

For the "moreover" part, note that $d(x)+d(y) \geqslant \sum_{i \in[4]} n_{i}+2 k-1$ implies that x and y have at least $2 k-1$ common neighbors and thus at least k common neighbors in one part. Therefore $x y$ is rich.

Recall that we have assumed that $\varphi(G)>0$ and $n_{1} \leqslant n_{2}+n_{3}$. Thus,

$$
\begin{equation*}
e(G)>g_{k}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=\left(n_{1}+n_{4}\right)\left(n_{2}+n_{3}\right)+(k-1) n_{1} . \tag{2.2}
\end{equation*}
$$

Let R be the subgraph of G induced by the rich edges of G, and let $Z=V(R)$ be the set of the vertices of G that are incident to at least one rich edge.
Claim 2.3. Suppose (*), (2.2), and G is $k K_{3}$-free. Then the following assertions hold:
(i) every vertex is contained in at most $k-1$ edges of R whose other ends are located in the same part of G; in particular, the maximum degree of R is at most $3 k-3$;
(ii) $e(R) \leqslant 6(k-1)^{2}$ and $|Z| \leqslant 6(k-1)^{2}$;
(iii) every triangle in G contains an edge in R.

Proof. We first show $(i) \Rightarrow(i i)$. Note that if R has a matching of size k, then we can greedily build k vertex-disjoint triangles by extending each rich edge in the matching. This contradicts the assumption that G is $k K_{3}$-free. Therefore, the largest matching in R is of size at most $k-1$ and consequently, R has a vertex cover of size at most $2(k-1)$. If the maximum degree of R is at most $3 k-3$, then $e(R) \leqslant 2(k-1)(3 k-4)+k-1<6(k-1)^{2}$ and $|Z| \leqslant 2(k-1)(3 k-4)+2(k-1)=6(k-1)^{2}$, confirming (i i).

To see (i), we assume that some vertex v is incident to k rich edges whose other ends are in the same part of G. If there is a copy S of $(k-1) K_{3}$ in $G \backslash\{v\}$, then we can pick a rich edge in $G \backslash S$ that contains v and then extend this rich edge to a triangle that does not intersect S. This gives a $k K_{3}$ in G, a contradiction. Thus, we infer that $G \backslash\{v\}$ is $(k-1) K_{3}$-free.

Let $n_{1}^{\prime} \geqslant n_{2}^{\prime} \geqslant n_{3}^{\prime} \geqslant n_{4}^{\prime}$ be the sizes of four parts of $G \backslash\{v\}$. By (*), we have $e(G \backslash\{v\}) \leqslant$ $g_{k-1}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right)$. To estimate $g_{k-1}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right)$, we first observe that there exists $i_{0} \in[4]$ such
that $n_{i}^{\prime}=n_{i}$ for all $i \neq i_{0}$ and $n_{i_{0}}=n_{i_{0}}-1$; and furthermore, $n_{i}^{\prime}=\left|V_{i} \backslash\{v\}\right|$ for $i \in$ [4] after relabeling $V_{1}, V_{2}, V_{3}, V_{4}$ if necessary (but maintaining $n_{i}=\left|V_{i}\right|$). This is obvious when $v \in V_{i_{0}}$ and $n_{i_{0}}>n_{i_{0}+1}$. Otherwise, for example, assume that $v \in V_{1}$ and $n_{1}=n_{2}>n_{3}$ (other cases are similar). Then $n_{1}^{\prime}=n_{2}=n_{1}$ and $n_{2}^{\prime}=n_{1}-1=n_{2}-1$. After relabeling V_{1} and V_{2}, we have $v \in V_{2}$, and $n_{i}^{\prime}=\left|V_{i} \backslash\{v\}\right|$ for $i \in[4]$.

By the definition of g, we consider two cases. When $n_{1}^{\prime} \leqslant n_{2}^{\prime}+n_{3}^{\prime}$, we have

$$
\begin{align*}
g_{k-1}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right) & =\left(n_{1}^{\prime}+n_{4}^{\prime}\right)\left(n_{2}^{\prime}+n_{3}^{\prime}\right)+(k-2) n_{1}^{\prime} \\
& \leqslant \begin{cases}\left(n_{1}+n_{4}-1\right)\left(n_{2}+n_{3}\right)+(k-2) n_{1} & \text { if } v \in V_{1} \cup V_{4}, \\
\left(n_{1}+n_{4}\right)\left(n_{2}+n_{3}-1\right)+(k-2) n_{1}, & \text { if } v \in V_{2} \cup V_{3} .\end{cases} \tag{2.3}
\end{align*}
$$

Together with (2.2) and (*), this implies that

$$
\begin{aligned}
d_{G}(v) & =e(G)-e(G \backslash\{v\})>g_{k}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)-g_{k-1}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right) \\
& \geqslant \begin{cases}n_{1}+n_{2}+n_{3} & \text { if } v \in V_{1} \cup V_{4}, \\
2 n_{1}+n_{4}, & \text { if } v \in V_{2} \cup V_{3},\end{cases}
\end{aligned}
$$

which is impossible. When $n_{1}^{\prime}>n_{2}^{\prime}+n_{3}^{\prime}$, it must be the case when $n_{1}=n_{2}+n_{3}$ and $n_{i_{0}}^{\prime}=n_{i_{0}}-1$ for $i_{0} \in\{2,3\}$. Thus

$$
\begin{aligned}
g_{k-1}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right) & =n_{1}^{\prime}\left(n_{2}^{\prime}+n_{3}^{\prime}+n_{4}^{\prime}\right)+(k-2)\left(n_{2}^{\prime}+n_{3}^{\prime}\right) \\
& =\left(n_{2}+n_{3}\right)\left(n_{1}+n_{4}-1\right)+(k-2)\left(n_{1}-1\right) .
\end{aligned}
$$

Together with (2.2) and ($*$), this implies that $d_{G}(v)>n_{1}+n_{2}+n_{3}$, which is impossible for any $v \in V(G)$.

To see (iii), let S be a triangle in G and consider $G \backslash S$. Since G is $k K_{3}$-free, $G \backslash S$ is $(k-1) K_{3}$ free. By $(*)$, we have $e(G \backslash S) \leqslant g_{k-1}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right)$ where $n_{1}^{\prime} \geqslant n_{2}^{\prime} \geqslant n_{3}^{\prime} \geqslant n_{4}^{\prime}$ are the sizes of parts of $G \backslash S$. We observe that there exists $i_{0} \in[4]$ such that $n_{i}^{\prime}=n_{i}-1$ for $i \neq i_{0}$ and $n_{i_{0}}^{\prime}=n_{i_{0}}$; furthermore, $n_{i}^{\prime}=\left|V_{i} \backslash S\right|$ after relabeling $V_{1}, V_{2}, V_{3}, V_{4}$ if necessary (while maintaining $n_{i}=\left|V_{i}\right|$). This is obvious when $S \subset \bigcup_{i \neq i_{0}} V_{i}$ and either $i_{0}=1$ or $n_{i_{0}-1}>n_{i_{0}}$. Otherwise, for example, assume that $S \subset V_{1} \cup V_{2} \cup V_{3}$ and $n_{2}>n_{3}=n_{4}$ (other cases are similar). We have $n_{1}^{\prime}=n_{1}-1, n_{2}^{\prime}=n_{2}-1$, $n_{3}^{\prime}=n_{4}=n_{3}$ and $n_{4}^{\prime}=n_{3}-1=n_{4}-1$. After swapping V_{3} and V_{4}, we have $S \subset V_{1} \cup V_{2} \cup V_{4}$.

If $n_{1}^{\prime} \leqslant n_{2}^{\prime}+n_{3}^{\prime}$. then $g_{k-1}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right)=\left(n_{1}^{\prime}+n_{4}^{\prime}\right)\left(n_{2}^{\prime}+n_{3}^{\prime}\right)+(k-2) n_{1}^{\prime}$. By our observation on the values of $n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}$, it follows that

$$
g_{k-1}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right) \leqslant \max _{j=1,2}\left\{\left(n_{1}+n_{4}-j\right)\left(n_{2}+n_{3}-(3-j)\right)\right\}+(k-2) n_{1} .
$$

If $n_{1}^{\prime}>n_{2}^{\prime}+n_{3}^{\prime}$, then $g_{k-1}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right)=n_{1}^{\prime}\left(n_{2}^{\prime}+n_{3}^{\prime}+n_{4}^{\prime}\right)+(k-2)\left(n_{2}^{\prime}+n_{3}^{\prime}\right)$. In this case, we must have $n_{1}=n_{2}+n_{3}-t$ for $t=0,1, n_{2}^{\prime}=n_{2}-1$, and $n_{3}^{\prime}=n_{3}-1$. Thus $n_{i}^{\prime}=n_{i}-1$ either for $i \in[3]$ or for $i \in\{2,3,4\}$, and consequently

$$
\begin{gathered}
g_{k-1}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right) \leqslant \max \left\{\left(n_{1}-1\right)\left(n_{2}+n_{3}+n_{4}-2\right)+(k-2)\left(n_{2}+n_{3}-2\right),\right. \\
n_{1}\left(n_{2}+n_{3}+n_{4}-3\right)+(k-2)\left(n_{2}+n_{3}-2\right) .
\end{gathered}
$$

Since $n_{1}=n_{2}+n_{3}-t$ for $t=0,1$, it follows that

$$
g_{k-1}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right) \leqslant \max _{j=1,2,3}\left\{\left(n_{2}+n_{3}-(3-j)\right)\left(n_{1}+n_{4}-j\right)\right\}+(k-2)\left(n_{1}-1\right) .
$$

Putting all cases together with $e(G \backslash S) \leqslant g_{k-1}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right)$, we conclude that

$$
\begin{equation*}
e(G \backslash S) \leqslant \max _{j=1,2,3}\left\{\left(n_{1}+n_{4}-j\right)\left(n_{2}+n_{3}-(3-j)\right)\right\}+(k-2) n_{1} . \tag{2.4}
\end{equation*}
$$

Recall that $e(S ; G):=e(G)-e(G \backslash S)$. We next claim that $e(S ; G) \geqslant \frac{3}{2} \sum_{i \in[4]} n_{i}+3 k$. Indeed, if the maximum in (2.4) is achieved by $j=1,2$, then, together with (2.2), it gives

$$
e(S ; G)>\sum_{i \in[4]} n_{i}+\min \left\{n_{1}+n_{4}, n_{2}+n_{3}\right\}+n_{1}-2 \geqslant \frac{3}{2} \sum_{i \in[4]} n_{i}+n_{4}-2 \geqslant \frac{3}{2} \sum_{i \in[4]} n_{i}+3 k,
$$

where we used $n_{4} \geqslant 6 k^{2}$ in the last inequality. Otherwise, the maximum in (2.4) is achieved by $j=3$, that is, $e(G \backslash S) \leqslant\left(n_{1}+n_{4}-3\right)\left(n_{2}+n_{3}\right)+(k-2) n_{1}$. By (2.2), we get

$$
\begin{aligned}
e(S ; G) & >\left(n_{1}+n_{4}\right)\left(n_{2}+n_{3}\right)+(k-1) n_{1}-\left(n_{1}+n_{4}-3\right)\left(n_{2}+n_{3}\right)-(k-2) n_{1} \\
& =n_{1}+3 n_{2}+3 n_{3} \geqslant \frac{3}{2} \sum_{i \in[4]} n_{i}+\frac{n_{4}}{2} \geqslant \frac{3}{2} \sum_{i \in[4]} n_{i}+3 k,
\end{aligned}
$$

where we used the assumption $n_{2}+n_{3} \geqslant n_{1}$ and $n_{2}, n_{3} \geqslant n_{4}$.
Let $S=x y z$ and note that $d(x)+d(y)+d(z)=e(S ; G)+3$. By averaging, without loss of generality, we may assume that

$$
d(x)+d(y) \geqslant \frac{2}{3}\left(\frac{3}{2} \sum_{i \in[4]} n_{i}+3 k\right)=\sum_{i \in[4]} n_{i}+2 k .
$$

By the moreover part of Fact 2.2, $x y$ is rich and we are done.
For two disjoint sets $A, B \subseteq V(G)$, let $d(A, B)=e(A, B) /(|A||B|)$ be the density of the bipartite graph with parts A and B. A pair $\left(V_{i}, V_{j}\right)$ is called full if $d\left(V_{i} \backslash Z, V_{j}\right)=d\left(V_{j} \backslash Z, V_{i}\right)=1 ;\left(V_{i}, V_{j}\right)$ is called empty if $e\left(V_{i} \backslash Z, V_{j}\right)=e\left(V_{i}, V_{j} \backslash Z\right)=0$. We have the following observation.

Observation 2.4. For distinct $i, j, t \in[4]$, if $d\left(V_{i} \backslash Z, V_{j}\right)=d\left(V_{i} \backslash Z, V_{t}\right)=1$, then $\left(V_{j}, V_{t}\right)$ must be empty because any edge in $\left(V_{j}, V_{t}\right)$ but not in $\left(V_{j} \cap Z, V_{t} \cap Z\right)$ will create a triangle with at most one vertex in Z, contradicting (iii). In particular, if both $\left(V_{i}, V_{j}\right)$ and $\left(V_{i}, V_{t}\right)$ are full, then $\left(V_{j}, V_{t}\right)$ is empty.
Claim 2.5. Fix $i \neq j \in[4]$. If $d(x)+d(y) \geqslant \sum_{i \in[4]} n_{i}$ for every edge $x y \in V_{i} \times V_{j}$, then either

- $e\left(V_{i} \backslash Z, V_{j} \backslash Z\right)=0$ (this is weaker than $\left(V_{i}, V_{j}\right)$ being empty) or
- $d\left(V_{i} \backslash Z, V_{j}\right)=d\left(V_{j} \backslash Z, V_{i}\right)=1$, and $d(x)+d(y)=\sum_{i \in[4]} n_{i}$.

Moreover, if $d(x)+d(y)>\sum_{i \in[4]} n_{i}$ for every edge $x y \in V_{i} \times V_{j}$, then $\left(V_{i}, V_{j}\right)$ is empty.
Proof. Assume that $\{i, j, t, \ell\}=[4]$. Suppose there is an edge $x y \in\left(V_{i} \backslash Z\right) \times\left(V_{j} \backslash Z\right)$. Note that if x and y have a common neighbor z, then as $x, y \notin Z$, none of the edges of $x y z$ is rich, contradicting (iii). Thus, x and y have no common neighbor. By Fact $2.2, d(x)+d(y) \leqslant \sum_{i \in[4]} n_{i}$. If $d(x)+d(y) \geqslant$ $\sum_{i \in[4]} n_{i}$, then Fact 2.2 implies that $V_{j} \subseteq N(x)$ and $V_{i} \subseteq N(y)$. In particular, $x y^{\prime} \in E(G)$ for every $y^{\prime} \in V_{j} \backslash Z$. Applying the same argument to the edge $x y^{\prime}$, we obtain that $V_{i} \subseteq N\left(y^{\prime}\right)$. Similarly, we can derive that $V_{j} \subseteq N\left(x^{\prime}\right)$ for every $x^{\prime} \in V_{i} \backslash Z$. Thus, $d\left(V_{i} \backslash Z, V_{j}\right)=d\left(V_{j} \backslash Z, V_{i}\right)=1$.

Now assume $d(x)+d(y)>\sum_{i \in[4]} n_{i}$ for every edge $x y \in V_{i} \times V_{j}$. If $e\left(V_{i} \backslash Z, V_{j} \backslash Z\right) \neq 0$, then the arguments in the previous paragraph provide a contradiction. Suppose there is an edge $x y \in$ $\left(V_{i} \cap Z\right) \times\left(V_{j} \backslash Z\right)$. As $d(x)+d(y)>\sum_{i \in[4]} n_{i}, x$ and y have some common neighbors in $V_{t} \cup V_{\ell}$. But since $y \notin Z$, by (iii), their common neighbors must be in $\left(V_{t} \cup V_{\ell}\right) \cap Z$. Since $e\left(V_{i} \backslash Z, V_{j} \backslash Z\right)=0$, we know that $N(y) \cap V_{i} \subseteq V_{i} \cap Z$. Altogether, we obtain that $d(x)+d(y) \leqslant n_{j}+n_{t}+n_{\ell}+|Z|<\sum_{i \in[4]} n_{i}$, a contradiction. Analogous arguments show that there is no edge in $\left(V_{i} \backslash Z\right) \times\left(V_{j} \cap Z\right)$. Thus, $e\left(V_{i} \backslash Z, V_{j}\right)=e\left(V_{i}, V_{j} \backslash Z\right)=0$, that is, $\left(V_{i}, V_{j}\right)$ is empty.

Consider a set $T \subseteq V(G)$ defined in Cases 1-4 and let $n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}$ denote the sizes of the parts of $G \backslash T$. Then $\varphi(G)<\varphi(G \backslash T)$ is equivalent to

$$
e(G)-g_{k}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)<e(G \backslash T)-g_{k}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right),
$$

or $e(T ; G)<g_{k}\left(n_{1}, n_{2}, n_{3}, n_{4}\right)-g_{k}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right)$. We will prove by contradiction, assuming that $\varphi(G) \geqslant \varphi(G \backslash T)$, equivalently,

$$
\begin{equation*}
e(T ; G) \geqslant\left(n_{1}+n_{4}\right)\left(n_{2}+n_{3}\right)+(k-1) n_{1}-g_{k}\left(n_{1}^{\prime}, n_{2}^{\prime}, n_{3}^{\prime}, n_{4}^{\prime}\right) \tag{2.5}
\end{equation*}
$$

for every $T \subseteq V(G)$ defined in Cases 1-4.
The case when $T=\{v\} \subseteq V_{1}$ occurs in all four cases so we consider it before the cases. Since $n_{1} \leqslant n_{2}+n_{3}$, we have three possibilities:

- if $n_{1}>n_{2}$, then $g_{k}\left(n_{1}-1, n_{2}, n_{3}, n_{4}\right)=\left(n_{1}-1+n_{4}\right)\left(n_{2}+n_{3}\right)+(k-1)\left(n_{1}-1\right)$;
- if $n_{1}=n_{2}>n_{4}$, then $g_{k}\left(n_{1}-1, n_{2}, n_{3}, n_{4}\right)=\left(n_{1}+n_{4}\right)\left(n_{2}+n_{3}-1\right)+(k-1) n_{1}$;
- if $n_{1}=n_{4}$, then $g_{k}\left(n_{1}-1, n_{2}, n_{3}, n_{4}\right)=\left(n_{1}+n_{4}-1\right)\left(n_{2}+n_{3}\right)+(k-1) n_{1}$;

Thus (2.5) implies that for every $v \in V_{1}$,

$$
d(v) \geqslant \begin{cases}n_{2}+n_{3}+k-1, & \text { if } n_{1}>n_{2}, \tag{2.6}\\ n_{1}+n_{4}, & \text { if } n_{1}=n_{2}\end{cases}
$$

2.2. Proof of Cases 1-4. After these preparations, we return to the proof of Cases 1-4. Recall that $n_{1} \leqslant n_{2}+n_{3}$ in all these cases. Recall also that $n_{i} \geqslant 6 k^{2}$ for $i \in[4]$, so we can always assume that $V_{i} \backslash Z \neq \varnothing$. Moreover, by (2.1), we have $M_{0}(k) \geqslant N_{0}(k-1)+3$, and thus we can apply the induction hypothesis $(*)$ on any $(k-1) K_{3}$-free subgraph $G \backslash S$, whenever $|S| \leqslant 3$ (and thus $\left.v_{4}(G \backslash S) \geqslant 6 k^{2}-3 \geqslant 6(k-1)^{2}\right)$.
Case 1. $n_{1}>n_{3}$ and $n_{2}>n_{4}$.
In this case (2.5) holds for every crossing set $T=x y \in V_{1} \times V_{2}$. Since the part sizes of $G \backslash\{x, y\}$ are $n_{1}-1 \geqslant\left\{n_{2}-1, n_{3}\right\} \geqslant n_{4}$. By (2.5), we have

$$
\begin{aligned}
e(x y ; G) & \geqslant\left(n_{1}+n_{4}\right)\left(n_{2}+n_{3}\right)+(k-1) n_{1}-\left(\left(n_{1}+n_{4}-1\right)\left(n_{2}+n_{3}-1\right)+(k-1)\left(n_{1}-1\right)\right) \\
& =\sum_{i \in[4]} n_{i}+k-2 .
\end{aligned}
$$

If $x y \in E(G)$, then $d(x)+d(y)=e(x y ; G)+1 \geqslant \sum_{i \in[4]} n_{i}+k-1>\sum_{i \in[4]} n_{i}$. By Claim 2.5, $\left(V_{1}, V_{2}\right)$ is empty. For every $x \in V_{1} \backslash Z$, we thus have $d(x) \leqslant n_{3}+n_{4}<\min \left\{n_{2}+n_{3}, n_{1}+n_{4}\right\}$, contradicting (2.6).
Case 2. $n_{1}=n_{2}=n_{3} \geqslant n_{4}>6 k^{2}$.
In this case (2.5) holds for any one-element set $T \subset V(G)$. Write $n_{1}=n_{2}=n_{3}=n$. For any $x \in V_{1} \cup V_{2} \cup V_{3}$, by (2.5), we have

$$
d(x)=e(\{x\} ; G) \geqslant 2 n\left(n+n_{4}\right)+(k-1) n-g_{k}\left(n, n, n-1, n_{4}\right),
$$

where $g_{k}\left(n, n, n-1, n_{4}\right)=(2 n-1)\left(n+n_{4}\right)+(k-1) n$ if $n>n_{4}$ and $g_{k}\left(n, n, n-1, n_{4}\right)=2 n(n+$ $\left.n_{4}-1\right)+(k-1) n$ if $n=n_{4}$. Thus, we have $d(x) \geqslant \min \left\{2 n, n+n_{4}\right\}=n+n_{4}$. Similarly, for $y \in V_{4}$, by (2.5), we have

$$
\begin{equation*}
d(y)=e(\{y\} ; G) \geqslant 2 n\left(n+n_{4}\right)+(k-1) n-\left(2 n\left(n+n_{4}-1\right)+(k-1) n\right)=2 n . \tag{2.7}
\end{equation*}
$$

These together imply $d(x)+d(y) \geqslant \sum n_{i}$ for every edge $x y \in\left(V_{1} \cup V_{2} \cup V_{3}\right) \times V_{4}$. For $i=1,2,3$, Claim 2.5 implies that either $\left(V_{i}, V_{4}\right)$ is full or $e\left(V_{i} \backslash Z, V_{4} \backslash Z\right)=0$. If $e\left(V_{i} \backslash Z, V_{4} \backslash Z\right)=0$ holds for at least two values of $i \in\{1,2,3\}$, then for every $y \in V_{4} \backslash Z$, we have $d(y) \leqslant n+|Z|<2 n$ (as $\left.n \geqslant M_{0}(k) / 4>6 k^{2}\right)$, contradicting (2.7).

This implies that at least two of $\left(V_{1}, V_{4}\right),\left(V_{2}, V_{4}\right)$, and $\left(V_{3}, V_{4}\right)$ must be full. Without loss of generality, assume $\left(V_{1}, V_{4}\right)$ and $\left(V_{2}, V_{4}\right)$ are full. By Observation $2.4,\left(V_{1}, V_{2}\right)$ is empty. Next, we claim that $\left(V_{3}, V_{4}\right)$ is empty. Indeed, let $x \in V_{2} \backslash Z$ and recall that $d(x) \geqslant n+n_{4}$. Since $\left(V_{1}, V_{2}\right)$ is empty, we have $d(x) \leqslant n+n_{4}$. Thus, $d(x)=n+n_{4}$ and in particular $V_{3} \subseteq N(x)$. Since this holds for every $x \in V_{2} \backslash Z$, it follows that $d\left(V_{2} \backslash Z, V_{3}\right)=1$. Thus (V_{3}, V_{4}) is empty by Observation 2.4. Together with (ii), we infer

$$
e(G)=e(G[Z])+e(V \backslash Z ; G)<\binom{|Z|}{2}+\left(n_{1}+n_{2}\right)\left(n_{3}+n_{4}\right) \leqslant\left(n_{1}+n_{2}\right)\left(n_{3}+n_{4}\right)+(k-1) n_{1},
$$

contradicting (2.2), The previous inequality follows from $\binom{|Z|}{2} \leqslant 18(k-1)^{4} \leqslant(k-1) n_{1}$, which follows from $n_{1} \geqslant M_{0}(k) / 4$ and (2.1).
Case 3. $n_{1}=n_{2}=n_{3}>n_{4}=6 k^{2}$.
Write $n_{1}=n_{2}=n_{3}=n$. We assume that

$$
\begin{equation*}
n_{1} \geqslant 30 k^{2} \tag{2.8}
\end{equation*}
$$

as otherwise $\sum n_{i} \leqslant 3 \cdot 30 k^{2}+6 k^{2} \leqslant M_{0}(k)$ by (2.1), contradicting the assumption $|G|>M_{0}(k)$. By (2.6) and the similarity of V_{1}, V_{2}, and V_{3}, we have $d(x) \geqslant n+n_{4}$ for every $x \in V_{1} \cup V_{2} \cup V_{3}$. We claim that for $y \in V_{4}$,

$$
\begin{equation*}
d(y) \leqslant 2 n+2 k-1 . \tag{2.9}
\end{equation*}
$$

Otherwise, pick k neighbors x_{1}, \ldots, x_{k} of y from the same part of G. For each i, since $d\left(x_{i}\right) \geqslant n+n_{4}$, we have $d\left(x_{i}\right)+d(y) \geqslant \sum n_{i}+2 k-1$, yielding that $x_{i} y$ is rich by Fact 2.2. However, this contradicts (i).
Claim. The graph $G\left[V_{1} \cup V_{2} \cup V_{3}\right]$ is K_{3}-free.
Proof. Suppose instead, there exists a triangle $x y z \in V_{1} \times V_{2} \times V_{3}$. Without loss of generality, assume that $d(x) \geqslant d(y) \geqslant d(z)$. We first claim that

$$
\begin{equation*}
d(x)+d(y)+d(z) \geqslant 5 n+2 n_{4}+k . \tag{2.10}
\end{equation*}
$$

Otherwise $d(x)+d(y)+d(z) \leqslant 5 n+2 n_{4}+k-1$ and $e(x y z ; G)=d(x)+d(y)+d(z)-3 \leqslant 5 n+2 n_{4}+k-4$. Then, by (2.2),

$$
\begin{aligned}
e(G \backslash\{x, y, z\}) & =e(G)-e(x y z ; G)>g_{k}\left(n, n, n, n_{4}\right)-\left(5 n+2 n_{4}+k-4\right) \\
& =2 n\left(n+n_{4}\right)+(k-1) n-\left(5 n+2 n_{4}+k-4\right) \\
& =(2 n-2)\left(n-1+n_{4}\right)+(k-2)(n-1) \\
& =g_{k-1}\left(n-1, n-1, n-1, n_{4}\right) .
\end{aligned}
$$

By induction hypothesis ($*$), we obtain a copy of $(k-1) K_{3}$ in $G \backslash\{x, y, z\}$. Together with the triangle $x y z$, this contradicts the assumption G is $k K_{3}$-free.

We next claim that at least two of $x y, y z, x z$ are rich and thus all $x, y, z \in Z$. Indeed, if $d(x)<$ $2 n+n_{4}-k$, then by (2.10),

$$
d(y)+d(z)>5 n+2 n_{4}+k-\left(2 n+n_{4}-k\right)=3 n+n_{4}+2 k>\sum n_{i}+2 k-1 .
$$

By Fact 2.2, $y z$ is rich. Since $d(x)$ is the largest, this argument implies that all three edges of $x y z$ are rich, as desired. Otherwise, $d(x) \geqslant 2 n+n_{4}-k$ and recall that $d(y) \geqslant d(z) \geqslant n+n_{4}$. Thus

$$
d(x)+d(y) \geqslant d(x)+d(z) \geqslant 3 n+2 n_{4}-k \geqslant \sum n_{i}+2 k-1
$$

because $n_{4}=6 k^{2} \geqslant 3 k-1$. By Fact 2.2, both $x y$ and $x z$ are rich, as desired.

The claim in the previous paragraph applies to all triangles in $V_{1} \cup V_{2} \cup V_{3}$. Therefore, all the common neighbors of x and y in $V_{1} \cup V_{2} \cup V_{3}$ are in Z and consequently, $|N(x) \cap N(y)| \leqslant|Z|+\left|V_{4}\right| \leqslant$ $6 k^{2}+n_{4}$, and consequently, $d(x)+d(y) \leqslant \sum n_{i}+6 k^{2}+n_{4}=3 n+2 n_{4}+6 k^{2}$. On the other hand, (2.10) and the assumption $d(x) \geqslant d(y) \geqslant d(z)$ imply that

$$
\begin{equation*}
d(x)+d(y) \geqslant \frac{2}{3}\left(5 n+2 n_{4}+k\right)=\frac{10}{3} n+\frac{4}{3} n_{4}+\frac{2}{3} k>3 n+2 n_{4}+6 k^{2} \tag{2.11}
\end{equation*}
$$

because $n \geqslant 30 k^{2}=2 n_{4}+18 k^{2}$ by (2.8). This gives a contradiction.
By the claim, $G\left[V_{1} \cup V_{2} \cup V_{3}\right]$ is K_{3}-free, and thus has at most $2 n^{2}$ edges by Theorem 1.1. Together with (2.9) and (2.8), we obtain that

$$
e(G) \leqslant 2 n^{2}+n_{4} \cdot(2 n+2 k-1)=2 n\left(n+n_{4}\right)+(2 k-1) n_{4}<2 n\left(n+n_{4}\right)+(k-1) n,
$$

contradicting (2.2).
Case 4. $n_{1}>n_{2}=n_{3}=n_{4}$.
Assume $n_{2}=n_{3}=n_{4}=n$ and recall that $n_{1} \leqslant 2 n$. We first claim that

$$
\begin{equation*}
d(x) \leqslant 3 n \text { for all } x \in V_{1}, \text { and } d(y) \leqslant n_{1}+n+k-1 \text { for all } y \in V_{2} \cup V_{3} \cup V_{4} . \tag{2.12}
\end{equation*}
$$

Indeed, the bound $d(x) \leqslant 3 n$ for $x \in V_{1}$ is trivial. Suppose to the contrary, that there is a vertex $y \in V_{2} \cup V_{3} \cup V_{4}$ with $d(y) \geqslant n_{1}+n+k$. It follows that $\left|N(y) \cap V_{1}\right| \geqslant d(y)-2 n \geqslant k$. Assume that $x_{1}, \ldots, x_{k} \in N(y) \cap V_{1}$. By (2.6), we have $d\left(x_{j}\right) \geqslant 2 n+k-1$. Thus, we infer that $d\left(x_{j}\right)+d(y) \geqslant$ $n_{1}+3 n+2 k-1$. By Fact 2.2, we have $x_{1} y, \ldots, x_{k} y \in E(R)$. However, this contradicts (i).

We next claim that there is no rich edge in $V_{1} \times\left(V_{2} \cup V_{3} \cup V_{4}\right)$. Suppose to the contrary, that $x y \in V_{1} \times\left(V_{2} \cup V_{3} \cup V_{4}\right)$ is a rich edge. By (2.12), we have $e(x y ; G)=d(x)+d(y)-1 \leqslant n_{1}+4 n+k-2$. By (2.2), it follows that

$$
\begin{aligned}
e(G \backslash\{x, y\}) & =e(G)-e(x y ; G)>2 n\left(n_{1}+n\right)+(k-1) n_{1}-\left(n_{1}+4 n+k-2\right) \\
& =2 n\left(n_{1}+n-2\right)+(k-2)\left(n_{1}-1\right) \\
& =g_{k-1}\left(n_{1}-1, n, n, n-1\right) .
\end{aligned}
$$

By induction hypothesis (*), $G \backslash\{x, y\}$ contains a copy S of $(k-1) K_{3}$. Since $x y$ is rich, we can find a triangle in $G \backslash S$ containing $x y$, contradicting the assumption that G is $k K_{3}$-free.

Now we show that there is no triangle intersecting V_{1}. Suppose to the contrary, there is a triangle $x y z$ with $x \in V_{1}$. If $d(x)+d(z) \geqslant n_{1}+3 n+2 k-1$, then, by Fact $2.2, x y$ is rich, contradicting our earlier claim. We thus assume that $d(x)+d(z)<n_{1}+3 n+2 k-1$. Together with (2.12), it gives that $d(x)+d(y)+d(z)<2 n_{1}+4 n+3 k-2$, and $e(x y z ; G)=d(x)+d(y)+d(z)-3<2 n_{1}+4 n+3 k-5$. By (2.2), it follows that

$$
\begin{aligned}
e(G \backslash\{x, y, z\}) & =e(G)-e(x y z ; G)>2 n\left(n_{1}+n\right)+(k-1) n_{1}-\left(2 n_{1}+4 n+3 k-5\right) \\
& =\left(n_{1}+n-2\right)(2 n-1)+(k-2)\left(n_{1}-1\right)+n-2 k+1 \\
& =g_{k-1}\left(n_{1}-1, n, n-1, n-1\right)+n-2 k+1 .
\end{aligned}
$$

By $(*), G \backslash\{x, y, z\}$ contains a copy of $(k-1) K_{3}$. Together with the triangle $x y z$, this contradicts the assumption that G is $k K_{3}$-free.

We assumed that G contains $k-1$ disjoint triangles. Let T_{1} be a triangle of G. By the claim of the previous paragraph, T_{1} must be in $V_{2} \cup V_{3} \cup V_{4}$. Moreover, by (iii), T_{1} must contain a rich edge $x y$. Below we show that

$$
\begin{equation*}
e(G \backslash\{x, y\})>g_{k-1}\left(n_{1}, n, n-1, n-1\right) . \tag{2.13}
\end{equation*}
$$

Then, by $(*), G \backslash\{x, y\}$ contains a copy S of $(k-1) K_{3}$. Since $x y$ is rich, we can find a triangle in $G \backslash S$ containing $x y$, contradicting the assumption that G is $k K_{3}$-free.

We first assume that $n_{1}=2 n$. If $d(x)+d(y)>6 n$, then x and y have a common neighbor in V_{1}, contradicting the earlier claim that there is no triangle intersecting V_{1}. We thus assume that $d(x)+d(y) \leqslant 6 n$. Thus $e(x y ; G) \leqslant 6 n-1$. By (2.2), it follows that

$$
\begin{aligned}
e(G \backslash\{x, y\}) & >g_{k}(2 n, n, n, n)-(6 n-1) \\
& =3 n \cdot 2 n+2 n(k-1)-(6 n-1) \\
& =2 n(3 n-2)+(k-2)(2 n-1)+k-1 \\
& =g_{k-1}(2 n, n, n-1, n-1)+k-1 .
\end{aligned}
$$

Thus (2.13) holds. Second, assume $n_{1}<2 n$. By (2.12), we have $e(x y ; G)=d(x)+d(y)-1 \leqslant$ $2\left(n_{1}+n+k-1\right)-1$. By (2.2), it follows that

$$
\begin{aligned}
e(G \backslash\{x, y\}) & >g_{k}\left(n_{1}, n, n, n\right)-\left(2 n_{1}+2 n+2 k-3\right) \\
& =\left(n_{1}+n\right) 2 n+(k-1) n_{1}-\left(2 n_{1}+2 n+2 k-3\right) \\
& =\left(n_{1}+n-1\right)(2 n-1)+(k-2) n_{1}+n-2 k+2 \\
& =g_{k-1}\left(n_{1}, n, n-1, n-1\right)+n-2 k+2 .
\end{aligned}
$$

Thus (2.13) holds.
The proof of Theorem 2.1 is now completed.

3. Concluding remarks

In this paper we solved Problem 1.2 for $r=4$ and $t=3$ when all n_{i} 's are large. The idea in our proof should be helpful for proving Conjecture 1.4 in general. However, to determine the maximum in (1.1), there are quite a few cases to consider even when $r=5$ and $t=3$. Indeed, suppose $n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{5}$ and $\left\{I, I^{\prime}\right\}$ is the bipartition of [5] that attained the maximum in (1.1). Assume $1 \in I$. Depending on the values of n_{1}, \ldots, n_{5}, it is possible to have

$$
I=\{1\} \text { or }\{1,2\} \text { or }\{1,3\} \text { or }\{1,4\} \text { or }\{1,5\} \text { or }\{1,4,5\} .
$$

Another open problem is to find the smallest $N_{0}(k)$ such that Theorem 1.3 holds. The $N_{0}(k)$ provided in our proof is a double exponential function of k. Indeed, by (2.1) and $N_{0}(1)=1$, we have $M_{0}(2)=96 \cdot 2^{2}=384$ and $N_{0}(2)=384^{2}$. It is easy to see that $N_{0}(k)=\left(N_{0}(k-1)+3\right)^{2}$ for $k \geqslant 3$. Thus $N_{0}(k-1)^{2} \leqslant N_{0}(k) \leqslant 2 N_{0}(k-1)^{2}$ for $k \geqslant 3$. It follows that

$$
N_{0}(2)^{2^{k-2}} \leqslant N_{0}(k) \leqslant\left(2 N_{0}(2)\right)^{2^{k-2}}
$$

It is interesting to know whether one can reduce $N_{0}(k)$ to a polynomial function (or even a linear function) of k.
Acknowledgements. We would like to thank Chunqiu Fang and Longtu Yuan for valuable feedbacks on an earlier version of the manuscript and thank Ming Chen, Jie Hu and Donglei Yang for helpful discussions. We also thank two anonymous referees for their helpful comments that improved the presentation of this paper.

References

[1] P. Bennett, S. English, and M. Talanda-Fisher, Weighted Turán problems with applications, Discrete Math. 342 (2019), no. 8, 2165-2172. MR3952133 ^1, 1
[2] B. Bollobás, P. Erdős, and E. G. Straus, Complete subgraphs of chromatic graphs and hypergraphs, Utilitas Math. 6 (1974), 343-347. MR379256 $\uparrow 1,1.1$
[3] B. Bollobás, Extremal graph theory, London Mathematical Society Monographs, vol. 11, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. MR506522 $\uparrow 1$
[4] H. Chen, X. Li, and J. Tu, Complete solution for the rainbow numbers of matchings, Discrete Math. 309 (2009), no. 10, $3370-3380$. $\uparrow 1,1$
[5] J. De Silva, K. Heysse, and M. Young, Rainbow number for matchings in r-partite graphs, preprint. $\uparrow 1,1,2$
[6] J. De Silva, K. Heysse, A. Kapilow, A. Schenfisch, and M. Young, Turán numbers of vertex-disjoint cliques in r-partite graphs, Discrete Math. 341 (2018), no. 2, 492-496. MR3724116 个1, 1.2, 1
[7] W. Mantel, Problem 28, Wiskundige Opgaven 10 (1907), 60-61. $\uparrow 1$
[8] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, Theory of Graphs (Proc. Colloq., Tihany, 1966), 1968, pp. 279-319. MR0233735 $\uparrow 1,2$
[9] P. Turán, On an extremal problem in graph theory, (Hungarian), Mat. Fiz. Lapok 48 (1941), 436-452. $\uparrow 1$
[10] A. Z. Wagner, Refuting conjectures in extremal combinatorics via linear programming, J. Combin. Theory Ser. A 169 (2020), 105130. $\uparrow 1$
[11] K. Zarankiewicz, Problem p 101, Colloq. Math. 3 (1954), 19-30. $\uparrow 1$
Department of Mathematics, University of Rhode Island, 5 Lippitt Road, Kingston, RI, 02881, USA
E-mail address: jie_han@uri.edu
Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303
E-mail address: yzhao6@gsu.edu

[^0]: Jie Han is partially supported by a Simons Collaboration Grant 630884. Yi Zhao is partially supported by an NSF grant DMS 1700622 and Simons Collaboration Grant 710094.

[^1]: ${ }^{1}$ If there is a vertex of degree at least $2 k-1$, then we can delete it and apply induction; otherwise, as the size of the maximum matching is $k-1$, there are at most $2(k-1)(2 k-1) \leqslant(k-1)\left(n_{2}+n_{3}\right)$ edges (using $k \ll n_{3} \leqslant n_{2}$).

