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TURAN NUMBER OF COMPLETE MULTIPARTITE GRAPHS IN
MULTIPARTITE GRAPHS

JIE HAN AND YI ZHAO

ABSTRACT. In this paper we study a multi-partite version of the Erdés—Stone theorem. Given
integers r < k and t > 1, let exgx(n, Kr+1(t)) be the maximum number of edges of K,i1(t)-free
k-partite graphs with n vertices in each part, where K,41(¢) is the t-blowup of K,11. An easy
consequence of the supersaturaion result gives that exy,(n, K,41(t)) = exx(n, Kr11) + o(n?). Similar
to a result of Erd6s and Simonovits for the non-partite case, we find that the error term is closely
related to the (multi-partite) Zarankiewicz problem. Using such Zarankiewicz numbers, for ¢ = 2, 3,
we determine the error term up to an additive linear term; using some natural assumptions on such
Zarankiewicz numbers, we determine the error term up to an additive constant depending on k, r
and t. We actually obtain exact results in many cases, for example, when & = 0,1 (mod r). Our
proof uses the stability method and starts by proving a stability result for K, .i-free multi-partite
graphs.

1. INTRODUCTION

Generalizing Mantel’s theorem from 1907 [I4], Turdn’s theorem from 1941 [17] started the sys-
temetic study of Extremal Graph Theory. Given a graph F, let ex(n, F') denote the largest number
of edges in a graph not containing F' as a subgraph (called F-free). Let K, denote the complete
graph on r vertices and T, (n) denote the complete r-partite graph on n vertices with |n/r| or [n/r]
in each part (known as the Turdn graph); and ¢,(n) be the size of T,.(n). Turdn’s theorem [17] states
that ex(n, Ky4+1) = tr(n) for all n = r > 1 and in addition, 7}.(n) is the unique extremal graph.

Let K, .+ denote the complete r-partite graph with parts of size ¢1,...,t, and write K, (t) =
K . with r parts. A celebrated result of Erdds and Stone [3] determines ex(n, K,,1(t)) asymptot-
ically:

n2
ex(n, Kp41(t)) = t.(n) + o(n?) = (1 - %) el + o(n?).

Erdés [4] and Simonovits [15] independently improved the error term above to O(n>~ /). Simonovits
[15] also showed that any extremal graph for K,.1(t) can be obtained from T,.(n) by adding or
removing O(n?~*) edges. Later Erdés and Simonovits [7] determined the structure of extremal
graphs for K, 1(t) for t < 3 as follows.

Theorem 1. [7] For t < 3, every extremal graph G for K.11(t) has a vertex partition Uy, ..., U,
such that

Ui, Uj] is complete for all i # j,
Uil = n/r + o(n),

| is extremal for K., and
Usl,...,G[U;] are extremal for K ;.
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The restriction ¢t < 3 in Theorem 1 comes from our knowledge on ex(n, K; ;). A well-known open
problem in Extremal Graph Theory is proving ex(n, K;;) = Q(n?>~1/*) and this is only known for
t<3.

Extremal problems whose host graphs are multipartite graphs have been studied since 1951, when
Zarankiewicz proposed the study of the largest number of edges in a bipartite graph not containing
a copy of K. Let G(ni,...,ni) denote the family of k-partite graphs with ny,...,n; vertices in
its parts and write Gx(n) = G(n,...,n) with k parts. Given a graph F, define ex(ny,...,ng; F) as
the largest number of edges in F-free graphs from G(nq,...,nx), and let exg(n, F') = ex(n,...,n; F)
(with k parts). (Trivially exg(n, F) = (g)n2 if the chromatic number x(F') > k.) In 1975 Bollobds,
Erdés, and Szemerédi [1] investigated several Turdn-type problem for multipartite graphs. Applying
a simple counting argument, they showed that

exp(n, K1) = tr(k)n? (1.1)

for any n,k,r € N with £ > r. The main results of [!] concern the minimum degree version of this
problem, which has been intensively studied, see [9—11, 13, 16].

In this paper we study exg(n, K,11(t)), the multi-partite versions of the Erd&s—Stone theorem
and Theorem 1.

We first prove a stability theorem for exy(n, K,11). This result was independently obtained by
Chen, Lu, and Yuan [3]. Given r,k € N with k > r, write k = ar + b for 0 < b <r — 1. By Turdn’s
theorem, the Turdn graph T,(k) = K, . aa+1,..a+1 (With b parts of size a + 1 and r — b parts of
size a) is the unique largest K, i-free graph on k vertices. We now describe extremal graphs for
exy(n, Ky11). Let T, 1(n) be the collection of k-partite graphs with parts Vi, ..., V}, of size n defined
as follows. If b > 0, we arbitrarily divide Vg, 11,..., V) into r sets Wy, ..., W, (some of them may
be empty) such that each W; is a subset of V; for some j; if b = 0, then let Wy,..., W, be empty
sets. Now let T' be the r-partite graph with parts U, ..., U, such that

U, =W, u Z;, where Z; := V(Z-,l)aﬂ U U Vi,

obtained from the complete r-partite graph K (Ui, ...,U,) by removing edges between W; and Wy,
i # 1, whenever W;, W, < Vj for some j (in other words, T' = K(Uy,...,U,)nK(Vi,...,V})). Since
T is r-partite, it is K, q1-free. Let U = Uie[r] U; and W = Uie[r] W;. Note that ep(U) = (g)azn2
and ep(W,T) = |W|(k—a—1)n = b(k —a—1)n?. Since t,(k) = (5)a® + b(k —a —1), it follows that
e(T) = t,(k)n?. By (1.1), T is an extremal graph for K, 1. Let 7, x(n) be the collection of all such
T.

Given two graphs G, H € Gi(n) on the same parts V1, ..., Vj, we say that G and H are ~y-close if
|E(GYAE(H)| < yn?.
Theorem 2. For any positive integers r < k and any v > 0, there exist € > 0 and ng such that the
following holds for every integer n > ng. Suppose G € Gi(n) is K,41-free and e(G) = (t.(k) — e)n?.
Then G is y-close to a member of T, (n).

We now consider exg(n, K,4+1(t)), We assume that & > r + 1 because otherwise exg(n, K,41(t)) =

(lzc)n2 trivially. Applying (1.1) and either the Regularity Lemma or the Graph Removal Lemma,
one can easily derive the following Erdds—Stone theorem for multipartite graphs:

exp(n, Krp1(t)) = t(k)n? + o(n?).

Applying Theorem 2 and the Graph Removal Lemma, we derive the following stability result for
exg(n, Kr4+1(t)), which handles the non-eztremal case for exy(n, K,1(t)).
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Theorem 3. For any k,r,t € N and any v > 0, there exist € > 0 and ng € N such that the following
holds for every integer n = ng. Suppose G € Gi(n) is K, 1(t)-free and e(G) = (t,.(k) —e)n?. Then
G is y-close to a member of Ty x(n). In particular, we have e(G) < (t,(k) + v)n?

To give the precise value of exy(n, K,1(t)), we need the following definitions. Given a,t,ny,...,ng €
N, let Zéa) (n1,...,nq) be the a-partite Zarankiewicz number for K;;, namely, the maximum num-
ber of edges in a K ;-free a-partite graph with part sizes ni,...,n,. We also write zga) (n) for
zlfa)(n,...,n). Given r,k,t,n € N with k > r + 1, assume k = ar + b for some 0 < b < r — 1, in
particular, b > 1 if a = 1. Let

A t—1 A r—>b
tl = \‘mJ, and b := mln{b 1,\‘ ) J}

Note that b = b if and only if b < (r + 2)/3. The following two functions will appear in our lower
and upper bounds for exg(n, K,11(t)), respectively.

|5 (k—a—1)n| . ifa>2b>2andt; =0,
B (o ) = |5 (k—a—1)n J+m1n{b—1r—b}M—% ifa>2,b>2andt; >0,
I (r—1)|5tan| ifa>2and b=0,1,
(t—1)(b— Dn + o[ =L ifa=1andb>1
and
NI I
[Tl(k—a—l)nj—k(r—b)% ifa>2,t>a,
B, k) = [%(k—a—l)nj ifa>2t<a,
r—1)|5tan ifa>2and b=0,1,
5
t—Db-Dn+b-DEL] fa—Tandb>1

Note that hy(n,r, k,t) = ha(n,r, k,t) in the following cases:
()a=>2andt<a, (2)a=2andb=0,1, (3)a=1land1<b<(r+2)/3. (1.2)
For i = 1,2, we accordingly define
gi(n,r, k,t) := t.(k)n® + zt([k/r])(n) + hi(n,r, k,t),
and note that [k/r] is equal to a + 1 if b > 0 and a otherwise.
We have the following lower bound for exy(n, K,41(t)).
Theorem 4. Given r,k,t,n € N, we have exg(n, K,1+1(t)) = g1(n,r, k,t).

The second terms in the second and the fourth cases of the definition of hi(n,r k,t) show
that exy(n, K,41(t)) > t.(k)n? + zyk/r])(n) + |52 (k —a — 1)n| when a,b > 2 and ¢; > 0, and
exg(n, K 41(t)) > t.(k)n? + zlg[k/r])(n) + (t —1)(b — 1)n when b > a = 1, and we shall elaborate on
this at the end of this section.

(a)

Although we can use z, ’ (n) without knowing its precise value in the lower bound, our proofs of the

upper bounds need several estimates on it. Kévari, Sés, Turdn [12] showed that z§2) (n) = O(n>~1)
for t > 2 and proving a matching lower bound is a well-known open problem:

(2) zt(z) (n) = Q(n> V) for t > 2.
Note that this is known for ¢ = 2,3 [2,6]. In addition, we will need the following properties.
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(E'1) There exists 6 > 0 such that for large n, z§a+l)(n) - zt(a) (n) = on21/1,

(E2) for any € € (0,1] and integer a > 2, there exists § > 0 such that for large n,

zlf“) (n) — zlga)((l —&)n,n,...,n) = on>
(E3) zlga) (n1,...,nq) — zga) (ny —1,...,n4) » 1. That is, for any constant C*, there exists ng € N
such that the Zéa) (N1y... ng) — zt(a) (n1 —1,...,n4) = C* whenever nq,...,ng, = ng.

(E1) is a special case of (£2) with ¢ = 1. However, we distinguish them because we can indeed
derive (E£1) from (7).

Theorem 5. Suppose (7 ) holds. For any r,k,t € N, there exists ng € N such that if n = ng is an
integer and G € Gi(n) is K, 1(t)-free, then e(G) = t.(k)n® + zt([k/r])(n) + O(n).

Our loose estimate on exg(n, K,41(t)) from Theorem 5 only assumes (Z) and thus holds for
t=2,3.

Theorem 6. Suppose (Z), (E2) and (E3) hold. For any r,k,t € N, there exists ng € N such that if
n = ng is an integer and G € Gi(n) is K,11(t)-free, then e(G) < ga(n,r, k,t).

Since hi(n,r, k,t) = ha(n,r, k,t) and g1(n,r, k,t) = g2(n,r, k,t) hold under (1.2), Theorems 3, 4
and 6 together determine exy(n, K,11(t)) in the cases of (1.2) for large n and under the hypothe-
ses (Z), (E£2) and (E3). In all other cases, the difference between our upper and lower bounds,
ho(n, 7, k,t) — hi(n, 7, k,t), is O, x(t?).

Remark. Theorem 1 says that any extremal graph for K, ,;(t) is the join of an extremal graph for
K;; and r — 1 extremal graphs for K ;. Inspired by by this result, a natural guess of an extremal
graph for our r-partite problem is starting from an n-blowup of T, (k), add a K, ;-free (a + 1)-partite
graph to one of its parts with a + 1 partition sets (assuming b > 0), and K ¢-free graphs to other
r — 1 parts. This graph has

k—a—-1)(t—-1
te(k)n® + 20 (n) + {( — i )J
edges. However, Theorem 4 says that this is not always extremal. Indeed, by moving vertices
around, we obtain graphs with more edges and such graphs do not admit a partition similar to the
ones in Theorem 1 (see the proof of Theorem 4, Section 3). This shows that our problem is different
and more challenging than the non-partite version considered by Erdds and Simonovits [7].

Nevertheless, when b = 0 this complexity does not exist, and we give an analog of Theorem 1.

Theorem 7. Forr,k e N withr | k and t = 2,3, there exist Cy,ng € N such that the following holds
forn =mng. Let G be a K,1(t)-free k-partite graph with n vertices in each part and exy(n, K,41(t))
edges. Then there is a partition of the k vertex clusters of G into r groups Uy, ..., U,, each with k/r
clusters, and a vertex set Z < V(G) with |Z| < Cy such that

o GlU\Z,U;\Z] is almost complete for all i # j,

o GU\Z] is Ky y-free, and

o forie[2,r], GIU;\Z] is K -free.

Assuming (F2), we can show that Z = ¢J in the theorem above. However, we choose to present
a result that resembles Theorem 1 and requires no additional condition.

Organization. In Section 2 we prove the stability theorems (Theorems 2 and 3), that is, on K-
free and K, (t)-free multi-partite graphs. Then we prove the lower bound, Theorem 4, by giving the
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corresponding constructions in Section 3. Finally we prove the upper bounds, Theorems 5, 6 and 7,
together in Section 4.

Notation. We omit floors and ceilings unless they are crucial, e.g., we may choose a set of en
vertices even if our assumption does not guarantee that en is an integer.

When X,Y < V(G) intersect, Eg(X,Y) is defined as the collection of ordered pairs in (z,y) €
X x Y such that {z,y} € E(G). Write eq(X,Y) = |[Eg(X,Y)|. For a vertex v in G, let N(v, X) =
N()nX and d(v, X) = |N(v, X)|. Moreover, given X < V(G), let e(X, G) be the number of edges
of GG incident to the vertices of X. Given two graphs G and H on a common vertex set V, G n H
denotes a graph on V with E(G n H) = E(G) n E(H). Given a k-partition {V;,Va,...,Vi}, a set
S is called crossing if |S nV;| <1, i€ [k].

When we choose constants z,y > 0, £ € y means that for any y > 0 there exists xg > 0 such that
for any = < z the subsequent statement holds. Hierarchies of other lengths are defined similarly.
Furthermore, all constants in the hierarchy are positive and for a constant appearing in the form
1/s, we always mean to choose s as an integer.

2. PROOF OF THE STABILITY THEOREMS (THEOREMS 2 AND 3)

The extremal problem exy(n, K,11) (instead of its stability version) has a simple probabilistic
proof. Indeed, let G € Gp(n) with e(G) > t.(k)n?. Denote the parts of V(G) by Vi,..., Vi and
the densities of the bipartite graphs G[V;,V;] as d;j, i,j € [k]. For each i € [r], uniformly choose
a random vertex v; € V; independent of other choices. Thus, the probability for v;v; € E(G) is
precisely d;;. Let X be the number of edges spanned on {v1,...,v;}, and note that E(X) = > d;; =
e(@)/n? > t.(k). This implies that there exists a choice of the k-set {vy,...,v;} which spans more
than t,(k) edges. By the definition of ¢,(k), this k-set contains a copy of K, ;1.

Our proof starts with this simple argument — we obtain E(X) > ¢,.(k)—¢ from e(G) > (¢.(k)—¢)n?.
Since G is K, 1-free, we know deterministically that X < ¢.(k), and thus by Markov’s inequality
we obtain that almost all crossing k-sets span exactly t,(k) edges and thus are isomorphic to the
Turén graph 7, (k).

Proposition 2.1. For any r,k € N and € > 0, there exist v > 0 and ng € N such that the following
holds for every n = ng. Suppose G € Gi(n) is K, 1-free and e(G) = (t.(k) — e)n?. Then for every
K € [1,k], all but at most ynk, crossing k'-sets K in G satisfy that all but at most vnk_k' crossing
k-sets containing K are isomorphic to T, (k).

Proof. Denote the parts of V(G) by Vi,...,V, and the densities of the bipartite graphs G[V;, V;] as
dij, 1,7 € [k]. For i € [k], let v; be a uniformly random vertex in V;. Then let X be the number of
edges spanned on {vy, ..., v} and note that E(X) = 3" d;; = e(G)/n* > t,(k)—e. Since G[{v1, ..., vi}]
is K,y1-free, we have X < t,(k) deterministically. Let Y = ¢,(k) — X. Then Y is a nonnegative
random integer with E(Y) = t,(k) — E(X) < e. By Markov’s inequality, P(Y > 0) < E(Y) < ¢,
which implies that P[X = t,(k)] = P(Y = 0) = 1 — . Therefore, all but at most en® crossing k-sets
in G span a copy of T,.(k). The proposition follows by counting and choosing 7?2 > (,f,)&?. O

We also need the celebrated Graph Removal Lemma for cliques due to Erdds, Frankl and Rédl [5].

Lemma 2.2 (Graph Removal Lemma). For any r € N and any € > 0, there exist 5 > 0 and integer
ng € N such that the following holds for every integer n = ng. If G is a graph with at most gn”
copies of K,., then it can be made K,-free by removing at most en® edges.
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A crossing copy of T,(k) in the k-partite graph G gives us a partition of [k] into r parts of size a
or a + 1, where each part corresponds to a color class of T;.(k). Throughout the rest of this section,
a partition of [k] refers to such a partition.

Now we give our proof.

Proof of Theorem 2. Write k = ar + b with 0 < b < r — 1. Without loss of generality, assume
v « 1/r. Choose constants

In<cei=cp € Kegp KV K Ygp € oo Ky =1y < 1/, 1/k.

We use induction on both r > 1 and b > 0. Let G be a k-partite K, i-free graph with e(G) >
(t,(k) — ex)n?. The base case r = 1 is trivial, and thus we assume r > 2.

Here is an outline of the proof. The base case b = 0 (i.e., kK = ar) is simple. By Proposition 2.1
and averaging, there is a partition of [k] such that many crossing k-sets of V(G) induce a copy of
K, (a) under this partition. We call the partition sets under this partition rows. For every i € [r], we
find a crossing a(r — 1)-set S; intersecting all but the i-th row such that if we extend S; to crossing
ar-sets, then almost all these ar-sets are isomorphic to K, (a). This implies that the i-th row (and
thus every row) has o(n?) edges. Together with e(G) > (t,.(k) — e)n?, we conclude that G is close
to a blow-up of K,(a).

For the b > 0 case, we first show that we may assume that every V; is incident to many edges
(Claim 2.3). Indeed, if say, Vj is incident to too few edges, then we obtain the structure of G — Vj
by induction hypothesis. Next we add the vertices of V}, to the partition of G — V}, joining W;’s. A
key observation is that if we tend to add a set V! < Vj of vertices to the i-th row, then (current)
|W;| = o(n) and thus there are only o(n?) edges in G[W;, V{] (as a result, adding the vertices of V}/
will not create too many edges inconsistent with the new partition). Finally we need to move things
around to make sure that after the operation all parts have at most n vertices.

Now we may assume that all parts are incident to a good amount of edges as in (2.1). Then for
a > 2, by (2.1) and Proposition 2.1, we show that every part V; is in a group of a parts which only
induces o(n?) edges as in (1). Repeated applications of (1) give a contradiction with (2.1). The case
a = 1 is nevertheless more complicated. We first find a pair of parts, say (V1, V), which is not too
dense (because G is K, 1-free). Together with Proposition 2.1, this implies that almost all crossing
(k —2)-sets in [[3<,<; Vi form a copy of T' := K _.1p2,.2, which has b — 1 clusters of size 2 and
r — b clusters of size 1, see (f). Then we can show that G’ := G — (V5 U V3) is close to a member of
Tr—1k—2(n), due to the fact that G’ has few copies of K, and (t,_1(k —2) — o(1))n? edges. Indeed,
by the removal lemma, G’ has a subgraph G” which is K,-free and still has (t,_1(k — 2) — o(1))n?
edges, which is close to a member of 7,_; ;_2(n) by induction, and so is G’. The rest of the proof
is to find an edge uv € V; x V5 such that v and v have large common neighborhood in each part
Vi, i € [3, k], which leads to a copy of K,_1 in its common neighborhood, and thus K, € G, a
contradiction. We find such uv by dedicate counting and the fact that G[Vi, V2] = pn? where p is
bounded away from 1.

The base case. We first prove the base case b = 0, that is, k = ar. In this case t,(k) = (g) a? and
Tr.k(n) contains a unique member 7. ;(n) which is the complete r-partite graph with exactly a parts
in each color classes. If a = 1, then G € G,(n) is a subgraph of T} ;(n) and G is g;-close to T} ,(n)
because e(G) = (t,.(k) — ex)n>.

Now assume a > 2. Since e(G) > (t,(k) — ex)n?, by Proposition 2.1, almost all crossing k-sets
induce a copy of T* := K,(a). Since there are # partitions of [k], by averaging, there is one
partition such that at least n¥/(2k!) crossing k-sets of G' induces T* under this partition. Without
loss of generality, denote this partition as [1,a] U [a+1,2a] u--- U [(r —1)a + 1,ar]. Now, for each



i € [r], we shall choose a crossing (a(r — 1))-set S; from

Y; —HH Vij—vyats’

J#i j'ela

such that all but at most v'n® crossing k-sets containing .S; induce T* (in particular, the a new
vertices would form an independent set). Indeed, this is possible as there are at least (n*/(2k!))/n® =
n®r=1 /(2k!) choices for crossing sets S; in Y; so that G[S;] is isomorphic to K,_;(a), and among
them, by Proposition 2.1, at most ~/ pa(r=1) crossing sets violate the extension property.

For i € [r], let Ui := U] Vii-1)a+j and we shall show that G is yx-close to K(Uy,...,Ur).
We claim that G[U;] has at most (5)7'n? edges. Indeed, every edge of G[U;] together with S; can
be extended to n 2 crossing k-sets not isomorphic to T*. If G[U;] contains more than (3)'n?
edges, then there are more than (‘2’) y'n? . nt2?/ ( ) ~'n® crossing k-sets containing S; not isomor-
phic to T* (a crossing k-set contains at most ( ) edges in G[U;] and is thus counted at most (2)
times), contradicting the definition of S;. Therefore, Uiem G[U;] contains at most r(5)y'n* edges.

Furthermore, since e(G) > (t.(k) — er)n?, G[Uy,...,U,] (as an r-partite graph) has at most

a
z—:knz +r <2> 7'n2

crossing non-edges. Overall, this yields that one can obtain T, (n) by altering at most exn? +
2r (3)7/712 < Yarn? edges from G and we are done.

The general case. Now suppose b > 0 and the result holds for £ — 1 with (ex_1,7%—1) in place of
(e,7) and we will verify it for k. We first prove the following claim. Let &’ := g;_1/2.

Claim 2.3. Ife(V;,G) < (k—1—a +&')n? for some i € k], then G is y-close to some member of
Tr(n).

Proof. Without loss of generality, assume i = k. By the assumption on e(G), we have
e(G—Vi) =e(G) —e(Vi,,G) = (tp(k) —e)n® — (k—1 —a+)n? = (t,(k — 1) — gp_1)n°.

Then by the induction hypothesus G — Vi, is yg_1-close to a member T' € 7} 1(n). Since G — Vj is
K,y 1-free, e(G — Vi) < t,.(k —1)n?, and thus e(V},G) = (k — 1 — a — €)n?. Recalling the definition
of Ty x—1(n), let us denote the color classes of T by Uy, ..., U, and for i € [7‘] let U; = W; U Z;, such
that each Z; is a union of a clusters of Vq, ..., Vi_1.
We first show the following claim.

(%) Given any vertex v € Vj, if there exists ig € [r] such that |[N(v) n Z;| = vn for every
e [r]\{io}, then |[N(v) n Uy, | < vn.
Indeed, otherwise let X;, S N (v)nUj, of size yn and X; € N(v)nZ; of size v*n for every i € [r]\{io}.
Note that T[X;, X;] for distinct 4, j € [r] is a complete bipartite graph. Since G — V}, is y5_1-close
to T, it follows that e(G[X;, X;]) = (v*n)? — yx_1n? for any distinct 4,5 € [r]. As y—1 < v, by
the Turan result, we find a copy of K, in U XZ, Wthh forms a copy of K, 1 together with v, a
contradiction. In particular, (#) implies that |N (v) N Zi,| < v*n for some ig € [r]. Since v misses at
least (a —y*)n vertices in Z;, and n — 1 vertices in Vk, we have dg(v) < (k —1—a+ ~*)n for any
vV E Vk
Let V/ be the set of vertices v € Vj such that dg(v) < (k — 1 —a — 7*)n, then we have

(k—1—-a—en®<e(Vi,G) <|Vl(k—=1—a—~v)n+n—|VDk—-1—a+~+"n
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and thus (v +yHn(n — |V}]) = (v® — £)n?, giving that

2 4
Vi < (1 - %) n = %n < ~*n.
7+ 7+

For each v € V;\V/, since dg(v) = (k — 1 — a — v*)n, we have that |[N(v) n Z;| = vn for all but
possibly one ¢ € [r]. However, by (%), there must be one such i € [r], that is, for v there exists
ig € [r] such that [N (v)n Z;| = v*n for all i € [r]\{io} and |N(v) nU;,| < v*n. This gives a partition
of Vi\V/ to r (possibly empty) sets V;!, ..., V. Furthermore, observe that if |U;| > (a+27?)n (that
is, [W;| = 2v%n), then V}' = &, because v can not have |U;| — v'n > (a + v*)n non-neighbors in U;.

Now we define a new partition U], ..., U, as follows. If |W;| < 2v2n, then we find a j € [r] such
that W; and W; are from the same cluster of G, add W; to W; and redefine W; := Vki . Denote the
resulting partition as Uj,..., U}, where U/ = Z; U W; and we add the vertices of V) to any U] so
that it does not exceed (a + 1)n vertices. Let T" = K(Uj,...,U.) n K(Vi,..., V) and we shall show
that 7" and G are vy-close. Indeed, recall that G — V}, is ~y_1-close to T', and for every v € V,j, v is
incident to at most y*n edges within Z; and thus at least (k — 1 — a — 42 — 4*)n edges outside Z;.
Moreover, for the set V} and all W;’s that have been moved, the union of them contains at most
r - 2v2n vertices, and thus for these vertices we may need to edit at most 2ry?n - kn = 2kry?n?
edges. Therefore, the distance of 7" and G is at most

Yh_1m2 +n - (72 + 29N n + 2kry*n? < yn?,
where the second term is on (the changes brought by) the vertices of V;\V/. We are done. O

Choose a new constant ¢ € 7" « &’. By Claim 2.3, we may assume that for every i € [k],
e(Vi,G) = (k—1—a+&)n’ (2.1)
Next we first deal with the easier case a > 2.

Case 1. a > 2. By (2.1), for every i € [k], take v € Vj, such that d(v) = (k—1— a + ¢)n. Note
that there exist k — a sets V; such that |N(v) n V;| = (¢//a)n — otherwise there exist a sets V; such
that |[N(v) N V;| < (¢'/a)n, yielding d(v) < a(¢’/a)n + (k —a — 1)n, a contradiction. Therefore there
exists I < [k] of size k — a such that for any j € I, [N(v) nV;| = (¢'/a)n. As e <« 7" « &, by
Proposition 2.1, there exists a crossing (k — a)-set S in [[;c;(N(v) n Vj) such that all but at most
v"n® crossing k-sets containing S are isomorphic to T* := K, 4.4+1,..a+1. Since S € N(v) and G
is K, 1-free, S must be K,-free. Moreover, S is an induced subgraph of T* with k — a vertices, and
we infer that G[S] must be isomorphic to the graph obtained from 7™ with a color class of size a

removed. This yields that all but at most v"n® crossing a-sets from [ | jer Vi form independent sets.

Thus, we conclude that for any j,j" ¢ I, eq(V},V)) < 7"n?. Note that ig ¢ I, and thus we obtain

(1) for any i € [k], there exists I’ < [k] of size a such that i € I’ and for any j,j' € I,

ec(V;, V1) < '

By Proposition 2.1, there is a partition of [k] that induces at least n*/(2k!) labelled copies of T*.
For two clusters V; and V; that are in different color classes, we have e (V;, V;) = n?/(2k!) because
each edge in V; x V; is contained in at most n*=2 labelled copies of T*. Now fix a color class of size
a + 1. Without loss of generality, denote this color class by Vi,...,V,,1 and consider Vi. By (7),
there exists I < [k] of size a such that 1 € I” and for any j, j" € I', eq(V}, V)) < 7"n?. Since clusters
from different color classes have densities at least 1/(2k!) > ~”, we conclude that I’ < [a + 1].
Without loss of generality, suppose [a+ 1]\I" = {2}. Applying () again, we obtain a set I"” < [a+ 1]

such that 2 € I” and for any j,j' € I", eq(V},V)) < v"n?. Note that any element i € I’ n I” satisfies



that eq(V;, V;) < v"n? for every j € [a + 1]. However, this implies e(V;,G) < (k — 1 — a + av")n?
contradicting (2.1) as 7" « €’

Case 2. a = 1. Choose new constants 7" « ¢’ « f « &’ <1— tr(k)/(g) Since G is K, yi-free,
we have Z#] d(V;, V])/(g) < tr(k‘)/(g) 1 —¢'. Fix a pair of clusters, say, (V4,V2) with density

< 1 —¢’. Since there are more than 7”n? non-edges in Vi x Vs, by Proposition 2.1, there exists
a non—edge in V; x V4 such that all but at most 7"n*~2 crossing k-sets containing this pair form a

copy of T := Kj 12 2. Thatis,
(1) all but at most v"n*~2 crossing (k — 2)-sets in [ [3<i<i Vi form a copy of 7" := K1 1.2,
which has b — 1 clusters of size 2 and r — b clusters of size 1.
We now show that G’ := G[|Js<;<;, Vi] is close to a member of 7,1 _2(n). We may assume k > 4
Note the e(G')nf~4 = Y e(X ), where the sum is over all crossing (k — 2)-sets X in 3., Vi
By (1), this sum is at least (n*=2 —4"n*=2)e(T") = (1 — 4" )n*~2t,_1(k — 2). Hence,

e(G) = tr_1(k—2)(1 —+")n> (2.2)

Moreover, since T" is K,-free, (1) implies that the number of copies of K, in G’ is at most ( )7” n"
because every copy of K, in G’ is contained in n*—2~"
and every crossing (k — 2)-set not isomorphic to 7" contains at most (k;2) copies of K,.. The graph
removal lemma (Lemma 2.2) implies that there exists G” € G’ on V(G’) such that G” is K,-free
and e(G’) — e(G") < &"n?. By (2.2) and the assumption 4" « £”, we have

e(G") = e(G) —e"n? = t,_1(k —2)(1 —7")n? —"n? = (1 — ")t,_1(k — 2)n?

crossing (k — 2)-sets not isomorphlc to T’

By the induction hypothesis, we derive that G” is S-close to some graph T{ € T,_1 y—2(n). This
implies that G’ is (2)-close to this Tj,.

Note that e(V1 U V2, G) = e(G) — e(G') and e(G') < e(G") + &"n? < (t,—1(k — 2) + £”)n?. Thus,
we have

e(Vi U Vo, G) = (tp(k) — e)n® — (tr_1(k — 2) + €")n? = (2(k — 2) — 2" )n>.

For i € [k], let ¢; := e(V;,G)/n? and recall that p = e(V1,V2)/n?. Then we have 2(¢,(k) — &) <
Zie[k] ¢i < 2t.(k) and ¢1 + co —p = 2(k —2) — 2¢”. Our ultimate goal is finding an edge uv € Vi x V3
such that |[N(u) n N(v) n'V;| = 24/Bn for every i € [3, k], which allows us to find a copy of K,_; in
N(u) n N(v), contradicting that G is K,;-free. Indeed, if there is an edge uv € Vi x V5 such that

du, Vs u---UVi) +dw,Vsu-—- Vi) = (c1+ e —p—143/B)n= 2k —5+2/B)n, (2.3)

then for every i € [3,k], there exists B; < N(u) n N(v) nV; of size 24/Bn. Recall that G’ is
(2/8)-close to a member T of 7,_; y_2(n). In particular, there exist » — 1 B;’s such that Tf) induced
on the union of these sets forms a copy of K,_1(24/8n). Thus, to destroy all these copies of
K,_1, one needs to remove at least (24/8n)? = 48n? edges from T}, while e(T}) — e(G") < 26n?.
Therefore G[Bs U - - - U By contains a copy of K,_1, which together with uv forms a copy of K, 1,
a contradiction.

To find such wwv, we first show that most vertices in V;, i € [k] have large degrees. Fix i € [k] and let
V! be the number of vertices v € V; with d(v) < ¢;n—2ky"n. We claim that |V/| < v”"n/k. Indeed, for
any j € [k], since e(V}, G) = ¢;jn?, there exists a set V¥ of size v"n/k such that d(v) < (1+27"/k)cjn
for every v € V*. Now consider the subgraph G* := G — (V" U |, ; V;*), where V/" is a subset of
V! of size v"n/k. Since G* is K,,1-free, we have e(G*) < t,(k)(1 — ”/k‘)2 2 Byci<k-—1,j€[k]
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and ;e ¢ < 2t (k), we get

e(G) < tr(k)(L —~"/k)*n® + (y"n/k) <Cin —2%ky"n + Y (1 + 27”/k)cﬂ>
J#i
<t (k) (1= ~"/k)*n? + (" /k)2t, (kK)n? — 29/"n? < t,.(k)n? —4"n?,

contradicting that e(G) > t,(k)n? — en?.

Pick a vertex u € V1\V{ such that d(u,V2) < (1 ++”)pn. Such a vertex exists — otherwise by
V| < v"n/k we have eq(Vi,Va) = (1 —~"/k)n - (1 + 4")pn > pn? contradicting our assumption.
Consider R := N(u,V2\Vy) and an arbitrary vertex v € R. By the definition of V/, we have that
d(u) 4+ d(v) = e1n + con — 4ky"n. We may assume that (2.3) fails (otherwise we are done). Together
with d(u) 4+ d(v) = e1n + can — 4ky"n, this implies that

d(u, Va) + d(v, V1) = (1 + p — 4ky" — 3+/B)n.

In particular, we obtain that |R| = d(u, Vo\Vy) = (p — 4kv" — 3v/B — 7" /k)n = (p — 44/B)n and
d(v,V1) = (1 — py" — 4ky" — 33/B)n > (1 — 44/B)n (for every v € R). This gives at least

(p—4V/B)(1 = 4y/B)n® = (p — 8y/B)n’
edges in G[V1, R]. On the other hand, by (2.1), we have cg > k — 2 + &, and thus for every vertex
w e VR\Vy, we have
d(w, V1) = con — 2ky"n — (k — 2)n = &'n/2.
By IRl < (1 ++")pn and p < 1 —¢', we get |[Vo\(Vy U R)| = n— (1 +~")pn —+"n/k = 'n/2.
Therefore, we have e(G[Vi, Va\(Vy U R)]) = (¢'n/2)?. However, combining these two estimates and
recalling 8 « €’ we see that

e(G[V1, Va]) = (p = 8y/B)n” + (£'/2)*n* > pn,

a contradiction. O

We now prove Theorem 3 by using the Graph Removal Lemma and a well-known result on
supersaturation.

Lemma 2.4 (Supersaturation). For any r,t € N and any B > 0, there exists ng € N such that the
following holds for every integer n = ng. If G is a graph with n” copies of K., then it contains a
copy of K, (t).

Proof of Theorem 3. Choose constants 1/n < < € < v,1/k,1/r,1/t. Suppose G € Gi(n) is K,41(t)-
free and e(G) = (t.(k) —e)n?. We further assume that G contains fewer than Sn"*! copies of K,
— otherwise Lemma 2.4 implies that G contains a copy of K, i(t), a contradiction. Thus, by
Lemma 2.2, G contains a K, ;1-free spanning subgraph G’ with at least e(G) —en? > (t,.(k) — 2¢)n?
edges. By Theorem 2, G’ is y/2-close to some T € T, (n). Consequently, G is vy-close to T, as
desired. O

3. LOWER BOUND — PROOF OF THEOREM 4

In this section we prove Theorem 4. We start with the following proposition on K3 »>-free bipartite
graphs.
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Proposition 3.1. Let t > 1 and n > 5t*. Suppose G = (A, B; E) is a Kaa-free bipartite graph
with n vertices in each part and with A(G) < t — 1. Then there is a perfect matching M in the
complement of G such that G U M s still Ko o-free. In particular, there exists a t-reqular Ko o-free
bipartite graph with n vertices in each part.

Proof. When we construct M, there are two types of K3 o that we need to avoid in G U M — in the
first type M has an edge uv where G contains a path of length three with ends u and v, and the
second type consists of two edges of M and two edges of G on the same four vertices. The first one is
easy to avoid as for any vertex v in (G, the number of vertices that can be reached from v via a walk
of length three (equivalently, a path of length one or three) is at most (A(G))? < (t—1)3. Therefore,
when matching a vertex v € A U B in M, we need to avoid at most (¢t — 1)® vertices that do not
depend on M. However, this is not the case for the second type of K5 > because the matching of a
vertex in M affects the matching (more precisely, the vertices that need to be avoided) of another
vertex. To overcome this, we proceed in three phases.

Choose a set S of arbitrary 2¢3 vertices from A, and note that N = | J,.g Ne(v) has size at most
|S|t < 2t*. For the first phase of our process, we greedily find a matching M that covers the vertices
of N and avoids the vertices of S. To achieve this, each time we match a vertex v € N, we need to
avoid the vertices of S, the vertices of A that are already matched in My, and those vertices that
have distance 1 or 3 from v in the graph G U Mj. Since A(G U My) < t, we need to avoid at most
|S|+ (]N|—1) +t3 < n vertices and thus this is possible. For the second phase, we greedily match all
unmatched vertices v € A\S and denote the resulting matching by M; (containing My). Similarly,
each time we need to avoid the vertices that are already matched and the vertices that have distance
1 or 3 from v in the graph G U M. This is possible as there are at most (n — |S| — 1) + 3 < n such
vertices.

For the third phase, we are left with sets of unmatched vertices S € A and T < B such that
T n N(S) = . The key point is that G[S,T'] is an empty graph so no second type of K32 will be
created on S U T. For each vertex v € S U T, we need to avoid the vertices that have distance 1 or 3
from v in the graph G U My, and there are at most (t — 1)%t < t3 = |S|/2 such vertices. Therefore,
we can choose a perfect matching on S U T by Hall’s Marriage Theorem. This gives the desired
perfect matching M.

The “in particular” part follows by starting with an empty bipartite graph and iteratively adding
perfect matchings. O

Now we prove our lower bound on exy(n, K,11(t)).

Proof of Theorem 4. We first deal with the case a = 1. Let Vj;, (4,7) € [r] x [2] be vertex sets,
where each of Vji19,...,V,2 are empty sets and all other sets have size n. Let G := K(Vi1 u
Via,...,Ve1U V;2) be the blowup of the Turdn graph 7T, (k). Thus e(G) = t,(k)n>.

We first revise the partition as follows. Let ¢’ := [(t — 1)/2] and ¥’ := min{b — 1, |(r — b)/2]}.
Let {V/;,(4,5) € [r] x [2]} be obtained from (JV;; by moving ' vertices from Vi1 to V41,1, and
moving t" vertices from V; o to Viypyp—12, for every i € [2,0' + 1]. For i € [r], let U; := VZ’1 U VZ’2
and H := K(Uy,...,U,) n K(Vq,...,Vk). Let H' be obtained from H by adding

e a K;-free bipartite graph on Uy of size Zt@) (n), and

e a maximum {K ;, K3 2}-free bipartite graph on U; for 2 <i < b+ 20'.
Note that, for i € [2,b], Proposition 3.1 implies that each H'[U;] is (t — 1)-regular and thus for
i € (2,0 + 1], H'[U;] has (n — ¢/)(t — 1) edges, and for i € [V/ 4+ 2,b] it has n(t — 1) edges; for
i€ [b+1,b+ 2], each H'[U;] consists of ¢’ vertex-disjoint stars K;,—; centered at the ¢’ new
vertices.
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We first observe that H contains t,.(k)n? — b'(t')? edges. Indeed, for every i € [2,V + 1], the
t’ vertices moved from V;; to Viyp—1,1 lose nt’ edges to Viyp—1,1 and gain (n — t')t’ edges to Vj o,
thus having a net loss (#')? edges between U; and U;,j_;. The same holds for the ' vertices moved
from Vi to Viipir—1,2. On the other hand, the ¢’ new vertices in V], |, and ¢ new vertices in
Vi/+b +y—12 A€ all joined, giving additional ()2 edges. Thus, the net loss of changing G to H is
Y (t')? edges.

Furthermore, the vertices in Voo U --- UV} 2 and the b't’ vertices moved from Vo1 U -+ U Vg1
each have degree t — 1 in | J,,, H'[U;] and thus the number of edges in H"\H is

2P m)+ (t—1)(b—Dn+ (¢t — 1)V

Thus, we have e(H') = t,.(k)n? + z§2) n)+(t—-1)0b—-1)n+ b’[%] = g1(n,r k,t).

At last, we observe that H' is K, 1(t)-free. Indeed, by construction, every U; is triangle-free, Uy
is K s-free and other U;’s are {K, Ko 2}-free. Therefore, a copy of K,;1(t) can contain at most
2t — 1 vertices from U; and at most ¢ vertices from other U;’s, which is impossible.

Now we assume a > 2. Let V; ;, (i,7) € [r] x [a + 1] be disjoint vertex sets, where V; .41 = & for
b < i < r, and all other sets have size n. Let H be a graph defined as follows. Let

t = [ﬁJ and t' €[t —at; — 1,t — at1] be even.
Let {V/;, (i,7) € [r] x [a + 1]} be a partition of ; j)ep1x[at1] Vij OPtained from moving ¢; vertices
from each of Vj ;, 2 < i <min{b,r +1 -0}, 1 <j<a+1to Viyp_1; Denote by Z;4_1; the set of
vertices moved from V; ; and let Z; 1 := U?i% Zitp—1,5- Forie[r], let U; := Uje[a+1] Vl’j Let H
be obtained from K(Uy,...,U,) n K(Vi,..., V%) by adding graphs in each U; as follows.

(S1) Add a maximum K -free (a + 1)-partite graph in Uj.

(S2) for i€ [2,b] U [2b,r]," add on U; a {Ky, Ko 2}-free bipartite graph with ||U;|45E] edges.

(S3) for i € [b+ 1,min{2b — 1,r}], we add a triangle-free graph H; on U; such that e(H;) >

||Us| 52| + %, and for any j € [a + 1], H; — Z; j contains no biclique of order larger than ¢.

We first show that (S2) is indeed possible. For i € [2,b] U [2b,7], each U; consists of a or
a + 1 parts of equal size n/, where n’ = n or n’ = n —t;. We first show that there exist disjoint
sets X1,...,X,,Y1,...,Y; € U, such that for each j € [s], X;,Y; belong to distinct parts of Uj;,
1X5| = Y| = (n —t1)/2 and | J;_;(Xi v Y}) is either U; (if |U;] is even) or U;\{v} for some v € V;;
(if |U;| is odd). Indeed, this is trivial if U; has an even number of parts. If U; has an odd number
of parts, since a > 2, there are at least three parts. We arbitrarily pair up all but the first three
parts. Now if n is even, then |U;| is even, and let Vz’l = X U Xo, VZ’2 =Y; U X3 and VZ’3 =Y, U Y53,
where each small part has size n’/2 and we are done. Otherwise both n’ and |U;| are odd. In this
case we take any v € V/;, and let V/,\{v} = X1 U X, V/; = V1 U X3 and V/; = Y5 U Y3, where
[ X1| = V1| = | Xof = [Ya| = (0" = 1)/2 and |X3] = [V3] = (n/ +1)/2.

Now we define the desired bipartite graph on U;. If |U;| is even, then apply Proposition 3.1 to
each pair (X;,Y;). Since the resulting graph is (¢t — 1)-regular and K> »-free, it satisfies the desired
properties. Otherwise |U;| is odd, and we apply Proposition 3.1 and add Kj»-free (t — 1)-regular
bipartite graphs on pairs of sets except (X3,Y3) (as defined above). For (X3,Y3) and v € V/, we
connect |(t — 1)/2| edges from v to each of X3 and Y3 and denote the set of these neighbors by
X*. Then by Proposition 3.1, we add a (t — 2)-regular Ky o-free bipartite graph on (X3,Y3), and
then add a matching of size | X3| — |(t — 1)/2] such that the resulting graph is still K5 o-free, all the

1When 2b > r, the interval [2b,7] is an empty set.
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vertices in X3 u Y3 have degree t — 1, and X™ remains an independent set. Indeed, this is possible
by applying Proposition 3.1 to the current graph with a complete bipartite graph added to X*. By
construction, the resulting graph is K5 o-free, and all vertices except v have degree ¢ — 1, while v
has degree t — 1 or t — 2. So it follows that the resulting graph has ||U;|'5%] edges as desired.

We now verify (S3). Recall that t' is even. Choose A;; < V;; and A;2 < V; 9, each of size
t'/2. Add in H; a complete bipartite graph with parts Z; and A;; U A;2 (which is a copy of
Ky (a+1)t,)- Next, if a is even, then we add a (t — 1)-regular K3 o-free bipartite graph on each of
(Vis, Via), Vis,Vie)s---, (Via—1,Via); if a is odd, then we add a (t — 1)-regular Kj o-free bipartite
graph on each of (V; 4,V;5),(Vie,Vi7),..., (Via—1,Via). Thus, we are left with V; 1,V 2 and possibly
Vi3 when a is odd. If a is odd, then for j = 1,2, take arbitrary B, ; < V; j\A; ; of size [n/3] —t'/2;
if a is even, then let B; ; = V; j;\A; ;. We first connect vertices of Z; to B;1 U B;2 such that every
vertex of Z; has t —1 —t' neighbors in B, ; U B; 2 and all these neighbors are distinct and distributed
as evenly as possible in the two sets B; 1, B; 2. In particular, if one of B; 1, B; 2 receives one more
edge than the other, then we remove one arbitrary such edge and denote the vertex of this edge in
Z; by w. Denote by le and Bzz the neighbors we have just obtained. So as for now for any vertex
v € Z;, Nug,(v) € Ajq v Aip v By v B, and dp, (v) < t — 1. Using Proposition 3.1, we add a
(t — 1 — aty)-regular K o-free bipartite graph G’ on (A4;; U B, 1, A;2 U B;2) such that

Al) G'[A;1 v B, A; 2 U B¥,] contains no edge and
) ’l,l ) Z,2
(A2) no two vertices in A; 1 U A;2 U BZI U B:z have any common neighbors in U;\Z;.

Indeed, this can be done by applying Proposition 3.1 (repeatedly) on (A4;1 v B 1, Ai2 U Bj2) with
the initial graph K(A4;; u B:I,Am U B;z). Note that vertices in A; 1 U A;2 have degree exactly
t—1—aty + (a+ 1)ty =t—1+t1. Furthermore, we add a perfect matching on (BM\BZl, Bi72\B;2)
and at; — 1 edge-disjoint perfect matchings on (B; 1, B;j2) such that i) they are edge-disjoint from
G, ii) the resulting graph on A; 1 U B; 1 U A; 2 U B; 2 is K o-free and iii) (A1) and (A2) hold. This is
possible by Proposition 3.1. By now the construction is completed if a is even. If a is odd, then for
J=12let X;; € V;;\(AijuBij) of size [n/2|, and X} ; = Vi ;\(Ai; U Bij v Xij;). Sol|X;;|>n/7
is large. We split V; 3 to Y; 1,Y; o, each of size |n/2]|, and possibly one vertex u (only when n is odd).
By Proposition 3.1, we add (¢ — 1)-regular Kjo-free bipartite graphs on each of (X;1,Y;1) and
(Xi2,Y;2). If nis even, then by Proposition 3.1, we add a (¢ — 1)-regular Ky o-free bipartite graph
on (X;,X/,) and the construction is finished. If n is odd, then we connect |(t —1)/2| edges from u
to each of X, and X, and connect u and w (if w exists). Denote by X** the set of these neighbors
of u in X;; and X;,. Next, similarly to above, by Proposition 3.1 we can add a (¢t — 2)-regular
K3 o-free graph on (X, X;,), and then add a matching of size | X; | —|(t — 1)/2] to (X; 1, X],) so
that all vertices in X[, u X[, have degree t — 1, the resulting graph is K3 »-free, and X** remains
an independent set. The construction is completed. By construction,

(1) vertices in A; 1 U A; 2 have degree ¢t —1 +¢; and all other vertices have degree t — 1 with the
exception of at most one vertex (u or w above), which has degree t — 2;

(2) for any j € [a+ 1], H; — Z; j has maximum degree ¢ — 1 and thus is K ;-free;

(3) H; is triangle-free;

(4) H; — Z; is K o-free.

Now we verify the last assertion of (S3). Let K be a biclique of order larger than t in H; — Z; ;
for some j € [a+ 1]. By (2) and (4), V(K) must intersect Z;. Then as Z; forms an independent set,
V(K) n Z; is in one part of K, denoted by Py, and by construction, the other part, denoted by P,
is a subset of A;1 U A; 20 By U By U {u}. Since by (2) H; — Z; j is K1 4-free, we have |P;| > 2 and
|P2| = 2. By construction, for any x € A;1 U A;2 U B v Bfy, N(z) n N(u) nU; = . Therefore,



14 JIE HAN AND YI ZHAO

together with (A2), the vertices of P have no common neighbor outside Z;, yielding P < Z;\Z; ;
and |P;| < aty. Now, P, € Z; and |P;| = 2 imply that P, are the common neighbors of at least
two vertices from Z;, which gives that P» € A;; U A;2 and thus |P»| < t/. Together we obtain
[V(K)| = |P1| + |P2| < ati + ¢ < t, a contradiction. Therefore, H; — Z; j does not contain any
bicliques on more than ¢ vertices.

At last, we compute e(H;). Note that only vertices in A; 1 U A; 2 have degree more than ¢t — 1 -
they have degree t — 1 + ¢1. All other vertices have degree t — 1 with the exception of at most one
vertex (u or w above), which has degree ¢t — 2. Since t’ is even, t1¢'/2 € N. Thus, we have

Uil(t — 1) + t1t t—1| &t
6<Hi)—{| I 2) : J—[\Ui\TJJFlT-

So (93) is verified.
Claim 3.2. The graph H is K,1(t)-free and e(H) = g1(n,r, k,t).

Unlike the case a = 1, we need some arguments to prove that H is K,41(t)-free. The difference
is that H[U;]| might not be triangle-free (which is trivial for a = 1, as H[U;] is bipartite), and thus
it may contribute e.g. a copy of K3(t — 1) towards a copy of K,1(t).

Proof. We first show that H is K, 1(t)-free. Suppose instead, that H contains a copy of K, 1(t)
on a vertex set K. We first claim the following.

(V) For every i € [2,7], V(K) n U; is a biclique or an independent set and |V (K) n U;| < 2t. If
|[V(K) nUi| > t, then i € [b+ 1, min{2b — 1,7}] and V(K) n U;_p—1) = J.

Indeed, for i € [2,r], since H[U;] is triangle-free, V(K) n U; is a biclique or an independent set.
By (S3), if [V(K)nU;| > t, then i € [b+1, min{2b—1,r}] and V(K) intersects all Z; ; for j € [a+1],
which imply that V(K) n U;_—1) = &. Furthermore, we know |V (K) n (U;\Z;1)| < t and thus
[V(K)nU| <t+1Z;1| <2t. So (V) is proved.

Let K; be the subgraph of K induced on its vertices in U;. By (©), for each i € [2,7], we have
either |V(K) nU;| < tor |[V(K) n (Ui v Ui—pt1)| < 2t. So we have |V (K)\V(K;)| < (r — 1)t and
thus |V (K7)| = 2t (which is now possible as commented above).

Let 7’ be the number of members of U := {U;,i € [2,r]} that intersect V(K). Since the number
of members of U not intersecting V(K) is r — 1 — 7/, by (©), there are at most » — 1 — r/ parts U,
i > 1 such that |V(K) n U;| > t. Now we define an auxiliary graph G* on C1,...,Cyr41, the color
classes of K. Indeed, for distinct ,j € [r + 1], C;C; € E(G*) if and only if there exists | € [2,7]
such that C; n U # & and C; nU; # . Note that by (©), each U defines at most one edge of
G*. Let Cy,...,C, be the connected components of G*. Since K is K;-free, there is at most one
i € [s] such that V(C;) := checi C; contains at least ¢ vertices of V(K7): two such components
each containing ¢ vertices of Ky will induce a copy of K;; in K. Without loss of generality, assume
that [V (C;) nV(K7)| < t for all 2 < i < s. For each i € [s], let R; be the set of indices [ € [2, 7] such
that |[U; nV(C;)| > 0 and R, € R; be the set of | such that |U; n V(C;)| > t. So we have

S S
Z|Ri|=r' and Z|R;| <r—1-r"
i=1 i=1
Moreover, by the definition of Cy,...,Cs, the R;’s are pairwise disjoint. We claim that for i € [2, s],

|Ri| = |Ci| — |R}|. Indeed, if |R;| < [C;| — |R}| — 1, then by (), we have [V(Ci) N g, Uil <
|R| -2t + (IC;| — 2|R}| — 1)t = (|Ci| — 1)¢t. Since |V (C;) n V(K1)| < t, we obtain |C;|t = |V (C;)] <
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t+|V(Ci) nUjer, Uil < ICilt, a contradiction. So the claim follows. Overall, we get
DR DG =R = r+1—[C] = ((r=1=7") = |Ry]) =" + 2~ |C1].

Therefore, |Ri| <1’ — (r' + 2 — |C1|) = |C1| — 2 and thus G* has at most |C1| — 2 edges on C;. This
contradicts with that C; is connected. So H is K, ;1 (t)-free.

It remains to compute e(H). First suppose b = 0,1, then for 2 < i < r — 1, |U;| = an and thus
H[U;] has at least |5an| edges. It follows that e(H) = g (n,, k:,t) Secondly suppose b > 2 and

let ' := min{b — 1,7 — b}. Note that ey (U;) = zyk/r])(n) and t' >t —aty — 1 > (4a® + 5a)t;. So

’ tt! t—1 4a® + 5a)t?  r—1
ZeH 22[|U| J b’l [(k—a—l)nTJ—l—b'< 5 ) _ =

Let H = K(Uy,...,U,) n K(V4,...,V%). It remains to bound e(H’). Note that for each i €
[b+ 1,0+ V'], we have moved a set Z; of (a + 1)t; vertices from (J; Vi—p+1,5 to U;. Thus, H' is
obtained from H* := K(Uf,...,U}) n K(V1,..., Vi) where U = c(441) Vi,j by disconnecting the
edges between Z; and U;" and connecting the vertices of Z; to U;_p41 except for pairs of vertices
from the same V}’s (Z; remains to be an independent set). That is, for each vertex in Z; the net
gain is —an + (an — at1) = —aty, and thus the total net gain is —a(a + 1)t3. Since e(H*) = t,(k)n?,
we obtain e(H') = t,(k)n? — b'a(a + 1)t3. Together with the bounds on ey (U;) we get

2a% +3a)t2 r—1
2 2

e(H) > t,(k)n? + 217 () + WJ a1t ; 1J oyl

So we obtain e(H) = gi1(n,r, k,t) for the case t; > 0.

Finally for the case t; =0 or b = 0,1 we give a slight improvement to avoid the loss —(r — 1)/2.
Let W' := Ui, Viar1. If b = 2, starting from the partition {V;;}, we move at most r vertices
in W' to other rows, (e.g. move a vertex from V5,41 to V441, etc.), so that in the resulting
partition i € [r], U; := Uje[a+1] Vi j, all but at most one of the U;’s, 2 < i < r have even order. If
b < 1, then W' = & and we do nothing in this step. Then as in the previous proof, we i) add a
maximum Ky -free (a + 1)-partite graph in Uy, and ii) for i € [2,7], add on U; a {K 4, K2 2}-free
bipartite graph with [|UZ|%J edges. Let H be obtained by adding all edges between each two rows,
ie., adding K(Uy,...,U;) n K(V4,...,Vk). For b > 2, due to our control on the parities of the
sizes, we have } . en(U;) = z§a+l)(n) + [(k—a—1)n52|. For b < 1, we have Diepr) et (Ui) =
zt([k/r])(n) + (r —1)|5tan|. That is, we have e en(Us) = zyk/r])(n) + hi(n,r, k,t) in both
cases. Moreover, note that the movement of the vertices does not change the number of edges
in J:= K(Uy,...,U,) n K(V1,..., V%), because i) the induced subgraph on U e[a] Vi does
not change, ii) the degree of every vertex of U VWH in the graph J does not change. Thus,
the graph K(Uy,...,U,) n K(Vi,..., V) contains exactly t,.(k)n? edges and we obtain e(H) =
tr(k)n? + zt([k/r])(n) + hi(n,r k,t). O

]

Now the proof of Theorem 4 is completed.

4. PROOF OF THE UPPER BOUNDS

Below we prove (E1).
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Proof of (Z) = (E1). Given a + 1 sets Vi,...,V 41 of size n, we define an (a + 1)-partite graph G
on Vi,..., Vi1 as follows. Let V3 be a set of n vertices consisting of |n/2] vertices from V; and [n/2]

vertices from V5. We place an extremal graph G’ for z§a) (n) on V4, Vs, ..., Vi1, in other words, G’

is an a-partite Ky -free graph with Zéa) (n) edges. Next we add a maximum bipartite K ;-free graph

G” on the remaining vertices of Vi and Va. By (Z), e(G”") = zt(z)([n/2j) > on?~ ¢ for some § > 0.
Thus G = G' U G” is K y-free and e(G) = e(G') + e(G”") = zt(a) (n) + 6n*~Yt. This gives (F1). O

Now we prove the upper bounds on exy(n, K,(t)).

The proof of Theorem 6 is done by a series of claims and estimates, and actually contains the
proofs of Theorems 5 and 7. More precisely, the first half of the proof of Theorem 6 only requires (2)
and (consequently) (E1), but not (E2) or (E3). The (weaker) estimates obtained in this part of the
proof suffice for Theorems 5 and 7. The second part of the proof contains refined estimates obtained
from (E2) and (E3) and completes the proof of Theorem 6.

Outline of the proofs. Now we give an outline of our proofs. Let G € Gi(n) be K, 1 (t)-free and
has the maximum number of edges. Since e(G) > t,.(k)n?, we can assume that G is y-close to some
T € T, x(n). Using that e(G) is maximum, we can easily derive a minimum degree condition by
some symmetrization arguments.

Next we define atypical vertices. Roughly speaking, there are two types of atypical vertices: the
first type of vertices, denoted by Z” U W”, are the “wrong” ones that do not exist in 7y (n); the
second type of vertices, denoted by (W \W;) u ;. Z; for i € [r], are the vertices that are not in
U; but behave like the vertices of U;, in other words, they are in the wrong place. In the first half
of the proof (i.e., the proofs of Theorem 5 and Theorem 7), we completely ignore the first type of
atypical vertices because there are only a constant number of them (see (P1) and (P3)) and they
contribute only O(n) to e(G). For the second type of atypical vertices, there are only o(n) of them
(see (P1) and (P3)) and we move them to appropriate rows and redefine our partition as Ui,....,U,
(see (4.2)). A key observation is that Z; # (& (namely, there is a vertex in Z; but behaves as a
vertex in Z;) is possible only if [W;| = (1 — o(1))n.

Now we estimate e(G). We split E(G) into Eq(U}),...,Eq(U,), and E(G'), where G' := G n
K(Uy,...,U,). We have a relatively good estimate of ¢(G’) (see Claim 4.4) taking into account that
the partition is no longer balanced. In contrast, due to the second type of atypical vertices, we can
only show that each G[U;] is “almost” K -free (see Claim 4.5). Similarly, we show that all but at
most one rows are “almost” K7 ;-free (see Claim 4.7). Assuming that eq(U;) is the largest among

all e¢(U;), i € [r], we can collect the estimates and give an upper bound of ¢(G). Now we show that
U has no atypical vertices (Claim 4.8), and thus eq(U;) < z§a+l) (n). We further refine our estimate
on U;, i > 1, and show that each second type atypical vertex contributes at most a constant number
of edges to E(G)\E(G") (Claims 4.9 and 4.10). In summary, U; is indeed K -free, eq(U;) = O(n)
fori> 1, and |Z” U W"| = O(1), from which we conclude the proofs of Theorem 5 and Theorem 7.

To prove Theorem 6, we refine earlier estimates as follows. We first show that [W{| = (1 —o(1))n
and Z" OW" = &, where we use (F2). The rest of the proofs are further refinements of our estimates
for various cases (see, e.g. the definition of hs). In particular, at the very last step, we use (E3) to
show that all of Zi, i € [2,7] should be empty and |W/| should be equal to n.

We start with the following simple proposition.

Proposition 4.1. Given r,t € N and reals v,e > 0 such that €2 > 3r%t%y, and let n be sufficiently
large. Suppose G is a K, 1(t)-free graph with vertex partition V = Uy U --- U U, such that |U;| = n
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forie[r] and d(U;,U;) =1 =7, 4,j€|r], i # j. Let X =V be the set of vertices v satisfies that
d(v,U;) = €|Uy| for all i€ [r]. Then |X| < 2(t—1)e™"t.

Proof. We call a copy of K,.(t) in G useful if it consists of exactly t vertices from each of Uy, ..., U,.
We first show that for every v € X, N(v) contains many useful copies of K, (t). Indeed, d(U;,U;) =
1 — v for every i,j € [r], i # j implies that G[U;,U;]| has at most ~|U;||U;| non-edges. Since
d(v,U;) = elU;| for all i € [r], take W; S N(v) n U; of size exactly e|Us|. We can find [ [, (5‘?1")
rt-sets which consists of ¢ vertices from each U;, amongst which, at most

U\ bty (U]
Uil|U; | - ' s
Z Y|U;||U;] H( ¢ ) e|Ui| €|Uj] e? ig] t

i,j€[r] i#j i'e[r]

of them contain crossing non-edges. Therefore, N(v) contains at least

2ty e|Us| et U |
(-=) O =5 11 ()

i'elr i'e[r]

useful copies of K, (), where we used that r?t>ve=2 < 1/3. Since G is K, 1(t)-free, each useful copy
K of K,(t) is in N(v) for at most ¢ — 1 choices of v € X. Double counting on the number of pairs
(v, K) such that K < N(v) is useful, we obtain that

x5 T () <e-o 11 (),

i'e[r] i'elr]
which gives | X| < 2(t — 1)e". O

Given integers 1 < s < t and sufficiently large m,n, Kévari, Sés, Turdn [12] showed that
z(m,n, s, t) < Cmn'~* for some C = C(t) > 0, that is, a bipartite graph G with parts of size m
and n has at most Cmn'~Y* edges if G has no copy of K s,t Where the part of size s is in the part
of G of size m. This easily implies that ex(n, K, ;) < Cn?>~'/* for sufficiently large n.

Proofs of Theorems 5, 0, and 7. Suppose (Z) holds, that is, z§2) (n) = en?1/* for some ¢ > 0. Take
C = C(t) as in the Kévari-Sés—Turédn result in the previous paragraph. We choose constants

I/n«y«e«e «1/k 1/t e C.

Suppose G is K, 1(t)-free and has the maximum number of edges, that is, e(G) = exy(n, K,4+1(t)).
Suppose further that e(G) > ga(n,r, k,t) > t.(k)n?. By Theorem 3, G is y-close to some T €
Tr.k(n), where the color classes of T" are denoted by Uy, ...,U, with U; = W; U Z; such that Z; =
Viicya41 Y - U Vig, Wi = it b = 0 and W; is a subset of V; for some j > ar + 1 otherwise,
and T = K(Uy,...,U,) n K(V1,...,Vk). For i € [r], if W; # &, then let ¢; be the index such that

W; < Vg, and we know ar < ¢; < k. For simplicity, we write z:(n) = zyk/ T])(n).

The fact that G is v-close to T' gives the following observation.

(DO) for any i € [r], there exists B; < U; of size at most 2,/yn such that for any v € U;\B; and
Acl e[\ {3} U; satisfying that none of the vertices of A is in the same cluster as v is, we

have d(v, A) < \/7n.
To see it, fix i € [r] and write U* := J;,; U;. Since G is y-close to T', we have

eG(Zi,U*) 2 |Z;||U*| —n®, and  eq (Wi, U\Vy,) = [Wil[UM\V,| — yn®.



18 JIE HAN AND YI ZHAO

Let B] = Z; be the set of vertices v such that d(v,U*) > ,/yn, and B/ = W; be the set of vertices w
such that d(w, U*\V,,) > /yn. The displayed line above implies that |Bj| < /yn and |B/| < \/yn.
Now (DO0) holds by setting B; = B, u BY.

Minimum degree. For i € [k], let N; := Np(u;) for some u; € V;. Note that this is well-defined as
the vertices of V; share the same neighborhood in T'. Using the maximality of e(G), we derive that
for every ue Vj, i € [k]
da(u) = dp(u) — 2tyn.
Indeed, since G is vy-close to T, that is, |[E(G)AE(T)| < yn?, for each i € [k], we can greed-
ily pick distinct uy,...,u; € Vi, such that |Ng(uj)AN;| < yn?/(n — j) < 2yn, for j € [t]. Let
N/ = mje[t] N¢(uj) and note that |[N]AN;| < 2tyn. In particular, |N/| > |N;| — 2tyn. Now for
a contradiction suppose there is u € V; such that dg(u) < dr(u) — 2tyn = |N;| — 2tyn. Then we
replace Ng(u) by N/, that is, we disconnect all the edges of w in G and connect u to the vertices
of N/. Thus, we obtain a k-partite graph on the same vertex set as G and has more edges than
G. Therefore, by the maximality of G, this new graph contains a copy of K,.1(t), denoted by
K. Clearly, K must contain the vertex u, as G is K,;1(t)-free. Moreover, K must miss at least
one vertex from wuy,...,us, say u;, because the set {u,uq,...,us} is independent in G and K has
independence number ¢. However, as the neighborhood of u N} is a subset of Ng(u;), we can replace
u by u; and still get a copy of K,,1(t), which is in G, a contradiction.
Therefore, comparing with the degrees in T', we derive that for any vertex wu,

do(u) > {(k—a)n—lwﬁ—mn, if ue Z; for i€ [r],
G

4.1
(k—1—a)n—2tyn, if ueW. (41)

Atypical vertices. In this step we identify a set of atypical vertices, that is, those behave differently
from the majority of the vertices. Let W := Uie[r] Wi = Vgry1 U --- U V. We define W” :=
{veW:dwv,Z;) = en, forall j € [r]} and W/ := {v € W : d(v,Z;) < en}. Then we have
W=W"oW{u---u W Next, for i € [r], let Z" := Jep,) Z;', where

Z!:={ve Z;:d(v,Z;) =z en, for all j € [r|\{i} and d(v,U;) = en}.

Let Z := Z;\Z] for all i. We write Z; as | Z , where Z7, j # i, consists of the vertices v such

that d(v, Z;) < en, and Z! consists of the vertlces v such that d(v,U;) < en. Below are some useful
properties Of these sets.

Claim 4.2. The following properties hold for all i € [r].
(P1) [WAW;| < 2yn and [W"| < Cpy := 2te™"
(P2) W=W"UWju---uWyis a partition of W.
(P3) |Z”| 00, 1Z]| < \ﬁn for j #1i, and |Z}| = (1 — /7)an.
(P4) Ujer Z] is a partition of Z.

Proof. Recall the definition of W” and that d(Z;,Z;) = 1 — ~ for distinct 4,5 € [r]. Applying
Proposition 4.1 to the graph G[W” u Z] with vertex partition (Uy,...,U,), we obtain that |W”"| <
Cp := 2te™"". We next show that [W/\W;| < 2yn for each i € [r]. Indeed, because G is y-close to
T, we have eq(Z;, W\W;) = an|W/\W;| — yn?. On the other hand, by definition, ec(Z;, W/\W;) <
|WAW;| - en. Thus, we get [W/\W;| < yn/(a —€) < 27yn, verifying (P1).

To see (P2), suppose there is a vertex v € W/ n W]. By definition, d(v) < (k—1)n —2(a —¢)n <
(k—1—a)n — /yn, contradicting (4.1).
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Next we show (P3). Fix i € [r]. Since G is 7-close to T, we have d(Z;,Z;) > 1 — ~ and
d(Ui, Zj) = 1 —« for distinct j,j" € [r]\{i}. Thus, we can apply Proposition 4.1 on G[U; U | J;; Z;]
(with the obvious r-partition) and obtain |Z| < Cy. Moreover, for i # j, from d(Z;, Z;) = 1 — v
we infer |Z7| < (v/e)n < N, as v « e. Therefore, we also get |Z}| > |Z;| — |2]| — i 77| =
an — Co — (r — 1)yn/e = (1 — \/7)an.

Now we show (P4). By definition, if v € Z!, then d(v,U;) < en; if v € Zl-j for j # 4, then
d(v, Z;) < en. Thus, we have Z] epr] Zij by definition. A vertex v € Z! n Zl-j, j # i, satisfies
that d(v) < kn — (|U;| —en) — (a —e)n < (k — a)n — |W;| — (1 — 2¢)n, contradicting (4.1). A vertex
vE Zl-j N Zl-jl for distinct j, j" € [r]\{i} satisfies that d(v) < (k—1)n—2(a—e)n < (k—a—2)n+ 2en,
contradicting (4.1) as well. Thus, ([, ZJ is a partition of Z/. O

For i € [r], our refined partition is defined by

U, := Z; U W/, where Z; := U Z]Z (4.2)
Jjelr]

Then V(G) = 2" v W" U U U;. Note that for any v € U;, we have d(v, Z!) < d(v, Z;) < en, and
thus d(v, Z;) < en + (r — 1),/yn by (P3).

For every i € [r], note that (P1) implies that |W;\W/| < Co+(r—1)2yn < 2ryn, and similarly (P3)
implies that |Z;\Z;| < Co + (r — 1)\/an < ry/n.

We now derive a more handy minimum degree condition. For convenience, define d(v, A) =
|A| — d(v, A). For v e Z}, we have d(v,U;) = d(v,U;) — |U\U;|. Since d(v,U;) > an + |W;| — en
and |U\Ui| < |Z\Zi| + |[Wi\W/| < en/2, we have d(v,U;) = an + |W;| — en — en/2. By (4.1),
d(v) < an + |W;| + /yn. It follows that d(v, V\U;) < 2en. Now consider v € U;\Z!. The definition
of U; implies that d(v,Z;) < en and d(v,Z;) > an —en. Assume v € V;. Then V; n Z; = &
and trivially d(v,V;) = n. Tt follows that d(v,Z; U V}) > (a + 1)n — en. Hence d(v,Z; U V;) =
d(v,Z; 0 V;) = |Z\Zi| > (a + 1)n — 3en. On the other hand, either case of (4.1) implies that

d(v) < (a+ 1)n + \/yn. Consequently, d(v, V\(Z; uV})) < 2en. In summary, for i € [r] and j € [k],
(Deg) If v e Z!, then d(v, V\U;) < 2en; if v € (U\Z}) n Vj, then d(v, V\(Z; U V})) < 2en.

Next we prove further properties on Zl.j and Zj.

Claim 4.3. If Zij # & for some i # j, then the following holds.
(Q1) Forve Z) and A< V(G)\(Z U Z;), we have d(v, A) = |A] — en — V.

(Q2) [Wi| > (1—=— y/A)n.
(@Q3) If |Z;\Z;| = t, then |W;| < 2ten.

Proof. Note that d(v,Z;) < en and d(v,Z;) < (a — 1)n, that is, v has at least n + (an —en) =
(a+1)n—en non-neighbors in Z;uZ;. On the other hand, (4.1) says that v has at most an+|Wj|+,/7n
non-neighbors in G. Combining these two we get that v has at most |[W;|—n+en+,/yn < en+,/An
non-neighbors outside Z; U Z;, and thus (Q1) holds. The fact that |[W;| —n +en + /yn = 0
implies (Q2).

For (3), suppose to the contrary, |Zj\Zj\ >t and |W;| > 2ten. By (Q1) with A = W, arbitrary
t vertices in Z;\Z; have at least |W;| — t(e + \/Y)n =t common neighbors in W;. We thus obtain a
copy of K;; with one part in Zj\Zj and the other part in W, — denote its vertex set by B. For any
i" € [r]\{j} such that BmZij, # (J, we have [Wy| = (1—e—,/7)n by (Q2). Since |W;| > 2ten, W; and
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W; do not belong to the same cluster, and thus no vertex of B is in the same cluster that contains
Wy, which implies that the vertices of B have at least |Wy| — 2¢(2en) = n/2 common neighbors in
Wy by (Deg). For any i” € [r]\{j} such that B n Z,, = ¢ (and thus B n Z;» = ), by (Deg) we
have that the vertices of B have at least n/2 common neighbors in Z;». Because G is 7-close to T,
these common neighborhoods, each of size at least n/2, have densities close to one between each
pair, and thus contain a copy of K,_1(t). Together with B, they form a copy of K,11(¢) in G, a
contradiction. O

In particular, when b = 0 (and thus W; = ¢J for all 4), (Q2) implies that Zl-j = (¢ whenever i # j.
Consequently,
Ui = Z! = Z\z" for all i € [r] when b = 0. (4.3)
Let L < [r] be the set of indices ¢ such that |[W;| > (1 —€ — /7)n. (Q2) and (@3) imply that
e for i € [r]\L, we have Zj & for j # i.
e forie L, |Z\Z;j| <t—1and thus |Z;| <an+t— 1.

Estimate ¢(G). Let G = GnK(Uy,...,U,). We have ¢(G) = e(G")+Y_, ec(U;) +e(Z"oW",G).

Since G’ is r-partite, it is K, y1-free. As G’ is a subgraph of G € Gi(n), we have e(G’) < t,.(k)n?
(but this is not good enough when b > 0). Below we give an upper bound for e¢(G’), which will be
used throughout the proof. Recall that T = K(Vi,...,V3) n K(Uy,...,U,) has precisely t.(k)n?
edges,

Claim 4.4. We have e(G’) < t,(k)n? + 2iefr](Bi — ci), where

Bii= 3 120 (12)\2)] + Wjl = n + |20\Zil) and
JjeL\{i}
a; =|ZN\Zi||W]| + ex(W)) + er(Z\Z;).

Proof. We first obtain G©) := K(Z,uW{,..., Z,oW!)nK(V1,...,V;) from T. During this process,
we lose the edges of T' between W; and W, j # 1, if both ends of the edges are placed in W;. Thus

e(GO) =t (k)yn® — | er(W)). (4.4)
i€[r]

We imagine a dynamic process of obtaining G/ from G by recursively moving vertices. To
estimate e(G’), we track the changes of the edges with respect to complete r-partite graphs (but
also respecting the k-partition of G). More precisely, for [ > 0, let

GO =KkZY oW, ZO0 OW)) A K(WVA,..., V)

such that the r-partition of G®) can be obtained by _moving exactly one vertex from the partition
of GU=1. The process terminates after m := = Dl |Z \Z;| steps and thus G’ is a subgraph of G(™.
Furthermore, throughout the process, we only move vertices from the color classes in L to other
color classes. Therefore, we can give a linear ordering to the members of L, and for i € L we move
vertices from Z; only after we have moved the vertices in color classes j prior to i (denoted by
j <z ). Now, in the [-th step, suppose we move v from Z](-lfl) to ZZ.(lfl)
change is

, namely, v € Zji-, then the

_ -1 AU
(GO — e(GY) = 12N, |+ (W = 12070 = ),
where V}, 3 v and Z(l b_ (l D \V
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Note that we have \Z;l_l)\‘/ﬂ < (a—1)n+|Z;\Z;|. Moreover for any j' <z, j, we have Z;, c Zi(l_l).

Therefore, we have |Zi(l71)| > an — |Z\Zi| + ] |Z]’,| Putting all these together, we get

j'<rj
AG0) — (GO < 1Z\Z| + Wil —n+ |Z0Z] — 3 125 - W]
J'<rj

(1=1) ¢ 70D

Recalling that we moved v from Z; at the [-th step, we obtain

e(G') — e(G) Z 1 Z\Z5] + (W) = n + | 2\ 2] — Z Z5| = Wil |,
=1 J'<ri
where 4, j depends on . Since m = >, |Z:\Z;|, we have
D2\ + W) = n+[Z0\Zi| — W)
1=1
= >0 2 1ZIIZ)NZ| + Wi = n+ | Z0\Zi| — (W)
ie[r] jeL\{i}
= >0 20 1ZIIZNZ | + Wl =+ |ZAZi) = ), |1 Z0\Z:| [ W)
i€[r] jeL\{i} i€r]
Moreover, it is not hard to see that

Z Z |Z5| = Z Z Z: 125, ] = Z er(Zi\Z;).

I=1j'<rj i€[r] {leé}E(L\éi}) i€[r]

O

Now the claim follows by combining these estimates with (4.4).

Our main task is bounding the number of edges in each U;. For i € [r], we have e(G[U;]) =
e(ZE G[Ui)) + eq(Ui\Z}). To bound eq(U\Z}) = ec((Zi\Z;) v W/ ), we note that ec(Zi\Zi, W]) <
|Z\Z||W!| and eq(W!) < er(W/). However, we may not have eg(Z \Z:) < er(Z;\Z;) because each
Zji» is an independent set in T', but may not be independent in G when a > 2. Thus, eg(Z \Z;) <
er(Z\Z;) + i eg(Z;). Putting these together, for each i € [r], we have

ea(UNZ)) = ec(Z\Zi, W) + ec(W)) + ec(Z)\Z;) < ai + Y ec(Z)). (4.5)
J#i

Let f; := e(Z¢, G[U;]). Applying Claim 4.4 and (4.5), we derive that

e(@) = e(G) +e(Z" UW", Q) + Z fi + ea(U\Z)) (4.6)
<t (k)n® +e(Z2" oW, G)+ . ( fit Bi+ ), eG(z;I)> (4.7)
i€[r] J#i

The following claim shows that a large portion of G[U;] is K; 4-free (though we cannot prove that
the entire G[U;] is Ky ¢-free).
Claim 4.5. The following holds for all i € r].

(K1) Both G[Zi] and G[Z} v W!] are Ky 4-free.

(2

(K2) If |W]| > 2ten + 2yn, then |W/\V,,| <t —1.
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(K3) If [W!| > 2ten + 2yn, then G[Z; 0 (W} A V,,)] is Ky 4-free.

Proof. For (K1), suppose there is a copy of K;; in U;, with vertex set denoted by B, contained
in Z; or in Zf u W/. Let Np be the set of common neighbors of these 2¢ vertices of B. First
assume that B < Z;. Then for any j € L\{i}, by (Deg) we have |[Np n Wil = |Wj| — 4ten,
and thus by (P1) [Ngp n W; n Wj| = [W]| — 4ten — 2yn > n/2. For any j ¢ L u {i}, because
BnZj = & by (Q2), we have [Ng n Zj| = an — 4ten = n/2 by (Deg). Note that every set in
{NgnZj:j¢ L} u{NpnW;nW]:je L} has size at least n/2 and every pair of them has density
at least 1 — 4~. Therefore we can find a copy of K,_1(t) in the union of these sets, which gives rise
to a copy of K, 1(t) together with B, a contradiction.

Second we assume that B © Zf v W/. In this case we note that for any j # ¢, we have BnZ; = &
and thus by (Deg), we have [N n ZJ]| > (1 —/7)an — 4ten > n/2. Then as these sets have high
pairwise densities, as in the previous case, we can find a copy of K,_1(t) in the union of these sets,
yielding a copy of K,..1(t) together with B, a contradiction. Now (K1) is proved.

Now we turn to (/K2), and suppose |W/| > 2ten + 2yn and thus |W; n W/| > 2ten by (P1). First,
if W/ contains at least ¢ vertices which are not from V,, (the cluster containing W), then by (Deg),
each of these vertices have at most 2en non-neighbors in W; n W/, and thus we can find a copy of
K4 in W/, contradicting (K'1). So we have [W/\V,,| <t—1

For (K 3) suppose there is a copy of K;; as stated in the claim, whose vertex set is denoted
by B. As in the previous paragraph, we have |W;| > 2ten by (P1). Now observe crucially that if
Bn Z;» # (J, then by (Q2) |W;| + |W;| > n, and thus, W; and W; are not from the same cluster.
So by (Deg), for any j € [r — 1]\{¢}, if B n Z; = (J, then the vertices of B have large common

neighborhoods in Zg; if Bn Z]Z: # (J, then the vertices of B have large common neighborhoods in
W; n W} (note that [W;| > (1 —e — \/7)n by (Q2)). Since each of these common neighborhoods
have size at least n/2 and each pair of them has high density, we can find a copy of K,_1(t) in the
union of these sets, yielding a copy of K,;1(t) together with B, a contradiction. O

We now derive an upper bound for ¢(G) from Claims 4.4 and 4.5. For i € [r], we have j3; <
S ey |ZIIZAZ] + WAV | + [Z0Z]) as [Wj| —n < WAVl Fix j e L\{i}. Note that
[Wj| = (1 —2e)n. We have |Z;\Z;| <t —1by (Q3), and [WA\V,,| <t —1by (K2). If [W;| > n/2,
then |Z;] <t —1 by (@3). Furthermore, since |Z;\Z;| < (r — 1)/yn + Co by (”3), it follows that

|1Z}| <|Zj\Zj| + WAV, | + |ZZ-\ZZ-|) S{E-1)t—1+t—1+ (r—1)y/An+Co) < (t —1)r\/An.

Otherwise [W;| < n/2, and by (Q2), we have Z' = & for any i’ # i. This implies |Z;\Z;| = |Z/| <
Cyp. Using |ij| < \/n, (@3), and (K2), we derive that
23] (12)\Z5] + [W}\Vy, | + 1ZAZil ) < v/An(2(t = 1) + Co) < 2Con.

Summarizing these two cases for all j € L\{i}, we obtain that 8; < (r—1)2Cy,/yn, and consequently,
Z Bi < 2(r — 1)rCo/yn. (4.8)
€lr]

On the other hand, for all 7 # j, the graph G[Zi] is Ki4-free by (K1) and thus, by (P3),
i jrin eg(Z;) <r(r-1)C (\fn) ~ . Applying this with (4.7), (4.8), and the fact that e(Z" U
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W” G) < (r + 1)Cokn, we obtain that

e(G) < tr(k)n® + (r+ 1)Cokn + > fi +2(r — DrCoyan+ Y eq(Z)) (4.9)
ie[r] INEE]
<te(B)n® + ), fi +r?Cyam® 1

i€[r]

Using the assumption e(G) > ga(n,r, k,t) > t,.(k)n? + z(n), we infer that

> fi = z(n) = r2CyAm T > St (4.10)
i€[r]

by using (Z), z(n) = z§2) (n) = en®> 1t and v « 1.

In the rest of the proof we will derive a contradiction to (4.10). We first study the existence of
K+ in each color class. To do so, we consider a copy of K3(t) in G[U; u U;] for some i # j.

Claim 4.6. For any i # j, if G[U; U U]] contains a copy K of Ks(t), then there exists | ¢ {i,j}
such that V (K) intersects Vg, and every cluster in Z;.

Proof. We may assume that r > 2 as otherwise the claim is trivial. Suppose to the contrary that
there is a copy K of K3(t) in, say, U; and Us, such that for every [ € [3,7], there is a cluster in
U; which does not intersect B := V(K). Let V;, be a cluster in Z; such that B n'V;, = ¢J, and
if there is no such cluster in Z;, then we choose V;, = V,,. Note that in the former case, we have
U, n Vi| = |2} n V| = (1 — \/ya)n. In the latter case, we have Z} # & or Z? # &, which implies
that [W;| = (1 — 2¢)n by (Q2), and thus |U; 0 V;,| = [W/ A V;,| = (1 — 3¢)n. Now, by (Deg), every
vertex in B has at most 2en non-neighbors in U; N V;, for each [ € [3,r]. Since for every [ we have
|U; A V;,| = 0.9n, one can find large common neighborhoods (e.g. of size n/2) of all vertices of B in
cach U; ' Vj,, and then find a copy of K,_o(t) in these sets. Altogether we obtain a copy of K, (t),
a contradiction.

Therefore, for such a copy K of K3(t), there exists [ ¢ {i, j} such that K must intersect all clusters
of U;. Since V(K) n Z; # &, we have Z} # &5 or le # . Then by (Q2), [W;| = (1 — 2¢)n and in
particular, V,, # . Therefore V(K) NV, # &. O

Claim 4.7. For all but exactly one j € [r], we have d(v, ZJ]) <t—1 for allv e Uj.

Proof. First assume that there exists j € [r] such that G[U;] contains a copy of K, with vertex
set denoted by {v,uqy,...,u}, v € ﬁj and uy,...,u; € ZJJ Fix i € [r]\{j} and let N’ be the set
of common neighbors of uq,...,u; in U; n U;. Suppose v € V, and let N be the set of common
neighbors of these t + 1 vertices in U; n U;. In particular, N € N’ and N is almost equal to the
union of @ or a + 1 clusters in U;. Suppose there is a copy of K;_1; with parts S; of size ¢t — 1 and
Sy of size t such that S; € N’ and So € N. Then by Claim 4.6, there exists [ € [r]\{i,j} such
that Bn Z; # & and B n'V,, # &, where B denotes the vertex set of the copy of K3(t). This is
impossible since v is the only possible vertex in B n (Z; u V) and can not satisfy both. Therefore,
G[N, N'] is K;_1-free, implying that eq(N, N') = O(n>~ /(=)

By (P1), (P3) and (Deg), we have |(U;\V,)\N| < 3(t + 1)en and |U;\N'| < 3ten. Let E' be
the set of the edges incident to (U;\V,)\N or U;\N" and counted in f;. We split it to E* n Eg(Z})
and E' n Eq(U\Z!, Z}). Note that by (K1), each of the terms can be split further into at most k
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K 4-free bipartite graphs, each with one part of size at most 3(¢ + 1)en and the other part of size
at most (1 + (r — 2),/7)an. Therefore, we obtain that

fi = O(en®> VY £ O(n?>~ YD) = O(en*= 1Y), (4.11)

Now assume there exist distinct ji, jo € [r] such that each G[Uj,| contains a copy of Kj; whose
part of size t is in Z]JZ The arguments above imply that (4.11) holds for all i € [r], and consequently,
el fi = O(en® /), contradicting (4.10).

On the other hand, if d(v, Z]]) < t—1for all j € [r] and all v € Uj, then e i < (E—1)kn,
again contradicting (4.10). O

By Claim 4.7, without loss of generality, we assume that,
fori>2, d(v,Z))<t—1forallvelU; andthus, f; < (t—1)|U;| (4.12)

If b = 0, then U; = Zt = Z\Z" for all i by (4.3). In this case U, is K 4-free by (K1) and U, is
K 4-free for all i > 2 by (4.12). Since G is v-close to K, (an), G[U;\Z",U;\Z"] is almost complete
for all i # j. This completes the proof of Theorem 7 with Z := Z” (note that (Z) holds because
t=2,3).

Furthermore, when b = 0, together with e(G’) < t,.(k)n?, we conclude that

e(G) < tp(k)n? + z(n) + (r — 1) { anJ + | Z"|kn. (4.13)

By (P3), |Z"| < rCp, and this proves Theorem 5 for the case b = 0.

We thus assume b > 0 for the rest of the proof of Theorem 5. By (4.10) and (4.12), we get
fi= z§a+l)(n) —en? 1t (4.14)
In particular, we claim that
|W1| > 3ten (4.15)
(which we will refine a moment later). Indeed, the edges counted in f; can be covered by G[Z{],
G[Z}, W1 n W]], and at most k K;,-free bipartite graphs, each with a part of size at most NG
and a part of size at most an. If [W| < 3ten, then eg(Z}, W1 n W) = O(en® "), Together with
eq(Z1) < zt(a) (n), we have

fr <47 (n) + O(en® ) < 4D (n) — en® 1/t
by (E1), contradicting (4.14).

Now we can give a much cleaner structure, shown in a series of claims below.
Claim 4.8. Suppose b> 0. Then Uy = Z} O W| and W] S V,,.

Proof. Suppose to the contrary, there is a vertex v in Uj\(Z} u W{) or W{\V,,, namely, v € Z}
for some 2 < ¢ < r or v e W{\V,,. Suppose v € V;. Then [ # q;. Morepver, if i is defined, then
W] AV, € V\(Zi uV)); otherwise, W| nV,, € V\V,. By (Deg), we have d(v, W] nV,,) < 2en.
Let N := W{ nV,, n N(v). We have |(W] n V) )\N| < 2eN. Since [W\V,, | < [W\Wi| < 2vn, it
follows that [W{\N| < 2en + 2yn < 3en.

Recall (4.15), [W1| > 3ten. By (K3) (ifve Z1\Z;) or (K1) (ifv € W{\V,,), we know that G[Z], N]
contains no K, 1 with the part of size t in N. This implies that eg(Z],N) = O(n>~V/{=1),
Furthermore, by (P3) and (K1), G[Z1\Z}], Z]] is a K;free graph with one part of size at most
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(r —1)4/7n and the other part of size at most an. Thus, eq(Z1\Z}, Z1) < C(r — 1)y/yn(an)' /¢
By the similar arguments, we have eq(W{\N, Z}) < C(3en)(an)'~*.
Putting these bounds together with eq(Z1) < zéa) (n), we get

fi = ec(Z1) + ec(Z{, N) + ec(Z1\Z1, Z1) + ea(W{\N, Z})
< 2% (n) + O(m* VD) 4+ O(yn* V1) + O(en® /1),
By (E1), this implies that f; < zt(aH)(n) — en?7V/t contradicting (4.14). O

Claim 4.8 shows that U; has no atypical vertices and is thus Ky -free by (K1). Furthermore,
since Uy = Z{ U W] and Wy € V,,, it follows that

ar=p1 =0, and eq(lh)=f <22 aWi|,.. |12 A Vol IWY)) < 2P (). (4.16)

Next we study G[U;] for i > 2. A key observation is that copies of K, in G[U;] together with
copies of K; 1, in U; may form copies of K3(t), which are restricted by Claim 4.6.

Claim 4.9. Suppose b >0 and i € [2,7].
(1) If there is a copy of K14 in U\(Z1 U Vy,), then there exists | € [r]\{i} such that the vertex
set of K14 intersects Vg, and every cluster in Z.
(2) Z\Zy and Z} © (W\Vy,) are Ky -free.
(3) If t < a, then U\(Z1 U Vy,) is Ky 4-free.

Proof. For Part (1), let B be the vertex set of a copy of K14 in U;\(Z1UV,,). Since BN (Z1UV,,) = &
and Uy < Z; U Vg, by (Deg), all vertices of B have at most 2en non-neighbors in Ui. Letting
N :=U; nNyep N(w), we have [N| = Uy — (¢ + 1)2en.

First assume that N is K;_j-free and thus eg(N) = O(n?>~"/¢=1). Note that, since |U;\N| <
(t + 1)2en, the edges in U, incident to ﬁl\N can be split into a + 1 bipartite K;;-free graphs each
with one part of size at most (¢ + 1)2en and the other part of size at most an. Thus, the number of
such edges is O(en?~1/t). This gives fi = O(n?>~V/¢=D) 4 O(en?~ %), contradicting (4.14).

We thus assume N contains a copy of K; 1;. Together with B, they form a copy of K3(t) in
G[U; U U;] and we denote its vertex set by B’. By Claim 4.6, there exists [ ¢ {1,i} such that B’
intersects V,, and every cluster of Z;. By Claim 4.8, U nU = &,s0 BnZ, = Bn Z and B
indeed intersects every cluster of Z;. Since UinZ 2BnZ # ¢, we infer that (Wil = (1 —2e)n
from (Q)3), which implies that ¢; # ¢1 because of (4.15). It follows that W1 n'V,, = & and thus
BV, =B nVy # &, as desired.

For Part (2), let A; := Z! U (W/\V,,) and B be the vertex set of a copy of K1 in Z;\Z; or in
A;. Then, by the first part of the claim, there exists [ € [r]\{i} such that B intersects V, and every
cluster in Z;. This is impossible if B € A; because A;nZ; = ¢J for any [ ¢ {1,4}, and also impossible
if B < Z;\Z; because in which case BN W = & and thus B n V,, = & for any I ¢ {1,}.

Part (3) follows from Part (1) immediately. O

The next claim bounds eg(Z}) for i > 1.
Claim 4.10. For every i< [2,r], eq(Z}) < (5)(t — 1)|Z]].

Proof. Suppose |[W;| = (1 — e — /7)n (otherwise Z{ = & for i > 1 by (Q2) and there is nothing
to prove). Fix i € [2,7]. Suppose a > 2 (if a = 1 then eg(Zi) = 0). We claim that for distinct
i1,i2 € [a], there can not be two copies of K, in the bipartite graph G[Z} n Vi, Z] n V,], one
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centered in Z{ N V;, and the other centered in Z{ N V;,. We show this for i; = 1 and i3 = 2. Suppose
we Zi nVy and uy,...,u; € Zi 0 Vs form a copy of Ky while w' € Zi n Vo, u),...,u, € Zi A V4
form the other copy of K. By (Deg), w,u), ..., u, each has at most 2en non-neighbors in U;\V}
and w’,uq,...,u; each has at most 2en non-neighbors in Ul\Vg Let

Ny = <U1\(V1 U Vs ) ﬂ N(u;) and Ny = <Ul\v2) A ﬂ N(u;)

(thus Ny N No € Uy). By (P3) and [Wi n W{| = (1 — e — \/7)n — 2ryn = (1 — 2¢)n, we have
IN1| = (1—+7)an —2n+ (1 —2e)n — (t + 1)2en = (a — 1)n — (2t 4+ 5)en

and similarly [Na| = an — (2t + 3)en. If G[N1, N2] contains a copy of K1 with the part of size ¢
in Ny, then it together with {w,uy,...,u;} forms a copy of K3(t) in U; U U;. Let B be the vertex
set of this K3(t) and note that B < U;. Thus B n Z; = 4 for [ # 1 contradicting Claim 4.6.
This implies that eq(Ny, No) = O(n>~ Y1) Now let N| = (U1\(V1 u Vo)) n N(w') N (e N (u7)
and N} = (U n Vo) N (i IV (uj). By the same argument as above, G[N7, N3] contains no copy
of K; 1, with the part of size ¢ in Nj, which implies that eg(N{, N3) = O(n>~Y/(=1D). Note that
all but O(en?Y*) edges of G[U]\G[V1, V2] are in G[N}, N4] or G[Ny, Ny]. We thus derive that
i< 2152) (n) + O(M2~ V1Y £ O(en® 1) < z(n) — en? "V by (E1), contradicting (4.14).

The conclusion above implies that eq[Z] N V;,, Z; n Vi,] < (t — 1) max{|Z; n Vi, |,|Z] n V,|}.
Therefore,

i i i i a i
ec(Z) = Z ec|Zi 0 Vi, Z1 0 Vi, < Z (t—1[zi] < (2>(t—1)|z1|' O
il,ige[a] il,iQE[a]

Claims 4.9 (2) and 4.10 together give eg(Z’) max{(t — 1)|Z’| (5t — D|Zil} = ()t — A
whenever i # j. Thus, by (P3),

Z ea(Zy) <r(r—1) (;) (t — 1)y/n < a®r’ty/yn (4.17)
i\jrit]
Together with f; < z§a+l)(n) and f; < (t —1)|U;] for i > 2, we derive from (4.9) that
e(G) = t:(k)n? + 2"V (n) + O(n).
This concludes the proof of Theorem 5 (note that we have not used (E2) or (E3)).

Proof of Theorem 6. We refine our earlier estimates and prove Theorem 6. Since ;. j ec;(ZJZ: ) <
2r?t\An and f; < (t — 1)|U;] for j € [2,7], we have the following bound better than (4.14),
f1 = z(n) — 3rCokn. (4.18)
Furthermore, we claim that
if >0, then |Wj|>=(1—-v)n (andthus 1€ L). (4.19)
Indeed, by Claim 4.8, if |[W{| < (1 — v)n, then we have f; < zlgaﬂ)(n, coon W) < z§a+1)(n) -
6n?~1/t for some 6§ > 0 by (F2). This contradicts (4.18).
Next we show that 2”7 v W”" = &.
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Claim 4.11. Suppose vy € V(G) and i € [r] satisfy that vy has at least en neighbors in Z; for every
Jj # 1. Then vy has less than en neighbors in U;. In particular, we have Z! = & for all i € [r] and
W' =@.

Proof. The second part of the claim follows immediately from the definitions of Z and W”.
Suppose to the contrary, that there exist vg € V(G) and i € [r] such that vy has at least en

neighbors in Z; for every j # i and at least en neighbors in U;. Since |Z]’| > (1 - /7)an for all
J € [r], there exist sets Ny,...,N,_1 each of size en — \/yan such that N; Zg N N(vg) for j # i
and N; € (Z! U W;) n N(vo). Recall that W] = W{ nV,,. By averaging, there exists N| & N; with
IN{| = (en — \/yan — 2ryn)/(a + 1) = en/(a + 2) such that all vertices of N are in Z{ u W] and
from the same cluster, that is,

N € Q, where Qe (Vi n Z{,Van Z1,..., Vo n Z1, W},

Note that Ni < W/ is possible only if ¢ = 1. If 4 # 1, then let N] := N;\((W;\W,) u V,) and for
every j € [r]\{1,4}, let N} := N;. By (P1), [W\W/| < 2ryn, and by (4.19), [W; n Vg, | < yn. Thus,
we have |N7| > en/(a+2) for all j € [r]. Because the sets NV} are small, we can not apply the degree
conditions (Deg) to them and instead, we use (DO).

Recall that By is given by (D0). Next we show that G [Ul\Bl] does not contain a copy of K; 1
such that the part of size t is in N{. Suppose instead, there is such a copy of K; 1, with parts
denoted by A and B, such that |A| =t and A < Nj\B; and B € U;\By. Recall that N/ nV,, = &
and for each j € [r]\{1,i}, N} < ZJJ Observe that for every v € U;\Bj, we have d(v,Nj) >
|Nj| — y/An. Indeed, if j # i, then N} < Zg and we have d(v, Nj) > |Nj| — y/n by (D0); otherwise
note that N/ < Z! U (W] n W;), and by (D0) and N] 'V, = & we have d(v, N}) > |N/| — \/yn.
Therefore, we obtain that the vertices in A U B have at least [NJ| — (2t — 1),/An > (1 — 71/3)|N]/-|
common neighbors in each N ]’-, Jj € [2,r]. Because each pair N ]’-, N J{, has a high density, we can find
a copy of K,_1(t) in the union of these common neighborhoods, which together with A U B U {vg}
form a copy of K,11(t), a contradiction.

Now given that G[Ul\Bl] does not contain a copy of K;_1; such that the part of size t is
in N{\Bi, we shall give a refined estimate on fi. Indeed, for each Vj, j € [a], we know that
G[N;]\Bi, (V; n Z1)\B1] does not contain a copy of K;_1 4 such that the part of size ¢ is in N]\ By, im-
plying that eq(Nj\B1, (V; n Z1)\B1) = O(n?>~V/(=1). Similarly we also have eq(N{\B1, W{\Bj) =
O(n?~Y(=1). Suppose N < V, for some q € [a] U {q1}, then we have

E(G[Uh]) = B(GIU\(N{\B1)]) v E(G[N{\B1,Ui\(B1 v Vy)]) v E(G[N{\B1, Bi n U1))).
Recall that |N{| > en/(a + 2) and |Bi| < 2,/yn. Therefore, we can bound f; < |E(G[U1])] by

J1< % ((1 — )N, .. ,n) + 0>V 4 O(ﬁn%l/t) < z(n) — 3rCokn,

where we used (E£2) and v « €. This contradicts (4.18). O

When b = 0, since Z! = ¢ for all i € [r], we can improve (4.13) to e(G) < t,(k)n® + zt(a) (n) +

(r — 1)| 5t an/, proving Theorem 6 for b = 0.

In the rest of the proof, we assume b > 0. We start with the following claim.

Claim 4.12. For i€ [2,r] such that |W;| = 2en, we have U; € U; U V.
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Proof. Suppose instead, for some ig € [2,7] with [W;,| = 2en, there exists v € U;,\(Us, U Vaio)-

By (P4) and the fact that v € U;)\Uj,, we infer that d(v,Z;) = en for all j # ig. Then, by
Claim 4.11, we have d(v,U;,) < en. Consequently, d(v, W/ n W;,) < en, namely, v has at least

20

2en — 2yn — en = (3/4)en non-neighbors in Wi n W;, (in G). Note that v is adjacent to all the
vertices of W n W;, in T. Since G[W; ] < T[W] ], we infer that
ec(Wi) + ec(Zi)\Ziy, Wi,) < er(Wiy) + | Zi\Zio | [Wi, | — (3/4)en
Since eq(Zi,\Zi,) < er(Zi,\Zi,) + 2 #io eG(ZZo) and o, = | Zig\Zio ||[W!| + er(W}) + er(Zig\Ziy),
we have
eGajio\Zio) = eG<Zio\Zio) + eG<Wi/o) + eG<Zio\ZZov W/ )
< er(Zig\Ziy) + ) ec(Z)) + er(Wiy) + | Zig\Zio| Wi, | — (3/4)en
J#i0
<o + Y. ea(ZP) — (3/4)en. (4.20)
J#io
Combining (4.5) and (4.20) gives X e ec(U\Z}) < Die[r] ¥ T i eg(ZJi») — (3/4)en. Since
i i eg(ZZ) < a?r?ty/yn by (4.17) and v < ¢, it follows that
D ea(UNZ)) < Z o —en)2 (4.21)
i€[r]
Recall that f1 < z¢(n) by (4.16). We next bound fZ for i = 2, noting that
fi = e (Z, G120 (WAVa)) + eq (21 (Z0\Z5) o (W a0 V).
By Claim 4.9 (2), G[Z! U (W/\V,,)] has the maximum degree at most ¢ — 1, and thus,

e (Z,G[Zi 0 (WAV)]) < ea(Zi 0 (W) < =2 (120 + WAV ).

By (4.12), e <Zii, (Z\Z:) U (W] A V;h)> < (t—1) <|ZZ\ZZ\ + W] n Vql\). Putting these together,

t

-1, - t—
fi < 2+ WAV D) + (6 = 1) (1Z0Zi + W o Vi) =

1/ - -
= (101 + 1272l + W/ A V)

By (P3) and (4.19), we have | Z]| = (1—/7)an, [W]{| = (1— 7)n and thus, |U;] > (a+1)n(l—/7).
By (P3) and (4.19), we also have |Z,\Z;| + |[W/ n Vy,| < (r — 1)/yn + yn < ry/yn. It follows that

Z fi < tT (kn—(a+1)n(l — /) + (r—1)ryyn) < (k—a— 1)n% + n. (4.22)

Since Z" v W" = &, we rewrite (4.6) as e(G) = e(G') + X fi + eq(U\Z}). By Claim 4.4, it
follows that e(G) < t,.(k)n? + e (fit Bi— o +eq(UNZE)). Recall that 3_, 5 < 2(r— 1)rCoy/n
by (4.8). Together with (4.21) and(4.22), we derive that

t—1
e(G) <t (k)n® + z(n) + (k —a — Dn=—=+ ¢/n +2(r = )rCoy/An — en/2 < ga(n, 1, k, 1),
a contradiction. O

Next we upper bound e(U;) and separate the discussions depending on whether |W;| > 2en or

not. For i€ [2,7], let U := U\(Z1 U V).
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Claim 4.13. For i€ [2,r], we have

(t— 1)min{|Z§|, Wi} ifa =1, and |W;| = 2en
e (N.)< |ﬁi|(t—1)/2 if a =2 and |W;| = 2en
=V - 0020z + W) + ifa—1, and [W| < 2n

UFISE |+ + i + a®t(|Z5]| + |W] A Vy|) if a =2 and |[W;] < 2en,
where t' = (t —1)2/(16(a — 1)). Moreover, when |W;| < 2en, a = 2 and t < a, we have e(U;) <
[1UF15H ] + i + a®t(| Z{] + [W] 0 Vg, ]).

Proof. Assume |W;| = 2en. Since |W] > (1 —v)n, we know that ¢; # ¢;. It follows from Claim 4.12

that U; € Z}u(W/nV,,). By Claim 4.9 (2), U; is K1 4-free and thus, eg(U) |U;|(t—1)/2. Fora = 1,

since both Z! and W/ < V,, are independent sets, it follows that eq(U;) < (t — 1) min{|Z|, |[W/|}.
Now we consider the case when |W;| < 2en. Recall that

ec(Ui) = fi+ ec((Z]\Z:) v W)).
When a = 1, we have e(Z}) = 0 for all j € [r]. Thus fi < (t — D(1ZNZi| + |[W!]) by (4.12) and
ec((Z\Z;) v W) < a; by (4.5). As a result, eq(Ui) < (t = 1)(|Z0\Zi| + [W!]) + o as desired.
Now assume a > 2. Let ZF := (Z,\Z;)\Zi, and W} := W/\V,,. For every j € [r]\{1,4}, consider
the family F; := {Z]Z AViG—as+1s--- ,Z]Z: N Vja, W0V, }. Let B; be the smallest set in F; and A; be
an arbitrary set in F;\{B;, W;* n Vg, }. Further, define A := ;e\ g1,y 45 and B := Ujep 1,1} Bi

By Claim 4.9, both Uf\A and U}\B are K ;free. This implies that eq(U;\B) < ||UF\B|%52| and
e(B,G[U\A]) < |BJ(t — 1). Together with eq(A, B) < |A||B|, we obtain that

eawws[meﬁgi]HBw—lwwmww—hﬁﬁZ%]|m(———+m0

Since, by definition \B| < (1ZF] — |AD/(a — 1) =: z, unless 52 + |A| — | ZF| < 0, we have

t—1 (t—1)2
Bl|——+A|-|Z}|)<z|——(a-Dz) < >~ =1
B (S5 414 1z) <2 (5 - @ m) o
Trivially |A| < |Z}| and |B| < |[W}*|. Altogether, we get

t—1
eq(Uf) < UU’ﬂTJ + '+ | ZF||W. (4.23)

Let X; := Zi u (W] nV,,) and we bound e(X;, G[U;]) as follows. Since U; = Z; u W/ =

3 K3

ZPu X; 0 ZF O W, we have
e(Xi, GUi) = ec(Xi, Z)) + e(Z1,G[Z} v ZF 0 W]]) + e(W] 0 Vo, G[Z* 0 WS])
= ea(Xi, Z)) + ea(Z)) + ea(Z1, ZF W) + ea(W] 0 Vg, ZF W)

Note that eq(Z}, Z¥) < er(Z\Zi), ec(W] n Vi, , W) < er(W!), and

eG(Z1, W) + e(Wi 0 Vi, Z5) < | Z{|Wi| + W] Vi, || 2| = | Z\Zi||W| — | Z*[|]W¥).
Recall that a; = |Z\Z||W!| + er(W}) + er(Zi\Z;). Tt follows that

ea(Z1, 2 W) + ea(W n Vo, Wit U ZF) < er(Z\Z:) + ex(W]) + | Z\Zi| |W]| — | Z*(|W*]

= i~ |70
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Applying eq(X;, Z}) < (t — 1)|X;| from (4.12) and eq(Z]) < (3)(t — 1)|Z}| from Claim 4.10, we
derive that

X GITD) < (0= DI+ (3) 6= D121+ = 12211771 (4.24)

Together with (4.23), this gives the desired upper bound
- 1 .
eq(U;) < [|U*|—J +t+ (t—1)|X;] + <g>(t—1)|Z{| + o
*) Y 1 ! 2
< [|UZ- |TJ +t' + a”t| Xi| + .

At last, when a > 2 and ¢ < a, we know that U/ is Ky -free (Claim 4.9 (3)) and thus eq(U;") <
[|Ui*|t21J. Together with (4.24), this gives eq(U;) < UU*|t L+ o + a®t(| Zi] + W] Vg, |). O

For i € [r], if [W;| = 2en, then Z\Z; = & by Claim 4.12, and therefore, 8; = 0. If |[W;| < 2en,
then Z;\Z; = & by (Q)2); for any j € L\{i}, we have Z;\Z; = J and W} €V, again by Claim 4.12.
Hence B; = Xicp i) |Z]’|(|W]’| n) < 0 because [W;| < n. Together Wlth (4.16), for i € [r],

5 = 0 ' / if [W;] 2 2en (including i = 1), (4.25)
2jerny 1 Z;1(IWj| —=n) <0 otherwise.
We are ready to finish our proof. Write z; := |Z;| and w; := |W/| for i € [r]. Further, write

ny :=|Z{ n V| for € [a]. Then 2 = Zle[a] ny. By (4.16), we have eq(U1) = f1 < zt(n1, ..., ng, w1).
We separate the cases when a > 2 and when a = 1.

The case when a > 2. Note that there are at most r — b indices i € [r] such that |W;| < 2en. By
Claim 4.13, and using that >};_, |U*| = (k —a — 1)n, we have

-~ t—1
Z eq(U;) < fi + (an — 2z + n — wy)a’t + {T(k‘ —a— 1)nJ + (r—b)t' + Z a;
ie[r] i:|W;|<2en
Since e(G) = e(G') + Xier] eq(U;), it follows that
2 t—1 / !
e(G) < fi+ (an—z1 +n —wy)a’t + T(k’—a—l)n + (r=0b)t +e(G) + Z Q.
©:|Wi|<2en

Claim 4.4 and (4.25) together imply that

e(G") < tp(k)n +2 (k> — >

©:|W;|<2en

Together with fi < z¢(nq,...,nqe,w1), this gives
t—1
e(G) <t (B)n? + z(n1, ... ,ng, w) + (an — 21 +n —wy)a’t + {T(k: —a— 1)nJ + (r =)t

If an — z1 + n —wy > 0, then by applying (E3) repeatedly, we have

zt(n1, .. g, w1) + (an — 21 +n — wy)a’t + (r — bt < z(n).
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This implies that e(G) < t,(k)n? + z(n) + |52 (k — a — 1)n]. Otherwise an + n = 21 + wy, which
implies that
t—1

E(G) < tr(k)n2 + Zt(’I’L) + {—

5 (k—a— 1)nJ + (r —b)t'.

This is the desired bound for ¢ > a. When ¢ < a, the bound for eg(ﬁi) given by Claim 4.13
contains no ¢’ term. We thus obtain e(G) < t,(k)n® + z,(n) + |52 (k — a — 1)n|, regardless whether
an —z1 +n—wyp > 0.

Now consider the case a = 2 and b = 1. If an — 21 + n — wy > 0, then we choose a large constant

C* > 0 such that

2t(n1,. .. g, w1) + (an — 21 +n —wy)a’t + (r — b)t’ < z(n) — C*

and thus e(G) < t,(k)n? + z(n) + 5L (k—a—1)n— C* < ga(n,r,k,t). Otherwise an +n = 21 +wy.
Since b = 1, this forces that, for all i > 2, we have W/ = ¢J and, by (Q2),Z; = Z;. Now, by Claim 4.9,
we have >/_, eq(U;) < (r — 1)| 55t an] and consequently, e(G) < t,(k)n? + z(n) + (r — 1)| Stan),
as desired.

The case when a = 1. Let L1 U Ly U L3 be a partition of [2,7] such that i € Ly if and only if
|Zi| < n, i€ Ly if and only if | Z;| = n, and i € Ls if and only if | Z;| > n. The following properties
hold for L, Ly and Lg.
(R1) If i € Ly, then Zl-j # @ for some j # i. By (Q2), we have i € L and, by Claim 4.12,
Zi=2Z!CViand W/ C V.
(R2) If i € Ly, then Z; = Z! = V;. Otherwise Z; # Z!, then |Z!| < n and Zij # (7 for some j # i.
By (Q2) and (4 12), we have Z; = Z!, a contradiction.
(R3) If i € L3, then Z; ¢ Z;. By Claim 4.12, we have [W;| < 2en, which implies that Z] & for
j #1iby (Q2). Thus, Z! = V; € Z;.

By (R1~), for every i € Lq, G[UZ] is a bipartite grathOf maximum degree at most t — 1, and
thus eq(U;) < (t — 1)min{z;,w;}. For i € Loy, since Z; = V; is an independent set, we have
eq(U;) < (t — Nw; + eq(W/) < (t — 1)w; + oy. For i € L, using (4.5) and the independence of Z]’:
for all j € [r], we have

(U) ec((Z\Vi) v W)) + ec((Zi\Vi) v W}, Z})
i+ E=D(Z\Vi] + W) = i + (t — 1) (z; — 0+ w;).

Using Yicp,or,(2i —n) =n—z1 and 33, w; = bn — wy, we derive that

Zmin{zi,wi}—i— Zw,+ Z zi —n+ w;)

i€l i€Lo i€ls
=bn —wy + Z (min{z;, w;} —w;) + Z (zi —n)
i€l i€Lg
=bn —wy + Z (z; = n 4+ min{n —w;,n — z;}) + Z (z; —n)
i€l 1€Lg

=bn—wi+n—2z + Z min{n — w;,n — z;}.
i€l
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Therefore,

Z ec(U;) < Z (t — 1) min{z;, w;} + Z ((t = Dw; + ;) + Z ((t—=1)(zi = n 4+ w;) + )
=2 i€l i€Lo i€ls
=(t—-1)bn—w+n—2z)+ Z(t—l)min{n—wi,n—zi}~l— Z Q.

iELl iELz ULg

Recall that e(G’) < t,(k)n? + >},25(8i — ;) by Claim 4.4 and (4.16). For i € Ly U La, we have
Z; = Z! and thus B; = 0 by (4.25). It follows that (note that L n Ly = &)

Nh=N 8= N ZIWI - =Y X 1ZHW = n) = X ) (w; — n)

(=] ieL3 1€Lg jeL\{i} JELieL3\{j} JeL

Note that 1 € L by (4.19) and (n — z1)(w; —n) < 0 by Claim 4.8. Furthermore, since n — z; = 0 for
J € Lo, it follows that >, i = 3};c1, (n — 2j)(w; —n). Consequently, e(G) < tr(k)n? + Djer, (n—
zj)(wj —n) — Zi;g Qi

Recall that eq(Uy) = f1 < zt(21,w1). By (E3), we have z(21,w1)+ (t—1)(n—21+n—wy) < z¢(n).
Thus, combining these estimates together, we get

e(G) = e(G') + Zrl ec(U;) < to(K)n® + z(n) + (t — 1) (b—1)n + v,
i=1

where y := >, ((t — D)min{n — w;,n — 2} — (n — 2)(n — w;)). For each i € Ly, let y; :=
min{n — w;,n — %} and y, := max{n — w;,n — z;}. Then y; < y, and thus,

(t— D min{n —w;,n — 2z} — (n—2)(n —w;) =y (t =1 —y) < [(t — 1)2/4).

Since Ly < L\{1}, we have |L;| < b — 1. Consequently, e(G) < t,.(k)n? + z(n) + (t — 1)(b — 1)n +
(b=t = 1)?/4] = ga(n, 7,k 1). O
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