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TURÁN NUMBER OF COMPLETE MULTIPARTITE GRAPHS IN

MULTIPARTITE GRAPHS

JIE HAN AND YI ZHAO

Abstract. In this paper we study a multi-partite version of the Erdős–Stone theorem. Given
integers r ă k and t ě 1, let exkpn,Kr`1ptqq be the maximum number of edges of Kr`1ptq-free
k-partite graphs with n vertices in each part, where Kr`1ptq is the t-blowup of Kr`1. An easy
consequence of the supersaturaion result gives that exkpn,Kr`1ptqq “ exkpn,Kr`1q ` opn2q. Similar
to a result of Erdős and Simonovits for the non-partite case, we find that the error term is closely
related to the (multi-partite) Zarankiewicz problem. Using such Zarankiewicz numbers, for t “ 2, 3,
we determine the error term up to an additive linear term; using some natural assumptions on such
Zarankiewicz numbers, we determine the error term up to an additive constant depending on k, r
and t. We actually obtain exact results in many cases, for example, when k ” 0, 1 pmod rq. Our
proof uses the stability method and starts by proving a stability result for Kr`1-free multi-partite
graphs.

1. Introduction

Generalizing Mantel’s theorem from 1907 [14], Turán’s theorem from 1941 [17] started the sys-
temetic study of Extremal Graph Theory. Given a graph F , let expn, F q denote the largest number
of edges in a graph not containing F as a subgraph (called F -free). Let Kr denote the complete
graph on r vertices and Trpnq denote the complete r-partite graph on n vertices with tn{ru or rn{rs
in each part (known as the Turán graph); and trpnq be the size of Trpnq. Turán’s theorem [17] states
that expn,Kr`1q “ trpnq for all n ě r ě 1 and in addition, Trpnq is the unique extremal graph.

Let Kt1,...,tr denote the complete r-partite graph with parts of size t1, . . . , tr and write Krptq “
Kt,...,t with r parts. A celebrated result of Erdős and Stone [8] determines expn,Kr`1ptqq asymptot-
ically:

expn,Kr`1ptqq “ trpnq ` opn2q “
ˆ

1 ´ 1

r

˙

n2

2
` opn2q.

Erdős [4] and Simonovits [15] independently improved the error term above to Opn2´1{tq. Simonovits
[15] also showed that any extremal graph for Kr`1ptq can be obtained from Trpnq by adding or

removing Opn2´1{tq edges. Later Erdős and Simonovits [7] determined the structure of extremal
graphs for Kr`1ptq for t ď 3 as follows.

Theorem 1. [7] For t ď 3, every extremal graph G for Kr`1ptq has a vertex partition U1, . . . , Ur

such that

‚ GrUi, Ujs is complete for all i ‰ j,
‚ GrUis “ n{r ` opnq,
‚ GrU1s is extremal for Kt,t, and
‚ GrU2s, . . . , GrUrs are extremal for K1,t.
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The restriction t ď 3 in Theorem 1 comes from our knowledge on expn,Kt,tq. A well-known open

problem in Extremal Graph Theory is proving expn,Kt,tq “ Ωpn2´1{tq and this is only known for
t ď 3.

Extremal problems whose host graphs are multipartite graphs have been studied since 1951, when
Zarankiewicz proposed the study of the largest number of edges in a bipartite graph not containing
a copy of Ks,t. Let Gpn1, . . . , nkq denote the family of k-partite graphs with n1, . . . , nk vertices in
its parts and write Gkpnq “ Gpn, . . . , nq with k parts. Given a graph F , define expn1, . . . , nk;F q as
the largest number of edges in F -free graphs from Gpn1, . . . , nkq, and let exkpn, F q “ expn, . . . , n;F q
(with k parts). (Trivially exkpn, F q “

`

k
2

˘

n2 if the chromatic number χpF q ą k.) In 1975 Bollobás,
Erdős, and Szemerédi [1] investigated several Turán-type problem for multipartite graphs. Applying
a simple counting argument, they showed that

exkpn,Kr`1q “ trpkqn2 (1.1)

for any n, k, r P N with k ě r. The main results of [1] concern the minimum degree version of this
problem, which has been intensively studied, see [9–11,13,16].

In this paper we study exkpn,Kr`1ptqq, the multi-partite versions of the Erdős–Stone theorem
and Theorem 1.

We first prove a stability theorem for exkpn,Kr`1q. This result was independently obtained by
Chen, Lu, and Yuan [3]. Given r, k P N with k ě r, write k “ ar ` b for 0 ď b ď r ´ 1. By Turán’s
theorem, the Turán graph Trpkq “ Ka,...,a,a`1,...,a`1 (with b parts of size a ` 1 and r ´ b parts of
size a) is the unique largest Kr`1-free graph on k vertices. We now describe extremal graphs for
exkpn,Kr`1q. Let Tr,kpnq be the collection of k-partite graphs with parts V1, . . . , Vk of size n defined
as follows. If b ą 0, we arbitrarily divide Var`1, . . . , Vk into r sets W1, . . . ,Wr (some of them may
be empty) such that each Wi is a subset of Vj for some j; if b “ 0, then let W1, . . . ,Wr be empty
sets. Now let T be the r-partite graph with parts U1, . . . , Ur such that

Ui “ Wi Y Zi, where Zi :“ Vpi´1qa`1 Y ¨ ¨ ¨ Y Via,

obtained from the complete r-partite graph KpU1, . . . , Urq by removing edges between Wi and Wi1 ,
i ‰ i1, whenever Wi,Wi1 Ď Vj for some j (in other words, T “ KpU1, . . . , UrqXKpV1, . . . , Vkq). Since
T is r-partite, it is Kr`1-free. Let U “ Ť

iPrrs Ui and W “ Ť

iPrrs Wi. Note that eT pUq “
`

r
2

˘

a2n2

and eT pW,T q “ |W |pk ´ a´ 1qn “ bpk ´ a´ 1qn2. Since trpkq “
`

r
2

˘

a2 ` bpk ´ a´ 1q, it follows that
epT q “ trpkqn2. By (1.1), T is an extremal graph for Kr`1. Let Tr,kpnq be the collection of all such
T .

Given two graphs G,H P Gkpnq on the same parts V1, . . . , Vk, we say that G and H are γ-close if
|EpGq△EpHq| ď γn2.

Theorem 2. For any positive integers r ď k and any γ ą 0, there exist ε ą 0 and n0 such that the
following holds for every integer n ě n0. Suppose G P Gkpnq is Kr`1-free and epGq ě ptrpkq ´ εqn2.
Then G is γ-close to a member of Tr,kpnq.

We now consider exkpn,Kr`1ptqq, We assume that k ě r` 1 because otherwise exkpn,Kr`1ptqq “
`

k
2

˘

n2 trivially. Applying (1.1) and either the Regularity Lemma or the Graph Removal Lemma,
one can easily derive the following Erdős–Stone theorem for multipartite graphs:

exkpn,Kr`1ptqq “ trpkqn2 ` opn2q.
Applying Theorem 2 and the Graph Removal Lemma, we derive the following stability result for
exkpn,Kr`1ptqq, which handles the non-extremal case for exkpn,Kr`1ptqq.
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Theorem 3. For any k, r, t P N and any γ ą 0, there exist ε ą 0 and n0 P N such that the following
holds for every integer n ě n0. Suppose G P Gkpnq is Kr`1ptq-free and epGq ě ptrpkq ´ εqn2. Then
G is γ-close to a member of Tr,kpnq. In particular, we have epGq ď ptrpkq ` γqn2.

To give the precise value of exkpn,Kr`1ptqq, we need the following definitions. Given a, t, n1, . . . , na P
N, let z

paq
t pn1, . . . , naq be the a-partite Zarankiewicz number for Kt,t, namely, the maximum num-

ber of edges in a Kt,t-free a-partite graph with part sizes n1, . . . , na. We also write z
paq
t pnq for

z
paq
t pn, . . . , nq. Given r, k, t, n P N with k ě r ` 1, assume k “ ar ` b for some 0 ď b ď r ´ 1, in
particular, b ě 1 if a “ 1. Let

t1 :“
Z

t ´ 1

4a2 ` 6a

^

, and b1 :“ min

"

b ´ 1,

Z

r ´ b

2

^*

.

Note that b1 “ b if and only if b ď pr ` 2q{3. The following two functions will appear in our lower
and upper bounds for exkpn,Kr`1ptqq, respectively.

h1pn, r, k, tq :“

$

’

’

’

’

&

’

’

’

’

%

t t´1

2
pk ´ a ´ 1qnu if a ě 2, b ě 2 and t1 “ 0,

t t´1

2
pk ´ a ´ 1qnu ` mintb ´ 1, r ´ bu p2a2`3aqt2

1

2
´ r´1

2
if a ě 2, b ě 2 and t1 ą 0,

pr ´ 1qt t´1

2
anu if a ě 2 and b “ 0, 1,

pt ´ 1qpb ´ 1qn ` b1t pt´1q2

4
u if a “ 1 and b ě 1,

and

h2pn, r, k, tq :“

$

’

’

’

’

&

’

’

’

’

%

t t´1

2
pk ´ a ´ 1qnu ` pr ´ bq pt´1q2

16pa´1q if a ě 2, t ě a,

t t´1

2
pk ´ a ´ 1qnu if a ě 2, t ă a,

pr ´ 1qt t´1

2
anu if a ě 2 and b “ 0, 1,

pt ´ 1qpb ´ 1qn ` pb ´ 1qt pt´1q2

4
u if a “ 1 and b ě 1.

Note that h1pn, r, k, tq “ h2pn, r, k, tq in the following cases:

p1q a ě 2 and t ă a, p2q a ě 2 and b “ 0, 1, p3q a “ 1 and 1 ď b ď pr ` 2q{3. (1.2)

For i “ 1, 2, we accordingly define

gipn, r, k, tq :“ trpkqn2 ` z
prk{rsq
t pnq ` hipn, r, k, tq,

and note that rk{rs is equal to a ` 1 if b ą 0 and a otherwise.
We have the following lower bound for exkpn,Kr`1ptqq.

Theorem 4. Given r, k, t, n P N, we have exkpn,Kr`1ptqq ě g1pn, r, k, tq.
The second terms in the second and the fourth cases of the definition of h1pn, r, k, tq show

that exkpn,Kr`1ptqq ą trpkqn2 ` z
prk{rsq
t pnq ` t t´1

2
pk ´ a ´ 1qnu when a, b ě 2 and t1 ą 0, and

exkpn,Kr`1ptqq ą trpkqn2 ` z
prk{rsq
t pnq ` pt ´ 1qpb ´ 1qn when b ě a “ 1, and we shall elaborate on

this at the end of this section.

Although we can use z
paq
t pnq without knowing its precise value in the lower bound, our proofs of the

upper bounds need several estimates on it. Kővári, Sós, Turán [12] showed that z
p2q
t pnq “ Opn2´1{tq

for t ě 2 and proving a matching lower bound is a well-known open problem:

(Z) z
p2q
t pnq “ Ωpn2´1{tq for t ě 2.

Note that this is known for t “ 2, 3 [2, 6]. In addition, we will need the following properties.
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(E1) There exists δ ą 0 such that for large n, z
pa`1q
t pnq ´ z

paq
t pnq ě δn2´1{t.

(E2) for any ε P p0, 1s and integer a ě 2, there exists δ ą 0 such that for large n,

z
paq
t pnq ´ z

paq
t pp1 ´ εqn, n, . . . , nq ě δn2´1{t.

(E3) z
paq
t pn1, . . . , naq ´ z

paq
t pn1 ´ 1, . . . , naq " 1. That is, for any constant C˚, there exists n0 P N

such that the z
paq
t pn1, . . . , naq ´ z

paq
t pn1 ´ 1, . . . , naq ě C˚ whenever n1, . . . , na ě n0.

(E1) is a special case of (E2) with ε “ 1. However, we distinguish them because we can indeed
derive (E1) from (Z).

Theorem 5. Suppose (Z) holds. For any r, k, t P N, there exists n0 P N such that if n ě n0 is an

integer and G P Gkpnq is Kr`1ptq-free, then epGq “ trpkqn2 ` z
prk{rsq
t pnq ` Opnq.

Our loose estimate on exkpn,Kr`1ptqq from Theorem 5 only assumes (Z) and thus holds for
t “ 2, 3.

Theorem 6. Suppose (Z), (E2) and (E3) hold. For any r, k, t P N, there exists n0 P N such that if
n ě n0 is an integer and G P Gkpnq is Kr`1ptq-free, then epGq ď g2pn, r, k, tq.

Since h1pn, r, k, tq “ h2pn, r, k, tq and g1pn, r, k, tq “ g2pn, r, k, tq hold under (1.2), Theorems 3, 4
and 6 together determine exkpn,Kr`1ptqq in the cases of (1.2) for large n and under the hypothe-
ses (Z), (E2) and (E3). In all other cases, the difference between our upper and lower bounds,
h2pn, r, k, tq ´ h1pn, r, k, tq, is Or,kpt2q.
Remark. Theorem 1 says that any extremal graph for Kr`1ptq is the join of an extremal graph for
Kt,t and r ´ 1 extremal graphs for K1,t. Inspired by by this result, a natural guess of an extremal
graph for our r-partite problem is starting from an n-blowup of Trpkq, add a Kt,t-free pa`1q-partite
graph to one of its parts with a ` 1 partition sets (assuming b ą 0), and K1,t-free graphs to other
r ´ 1 parts. This graph has

trpkqn2 ` za`1

t pnq `
Zpk ´ a ´ 1qpt ´ 1q

2

^

edges. However, Theorem 4 says that this is not always extremal. Indeed, by moving vertices
around, we obtain graphs with more edges and such graphs do not admit a partition similar to the
ones in Theorem 1 (see the proof of Theorem 4, Section 3). This shows that our problem is different
and more challenging than the non-partite version considered by Erdős and Simonovits [7].

Nevertheless, when b “ 0 this complexity does not exist, and we give an analog of Theorem 1.

Theorem 7. For r, k P N with r | k and t “ 2, 3, there exist C0, n0 P N such that the following holds
for n ě n0. Let G be a Kr`1ptq-free k-partite graph with n vertices in each part and exkpn,Kr`1ptqq
edges. Then there is a partition of the k vertex clusters of G into r groups U1, . . . , Ur, each with k{r
clusters, and a vertex set Z Ď V pGq with |Z| ď C0 such that

‚ GrUizZ,UjzZs is almost complete for all i ‰ j,
‚ GrU1zZs is Kt,t-free, and
‚ for i P r2, rs, GrUizZs is K1,t-free.

Assuming (E2), we can show that Z “ H in the theorem above. However, we choose to present
a result that resembles Theorem 1 and requires no additional condition.

Organization. In Section 2 we prove the stability theorems (Theorems 2 and 3), that is, on Kr-
free and Krptq-free multi-partite graphs. Then we prove the lower bound, Theorem 4, by giving the
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corresponding constructions in Section 3. Finally we prove the upper bounds, Theorems 5, 6 and 7,
together in Section 4.

Notation. We omit floors and ceilings unless they are crucial, e.g., we may choose a set of εn
vertices even if our assumption does not guarantee that εn is an integer.

When X,Y Ď V pGq intersect, EGpX,Y q is defined as the collection of ordered pairs in px, yq P
X ˆ Y such that tx, yu P EpGq. Write eGpX,Y q “ |EGpX,Y q|. For a vertex v in G, let Npv,Xq “
Npvq XX and dpv,Xq “ |Npv,Xq|. Moreover, given X Ď V pGq, let epX,Gq be the number of edges
of G incident to the vertices of X. Given two graphs G and H on a common vertex set V , G X H

denotes a graph on V with EpG X Hq “ EpGq X EpHq. Given a k-partition tV1, V2, . . . , Vku, a set
S is called crossing if |S X Vi| ď 1, i P rks.

When we choose constants x, y ą 0, x ! y means that for any y ą 0 there exists x0 ą 0 such that
for any x ă x0 the subsequent statement holds. Hierarchies of other lengths are defined similarly.
Furthermore, all constants in the hierarchy are positive and for a constant appearing in the form
1{s, we always mean to choose s as an integer.

2. Proof of the Stability Theorems (Theorems 2 and 3)

The extremal problem exkpn,Kr`1q (instead of its stability version) has a simple probabilistic
proof. Indeed, let G P Gkpnq with epGq ą trpkqn2. Denote the parts of V pGq by V1, . . . , Vk and
the densities of the bipartite graphs GrVi, Vjs as dij , i, j P rks. For each i P rrs, uniformly choose
a random vertex vi P Vi independent of other choices. Thus, the probability for vivj P EpGq is
precisely dij . Let X be the number of edges spanned on tv1, . . . , vku, and note that EpXq “ ř

dij “
epGq{n2 ą trpkq. This implies that there exists a choice of the k-set tv1, . . . , vku which spans more
than trpkq edges. By the definition of trpkq, this k-set contains a copy of Kr`1.

Our proof starts with this simple argument – we obtain EpXq ě trpkq´ε from epGq ě ptrpkq´εqn2.
Since G is Kr`1-free, we know deterministically that X ď trpkq, and thus by Markov’s inequality
we obtain that almost all crossing k-sets span exactly trpkq edges and thus are isomorphic to the
Turán graph Trpkq.

Proposition 2.1. For any r, k P N and ε ą 0, there exist γ ą 0 and n0 P N such that the following
holds for every n ě n0. Suppose G P Gkpnq is Kr`1-free and epGq ě ptrpkq ´ εqn2. Then for every

k1 P r1, ks, all but at most γnk1
crossing k1-sets K in G satisfy that all but at most γnk´k1

crossing
k-sets containing K are isomorphic to Trpkq.

Proof. Denote the parts of V pGq by V1, . . . , Vk and the densities of the bipartite graphs GrVi, Vjs as
dij , i, j P rks. For i P rks, let vi be a uniformly random vertex in Vi. Then let X be the number of
edges spanned on tv1, ..., vku and note that EpXq “ ř

dij “ epGq{n2 ě trpkq´ε. Since Grtv1, ..., vkus
is Kr`1-free, we have X ď trpkq deterministically. Let Y “ trpkq ´ X. Then Y is a nonnegative
random integer with EpY q “ trpkq ´ EpXq ď ε. By Markov’s inequality, PpY ą 0q ď EpY q ď ε,
which implies that PrX “ trpkqs “ PpY “ 0q ě 1´ ε. Therefore, all but at most εnk crossing k-sets

in G span a copy of Trpkq. The proposition follows by counting and choosing γ2 ě
`

k
k1

˘

ε. �

We also need the celebrated Graph Removal Lemma for cliques due to Erdős, Frankl and Rödl [5].

Lemma 2.2 (Graph Removal Lemma). For any r P N and any ε ą 0, there exist β ą 0 and integer
n0 P N such that the following holds for every integer n ě n0. If G is a graph with at most βnr

copies of Kr, then it can be made Kr-free by removing at most εn2 edges.
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A crossing copy of Trpkq in the k-partite graph G gives us a partition of rks into r parts of size a

or a ` 1, where each part corresponds to a color class of Trpkq. Throughout the rest of this section,
a partition of rks refers to such a partition.

Now we give our proof.

Proof of Theorem 2. Write k “ ar ` b with 0 ď b ď r ´ 1. Without loss of generality, assume
γ ! 1{r. Choose constants

1{n ! ε :“ εk ! ¨ ¨ ¨ ! εar ! γ1 ! γar ! ¨ ¨ ¨ ! γk “: γ ! 1{r, 1{k.
We use induction on both r ě 1 and b ě 0. Let G be a k-partite Kr`1-free graph with epGq ě
ptrpkq ´ εkqn2. The base case r “ 1 is trivial, and thus we assume r ě 2.

Here is an outline of the proof. The base case b “ 0 (i.e., k “ ar) is simple. By Proposition 2.1
and averaging, there is a partition of rks such that many crossing k-sets of V pGq induce a copy of
Krpaq under this partition. We call the partition sets under this partition rows. For every i P rrs, we
find a crossing apr ´ 1q-set Si intersecting all but the i-th row such that if we extend Si to crossing
ar-sets, then almost all these ar-sets are isomorphic to Krpaq. This implies that the i-th row (and
thus every row) has opn2q edges. Together with epGq ě ptrpkq ´ εkqn2, we conclude that G is close
to a blow-up of Krpaq.

For the b ą 0 case, we first show that we may assume that every Vi is incident to many edges
(Claim 2.3). Indeed, if say, Vk is incident to too few edges, then we obtain the structure of G ´ Vk

by induction hypothesis. Next we add the vertices of Vk to the partition of G ´ Vk joining Wi’s. A
key observation is that if we tend to add a set V i

k Ď Vk of vertices to the i-th row, then (current)
|Wi| “ opnq and thus there are only opn2q edges in GrWi, V

i
k s (as a result, adding the vertices of V i

k

will not create too many edges inconsistent with the new partition). Finally we need to move things
around to make sure that after the operation all parts have at most n vertices.

Now we may assume that all parts are incident to a good amount of edges as in (2.1). Then for
a ě 2, by (2.1) and Proposition 2.1, we show that every part Vi is in a group of a parts which only
induces opn2q edges as in (:). Repeated applications of (:) give a contradiction with (2.1). The case
a “ 1 is nevertheless more complicated. We first find a pair of parts, say pV1, V2q, which is not too
dense (because G is Kr`1-free). Together with Proposition 2.1, this implies that almost all crossing
pk ´ 2q-sets in

ś

3ďiďk Vi form a copy of T 1 :“ K1,...,1,2,...,2, which has b ´ 1 clusters of size 2 and
r ´ b clusters of size 1, see (;). Then we can show that G1 :“ G ´ pV1 Y V2q is close to a member of
Tr´1,k´2pnq, due to the fact that G1 has few copies of Kr and ptr´1pk ´ 2q ´ op1qqn2 edges. Indeed,
by the removal lemma, G1 has a subgraph G2 which is Kr-free and still has ptr´1pk ´ 2q ´ op1qqn2

edges, which is close to a member of Tr´1,k´2pnq by induction, and so is G1. The rest of the proof
is to find an edge uv P V1 ˆ V2 such that u and v have large common neighborhood in each part
Vi, i P r3, ks, which leads to a copy of Kr´1 in its common neighborhood, and thus Kr`1 Ď G, a
contradiction. We find such uv by dedicate counting and the fact that GrV1, V2s “ pn2 where p is
bounded away from 1.

The base case. We first prove the base case b “ 0, that is, k “ ar. In this case trpkq “
`

r
2

˘

a2 and
Tr,kpnq contains a unique member Tr,kpnq which is the complete r-partite graph with exactly a parts
in each color classes. If a “ 1, then G P Grpnq is a subgraph of Tr,kpnq and G is εk-close to Tr,kpnq
because epGq ě ptrpkq ´ εkqn2.

Now assume a ě 2. Since epGq ě ptrpkq ´ εkqn2, by Proposition 2.1, almost all crossing k-sets
induce a copy of T ˚ :“ Krpaq. Since there are k!

pa!qrr! partitions of rks, by averaging, there is one

partition such that at least nk{p2k!q crossing k-sets of G induces T ˚ under this partition. Without
loss of generality, denote this partition as r1, as Y ra` 1, 2as Y ¨ ¨ ¨ Y rpr ´ 1qa ` 1, ars. Now, for each
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i P rrs, we shall choose a crossing papr ´ 1qq-set Si from

Yi :“
ź

j‰i

ź

j1Pras

Vpj´1qa`j1

such that all but at most γ1na crossing k-sets containing Si induce T ˚ (in particular, the a new
vertices would form an independent set). Indeed, this is possible as there are at least pnk{p2k!qq{na “
napr´1q{p2k!q choices for crossing sets Si in Yi so that GrSis is isomorphic to Kr´1paq, and among

them, by Proposition 2.1, at most γ1napr´1q crossing sets violate the extension property.
For i P rrs, let Ui :“

Ť

j1Pras Vpi´1qa`j1 and we shall show that G is γk-close to KpU1, . . . , Urq.
We claim that GrUis has at most

`

a
2

˘

γ1n2 edges. Indeed, every edge of GrUis together with Si can

be extended to na´2 crossing k-sets not isomorphic to T ˚. If GrUis contains more than
`

a
2

˘

γ1n2

edges, then there are more than
`

a
2

˘

γ1n2 ¨ na´2{
`

a
2

˘

“ γ1na crossing k-sets containing Si not isomor-

phic to T ˚ (a crossing k-set contains at most
`

a
2

˘

edges in GrUis and is thus counted at most
`

a
2

˘

times), contradicting the definition of Si. Therefore,
Ť

iPrrs GrUis contains at most r
`

a
2

˘

γ1n2 edges.

Furthermore, since epGq ě ptrpkq ´ εkqn2, GrU1, . . . , Urs (as an r-partite graph) has at most

εkn
2 ` r

ˆ

a

2

˙

γ1n2

crossing non-edges. Overall, this yields that one can obtain Tr,kpnq by altering at most εkn
2 `

2r
`

a
2

˘

γ1n2 ď γarn
2 edges from G and we are done.

The general case. Now suppose b ą 0 and the result holds for k ´ 1 with pεk´1, γk´1q in place of
pε, γq and we will verify it for k. We first prove the following claim. Let ε1 :“ εk´1{2.

Claim 2.3. If epVi, Gq ď pk ´ 1 ´ a ` ε1qn2 for some i P rks, then G is γ-close to some member of
Tr,kpnq.

Proof. Without loss of generality, assume i “ k. By the assumption on epGq, we have

epG ´ Vkq “ epGq ´ epVk, Gq ě ptrpkq ´ εqn2 ´ pk ´ 1 ´ a ` ε1qn2 ě ptrpk ´ 1q ´ εk´1qn2.

Then by the induction hypothesis, G ´ Vk is γk´1-close to a member T P Tr,k´1pnq. Since G ´ Vk is
Kr`1-free, epG ´ Vkq ď trpk ´ 1qn2, and thus epVk, Gq ě pk ´ 1 ´ a ´ εqn2. Recalling the definition
of Tr,k´1pnq, let us denote the color classes of T by U1, . . . , Ur and for i P rrs let Ui “ Wi Y Zi, such
that each Zi is a union of a clusters of V1, . . . , Vk´1.

We first show the following claim.

(˚) Given any vertex v P Vk, if there exists i0 P rrs such that |Npvq X Zi| ě γ4n for every
i P rrszti0u, then |Npvq X Ui0 | ă γ4n.

Indeed, otherwise letXi0 Ď NpvqXUi0 of size γ
4n andXi Ď NpvqXZi of size γ

4n for every i P rrszti0u.
Note that T rXi,Xjs for distinct i, j P rrs is a complete bipartite graph. Since G ´ Vk is γk´1-close
to T , it follows that epGrXi,Xjsq ě pγ4nq2 ´ γk´1n

2 for any distinct i, j P rrs. As γk´1 ! γ, by
the Turán result, we find a copy of Kr in

Ť

iPrrs Xi, which forms a copy of Kr`1 together with v, a

contradiction. In particular, (˚) implies that |Npvq XZi0 | ď γ4n for some i0 P rrs. Since v misses at
least pa ´ γ4qn vertices in Zi0 and n ´ 1 vertices in Vk, we have dGpvq ď pk ´ 1 ´ a ` γ4qn for any
v P Vk.

Let V 1
k be the set of vertices v P Vk such that dGpvq ă pk ´ 1 ´ a ´ γ2qn, then we have

pk ´ 1 ´ a ´ εqn2 ď epVk, Gq ă |V 1
k|pk ´ 1 ´ a ´ γ2qn ` pn ´ |V 1

k|qpk ´ 1 ´ a ` γ4qn
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and thus pγ2 ` γ4qnpn ´ |V 1
k|q ě pγ2 ´ εqn2, giving that

|V 1
k| ď

ˆ

1 ´ γ2 ´ ε

γ2 ` γ4

˙

n “ γ4 ` ε

γ2 ` γ4
n ď γ2n.

For each v P VkzV 1
k, since dGpvq ě pk ´ 1 ´ a ´ γ2qn, we have that |Npvq X Zi| ě γ4n for all but

possibly one i P rrs. However, by (˚), there must be one such i P rrs, that is, for v there exists
i0 P rrs such that |NpvqXZi| ě γ4n for all i P rrszti0u and |NpvqXUi0 | ď γ4n. This gives a partition
of VkzV 1

k to r (possibly empty) sets V 1
k , . . . , V

r
k . Furthermore, observe that if |Ui| ě pa`2γ2qn (that

is, |Wi| ě 2γ2n), then V i
k “ H, because v can not have |Ui| ´ γ4n ą pa ` γ2qn non-neighbors in Ui.

Now we define a new partition U 1
1, . . . , U

1
r as follows. If |Wi| ă 2γ2n, then we find a j P rrs such

that Wj and Wi are from the same cluster of G, add Wi to Wj and redefine Wi :“ V i
k . Denote the

resulting partition as U 1
1
, . . . , U 1

r, where U 1
i “ Zi Y Wi and we add the vertices of V 1

k to any U 1
i so

that it does not exceed pa`1qn vertices. Let T 1 “ KpU 1
1
, . . . , U 1

rq XKpV1, . . . , Vkq and we shall show
that T 1 and G are γ-close. Indeed, recall that G ´ Vk is γk´1-close to T , and for every v P V i

k , v is
incident to at most γ4n edges within Zi and thus at least pk ´ 1 ´ a ´ γ2 ´ γ4qn edges outside Zi.
Moreover, for the set V 1

k and all Wi’s that have been moved, the union of them contains at most
r ¨ 2γ2n vertices, and thus for these vertices we may need to edit at most 2rγ2n ¨ kn “ 2krγ2n2

edges. Therefore, the distance of T 1 and G is at most

γk´1n
2 ` n ¨ pγ2 ` 2γ4qn ` 2krγ2n2 ă γn2,

where the second term is on (the changes brought by) the vertices of VkzV 1
k. We are done. �

Choose a new constant ε ! γ2 ! ε1. By Claim 2.3, we may assume that for every i P rks,
epVi, Gq ě pk ´ 1 ´ a ` ε1qn2. (2.1)

Next we first deal with the easier case a ě 2.

Case 1. a ě 2. By (2.1), for every i0 P rks, take v P Vi0 such that dpvq ě pk ´ 1 ´ a ` ε1qn. Note
that there exist k ´ a sets Vi such that |Npvq X Vi| ě pε1{aqn – otherwise there exist a sets Vi such
that |Npvq XVi| ă pε1{aqn, yielding dpvq ă apε1{aqn` pk ´ a´ 1qn, a contradiction. Therefore there
exists I Ď rks of size k ´ a such that for any j P I, |Npvq X Vj | ě pε1{aqn. As ε ! γ2 ! ε1, by
Proposition 2.1, there exists a crossing pk ´ aq-set S in

ś

jPIpNpvq X Vjq such that all but at most

γ2na crossing k-sets containing S are isomorphic to T ˚ :“ Ka,...,a,a`1,...,a`1. Since S Ď Npvq and G

is Kr`1-free, S must be Kr-free. Moreover, S is an induced subgraph of T ˚ with k ´ a vertices, and
we infer that GrSs must be isomorphic to the graph obtained from T ˚ with a color class of size a

removed. This yields that all but at most γ2na crossing a-sets from
ś

jRI Vj form independent sets.

Thus, we conclude that for any j, j1 R I, eGpVj , V
1
j q ď γ2n2. Note that i0 R I, and thus we obtain

(:) for any i P rks, there exists I 1 Ď rks of size a such that i P I 1 and for any j, j1 P I 1,
eGpVj , V

1
j q ď γ2n2.

By Proposition 2.1, there is a partition of rks that induces at least nk{p2k!q labelled copies of T ˚.
For two clusters Vi and Vj that are in different color classes, we have eGpVi, Vjq ě n2{p2k!q because

each edge in Vi ˆ Vj is contained in at most nk´2 labelled copies of T ˚. Now fix a color class of size
a ` 1. Without loss of generality, denote this color class by V1, . . . , Va`1 and consider V1. By (:),
there exists I 1 Ď rks of size a such that 1 P I 1 and for any j, j1 P I 1, eGpVj , V

1
j q ď γ2n2. Since clusters

from different color classes have densities at least 1{p2k!q ą γ2, we conclude that I 1 Ď ra ` 1s.
Without loss of generality, suppose ra`1szI 1 “ t2u. Applying (:) again, we obtain a set I2 Ď ra`1s
such that 2 P I2 and for any j, j1 P I2, eGpVj , V

1
j q ď γ2n2. Note that any element i P I 1 X I2 satisfies
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that eGpVi, Vjq ď γ2n2 for every j P ra ` 1s. However, this implies epVi, Gq ď pk ´ 1 ´ a ` aγ2qn2,
contradicting (2.1) as γ2 ! ε1.

Case 2. a “ 1. Choose new constants γ2 ! ε2 ! β ! ε1 ď 1 ´ trpkq{
`

k
2

˘

. Since G is Kr`1-free,

we have
ř

i‰j dpVi, Vjq{
`

k
2

˘

ď trpkq{
`

k
2

˘

ď 1 ´ ε1. Fix a pair of clusters, say, pV1, V2q with density

p ď 1 ´ ε1. Since there are more than γ2n2 non-edges in V1 ˆ V2, by Proposition 2.1, there exists
a non-edge in V1 ˆ V2 such that all but at most γ2nk´2 crossing k-sets containing this pair form a
copy of T ˚ :“ K1,...,1,2,...,2. That is,

(;) all but at most γ2nk´2 crossing pk ´ 2q-sets in
ś

3ďiďk Vi form a copy of T 1 :“ K1,...,1,2,...,2,
which has b ´ 1 clusters of size 2 and r ´ b clusters of size 1.

We now show that G1 :“ Gr
Ť

3ďiďk Vis is close to a member of Tr´1,k´2pnq. We may assume k ě 4.

Note the epG1qnk´4 “
ř

X epXq, where the sum is over all crossing pk ´ 2q-sets X in
ś

3ďiďk Vi.

By (;), this sum is at least pnk´2 ´ γ2nk´2qepT 1q “ p1 ´ γ2qnk´2tr´1pk ´ 2q. Hence,

epG1q ě tr´1pk ´ 2qp1 ´ γ2qn2. (2.2)

Moreover, since T 1 is Kr-free, (;) implies that the number of copies of Kr in G1 is at most
`

k´2

r

˘

γ2nr

because every copy of Kr in G1 is contained in nk´2´r crossing pk ´ 2q-sets not isomorphic to T 1

and every crossing pk ´ 2q-set not isomorphic to T 1 contains at most
`

k´2

r

˘

copies of Kr. The graph
removal lemma (Lemma 2.2) implies that there exists G2 Ď G1 on V pG1q such that G2 is Kr-free
and epG1q ´ epG2q ď ε2n2. By (2.2) and the assumption γ2 ! ε2, we have

epG2q ě epG1q ´ ε2n2 ě tr´1pk ´ 2qp1 ´ γ2qn2 ´ ε2n2 ě p1 ´ ε2qtr´1pk ´ 2qn2.

By the induction hypothesis, we derive that G2 is β-close to some graph T 1
0

P Tr´1,k´2pnq. This
implies that G1 is p2βq-close to this T 1

0
.

Note that epV1 Y V2, Gq “ epGq ´ epG1q and epG1q ď epG2q ` ε2n2 ď ptr´1pk ´ 2q ` ε2qn2. Thus,
we have

epV1 Y V2, Gq ě ptrpkq ´ εqn2 ´ ptr´1pk ´ 2q ` ε2qn2 ě p2pk ´ 2q ´ 2ε2qn2.

For i P rks, let ci :“ epVi, Gq{n2 and recall that p “ epV1, V2q{n2. Then we have 2ptrpkq ´ εq ď
ř

iPrks ci ď 2trpkq and c1 ` c2 ´ p ě 2pk ´ 2q ´ 2ε2. Our ultimate goal is finding an edge uv P V1 ˆV2

such that |Npuq X Npvq X Vi| ě 2
?
βn for every i P r3, ks, which allows us to find a copy of Kr´1 in

Npuq X Npvq, contradicting that G is Kr`1-free. Indeed, if there is an edge uv P V1 ˆ V2 such that

dpu, V3 Y ¨ ¨ ¨ Y Vkq ` dpv, V3 Y ¨ ¨ ¨ Y Vkq ě pc1 ` c2 ´ p ´ 1 ` 3
a

βqn ě p2k ´ 5 ` 2
a

βqn, (2.3)

then for every i P r3, ks, there exists Bi Ď Npuq X Npvq X Vi of size 2
?
βn. Recall that G1 is

p2βq-close to a member T 1
0
of Tr´1,k´2pnq. In particular, there exist r ´ 1 Bi’s such that T 1

0
induced

on the union of these sets forms a copy of Kr´1p2
?
βnq. Thus, to destroy all these copies of

Kr´1, one needs to remove at least p2
?
βnq2 “ 4βn2 edges from T 1

0, while epT 1
0q ´ epG1q ď 2βn2.

Therefore GrB3 Y ¨ ¨ ¨ Y Bks contains a copy of Kr´1, which together with uv forms a copy of Kr`1,
a contradiction.

To find such uv, we first show that most vertices in Vi, i P rks have large degrees. Fix i P rks and let
V 1
i be the number of vertices v P Vi with dpvq ă cin´2kγ2n. We claim that |V 1

i | ď γ2n{k. Indeed, for
any j P rks, since epVj , Gq “ cjn

2, there exists a set V ˚
j of size γ2n{k such that dpvq ď p1`2γ2{kqcjn

for every v P V ˚
j . Now consider the subgraph G˚ :“ G ´ pV 2

i Y Ť

j‰i V
˚
j q, where V 2

i is a subset of

V 1
i of size γ2n{k. Since G˚ is Kr`1-free, we have epG˚q ď trpkqp1 ´ γ2{kq2n2. By ci ď k ´ 1, j P rks
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and
ř

iPrks ci ď 2trpkq, we get

epGq ď trpkqp1 ´ γ2{kq2n2 ` pγ2n{kq
˜

cin ´ 2kγ2n `
ÿ

j‰i

p1 ` 2γ2{kqcjn
¸

ď trpkqp1 ´ γ2{kq2n2 ` pγ2{kq2trpkqn2 ´ 2γ2n2 ď trpkqn2 ´ γ2n2,

contradicting that epGq ą trpkqn2 ´ εn2.
Pick a vertex u P V1zV 1

1 such that dpu, V2q ď p1 ` γ2qpn. Such a vertex exists – otherwise by
|V 1

1
| ď γ2n{k we have eGpV1, V2q ě p1 ´ γ2{kqn ¨ p1 ` γ2qpn ą pn2 contradicting our assumption.

Consider R :“ Npu, V2zV 1
2
q and an arbitrary vertex v P R. By the definition of V 1

i , we have that
dpuq ` dpvq ě c1n` c2n´ 4kγ2n. We may assume that (2.3) fails (otherwise we are done). Together
with dpuq ` dpvq ě c1n ` c2n ´ 4kγ2n, this implies that

dpu, V2q ` dpv, V1q ě p1 ` p ´ 4kγ2 ´ 3
a

βqn.
In particular, we obtain that |R| “ dpu, V2zV 1

2
q ě pp ´ 4kγ2 ´ 3

?
β ´ γ2{kqn ě pp ´ 4

?
βqn and

dpv, V1q ě p1 ´ pγ2 ´ 4kγ2 ´ 3
?
βqn ą p1 ´ 4

?
βqn (for every v P R). This gives at least

pp ´ 4
a

βqp1 ´ 4
a

βqn2 ě pp ´ 8
a

βqn2

edges in GrV1, Rs. On the other hand, by (2.1), we have c2 ě k ´ 2 ` ε1, and thus for every vertex
w P V2zV 1

2
, we have

dpw, V1q ě c2n ´ 2kγ2n ´ pk ´ 2qn ě ε1n{2.
By |R| ď p1 ` γ2qpn and p ă 1 ´ ε1, we get |V2zpV 1

2 Y Rq| ě n ´ p1 ` γ2qpn ´ γ2n{k ě ε1n{2.
Therefore, we have epGrV1, V2zpV 1

2 Y Rqsq ě pε1n{2q2. However, combining these two estimates and
recalling β ! ε1 we see that

epGrV1, V2sq ě pp ´ 8
a

βqn2 ` pε1{2q2n2 ą pn2,

a contradiction. �

We now prove Theorem 3 by using the Graph Removal Lemma and a well-known result on
supersaturation.

Lemma 2.4 (Supersaturation). For any r, t P N and any β ą 0, there exists n0 P N such that the
following holds for every integer n ě n0. If G is a graph with βnr copies of Kr, then it contains a
copy of Krptq.

Proof of Theorem 3. Choose constants 1{n ! β ! ε ! γ, 1{k, 1{r, 1{t. SupposeG P Gkpnq isKr`1ptq-
free and epGq ě ptrpkq ´ εqn2. We further assume that G contains fewer than βnr`1 copies of Kr`1

– otherwise Lemma 2.4 implies that G contains a copy of Kr`1ptq, a contradiction. Thus, by
Lemma 2.2, G contains a Kr`1-free spanning subgraph G1 with at least epGq ´ εn2 ě ptrpkq ´ 2εqn2

edges. By Theorem 2, G1 is γ{2-close to some T P Tr,kpnq. Consequently, G is γ-close to T , as
desired. �

3. Lower bound – proof of Theorem 4

In this section we prove Theorem 4. We start with the following proposition on K2,2-free bipartite
graphs.
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Proposition 3.1. Let t ě 1 and n ą 5t4. Suppose G “ pA,B;Eq is a K2,2-free bipartite graph
with n vertices in each part and with ∆pGq ď t ´ 1. Then there is a perfect matching M in the
complement of G such that G Y M is still K2,2-free. In particular, there exists a t-regular K2,2-free
bipartite graph with n vertices in each part.

Proof. When we construct M , there are two types of K2,2 that we need to avoid in G Y M – in the
first type M has an edge uv where G contains a path of length three with ends u and v, and the
second type consists of two edges of M and two edges of G on the same four vertices. The first one is
easy to avoid as for any vertex v in G, the number of vertices that can be reached from v via a walk
of length three (equivalently, a path of length one or three) is at most p∆pGqq3 ď pt´1q3. Therefore,
when matching a vertex v P A Y B in M , we need to avoid at most pt ´ 1q3 vertices that do not
depend on M . However, this is not the case for the second type of K2,2 because the matching of a
vertex in M affects the matching (more precisely, the vertices that need to be avoided) of another
vertex. To overcome this, we proceed in three phases.

Choose a set S of arbitrary 2t3 vertices from A, and note that N “ Ť

vPS NGpvq has size at most
|S|t ď 2t4. For the first phase of our process, we greedily find a matching M0 that covers the vertices
of N and avoids the vertices of S. To achieve this, each time we match a vertex v P N , we need to
avoid the vertices of S, the vertices of A that are already matched in M0, and those vertices that
have distance 1 or 3 from v in the graph G Y M0. Since ∆pG Y M0q ď t, we need to avoid at most
|S|`p|N |´1q` t3 ă n vertices and thus this is possible. For the second phase, we greedily match all
unmatched vertices v P AzS and denote the resulting matching by M1 (containing M0). Similarly,
each time we need to avoid the vertices that are already matched and the vertices that have distance
1 or 3 from v in the graph GYM1. This is possible as there are at most pn ´ |S| ´ 1q ` t3 ă n such
vertices.

For the third phase, we are left with sets of unmatched vertices S Ď A and T Ď B such that
T X NpSq “ H. The key point is that GrS, T s is an empty graph so no second type of K2,2 will be
created on S YT . For each vertex v P S YT , we need to avoid the vertices that have distance 1 or 3
from v in the graph G Y M1, and there are at most pt ´ 1q2t ă t3 “ |S|{2 such vertices. Therefore,
we can choose a perfect matching on S Y T by Hall’s Marriage Theorem. This gives the desired
perfect matching M .

The “in particular” part follows by starting with an empty bipartite graph and iteratively adding
perfect matchings. �

Now we prove our lower bound on exkpn,Kr`1ptqq.
Proof of Theorem 4. We first deal with the case a “ 1. Let Vi,j, pi, jq P rrs ˆ r2s be vertex sets,
where each of Vb`1,2, . . . , Vr,2 are empty sets and all other sets have size n. Let G :“ KpV1,1 Y
V1,2, . . . , Vr,1 Y Vr,2q be the blowup of the Turán graph Trpkq. Thus epGq “ trpkqn2.

We first revise the partition as follows. Let t1 :“ rpt ´ 1q{2s and b1 :“ mintb ´ 1, tpr ´ bq{2uu.
Let tV 1

i,j, pi, jq P rrs ˆ r2su be obtained from
Ť

Vi,j by moving t1 vertices from Vi,1 to Vi`b´1,1, and

moving t1 vertices from Vi,2 to Vi`b`b1´1,2, for every i P r2, b1 ` 1s. For i P rrs, let Ui :“ V 1
i,1 Y V 1

i,2

and H :“ KpU1, . . . , Urq X KpV1, . . . , Vkq. Let H 1 be obtained from H by adding

‚ a Kt,t-free bipartite graph on U1 of size Z
p2q
t pnq, and

‚ a maximum tK1,t,K2,2u-free bipartite graph on Ui for 2 ď i ď b ` 2b1.

Note that, for i P r2, bs, Proposition 3.1 implies that each H 1rUis is pt ´ 1q-regular and thus for
i P r2, b1 ` 1s, H 1rUis has pn ´ t1qpt ´ 1q edges, and for i P rb1 ` 2, bs it has npt ´ 1q edges; for
i P rb ` 1, b ` 2b1s, each H 1rUis consists of t1 vertex-disjoint stars K1,t´1 centered at the t1 new
vertices.
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We first observe that H contains trpkqn2 ´ b1pt1q2 edges. Indeed, for every i P r2, b1 ` 1s, the
t1 vertices moved from Vi,1 to Vi`b´1,1 lose nt1 edges to Vi`b´1,1 and gain pn ´ t1qt1 edges to Vi,2,
thus having a net loss pt1q2 edges between Ui and Ui`b´1. The same holds for the t1 vertices moved
from Vi,2 to Vi`b`b1´1,2. On the other hand, the t1 new vertices in V 1

i`b´1,1 and t1 new vertices in

V 1
i`b`b1´1,2 are all joined, giving additional pt1q2 edges. Thus, the net loss of changing G to H is

b1pt1q2 edges.
Furthermore, the vertices in V2,2 Y ¨ ¨ ¨ Y Vb,2 and the b1t1 vertices moved from V2,1 Y ¨ ¨ ¨ Y Vb1`1,1

each have degree t ´ 1 in
Ť

2ďiďr H
1rUis and thus the number of edges in H 1zH is

z
p2q
t pnq ` pt ´ 1qpb ´ 1qn ` pt ´ 1qb1t1.

Thus, we have epH 1q “ trpkqn2 ` z
p2q
t pnq ` pt ´ 1qpb ´ 1qn ` b1t pt´1q2

4
u “ g1pn, r, k, tq.

At last, we observe that H 1 is Kr`1ptq-free. Indeed, by construction, every Ui is triangle-free, U1

is Kt,t-free and other Ui’s are tK1,t,K2,2u-free. Therefore, a copy of Kr`1ptq can contain at most
2t ´ 1 vertices from U1 and at most t vertices from other Ui’s, which is impossible.

Now we assume a ě 2. Let Vi,j, pi, jq P rrs ˆ ra ` 1s be disjoint vertex sets, where Vi,a`1 “ H for
b ă i ď r, and all other sets have size n. Let H be a graph defined as follows. Let

t1 :“
Z

t ´ 1

4a2 ` 6a

^

and t1 P rt ´ at1 ´ 1, t ´ at1s be even.

Let tV 1
i,j, pi, jq P rrs ˆ ra ` 1su be a partition of

Ť

pi,jqPrrsˆra`1s Vi,j obtained from moving t1 vertices

from each of Vi,j, 2 ď i ď mintb, r ` 1 ´ bu, 1 ď j ď a ` 1 to Vi`b´1,j. Denote by Zi`b´1,j the set of

vertices moved from Vi,j and let Zi`b´1 :“
Ťa`1

j“1
Zi`b´1,j . For i P rrs, let Ui :“

Ť

jPra`1s V
1
i,j. Let H

be obtained from KpU1, . . . , Urq X KpV1, . . . , Vkq by adding graphs in each Ui as follows.

(S1) Add a maximum Kt,t-free pa ` 1q-partite graph in U1.
(S2) for i P r2, bs Y r2b, rs,1 add on Ui a tK1,t,K2,2u-free bipartite graph with t|Ui| t´1

2
u edges.

(S3) for i P rb ` 1,mint2b ´ 1, rus, we add a triangle-free graph Hi on Ui such that epHiq ě
t|Ui| t´1

2
u ` t1t

1

2
, and for any j P ra` 1s, Hi ´Zi,j contains no biclique of order larger than t.

We first show that (S2) is indeed possible. For i P r2, bs Y r2b, rs, each Ui consists of a or
a ` 1 parts of equal size n1, where n1 “ n or n1 “ n ´ t1. We first show that there exist disjoint
sets X1, . . . ,Xs, Y1, . . . , Ys Ď Ui, such that for each j P rss, Xj , Yj belong to distinct parts of Ui,
|Xj | “ |Yj| ě pn ´ t1q{2 and

Ťs
i“1

pXi Y Yiq is either Ui (if |Ui| is even) or Uiztvu for some v P V 1
i,1

(if |Ui| is odd). Indeed, this is trivial if Ui has an even number of parts. If Ui has an odd number
of parts, since a ě 2, there are at least three parts. We arbitrarily pair up all but the first three
parts. Now if n1 is even, then |Ui| is even, and let V 1

i,1 “ X1 YX2, V
1
i,2 “ Y1 YX3 and V 1

i,3 “ Y2 YY3,

where each small part has size n1{2 and we are done. Otherwise both n1 and |Ui| are odd. In this
case we take any v P V 1

i,1, and let V 1
i,1ztvu “ X1 Y X2, V

1
i,2 “ Y1 Y X3 and V 1

i,3 “ Y2 Y Y3, where

|X1| “ |Y1| “ |X2| “ |Y2| “ pn1 ´ 1q{2 and |X3| “ |Y3| “ pn1 ` 1q{2.
Now we define the desired bipartite graph on Ui. If |Ui| is even, then apply Proposition 3.1 to

each pair pXj , Yjq. Since the resulting graph is pt ´ 1q-regular and K2,2-free, it satisfies the desired
properties. Otherwise |Ui| is odd, and we apply Proposition 3.1 and add K2,2-free pt ´ 1q-regular
bipartite graphs on pairs of sets except pX3, Y3q (as defined above). For pX3, Y3q and v P V 1

i,1, we

connect tpt ´ 1q{2u edges from v to each of X3 and Y3 and denote the set of these neighbors by
X˚. Then by Proposition 3.1, we add a pt ´ 2q-regular K2,2-free bipartite graph on pX3, Y3q, and
then add a matching of size |X3| ´ tpt ´ 1q{2u such that the resulting graph is still K2,2-free, all the

1When 2b ą r, the interval r2b, rs is an empty set.
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vertices in X3 Y Y3 have degree t ´ 1, and X˚ remains an independent set. Indeed, this is possible
by applying Proposition 3.1 to the current graph with a complete bipartite graph added to X˚. By
construction, the resulting graph is K2,2-free, and all vertices except v have degree t ´ 1, while v

has degree t ´ 1 or t ´ 2. So it follows that the resulting graph has t|Ui| t´1

2
u edges as desired.

We now verify (S3). Recall that t1 is even. Choose Ai,1 Ď Vi,1 and Ai,2 Ď Vi,2, each of size
t1{2. Add in Hi a complete bipartite graph with parts Zi and Ai,1 Y Ai,2 (which is a copy of
Kt1,pa`1qt1). Next, if a is even, then we add a pt ´ 1q-regular K2,2-free bipartite graph on each of
pVi,3, Vi,4q, pVi,5, Vi,6q, . . . , pVi,a´1, Vi,aq; if a is odd, then we add a pt ´ 1q-regular K2,2-free bipartite
graph on each of pVi,4, Vi,5q, pVi,6, Vi,7q, . . . , pVi,a´1, Vi,aq. Thus, we are left with Vi,1, Vi,2 and possibly
Vi,3 when a is odd. If a is odd, then for j “ 1, 2, take arbitrary Bi,j Ď Vi,jzAi,j of size rn{3s ´ t1{2;
if a is even, then let Bi,j “ Vi,jzAi,j. We first connect vertices of Zi to Bi,1 Y Bi,2 such that every
vertex of Zi has t´1´ t1 neighbors in Bi,1 YBi,2 and all these neighbors are distinct and distributed
as evenly as possible in the two sets Bi,1, Bi,2. In particular, if one of Bi,1, Bi,2 receives one more
edge than the other, then we remove one arbitrary such edge and denote the vertex of this edge in
Zi by w. Denote by B˚

i,1 and B˚
i,2 the neighbors we have just obtained. So as for now for any vertex

v P Zi, NHi
pvq Ď Ai,1 Y Ai,2 Y B˚

i,1 Y B˚
i,2 and dHi

pvq ď t ´ 1. Using Proposition 3.1, we add a

pt ´ 1 ´ at1q-regular K2,2-free bipartite graph G1 on pAi,1 Y Bi,1, Ai,2 Y Bi,2q such that

(A1) G1rAi,1 Y B˚
i,1, Ai,2 Y B˚

i,2s contains no edge and

(A2) no two vertices in Ai,1 Y Ai,2 Y B˚
i,1 Y B˚

i,2 have any common neighbors in UizZi.

Indeed, this can be done by applying Proposition 3.1 (repeatedly) on pAi,1 Y Bi,1, Ai,2 Y Bi,2q with
the initial graph KpAi,1 Y B˚

i,1, Ai,2 Y B˚
i,2q. Note that vertices in Ai,1 Y Ai,2 have degree exactly

t´ 1´ at1 ` pa` 1qt1 “ t´ 1` t1. Furthermore, we add a perfect matching on pBi,1zB˚
i,1, Bi,2zB˚

i,2q
and at1 ´ 1 edge-disjoint perfect matchings on pBi,1, Bi,2q such that i) they are edge-disjoint from
G1, ii) the resulting graph on Ai,1 YBi,1 YAi,2 YBi,2 is K2,2-free and iii) (A1) and (A2) hold. This is
possible by Proposition 3.1. By now the construction is completed if a is even. If a is odd, then for
j “ 1, 2, let Xi,j Ď Vi,jzpAi,j YBi,jq of size tn{2u, and X 1

i,j “ Vi,jzpAi,j YBi,j YXi,jq. So |X 1
i,j | ě n{7

is large. We split Vi,3 to Yi,1, Yi,2, each of size tn{2u, and possibly one vertex u (only when n is odd).
By Proposition 3.1, we add pt ´ 1q-regular K2,2-free bipartite graphs on each of pXi,1, Yi,1q and
pXi,2, Yi,2q. If n is even, then by Proposition 3.1, we add a pt ´ 1q-regular K2,2-free bipartite graph
on pX 1

i,1,X
1
i,2q and the construction is finished. If n is odd, then we connect tpt´ 1q{2u edges from u

to each of X 1
i,1 and X 1

i,2 and connect u and w (if w exists). Denote by X˚˚ the set of these neighbors

of u in X 1
i,1 and X 1

i,2. Next, similarly to above, by Proposition 3.1 we can add a pt ´ 2q-regular
K2,2-free graph on pX 1

i,1,X
1
i,2q, and then add a matching of size |X 1

i,1| ´ tpt ´ 1q{2u to pX 1
i,1,X

1
i,2q so

that all vertices in X 1
i,1 Y X 1

i,2 have degree t ´ 1, the resulting graph is K2,2-free, and X˚˚ remains
an independent set. The construction is completed. By construction,

(1) vertices in Ai,1 YAi,2 have degree t´ 1` t1 and all other vertices have degree t´ 1 with the
exception of at most one vertex (u or w above), which has degree t ´ 2.;

(2) for any j P ra ` 1s, Hi ´ Zi,j has maximum degree t ´ 1 and thus is K1,t-free;
(3) Hi is triangle-free;
(4) Hi ´ Zi is K2,2-free.

Now we verify the last assertion of (S3). Let K be a biclique of order larger than t in Hi ´ Zi,j

for some j P ra` 1s. By (2) and (4), V pKq must intersect Zi. Then as Zi forms an independent set,
V pKq X Zi is in one part of K, denoted by P1, and by construction, the other part, denoted by P2,
is a subset of Ai,1 YAi,2 YB˚

i,1 YB˚
i,2 Y tuu. Since by (2) Hi ´Zi,j is K1,t-free, we have |P1| ě 2 and

|P2| ě 2. By construction, for any x P Ai,1 Y Ai,2 Y B˚
i,1 Y B˚

i,2, Npxq X Npuq X Ui “ H. Therefore,
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together with (A2), the vertices of P2 have no common neighbor outside Zi, yielding P1 Ď ZizZi,j

and |P1| ď at1. Now, P1 Ď Zi and |P1| ě 2 imply that P2 are the common neighbors of at least
two vertices from Zi, which gives that P2 Ď Ai,1 Y Ai,2 and thus |P2| ď t1. Together we obtain
|V pKq| “ |P1| ` |P2| ď at1 ` t1 ď t, a contradiction. Therefore, Hi ´ Zi,j does not contain any
bicliques on more than t vertices.

At last, we compute epHiq. Note that only vertices in Ai,1 Y Ai,2 have degree more than t ´ 1 –
they have degree t ´ 1 ` t1. All other vertices have degree t ´ 1 with the exception of at most one
vertex (u or w above), which has degree t ´ 2. Since t1 is even, t1t

1{2 P N. Thus, we have

epHiq “
Z |Ui|pt ´ 1q ` t1t

1

2

^

“
Z

|Ui|
t ´ 1

2

^

` t1t
1

2
.

So (S3) is verified.

Claim 3.2. The graph H is Kr`1ptq-free and epHq ě g1pn, r, k, tq.

Unlike the case a “ 1, we need some arguments to prove that H is Kr`1ptq-free. The difference
is that HrU1s might not be triangle-free (which is trivial for a “ 1, as HrU1s is bipartite), and thus
it may contribute e.g. a copy of K3pt ´ 1q towards a copy of Kr`1ptq.

Proof. We first show that H is Kr`1ptq-free. Suppose instead, that H contains a copy of Kr`1ptq
on a vertex set K. We first claim the following.

(♥) For every i P r2, rs, V pKq X Ui is a biclique or an independent set and |V pKq X Ui| ď 2t. If
|V pKq X Ui| ą t, then i P rb ` 1,mint2b ´ 1, rus and V pKq X Ui´pb´1q “ H.

Indeed, for i P r2, rs, since HrUis is triangle-free, V pKq X Ui is a biclique or an independent set.
By (S3), if |V pKqXUi| ą t, then i P rb`1,mint2b´1, rus and V pKq intersects all Zi,j for j P ra`1s,
which imply that V pKq X Ui´pb´1q “ H. Furthermore, we know |V pKq X pUizZi,1q| ď t and thus
|V pKq X Ui| ď t ` |Zi,1| ă 2t. So (♥) is proved.

Let K1 be the subgraph of K induced on its vertices in U1. By (♥), for each i P r2, rs, we have
either |V pKq X Ui| ď t or |V pKq X pUi Y Ui´b`1q| ď 2t. So we have |V pKqzV pK1q| ď pr ´ 1qt and
thus |V pK1q| ě 2t (which is now possible as commented above).

Let r1 be the number of members of U :“ tUi, i P r2, rsu that intersect V pKq. Since the number
of members of U not intersecting V pKq is r ´ 1 ´ r1, by (♥), there are at most r ´ 1 ´ r1 parts Ui,
i ą 1 such that |V pKq X Ui| ą t. Now we define an auxiliary graph G˚ on C1, . . . , Cr`1, the color
classes of K. Indeed, for distinct i, j P rr ` 1s, CiCj P EpG˚q if and only if there exists l P r2, rs
such that Ci X Ul ‰ H and Cj X Ul ‰ H. Note that by (♥), each Ul defines at most one edge of
G˚. Let C1, . . . , Cs be the connected components of G˚. Since K1 is Kt,t-free, there is at most one
i P rss such that V pCiq :“ Ť

CjPCi
Cj contains at least t vertices of V pK1q: two such components

each containing t vertices of K1 will induce a copy of Kt,t in K1. Without loss of generality, assume
that |V pCiq XV pK1q| ă t for all 2 ď i ď s. For each i P rss, let Ri be the set of indices l P r2, rs such
that |Ul X V pCiq| ą 0 and R1

i Ď Ri be the set of l such that |Ul X V pCiq| ą t. So we have

s
ÿ

i“1

|Ri| “ r1 and
s

ÿ

i“1

|R1
i| ď r ´ 1 ´ r1.

Moreover, by the definition of C1, . . . , Cs, the Ri’s are pairwise disjoint. We claim that for i P r2, ss,
|Ri| ě |Ci| ´ |R1

i|. Indeed, if |Ri| ď |Ci| ´ |R1
i| ´ 1, then by (♥), we have |V pCiq X Ť

lPRi
Ul| ď

|R1
i| ¨ 2t ` p|Ci| ´ 2|R1

i| ´ 1qt “ p|Ci| ´ 1qt. Since |V pCiq X V pK1q| ă t, we obtain |Ci|t “ |V pCiq| ă
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t ` |V pCiq X Ť

lPRi
Ul| ď |Ci|t, a contradiction. So the claim follows. Overall, we get

s
ÿ

i“2

|Ri| ě
s

ÿ

i“2

p|Ci| ´ |R1
i|q ě r ` 1 ´ |C1| ´ ppr ´ 1 ´ r1q ´ |R1

1|q ě r1 ` 2 ´ |C1|.

Therefore, |R1| ď r1 ´ pr1 ` 2 ´ |C1|q “ |C1| ´ 2 and thus G˚ has at most |C1| ´ 2 edges on C1. This
contradicts with that C1 is connected. So H is Kr`1ptq-free.

It remains to compute epHq. First suppose b “ 0, 1, then for 2 ď i ď r ´ 1, |Ui| “ an and thus
HrUis has at least t t´1

2
anu edges. It follows that epHq “ g1pn, r, k, tq. Secondly suppose b ě 2 and

let b1 :“ mintb ´ 1, r ´ bu. Note that eHpU1q “ z
prk{rsq
t pnq and t1 ě t ´ at1 ´ 1 ě p4a2 ` 5aqt1. So

r
ÿ

i“2

eHpUiq ě
r

ÿ

i“2

Z

|Ui|
t ´ 1

2

^

` b1 t1t
1

2
ě

Z

pk ´ a ´ 1qnt ´ 1

2

^

` b1 p4a2 ` 5aqt21
2

´ r ´ 1

2
.

Let H 1 “ KpU1, . . . , Urq X KpV1, . . . , Vkq. It remains to bound epH 1q. Note that for each i P
rb ` 1, b ` b1s, we have moved a set Zi of pa ` 1qt1 vertices from

Ť

j Vi´b`1,j to Ui. Thus, H 1 is

obtained from H˚ :“ KpU˚
1 , . . . , U

˚
r q XKpV1, . . . , Vkq where U˚

i “
Ť

jPra`1s Vi,j by disconnecting the

edges between Zi and U˚
i and connecting the vertices of Zi to Ui´b`1 except for pairs of vertices

from the same Vj’s (Zi remains to be an independent set). That is, for each vertex in Zi the net
gain is ´an` pan´ at1q “ ´at1, and thus the total net gain is ´apa` 1qt2

1
. Since epH˚q “ trpkqn2,

we obtain epH 1q “ trpkqn2 ´ b1apa ` 1qt21. Together with the bounds on eHpUiq we get

epHq ě trpkqn2 ` z
prk{rsq
t pnq `

Z

pk ´ a ´ 1qnt ´ 1

2

^

` b1 p2a2 ` 3aqt21
2

´ r ´ 1

2
.

So we obtain epHq ě g1pn, r, k, tq for the case t1 ą 0.
Finally for the case t1 “ 0 or b “ 0, 1 we give a slight improvement to avoid the loss ´pr ´ 1q{2.

Let W 1 :“ Ť

2ďiďr Vi,a`1. If b ě 2, starting from the partition tVi,ju, we move at most r vertices
in W 1 to other rows, (e.g. move a vertex from V2,a`1 to Vr,a`1, etc.), so that in the resulting
partition i P rrs, Ui :“

Ť

jPra`1s Vi,j, all but at most one of the Ui’s, 2 ď i ď r have even order. If

b ď 1, then W 1 “ H and we do nothing in this step. Then as in the previous proof, we i) add a
maximum Kt,t-free pa ` 1q-partite graph in U1, and ii) for i P r2, rs, add on Ui a tK1,t,K2,2u-free
bipartite graph with t|Ui| t´1

2
u edges. Let H be obtained by adding all edges between each two rows,

i.e., adding KpU1, . . . , Urq X KpV1, . . . , Vkq. For b ě 2, due to our control on the parities of the

sizes, we have
ř

iPrrs eHpUiq “ z
pa`1q
t pnq `

X

pk ´ a ´ 1qn t´1

2

\

. For b ď 1, we have
ř

iPrrs eHpUiq “
z

prk{rsq
t pnq ` pr ´ 1q

X

t´1

2
an

\

. That is, we have
ř

iPrrs eHpUiq “ z
prk{rsq
t pnq ` h1pn, r, k, tq in both

cases. Moreover, note that the movement of the vertices does not change the number of edges
in J :“ KpU1, . . . , Urq X KpV1, . . . , Vkq, because i) the induced subgraph on

Ť

iPrrs,jPras Vi,j does

not change, ii) the degree of every vertex of
Ť

iPrrs Vi,a`1 in the graph J does not change. Thus,

the graph KpU1, . . . , Urq X KpV1, . . . , Vkq contains exactly trpkqn2 edges and we obtain epHq “
trpkqn2 ` z

prk{rsq
t pnq ` h1pn, r, k, tq. �

Now the proof of Theorem 4 is completed. �

4. Proof of the upper bounds

Below we prove (E1).
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Proof of (Z) ñ (E1). Given a ` 1 sets V1, . . . , Va`1 of size n, we define an pa ` 1q-partite graph G

on V1, . . . , Va`1 as follows. Let V
1
2 be a set of n vertices consisting of tn{2u vertices from V1 and rn{2s

vertices from V2. We place an extremal graph G1 for z
paq
t pnq on V 1

2
, V3, . . . , Va`1, in other words, G1

is an a-partite Kt,t-free graph with z
paq
t pnq edges. Next we add a maximum bipartite Kt,t-free graph

G2 on the remaining vertices of V1 and V2. By (Z), epG2q ě z
p2q
t ptn{2uq ě δn2´1{t for some δ ą 0.

Thus G “ G1 Y G2 is Kt,t-free and epGq “ epG1q ` epG2q ě z
paq
t pnq ` δn2´1{t. This gives (E1). �

Now we prove the upper bounds on exkpn,Krptqq.
The proof of Theorem 6 is done by a series of claims and estimates, and actually contains the

proofs of Theorems 5 and 7. More precisely, the first half of the proof of Theorem 6 only requires (Z)
and (consequently) (E1), but not (E2) or (E3). The (weaker) estimates obtained in this part of the
proof suffice for Theorems 5 and 7. The second part of the proof contains refined estimates obtained
from (E2) and (E3) and completes the proof of Theorem 6.

Outline of the proofs. Now we give an outline of our proofs. Let G P Gkpnq be Kr`1ptq-free and
has the maximum number of edges. Since epGq ą trpkqn2, we can assume that G is γ-close to some
T P Tr,kpnq. Using that epGq is maximum, we can easily derive a minimum degree condition by
some symmetrization arguments.

Next we define atypical vertices. Roughly speaking, there are two types of atypical vertices: the
first type of vertices, denoted by Z2 Y W 2, are the “wrong” ones that do not exist in Tr,kpnq; the
second type of vertices, denoted by pW 1

i zWiq Y Ť

j‰i Z
i
j for i P rrs, are the vertices that are not in

Ui but behave like the vertices of Ui, in other words, they are in the wrong place. In the first half
of the proof (i.e., the proofs of Theorem 5 and Theorem 7), we completely ignore the first type of
atypical vertices because there are only a constant number of them (see pP1q and pP3q) and they
contribute only Opnq to epGq. For the second type of atypical vertices, there are only opnq of them

(see pP1q and pP3q) and we move them to appropriate rows and redefine our partition as Ũ1, . . . , Ũr

(see (4.2)). A key observation is that Zi
j ‰ H (namely, there is a vertex in Zj but behaves as a

vertex in Zi) is possible only if |Wj | ě p1 ´ op1qqn.
Now we estimate epGq. We split EpGq into EGpŨ1q, . . . , EGpŨrq, and EpG1q, where G1 :“ G X

KpŨ1, . . . , Ũrq. We have a relatively good estimate of epG1q (see Claim 4.4) taking into account that
the partition is no longer balanced. In contrast, due to the second type of atypical vertices, we can
only show that each GrŨis is “almost” Kt,t-free (see Claim 4.5). Similarly, we show that all but at

most one rows are “almost” K1,t-free (see Claim 4.7). Assuming that eGpŨ1q is the largest among

all eGpŨiq, i P rrs, we can collect the estimates and give an upper bound of epGq. Now we show that

Ũ1 has no atypical vertices (Claim 4.8), and thus eGpŨ1q ď z
pa`1q
t pnq. We further refine our estimate

on Ũi, i ą 1, and show that each second type atypical vertex contributes at most a constant number
of edges to EpGqzEpG1q (Claims 4.9 and 4.10). In summary, Ũ1 is indeed Kt,t-free, eGpŨiq “ Opnq
for i ą 1, and |Z2 YW 2| “ Op1q, from which we conclude the proofs of Theorem 5 and Theorem 7.

To prove Theorem 6, we refine earlier estimates as follows. We first show that |W 1
1
| “ p1´ op1qqn

and Z2YW 2 “ H, where we use (E2). The rest of the proofs are further refinements of our estimates
for various cases (see, e.g. the definition of h2). In particular, at the very last step, we use (E3) to
show that all of Zi

1, i P r2, rs should be empty and |W 1
1| should be equal to n.

We start with the following simple proposition.

Proposition 4.1. Given r, t P N and reals γ, ε ą 0 such that ε2 ą 3r2t2γ, and let n be sufficiently
large. Suppose G is a Kr`1ptq-free graph with vertex partition V “ U1 Y ¨ ¨ ¨ Y Ur such that |Ui| ě n
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for i P rrs and dpUi, Ujq ě 1 ´ γ, i, j P rrs, i ‰ j. Let X Ď V be the set of vertices v satisfies that
dpv, Uiq ě ε|Ui| for all i P rrs. Then |X| ď 2pt ´ 1qε´rt.

Proof. We call a copy of Krptq in G useful if it consists of exactly t vertices from each of U1, . . . , Ur.
We first show that for every v P X, Npvq contains many useful copies of Krptq. Indeed, dpUi, Ujq ě
1 ´ γ for every i, j P rrs, i ‰ j implies that GrUi, Ujs has at most γ|Ui||Uj | non-edges. Since

dpv, Uiq ě ε|Ui| for all i P rrs, take Wi Ď Npvq X Ui of size exactly ε|Ui|. We can find
ś

iPrrs

`

ε|Ui|
t

˘

rt-sets which consists of t vertices from each Ui, amongst which, at most

ÿ

i,jPrrs,i‰j

γ|Ui||Uj | ¨

¨

˝

ź

i1Prrs

ˆ

ε|Ui1 |
t

˙

˛

‚¨ t

ε|Ui|
t

ε|Uj | ď r2t2γ

ε2

ź

i1Prrs

ˆ

ε|Ui1 |
t

˙

of them contain crossing non-edges. Therefore, Npvq contains at least
ˆ

1 ´ r2t2γ

ε2

˙

ź

i1Prrs

ˆ

ε|Ui1 |
t

˙

ě εrt

2

ź

i1Prrs

ˆ|Ui1 |
t

˙

useful copies of Krptq, where we used that r2t2γε´2 ă 1{3. Since G is Kr`1ptq-free, each useful copy
K of Krptq is in Npvq for at most t ´ 1 choices of v P X. Double counting on the number of pairs
pv,Kq such that K Ď Npvq is useful, we obtain that

|X|ε
rt

2

ź

i1Prrs

ˆ|Ui1 |
t

˙

ď pt ´ 1q
ź

i1Prrs

ˆ|Ui1 |
t

˙

,

which gives |X| ď 2pt ´ 1qε´rt. �

Given integers 1 ď s ď t and sufficiently large m,n, Kővári, Sós, Turán [12] showed that

zpm,n, s, tq ď Cmn1´1{s for some C “ Cptq ą 0, that is, a bipartite graph G with parts of size m

and n has at most Cmn1´1{s edges if G has no copy of Ks,t where the part of size s is in the part

of G of size m. This easily implies that expn,Ks,tq ď Cn2´1{t for sufficiently large n.

Proofs of Theorems 5, 6, and 7. Suppose (Z) holds, that is, z
p2q
t pnq ě cn2´1{t for some c ą 0. Take

C “ Cptq as in the Kővári–Sós–Turán result in the previous paragraph. We choose constants

1{n ! γ ! ε ! ε1 ! 1{k, 1{t, c, C.
SupposeG is Kr`1ptq-free and has the maximum number of edges, that is, epGq “ exkpn,Kr`1ptqq.

Suppose further that epGq ą g2pn, r, k, tq ą trpkqn2. By Theorem 3, G is γ-close to some T P
Tr,kpnq, where the color classes of T are denoted by U1, . . . , Ur with Ui “ Wi Y Zi such that Zi “
Vpi´1qa`1 Y ¨ ¨ ¨ Y Via, Wi “ H if b “ 0 and Wi is a subset of Vj for some j ě ar ` 1 otherwise,
and T “ KpU1, . . . , Urq X KpV1, . . . , Vkq. For i P rrs, if Wi ‰ H, then let qi be the index such that

Wi Ď Vqi and we know ar ă qi ď k. For simplicity, we write ztpnq “ z
prk{rsq
t pnq.

The fact that G is γ-close to T gives the following observation.

(D0) for any i P rrs, there exists Bi Ď Ui of size at most 2
?
γn such that for any v P UizBi and

A Ď Ť

jPrrsztiu Uj satisfying that none of the vertices of A is in the same cluster as v is, we

have dpv,Aq ď ?
γn.

To see it, fix i P rrs and write U˚ :“ Ť

j‰i Uj . Since G is γ-close to T , we have

eGpZi, U
˚q ě |Zi||U˚| ´ γn2, and eG pWi, U

˚zVqiq ě |Wi||U˚zVqi | ´ γn2.
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Let B1
i Ď Zi be the set of vertices v such that dpv, U˚q ą ?

γn, and B2
i Ď Wi be the set of vertices w

such that dpw,U˚zVqiq ą ?
γn. The displayed line above implies that |B1

i| ď ?
γn and |B2

i | ď ?
γn.

Now (D0) holds by setting Bi “ B1
i Y B2

i .

Minimum degree. For i P rks, let Ni :“ NT puiq for some ui P Vi. Note that this is well-defined as
the vertices of Vi share the same neighborhood in T . Using the maximality of epGq, we derive that
for every u P Vi, i P rks

dGpuq ě dT puq ´ 2tγn.

Indeed, since G is γ-close to T , that is, |EpGq△EpT q| ď γn2, for each i P rks, we can greed-
ily pick distinct u1, . . . , ut P Vi, such that |NGpujq△Ni| ď γn2{pn ´ jq ď 2γn, for j P rts. Let
N 1

i :“ Ş

jPrts NGpujq and note that |N 1
i△Ni| ď 2tγn. In particular, |N 1

i | ě |Ni| ´ 2tγn. Now for

a contradiction suppose there is u P Vi such that dGpuq ă dT puq ´ 2tγn “ |Ni| ´ 2tγn. Then we
replace NGpuq by N 1

i , that is, we disconnect all the edges of u in G and connect u to the vertices
of N 1

i . Thus, we obtain a k-partite graph on the same vertex set as G and has more edges than
G. Therefore, by the maximality of G, this new graph contains a copy of Kr`1ptq, denoted by
K. Clearly, K must contain the vertex u, as G is Kr`1ptq-free. Moreover, K must miss at least
one vertex from u1, . . . , ut, say uj , because the set tu, u1, . . . , utu is independent in G and K has
independence number t. However, as the neighborhood of u N 1

i is a subset of NGpujq, we can replace
u by uj and still get a copy of Kr`1ptq, which is in G, a contradiction.

Therefore, comparing with the degrees in T , we derive that for any vertex u,

dGpuq ě
#

pk ´ aqn ´ |Wi| ´ 2tγn, if u P Zi for i P rrs,
pk ´ 1 ´ aqn ´ 2tγn, if u P W.

(4.1)

Atypical vertices. In this step we identify a set of atypical vertices, that is, those behave differently
from the majority of the vertices. Let W :“ Ť

iPrrs Wi “ Var`1 Y ¨ ¨ ¨ Y Vk. We define W 2 :“
tv P W : dpv, Zjq ě εn, for all j P rrsu and W 1

i :“ tv P W : dpv, Ziq ă εnu. Then we have
W “ W 2 Y W 1

1
Y ¨ ¨ ¨ Y W 1

r. Next, for i P rrs, let Z2 :“ Ť

iPrrs Z
2
i , where

Z2
i :“ tv P Zi : dpv, Zjq ě εn, for all j P rrsztiu and dpv, Uiq ě εnu.

Let Z 1
i :“ ZizZ2

i for all i. We write Z 1
i as

Ť

jPrrs Z
j
i , where Z

j
i , j ‰ i, consists of the vertices v such

that dpv, Zjq ă εn, and Zi
i consists of the vertices v such that dpv, Uiq ă εn. Below are some useful

properties of these sets.

Claim 4.2. The following properties hold for all i P rrs.
pP1q |W 1

i zWi| ď 2γn and |W 2| ď C0 :“ 2tε´rt.
pP2q W “ W 2 Y W 1

1 Y ¨ ¨ ¨ Y W 1
r is a partition of W .

pP3q |Z2
i | ď C0, |Zj

i | ď ?
γn for j ‰ i, and |Zi

i | ě p1 ´ ?
γqan.

pP4q Ť

jPrrs Z
j
i is a partition of Z 1

i.

Proof. Recall the definition of W 2 and that dpZi, Zjq ě 1 ´ γ for distinct i, j P rrs. Applying
Proposition 4.1 to the graph GrW 2 Y Zs with vertex partition pU1, . . . , Urq, we obtain that |W 2| ď
C0 :“ 2tε´rt. We next show that |W 1

i zWi| ď 2γn for each i P rrs. Indeed, because G is γ-close to
T , we have eGpZi,W

1
i zWiq ě an|W 1

i zWi| ´ γn2. On the other hand, by definition, eGpZi,W
1
i zWiq ă

|W 1
i zWi| ¨ εn. Thus, we get |W 1

i zWi| ă γn{pa ´ εq ă 2γn, verifying pP1q.
To see pP2q, suppose there is a vertex v P W 1

i XW 1
j. By definition, dpvq ď pk ´ 1qn ´ 2pa ´ εqn ă

pk ´ 1 ´ aqn ´ ?
γn, contradicting (4.1).
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Next we show pP3q. Fix i P rrs. Since G is γ-close to T , we have dpZj , Zj1q ě 1 ´ γ and
dpUi, Zjq ě 1 ´ γ for distinct j, j1 P rrsztiu. Thus, we can apply Proposition 4.1 on GrUi Y Ť

j‰iZjs
(with the obvious r-partition) and obtain |Z2

i | ď C0. Moreover, for i ‰ j, from dpZi, Zjq ě 1 ´ γ

we infer |Zj
i | ď pγ{εqn ď ?

γn, as γ ! ε. Therefore, we also get |Zi
i | ě |Zi| ´ |Z2

i | ´ ř

j‰i |Zj
i | ě

an ´ C0 ´ pr ´ 1qγn{ε ě p1 ´ ?
γqan.

Now we show pP4q. By definition, if v P Zi
i , then dpv, Uiq ă εn; if v P Z

j
i for j ‰ i, then

dpv, Zjq ă εn. Thus, we have Z 1
i Ď Ť

jPrrs Z
j
i by definition. A vertex v P Zi

i X Z
j
i , j ‰ i, satisfies

that dpvq ă kn ´ p|Ui| ´ εnq ´ pa ´ εqn ď pk ´ aqn ´ |Wi| ´ p1 ´ 2εqn, contradicting (4.1). A vertex

v P Z
j
i XZ

j1

i for distinct j, j1 P rrsztiu satisfies that dpvq ă pk´ 1qn´ 2pa´ εqn ď pk ´a´ 2qn` 2εn,

contradicting (4.1) as well. Thus,
Ť

jPrrs Z
j
i is a partition of Z 1

i. �

For i P rrs, our refined partition is defined by

Ũi :“ Z̃i Y W 1
i , where Z̃i :“

ď

jPrrs

Zi
j . (4.2)

Then V pGq “ Z2 Y W 2 Y
Ť

iPrrs Ũi. Note that for any v P Ũi, we have dpv, Zi
i q ď dpv, Ziq ď εn, and

thus dpv, Z̃iq ď εn ` pr ´ 1q?
γn by pP3q.

For every i P rrs, note that pP1q implies that |WizW 1
i | ď C0`pr´1q2γn ď 2rγn, and similarly pP3q

implies that |ZizZ̃i| ď C0 ` pr ´ 1q?
γn ď r

?
γn.

We now derive a more handy minimum degree condition. For convenience, define dpv,Aq “
|A| ´ dpv,Aq. For v P Zi

i , we have dpv, Ũiq ě dpv, Uiq ´ |UizŨi|. Since dpv, Uiq ą an ` |Wi| ´ εn

and |UizŨi| ď |ZizZ̃i| ` |WizW 1
i | ď εn{2, we have dpv, Ũiq ě an ` |Wi| ´ εn ´ εn{2. By (4.1),

dpvq ď an ` |Wi| ` ?
γn. It follows that dpv, V zŨiq ď 2εn. Now consider v P ŨizZi

i . The definition

of Ũi implies that dpv, Ziq ă εn and dpv, Ziq ą an ´ εn. Assume v P Vj. Then Vj X Zi “ H
and trivially dpv, Vjq “ n. It follows that dpv, Zi Y Vjq ą pa ` 1qn ´ εn. Hence dpv, Z̃i Y Vjq ě
dpv, Zi Y Vjq ´ |ZizZ̃i| ą pa ` 1qn ´ 3

2
εn. On the other hand, either case of (4.1) implies that

dpvq ď pa ` 1qn ` ?
γn. Consequently, dpv, V zpZ̃i Y Vjqq ď 2εn. In summary, for i P rrs and j P rks,

(Deg) If v P Zi
i , then dpv, V zŨiq ď 2εn; if v P pŨizZi

i q X Vj, then dpv, V zpZ̃i Y Vjqq ď 2εn.

Next we prove further properties on Z
j
i and Z̃j.

Claim 4.3. If Zj
i ‰ H for some i ‰ j, then the following holds.

pQ1q For v P Z
j
i and A Ď V pGqzpZi Y Zjq, we have dpv,Aq ě |A| ´ εn ´ ?

γn.
pQ2q |Wi| ě p1 ´ ε ´ ?

γqn.
pQ3q If |Z̃jzZj| ě t, then |Wj | ď 2tεn.

Proof. Note that dpv, Zjq ď εn and dpv, Ziq ď pa ´ 1qn, that is, v has at least n ` pan ´ εnq “
pa`1qn´εn non-neighbors in ZiYZj. On the other hand, (4.1) says that v has at most an`|Wi|`

?
γn

non-neighbors in G. Combining these two we get that v has at most |Wi|´n`εn`?
γn ď εn`?

γn

non-neighbors outside Zi Y Zj, and thus pQ1q holds. The fact that |Wi| ´ n ` εn ` ?
γn ě 0

implies pQ2q.
For pQ3q, suppose to the contrary, |Z̃jzZj| ě t and |Wj| ą 2tεn. By pQ1q with A “ Wj , arbitrary

t vertices in Z̃jzZj have at least |Wj | ´ tpε ` ?
γqn ě t common neighbors in Wj. We thus obtain a

copy of Kt,t with one part in Z̃jzZj and the other part in Wj – denote its vertex set by B. For any

i1 P rrsztju such that BXZ
j
i1 ‰ H, we have |Wi1 | ě p1´ε´?

γqn by pQ2q. Since |Wj| ą 2tεn, Wi1 and
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Wj do not belong to the same cluster, and thus no vertex of B is in the same cluster that contains
Wi1 , which implies that the vertices of B have at least |Wi1 | ´ 2tp2εnq ě n{2 common neighbors in

Wi1 by (Deg). For any i2 P rrsztju such that B X Z
j
i2 “ H (and thus B X Zi2 “ H), by (Deg) we

have that the vertices of B have at least n{2 common neighbors in Zi2 . Because G is γ-close to T ,
these common neighborhoods, each of size at least n{2, have densities close to one between each
pair, and thus contain a copy of Kr´1ptq. Together with B, they form a copy of Kr`1ptq in G, a
contradiction. �

In particular, when b “ 0 (and thus Wi “ H for all i), pQ2q implies that Zj
i “ H whenever i ‰ j.

Consequently,

Ũi “ Zi
i “ ZizZ2 for all i P rrs when b “ 0. (4.3)

Let L Ď rrs be the set of indices i such that |Wi| ě p1 ´ ε ´ ?
γqn. pQ2q and pQ3q imply that

‚ for i P rrszL, we have Z
j
i “ H for j ‰ i.

‚ for i P L, |Z̃izZi| ď t ´ 1 and thus |Z̃i| ď an ` t ´ 1.

Estimate epGq. Let G1 “ GXKpŨ1, . . . , Ũrq. We have epGq “ epG1q`řr
i“1

eGpŨiq`epZ2 YW 2, Gq.
Since G1 is r-partite, it is Kr`1-free. As G1 is a subgraph of G P Gkpnq, we have epG1q ď trpkqn2

(but this is not good enough when b ą 0). Below we give an upper bound for epG1q, which will be
used throughout the proof. Recall that T “ KpV1, . . . , Vkq X KpU1, . . . , Urq has precisely trpkqn2

edges,

Claim 4.4. We have epG1q ď trpkqn2 ` ř

iPrrspβi ´ αiq, where

βi :“
ÿ

jPLztiu

|Zi
j |

´

|Z̃jzZj | ` |W 1
j | ´ n ` |ZizZ̃i|

¯

and

αi :“|Z̃izZi||W 1
i | ` eT pW 1

i q ` eT pZ̃izZiq.

Proof. We first obtain Gp0q :“ KpZ1YW 1
1, . . . , ZrYW 1

rqXKpV1, . . . , Vkq from T . During this process,
we lose the edges of T between Wi and Wj, j ‰ i, if both ends of the edges are placed in W 1

i . Thus

epGp0qq “ trpkqn2 ´
ÿ

iPrrs

eT pW 1
i q. (4.4)

We imagine a dynamic process of obtaining G1 from Gp0q by recursively moving vertices. To
estimate epG1q, we track the changes of the edges with respect to complete r-partite graphs (but
also respecting the k-partition of G). More precisely, for l ą 0, let

Gplq :“ KpZplq
1

Y W 1
1, . . . , Z

plq
r Y W 1

rq X KpV1, . . . , Vkq
such that the r-partition of Gplq can be obtained by moving exactly one vertex from the partition
of Gpl´1q. The process terminates after m :“ ř

iPrrs |Z̃izZi| steps and thus G1 is a subgraph of Gpmq.

Furthermore, throughout the process, we only move vertices from the color classes in L to other
color classes. Therefore, we can give a linear ordering to the members of L, and for i P L we move
vertices from Zi only after we have moved the vertices in color classes j prior to i (denoted by

j ăL i). Now, in the l-th step, suppose we move v from Z
pl´1q
j to Z

pl´1q
i , namely, v P Zi

j, then the
change is

epGplqq ´ epGpl´1qq “ |Zpl´1q
j zVp| ` |W 1

j | ´ |Z̃pl´1q
i | ´ |W 1

i |,

where Vp Q v and Z̃
pl´1q
i “ Z

pl´1q
i zVp.
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Note that we have |Zpl´1q
j zVp| ď pa´1qn`|Z̃jzZj|. Moreover for any j1 ăL j, we have Zi

j1 Ď Z
pl´1q
i .

Therefore, we have |Z̃pl´1q
i | ě an ´ |ZizZ̃i| ` ř

j1ăLj
|Zi

j1 |. Putting all these together, we get

epGplqq ´ epGpl´1qq ď |Z̃jzZj | ` |W 1
j | ´ n ` |ZizZ̃i| ´

ÿ

j1ăLj

|Zi
j1 | ´ |W 1

i |.

Recalling that we moved v from Z
pl´1q
j to Z

pl´1q
i at the l-th step, we obtain

epG1q ´ epGp0qq ď
m
ÿ

l“1

¨

˝|Z̃jzZj | ` |W 1
j | ´ n ` |ZizZ̃i| ´

ÿ

j1ăLj

|Zi
j1 | ´ |W 1

i |

˛

‚,

where i, j depends on l. Since m “ ř

iPrrs |Z̃izZi|, we have

m
ÿ

l“1

p|Z̃jzZj| ` |W 1
j | ´ n ` |ZizZ̃i| ´ |W 1

i |q

“
ÿ

iPrrs

ÿ

jPLztiu

|Zi
j |p|Z̃jzZj| ` |W 1

j | ´ n ` |ZizZ̃i| ´ |W 1
i |q

“
ÿ

iPrrs

ÿ

jPLztiu

|Zi
j |p|Z̃jzZj| ` |W 1

j | ´ n ` |ZizZ̃i|q ´
ÿ

iPrrs

|Z̃izZi||W 1
i |.

Moreover, it is not hard to see that
m
ÿ

l“1

ÿ

j1ăLj

|Zi
j1 | “

ÿ

iPrrs

ÿ

tj1,j2uPpLztiu
2

q
|Zi

j1
||Zi

j2
| “

ÿ

iPrrs

eT pZ̃izZiq.

Now the claim follows by combining these estimates with (4.4). �

Our main task is bounding the number of edges in each Ũi. For i P rrs, we have epGrŨisq “
epZi

i , GrŨisq ` eGpŨizZi
iq. To bound eGpŨizZi

iq “ eGppZ̃izZiq Y W 1
i q, we note that eGpZ̃izZi,W

1
i q ď

|Z̃izZi||W 1
i | and eGpW 1

i q ď eT pW 1
i q. However, we may not have eGpZ̃izZiq ď eT pZ̃izZiq because each

Zi
j is an independent set in T , but may not be independent in G when a ě 2. Thus, eGpZ̃izZiq ď

eT pZ̃izZiq ` ř

j‰i eGpZi
jq. Putting these together, for each i P rrs, we have

eGpŨizZi
iq “ eGpZ̃izZi,W

1
i q ` eGpW 1

i q ` eGpZ̃izZiq ď αi `
ÿ

j‰i

eGpZi
jq. (4.5)

Let fi :“ epZi
i , GrŨisq. Applying Claim 4.4 and (4.5), we derive that

epGq “ epG1q ` epZ2 Y W 2, Gq `
ÿ

iPrrs

fi ` eGppŨizZi
iq (4.6)

ď trpkqn2 ` epZ2 Y W 2, Gq `
ÿ

iPrrs

˜

fi ` βi `
ÿ

j‰i

eGpZi
jq

¸

(4.7)

The following claim shows that a large portion of GrŨis is Kt,t-free (though we cannot prove that

the entire GrŨis is Kt,t-free).

Claim 4.5. The following holds for all i P rrs.
pK1q Both GrZ̃is and GrZi

i Y W 1
i s are Kt,t-free.

pK2q If |W 1
i | ą 2tεn ` 2γn, then |W 1

i zVqi| ď t ´ 1.
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pK3q If |W 1
i | ą 2tεn ` 2γn, then GrZ̃i Y pW 1

i X Vqiqs is Kt,t-free.

Proof. For pK1q, suppose there is a copy of Kt,t in Ũi, with vertex set denoted by B, contained

in Z̃i or in Zi
i Y W 1

i . Let NB be the set of common neighbors of these 2t vertices of B. First

assume that B Ď Z̃i. Then for any j P Lztiu, by (Deg) we have |NB X W 1
j | ě |W 1

j | ´ 4tεn,

and thus by pP1q |NB X Wj X W 1
j| ě |W 1

j| ´ 4tεn ´ 2γn ě n{2. For any j R L Y tiu, because

B X Zj “ H by pQ2q, we have |NB X Zj | ě an ´ 4tεn ě n{2 by (Deg). Note that every set in
tNB XZj : j R Lu Y tNB XWj XW 1

j : j P Lu has size at least n{2 and every pair of them has density

at least 1 ´ 4γ. Therefore we can find a copy of Kr´1ptq in the union of these sets, which gives rise
to a copy of Kr`1ptq together with B, a contradiction.

Second we assume that B Ď Zi
i YW 1

i . In this case we note that for any j ‰ i, we have BXZj “ H
and thus by (Deg), we have |NB X Z

j
j | ě p1 ´ ?

γqan ´ 4tεn ě n{2. Then as these sets have high

pairwise densities, as in the previous case, we can find a copy of Kr´1ptq in the union of these sets,
yielding a copy of Kr`1ptq together with B, a contradiction. Now pK1q is proved.

Now we turn to pK2q, and suppose |W 1
i | ą 2tεn` 2γn and thus |Wi XW 1

i | ą 2tεn by pP1q. First,
if W 1

i contains at least t vertices which are not from Vqi (the cluster containing Wi), then by (Deg),
each of these vertices have at most 2εn non-neighbors in Wi X W 1

i , and thus we can find a copy of
Kt,t in W 1

i , contradicting pK1q. So we have |W 1
i zVqi | ď t ´ 1.

For pK3q, suppose there is a copy of Kt,t as stated in the claim, whose vertex set is denoted
by B. As in the previous paragraph, we have |Wi| ą 2tεn by pP1q. Now observe crucially that if
B X Zi

j ‰ H, then by pQ2q |Wi| ` |Wj| ą n, and thus, Wi and Wj are not from the same cluster.

So by (Deg), for any j P rr ´ 1sztiu, if B X Zi
j “ H, then the vertices of B have large common

neighborhoods in Z
j
j ; if B X Zi

j ‰ H, then the vertices of B have large common neighborhoods in

Wj X W 1
j (note that |Wj| ě p1 ´ ε ´ ?

γqn by pQ2q). Since each of these common neighborhoods

have size at least n{2 and each pair of them has high density, we can find a copy of Kr´1ptq in the
union of these sets, yielding a copy of Kr`1ptq together with B, a contradiction. �

We now derive an upper bound for epGq from Claims 4.4 and 4.5. For i P rrs, we have βi ď
ř

jPLztiu |Zi
j |p|Z̃jzZj| ` |W 1

jzVqj | ` |ZizZ̃i|q as |W 1
j| ´ n ď |W 1

jzVqj |. Fix j P Lztiu. Note that

|Wj| ě p1 ´ 2εqn. We have |Z̃jzZj | ď t ´ 1 by pQ3q, and |W 1
jzVqj | ď t ´ 1 by pK2q. If |Wi| ą n{2,

then |Zi
j | ď t ´ 1 by pQ3q. Furthermore, since |ZizZ̃i| ď pr ´ 1q?

γn ` C0 by pP3q, it follows that

|Zi
j |

´

|Z̃jzZj| ` |W 1
jzVqj | ` |ZizZ̃i|

¯

ď pt ´ 1qpt ´ 1 ` t ´ 1 ` pr ´ 1q?
γn ` C0q ď pt ´ 1qr?

γn.

Otherwise |Wi| ď n{2, and by pQ2q, we have Zi1

i “ H for any i1 ‰ i. This implies |ZizZ̃i| “ |Z2
i | ď

C0. Using |Zi
j | ď ?

γn, pQ3q, and pK2q, we derive that

|Zi
j |

´

|Z̃jzZj| ` |W 1
jzVqj | ` |ZizZ̃i|

¯

ď ?
γnp2pt ´ 1q ` C0q ď 2C0

?
γn.

Summarizing these two cases for all j P Lztiu, we obtain that βi ď pr´1q2C0

?
γn, and consequently,

ÿ

iPrrs

βi ď 2pr ´ 1qrC0

?
γn. (4.8)

On the other hand, for all i ‰ j, the graph GrZi
js is Kt,t-free by pK1q and thus, by pP3q,

ř

i,j:i‰j eGpZi
jq ď rpr ´ 1qC

`?
γn

˘2´1{t
. Applying this with (4.7), (4.8), and the fact that epZ2 Y
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W 2, Gq ď pr ` 1qC0kn, we obtain that

epGq ď trpkqn2 ` pr ` 1qC0kn `
ÿ

iPrrs

fi ` 2pr ´ 1qrC0

?
γn `

ÿ

i,j:i‰j

eGpZi
jq (4.9)

ď trpkqn2 `
ÿ

iPrrs

fi ` r2C
?
γn2´1{t.

Using the assumption epGq ě g2pn, r, k, tq ě trpkqn2 ` ztpnq, we infer that
ÿ

iPrrs

fi ě ztpnq ´ r2C
?
γn2´1{t ě c

2
n2´1{t (4.10)

by using (Z), ztpnq ě z
p2q
t pnq ě cn2´1{t, and γ ! 1.

In the rest of the proof we will derive a contradiction to (4.10). We first study the existence of

K1,t in each color class. To do so, we consider a copy of K3ptq in GrŨi Y Ũjs for some i ‰ j.

Claim 4.6. For any i ‰ j, if GrŨi Y Ũjs contains a copy K of K3ptq, then there exists l R ti, ju
such that V pKq intersects Vql and every cluster in Zl.

Proof. We may assume that r ą 2 as otherwise the claim is trivial. Suppose to the contrary that
there is a copy K of K3ptq in, say, Ũ1 and Ũ2, such that for every l P r3, rs, there is a cluster in
Ul which does not intersect B :“ V pKq. Let Vil be a cluster in Zl such that B X Vil “ H, and
if there is no such cluster in Zl, then we choose Vil “ Vql . Note that in the former case, we have

|Ũl X Vil | “ |Z l
l X Vil | ě p1 ´ ?

γaqn. In the latter case, we have Z1
l ‰ H or Z2

l ‰ H, which implies

that |Wl| ě p1 ´ 2εqn by pQ2q, and thus |Ũl X Vil | “ |W 1
l X Vil | ě p1 ´ 3εqn. Now, by (Deg), every

vertex in B has at most 2εn non-neighbors in Ũl X Vil for each l P r3, rs. Since for every l we have

|Ũl X Vil | ě 0.9n, one can find large common neighborhoods (e.g. of size n{2) of all vertices of B in

each Ũl XVil , and then find a copy of Kr´2ptq in these sets. Altogether we obtain a copy of Kr`1ptq,
a contradiction.

Therefore, for such a copy K of K3ptq, there exists l R ti, ju such that K must intersect all clusters

of Ul. Since V pKq X Zl ‰ H, we have Zi
l ‰ H or Zj

l ‰ H. Then by pQ2q, |Wl| ě p1 ´ 2εqn and in
particular, Vql ‰ H. Therefore V pKq X Vql ‰ H. �

Claim 4.7. For all but exactly one j P rrs, we have dpv, Zj
j q ď t ´ 1 for all v P Ũj .

Proof. First assume that there exists j P rrs such that GrŨjs contains a copy of K1,t, with vertex

set denoted by tv, u1, . . . , utu, v P Ũj and u1, . . . , ut P Z
j
j . Fix i P rrsztju and let N 1 be the set

of common neighbors of u1, . . . , ut in Ũi X Ui. Suppose v P Vp and let N be the set of common

neighbors of these t ` 1 vertices in Ũi X Ui. In particular, N Ď N 1 and N is almost equal to the
union of a or a ` 1 clusters in Ũi. Suppose there is a copy of Kt´1,t with parts S1 of size t ´ 1 and
S2 of size t such that S1 Ď N 1 and S2 Ď N . Then by Claim 4.6, there exists l P rrszti, ju such
that B X Zl ‰ H and B X Vql ‰ H, where B denotes the vertex set of the copy of K3ptq. This is
impossible since v is the only possible vertex in B X pZl Y Vqlq and can not satisfy both. Therefore,

GrN,N 1s is Kt´1,t-free, implying that eGpN,N 1q “ Opn2´1{pt´1qq.
By pP1q, pP3q and (Deg), we have |pŨizVpqzN | ď 3pt ` 1qεn and |ŨizN 1| ď 3tεn. Let Ei be

the set of the edges incident to pŨizVpqzN or ŨizN 1 and counted in fi. We split it to Ei X EGpZi
i q

and Ei X EGpŨizZi
i , Z

i
i q. Note that by pK1q, each of the terms can be split further into at most k
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Kt,t-free bipartite graphs, each with one part of size at most 3pt ` 1qεn and the other part of size
at most p1 ` pr ´ 2q?

γqan. Therefore, we obtain that

fi “ Opεn2´1{tq ` Opn2´1{pt´1qq “ Opεn2´1{tq. (4.11)

Now assume there exist distinct j1, j2 P rrs such that each GrŨjis contains a copy of K1,t whose

part of size t is in Z
ji
ji
. The arguments above imply that (4.11) holds for all i P rrs, and consequently,

ř

iPrrs fi “ Opεn2´1{tq, contradicting (4.10).

On the other hand, if dpv, Zj
j q ď t ´ 1 for all j P rrs and all v P Ũj , then

ř

jPrrs fj ď pt ´ 1qkn,
again contradicting (4.10). �

By Claim 4.7, without loss of generality, we assume that,

for i ě 2, dpv, Zi
i q ď t ´ 1 for all v P Ũi, and thus, fi ď pt ´ 1q|Ũi|. (4.12)

If b “ 0, then Ũi “ Zi
i “ ZizZ2 for all i by (4.3). In this case Ũ1 is Kt,t-free by pK1q and Ũi is

K1,t-free for all i ě 2 by (4.12). Since G is γ-close to Krpanq, GrUizZ2, UjzZ2s is almost complete
for all i ‰ j. This completes the proof of Theorem 7 with Z :“ Z2 (note that (Z) holds because
t “ 2, 3).

Furthermore, when b “ 0, together with epG1q ď trpkqn2, we conclude that

epGq ď trpkqn2 ` ztpnq ` pr ´ 1q
Z

t ´ 1

2
an

^

` |Z2|kn. (4.13)

By pP3q, |Z2| ď rC0, and this proves Theorem 5 for the case b “ 0.

We thus assume b ą 0 for the rest of the proof of Theorem 5. By (4.10) and (4.12), we get

f1 ě z
pa`1q
t pnq ´ εn2´1{t. (4.14)

In particular, we claim that
|W1| ą 3tεn (4.15)

(which we will refine a moment later). Indeed, the edges counted in f1 can be covered by GrZ1
1

s,
GrZ1

1 ,W1 X W 1
1s, and at most k Kt,t-free bipartite graphs, each with a part of size at most

?
γn

and a part of size at most an. If |W1| ď 3tεn, then eGpZ1
1 ,W1 X W 1

1q “ Opεn2´1{tq. Together with

eGpZ1
1

q ď z
paq
t pnq, we have

f1 ď z
paq
t pnq ` Opεn2´1{tq ă z

pa`1q
t pnq ´ εn2´1{t

by (E1), contradicting (4.14).

Now we can give a much cleaner structure, shown in a series of claims below.

Claim 4.8. Suppose b ą 0. Then Ũ1 “ Z1
1 Y W 1

1 and W 1
1 Ď Vq1 .

Proof. Suppose to the contrary, there is a vertex v in Ũ1zpZ1
1 Y W 1

1q or W 1
1zVq1 , namely, v P Z1

i

for some 2 ď i ď r or v P W 1
1zVq1 . Suppose v P Vl. Then l ‰ q1. Morepver, if i is defined, then

W 1
1

X Vq1 Ď V zpZ̃i Y Vlq; otherwise, W 1
1

X Vq1 Ď V zVl. By (Deg), we have dpv,W 1
1

X Vq1q ď 2εn.
Let N :“ W 1

1 X Vq1 X Npvq. We have |pW 1
1 X Vq1qzN | ď 2εN . Since |W 1

1zVq1| ď |W 1
1zW1| ď 2γn, it

follows that |W 1
1zN | ď 2εn ` 2γn ď 3εn.

Recall (4.15), |W1| ą 3tεn. By pK3q (if v P Z̃1zZ1) or pK1q (if v P W 1
1
zVq1), we know thatGrZ1

1
, N s

contains no Kt´1,t with the part of size t in N . This implies that eGpZ1
1 , Nq “ Opn2´1{pt´1qq.

Furthermore, by pP3q and pK1q, GrZ̃1zZ1
1 , Z

1
1 s is a Kt,t-free graph with one part of size at most
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pr ´ 1q?
γn and the other part of size at most an. Thus, eGpZ̃1zZ1

1 , Z
1
1 q ď Cpr ´ 1q?

γnpanq1´1{t.

By the similar arguments, we have eGpW 1
1zN,Z1

1 q ď Cp3εnqpanq1´1{t.

Putting these bounds together with eGpZ1
1

q ď z
paq
t pnq, we get

f1 “ eGpZ1
1 q ` eGpZ1

1 , Nq ` eGpZ̃1zZ1
1 , Z

1
1 q ` eGpW 1

1zN,Z1
1 q

ď z
paq
t pnq ` Opn2´1{pt´1qq ` Op?

γn2´1{tq ` Opεn2´1{tq.

By (E1), this implies that f1 ă z
pa`1q
t pnq ´ εn2´1{t, contradicting (4.14). �

Claim 4.8 shows that Ũ1 has no atypical vertices and is thus Kt,t-free by pK1q. Furthermore,

since Ũ1 “ Z1
1 Y W 1

1 and W 1
1 Ď Vq1 , it follows that

α1 “ β1 “ 0, and eGpŨ1q “ f1 ď z
pa`1q
t p|Z1

1 X V1|, . . . , |Z1
1 X Va|, |W 1

1|q ď z
pa`1q
t pnq. (4.16)

Next we study GrŨis for i ě 2. A key observation is that copies of K1,t in GrŨis together with

copies of Kt´1,t in Ũ1 may form copies of K3ptq, which are restricted by Claim 4.6.

Claim 4.9. Suppose b ą 0 and i P r2, rs.
(1) If there is a copy of K1,t in ŨizpZ1 Y Vq1q, then there exists l P rrsztiu such that the vertex

set of K1,t intersects Vql and every cluster in Zl.

(2) Z̃izZ1 and Zi
i Y pW 1

i zVq1q are K1,t-free.

(3) If t ă a, then ŨizpZ1 Y Vq1q is K1,t-free.

Proof. For Part (1), let B be the vertex set of a copy ofK1,t in ŨizpZ1YVq1q. Since BXpZ1YVq1q “ H
and Ũ1 Ď Z1 Y Vq1 , by (Deg), all vertices of B have at most 2εn non-neighbors in Ũ1. Letting

N :“ Ũ1 X Ş

wPB Npwq, we have |N | ě |Ũ1| ´ pt ` 1q2εn.
First assume that N is Kt´1,t-free and thus eGpNq “ Opn2´1{pt´1qq. Note that, since |Ũ1zN | ď

pt ` 1q2εn, the edges in Ũ1 incident to Ũ1zN can be split into a ` 1 bipartite Kt,t-free graphs each
with one part of size at most pt ` 1q2εn and the other part of size at most an. Thus, the number of

such edges is Opεn2´1{tq. This gives f1 “ Opn2´1{pt´1qq ` Opεn2´1{tq, contradicting (4.14).
We thus assume N contains a copy of Kt´1,t. Together with B, they form a copy of K3ptq in

GrŨ1 Y Ũis and we denote its vertex set by B1. By Claim 4.6, there exists l R t1, iu such that B1

intersects Vql and every cluster of Zl. By Claim 4.8, Ũ1 X Ul “ H, so B1 X Zl “ B X Zl and B

indeed intersects every cluster of Zl. Since Ũi X Zl Ě B X Zl ‰ H, we infer that |Wl| ě p1 ´ 2εqn
from pQ3q, which implies that ql ‰ q1 because of (4.15). It follows that W1 X Vql “ H and thus
B X Vql “ B1 X Vql ‰ H, as desired.

For Part (2), let Ai :“ Zi
i Y pW 1

i zVq1q and B be the vertex set of a copy of K1,t in Z̃izZ1 or in
Ai. Then, by the first part of the claim, there exists l P rrsztiu such that B intersects Vql and every
cluster in Zl. This is impossible if B Ď Ai because Ai XZl “ H for any l R t1, iu, and also impossible

if B Ď Z̃izZ1 because in which case B X W “ H and thus B X Vql “ H for any l R t1, iu.
Part (3) follows from Part (1) immediately. �

The next claim bounds eGpZi
1q for i ą 1.

Claim 4.10. For every i P r2, rs, eGpZi
1
q ď

`

a
2

˘

pt ´ 1q|Zi
1
|.

Proof. Suppose |W1| ě p1 ´ ε ´ ?
γqn (otherwise Zi

1 “ H for i ą 1 by pQ2q and there is nothing

to prove). Fix i P r2, rs. Suppose a ě 2 (if a “ 1 then eGpZi
1q “ 0). We claim that for distinct

i1, i2 P ras, there can not be two copies of K1,t in the bipartite graph GrZi
1 X Vi1 , Z

i
1 X Vi2s, one
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centered in Zi
1 XVi1 and the other centered in Zi

1 XVi2 . We show this for i1 “ 1 and i2 “ 2. Suppose
w P Zi

1 X V1 and u1, . . . , ut P Zi
1 X V2 form a copy of K1,t while w1 P Zi

1 X V2, u
1
1, . . . , u

1
t P Zi

1 X V1

form the other copy of K1,t. By (Deg), w, u1
1, . . . , u

1
t each has at most 2εn non-neighbors in Ũ1zV1

and w1, u1, . . . , ut each has at most 2εn non-neighbors in Ũ1zV2. Let

N1 “
´

Ũ1zpV1 Y V2q
¯

X Npwq X
č

iPrts

Npuiq and N2 “
´

Ũ1zV2

¯

X
č

iPrts

Npuiq

(thus N1 X N2 Ď Ũ1). By pP3q and |W1 X W 1
1| ě p1 ´ ε ´ ?

γqn ´ 2rγn ě p1 ´ 2εqn, we have

|N1| ě p1 ´ ?
γqan ´ 2n ` p1 ´ 2εqn ´ pt ` 1q2εn ě pa ´ 1qn ´ p2t ` 5qεn

and similarly |N2| ě an ´ p2t ` 3qεn. If GrN1, N2s contains a copy of Kt´1,t with the part of size t

in N1, then it together with tw, u1, . . . , utu forms a copy of K3ptq in Ũ1 Y Ũi. Let B be the vertex
set of this K3ptq and note that B Ď U1. Thus B X Zl “ H for l ‰ 1 contradicting Claim 4.6.

This implies that eGpN1, N2q “ Opn2´1{pt´1qq. Now let N 1
1 “ pŨ1zpV1 Y V2qq X Npw1q X Ş

iPrts Npu1
iq

and N 1
2

“ pŨ1 X V2q X Ş

iPrts Npu1
iq. By the same argument as above, GrN 1

1
, N 1

2
s contains no copy

of Kt´1,t with the part of size t in N 1
1, which implies that eGpN 1

1, N
1
2q “ Opn2´1{pt´1qq. Note that

all but Opεn2´1{tq edges of GrŨ1szGrV1, V2s are in GrN 1
1, N

1
2s or GrN1, N2s. We thus derive that

f1 ď z
p2q
t pnq ` Opn2´1{pt´1qq ` Opεn2´1{tq ă ztpnq ´ εn2´1{t by (E1), contradicting (4.14).

The conclusion above implies that eGrZi
1

X Vi1 , Z
i
1

X Vi2s ď pt ´ 1qmaxt|Zi
1

X Vi1 |, |Zi
1

X Vi2|u.
Therefore,

eGpZi
1q “

ÿ

i1,i2Pras

eGrZi
1 X Vi1 , Z

i
1 X Vi2s ď

ÿ

i1,i2Pras

pt ´ 1q|Zi
1| ď

ˆ

a

2

˙

pt ´ 1q|Zi
1|. �

Claims 4.9 (2) and 4.10 together give eGpZi
jq ď maxtpt ´ 1q|Zi

j |,
`

a
2

˘

pt ´ 1q|Zi
j |u “

`

a
2

˘

pt ´ 1q|Zi
j |

whenever i ‰ j. Thus, by pP3q,
ÿ

i,j:i‰j

eGpZi
jq ď rpr ´ 1q

ˆ

a

2

˙

pt ´ 1q?
γn ď a2r2t

?
γn (4.17)

Together with f1 ď z
pa`1q
t pnq and fi ď pt ´ 1q|Ũi| for i ě 2, we derive from (4.9) that

epGq “ trpkqn2 ` z
pa`1q
t pnq ` Opnq.

This concludes the proof of Theorem 5 (note that we have not used (E2) or (E3)).

Proof of Theorem 6. We refine our earlier estimates and prove Theorem 6. Since
ř

i‰j eGpZi
jq ď

a2r2t
?
γn and fj ď pt ´ 1q|Ũj | for j P r2, rs, we have the following bound better than (4.14),

f1 ě ztpnq ´ 3rC0kn. (4.18)

Furthermore, we claim that

if b ą 0, then |W 1
1| ě p1 ´ γqn pand thus 1 P Lq. (4.19)

Indeed, by Claim 4.8, if |W 1
1
| ă p1 ´ γqn, then we have f1 ď z

pa`1q
t pn, . . . , n, |W 1

1
|q ď z

pa`1q
t pnq ´

δn2´1{t for some δ ą 0 by (E2). This contradicts (4.18).
Next we show that Z2 Y W 2 “ H.
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Claim 4.11. Suppose v0 P V pGq and i P rrs satisfy that v0 has at least εn neighbors in Zj for every
j ‰ i. Then v0 has less than εn neighbors in Ui. In particular, we have Z2

i “ H for all i P rrs and
W 2 “ H.

Proof. The second part of the claim follows immediately from the definitions of Z2
i and W 2.

Suppose to the contrary, that there exist v0 P V pGq and i P rrs such that v0 has at least εn

neighbors in Zj for every j ‰ i and at least εn neighbors in Ui. Since |Zj
j | ě p1 ´ ?

γqan for all

j P rrs, there exist sets N1, . . . , Nr´1 each of size εn ´ ?
γan such that Nj Ď Z

j
j X Npv0q for j ‰ i

and Ni Ď pZi
i Y Wiq X Npv0q. Recall that W 1

1
“ W 1

1
X Vq1 . By averaging, there exists N 1

1
Ď N1 with

|N 1
1| ě pεn ´ ?

γan ´ 2rγnq{pa ` 1q ě εn{pa ` 2q such that all vertices of N 1
1 are in Z1

1 Y W 1
1 and

from the same cluster, that is,

N 1
1 Ď Q, where Q P tV1 X Z1

1 , V2 X Z1
1 , . . . , Va X Z1

1 ,W
1
1u.

Note that N 1
1 Ď W 1

1 is possible only if i “ 1. If i ‰ 1, then let N 1
i :“ NizppWizW 1

i q Y Vq1q and for
every j P rrszt1, iu, let N 1

j :“ Nj . By pP1q, |WizW 1
i | ď 2rγn, and by (4.19), |Wi X Vq1| ď γn. Thus,

we have |N 1
j | ě εn{pa`2q for all j P rrs. Because the sets N 1

j are small, we can not apply the degree

conditions (Deg) to them and instead, we use (D0).

Recall that B1 is given by (D0). Next we show that GrŨ1zB1s does not contain a copy of Kt´1,t

such that the part of size t is in N 1
1. Suppose instead, there is such a copy of Kt´1,t, with parts

denoted by A and B, such that |A| “ t and A Ď N 1
1
zB1 and B Ď Ũ1zB1. Recall that N

1
i X Vq1 “ H

and for each j P rrszt1, iu, N 1
j Ď Z

j
j . Observe that for every v P Ũ1zB1, we have dpv,N 1

jq ě
|N 1

j| ´ ?
γn. Indeed, if j ‰ i, then N 1

j Ď Z
j
j and we have dpv,N 1

jq ě |N 1
j | ´ ?

γn by (D0); otherwise

note that N 1
i Ď Zi

i Y pW 1
i X Wiq, and by (D0) and N 1

i X Vq1 “ H we have dpv,N 1
i q ě |N 1

i | ´ ?
γn.

Therefore, we obtain that the vertices in A Y B have at least |N 1
j | ´ p2t ´ 1q?

γn ě p1 ´ γ1{3q|N 1
j |

common neighbors in each N 1
j , j P r2, rs. Because each pair N 1

j , N
1
j1 has a high density, we can find

a copy of Kr´1ptq in the union of these common neighborhoods, which together with A Y B Y tv0u
form a copy of Kr`1ptq, a contradiction.

Now given that GrŨ1zB1s does not contain a copy of Kt´1,t such that the part of size t is
in N 1

1zB1, we shall give a refined estimate on f1. Indeed, for each Vj, j P ras, we know that
GrN 1

1
zB1, pVj XZ1

1
qzB1s does not contain a copy of Kt´1,t such that the part of size t is in N 1

1
zB1, im-

plying that eGpN 1
1zB1, pVj X Z1

1 qzB1q “ Opn2´1{pt´1qq. Similarly we also have eGpN 1
1zB1,W

1
1zB1q “

Opn2´1{pt´1qq. Suppose N 1
1 Ď Vq for some q P ras Y tq1u, then we have

EpGrŨ1sq “ EpGrŨ1zpN 1
1zB1qsq Y EpGrN 1

1zB1, Ũ1zpB1 Y Vqqsq Y EpGrN 1
1zB1, B1 X Ũ1qsq.

Recall that |N 1
1| ě εn{pa ` 2q and |B1| ď 2

?
γn. Therefore, we can bound f1 ď |EpGrŨ1sq| by

f1 ď zt

´

p1 ´ ε
a`2

qn, n, . . . , n
¯

` Opn2´1{pt´1qq ` Op?
γn2´1{tq ă ztpnq ´ 3rC0kn,

where we used (E2) and γ ! ε. This contradicts (4.18). �

When b “ 0, since Z2
i “ H for all i P rrs, we can improve (4.13) to epGq ď trpkqn2 ` z

paq
t pnq `

pr ´ 1qt t´1

2
anu, proving Theorem 6 for b “ 0.

In the rest of the proof, we assume b ą 0. We start with the following claim.

Claim 4.12. For i P r2, rs such that |Wi| ě 2εn, we have Ũi Ď Ui Y Vqi.
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Proof. Suppose instead, for some i0 P r2, rs with |Wi0 | ě 2εn, there exists v P Ũi0zpUi0 Y Vqi0
q.

By pP4q and the fact that v P Ũi0zUi0 , we infer that dpv, Zjq ě εn for all j ‰ i0. Then, by
Claim 4.11, we have dpv, Ui0q ă εn. Consequently, dpv,W 1

i0
X Wi0q ă εn, namely, v has at least

2εn ´ 2γn ´ εn ě p3{4qεn non-neighbors in W 1
i0

X Wi0 (in G). Note that v is adjacent to all the

vertices of W 1
i0

X Wi0 in T . Since GrW 1
i0

s Ď T rW 1
i0

s, we infer that

eGpW 1
i0

q ` eGpZ̃i0zZi0 ,W
1
i0

q ď eT pW 1
i0

q ` |Z̃i0zZi0 ||W 1
i0

| ´ p3{4qεn.
Since eGpZ̃i0zZi0q ď eT pZ̃i0zZi0q ` ř

j‰i0
eGpZi0

j q and αi0 “ |Z̃i0zZi0 ||W 1
i | ` eT pW 1

i0
q ` eT pZ̃i0zZi0q,

we have

eGpŨi0zZi0q “ eGpZ̃i0zZi0q ` eGpW 1
i0

q ` eGpZ̃i0zZi0 ,W
1
i0

q
ď eT pZ̃i0zZi0q `

ÿ

j‰i0

eGpZi0
j q ` eT pW 1

i0
q ` |Z̃i0zZi0||W 1

i0
| ´ p3{4qεn

ď αi0 `
ÿ

j‰i0

eGpZi0
j q ´ p3{4qεn. (4.20)

Combining (4.5) and (4.20) gives
ř

iPrrs eGpŨizZi
i q ď

ř

iPrrs αi `
ř

i,j‰i eGpZi
jq ´ p3{4qεn. Since

ř

i,j‰i eGpZi
jq ď a2r2t

?
γn by (4.17) and γ ! ε, it follows that

ÿ

iPrrs

eGpŨizZi
iq ď

ÿ

iPrrs

αi ´ εn{2 (4.21)

Recall that f1 ď ztpnq by (4.16). We next bound fi for i ě 2, noting that

fi “ e
`

Zi
i , GrZi

i Y pW 1
i zVq1qs

˘

` eG

´

Zi
i , pZ̃izZiq Y pW 1

i X Vq1q
¯

.

By Claim 4.9 (2), GrZi
i Y pW 1

i zVq1qs has the maximum degree at most t ´ 1, and thus,

e
`

Zi
i , GrZi

i Y pW 1
i zVq1qs

˘

ď eGpZi
i Y pW 1

i zVq1qq ď t ´ 1

2
p|Zi

i | ` |W 1
i zVq1 |q.

By (4.12), e
´

Zi
i , pZ̃izZiq Y pW 1

i X Vq1q
¯

ď pt ´ 1q
´

|Z̃izZi| ` |W 1
i X Vq1|

¯

. Putting these together,

fi ď t ´ 1

2
p|Zi

i | ` |W 1
i zVq1|q ` pt ´ 1q

´

|Z̃izZi| ` |W 1
i X Vq1 |

¯

“ t ´ 1

2

´

|Ũi| ` |Z̃izZi| ` |W 1
i X Vq1|

¯

.

By pP3q and (4.19), we have |Z1
1

| ě p1´ ?
γqan, |W 1

1
| ě p1´γqn, and thus, |Ũ1| ě pa`1qnp1´ ?

γq.
By pP3q and (4.19), we also have |Z̃izZi| ` |W 1

i X Vq1 | ď pr ´ 1q?
γn ` γn ď r

?
γn. It follows that

r
ÿ

i“2

fi ď t ´ 1

2
pkn ´ pa ` 1qnp1 ´ ?

γq ` pr ´ 1qr?
γnq ď pk ´ a ´ 1qnt ´ 1

2
` 3

?
γn. (4.22)

Since Z2 Y W 2 “ H, we rewrite (4.6) as epGq “ epG1q ` ř

iPrrs fi ` eGpŨizZi
iq. By Claim 4.4, it

follows that epGq ď trpkqn2`ř

iPrrspfi`βi ´αi `eGpŨizZi
i qq. Recall that řr

i“1
βi ď 2pr´1qrC0

?
γn

by (4.8). Together with (4.21) and(4.22), we derive that

epGq ď trpkqn2 ` ztpnq ` pk ´ a ´ 1qnt ´ 1

2
` 3

?
γn ` 2pr ´ 1qrC0

?
γn ´ εn{2 ă g2pn, r, k, tq,

a contradiction. �

Next we upper bound epŨiq and separate the discussions depending on whether |Wi| ě 2εn or

not. For i P r2, rs, let U˚
i :“ ŨizpZ1 Y Vq1q.
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Claim 4.13. For i P r2, rs, we have

eGpŨiq ď

$

’

’

’

&

’

’

’

%

pt ´ 1qmint|Zi
i |, |W 1

i |u if a “ 1, and |Wi| ě 2εn

|Ũi|pt ´ 1q{2 if a ě 2 and |Wi| ě 2εn

pt ´ 1qp|Z̃ 1
izZi| ` |W 1

i |q ` αi if a “ 1, and |Wi| ă 2εn
X

|U˚
i | t´1

2

\

` t1 ` αi ` a2tp|Zi
1| ` |W 1

i X Vq1 |q if a ě 2 and |Wi| ă 2εn,

where t1 :“ pt ´ 1q2{p16pa ´ 1qq. Moreover, when |Wi| ă 2εn, a ě 2 and t ă a, we have epŨiq ď
X

|U˚
i | t´1

2

\

` αi ` a2tp|Zi
1| ` |W 1

i X Vq1|q.
Proof. Assume |Wi| ě 2εn. Since |W 1

1
ě p1 ´ γqn, we know that q1 ‰ qi. It follows from Claim 4.12

that Ũi Ď Zi
iYpW 1

i XVqiq. By Claim 4.9 (2), Ũi isK1,t-free and thus, eGpŨiq ď |Ũi|pt´1q{2. For a “ 1,

since both Zi
i and W 1

i Ď Vqi are independent sets, it follows that eGpŨiq ď pt ´ 1qmint|Zi
i |, |W 1

i |u.
Now we consider the case when |Wi| ă 2εn. Recall that

eGpŨiq “ fi ` eGppZ 1
izZiq Y W 1

i q.
When a “ 1, we have epZi

jq “ 0 for all j P rrs. Thus fi ď pt ´ 1qp|Z̃ 1
izZi| ` |W 1

i |q by (4.12) and

eGppZ 1
izZiq Y W 1

i q ď αi by (4.5). As a result, eGpŨiq ď pt ´ 1qp|Z̃ 1
izZi| ` |W 1

i |q ` αi as desired.

Now assume a ě 2. Let Z˚
i :“ pZ̃izZiqzZi

1, and W ˚
i :“ W 1

i zVq1 . For every j P rrszt1, iu, consider
the family Fj :“ tZi

j XVpj´1qa`1, . . . , Z
i
j XVja,W

˚
i XVqju. Let Bj be the smallest set in Fj and Aj be

an arbitrary set in FjztBj ,W
˚
i X Vqju. Further, define A :“ Ť

jPrrszt1,iu Aj and B :“ Ť

jPrrszt1,iu Bj.

By Claim 4.9, both U˚
i zA and U˚

i zB are K1,t-free. This implies that eGpU˚
i zBq ď

X

|U˚
i zB| t´1

2

\

and
epB,GrU˚

i zAsq ď |B|pt ´ 1q. Together with eGpA,Bq ď |A||B|, we obtain that

eGpU˚
i q ď

Z

|U˚
i zB|t ´ 1

2

^

` |B|pt ´ 1q ` |A||B| “
Z

|U˚
i |t ´ 1

2

^

` |B|
ˆ

t ´ 1

2
` |A|

˙

.

Since, by definition |B| ď p|Z˚
i | ´ |A|q{pa ´ 1q “: x, unless t´1

2
` |A| ´ |Z˚

i | ă 0, we have

|B|
ˆ

t ´ 1

2
` |A| ´ |Z˚

i |
˙

ď x

ˆ

t ´ 1

2
´ pa ´ 1qx

˙

ď pt ´ 1q2
16pa ´ 1q “ t1.

Trivially |A| ď |Z˚
i | and |B| ď |W ˚

i |. Altogether, we get

eGpU˚
i q ď

Z

|U˚
i |t ´ 1

2

^

` t1 ` |Z˚
i ||W ˚

i |. (4.23)

Let Xi :“ Zi
1 Y pW 1

i X Vq1q and we bound epXi, GrŨisq as follows. Since Ũi “ Z̃i Y W 1
i “

Zi
i Y Xi Y Z˚

i Y W ˚
i , we have

epXi, GrŨisq “ eGpXi, Z
i
i q ` epZi

1, GrZi
1 Y Z˚

i Y W 1
i sq ` epW 1

i X Vq1 , GrZ˚ Y W 1
i sq

“ eGpXi, Z
i
i q ` eGpZi

1q ` eGpZi
1, Z

˚
i Y W 1

i q ` eGpW 1
i X Vq1 , Z

˚
i Y W ˚

i q.

Note that eGpZi
1
, Z˚

i q ď eT pZ̃izZiq, eGpW 1
i X Vq1 ,W

˚
i q ď eT pW 1

i q, and
eGpZi

1,W
1
i q ` epW 1

1 X Vq1 , Z
˚
i q ď |Zi

1||W 1
i | ` |W 1

1 X Vq1||Z˚
i | “ |Z̃izZi||W 1

i | ´ |Z˚||W ˚|.
Recall that αi “ |Z̃izZi||W 1

i | ` eT pW 1
i q ` eT pZ̃izZiq. It follows that

eGpZi
1, Z

˚
i Y W 1

i q ` eGpW 1
i X Vq1 ,W

˚
i Y Z˚

i q ď eT pZ̃izZiq ` eT pW 1
i q ` |Z̃izZi||W 1

i | ´ |Z˚||W ˚|
“ αi ´ |Z˚||W ˚|.
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Applying eGpXi, Z
i
i q ď pt ´ 1q|Xi| from (4.12) and eGpZi

1q ď
`

a
2

˘

pt ´ 1q|Zi
1| from Claim 4.10, we

derive that

epXi, GrŨisq ď pt ´ 1q|Xi| `
ˆ

a

2

˙

pt ´ 1q|Zi
1| ` αi ´ |Z˚

i ||W ˚
i |. (4.24)

Together with (4.23), this gives the desired upper bound

eGpŨiq ď
Z

|U˚
i |t ´ 1

2

^

` t1 ` pt ´ 1q|Xi| `
ˆ

a

2

˙

pt ´ 1q|Zi
1| ` αi

ď
Z

|U˚
i |t ´ 1

2

^

` t1 ` a2t|Xi| ` αi.

At last, when a ě 2 and t ă a, we know that U˚
i is K1,t-free (Claim 4.9 (3)) and thus eGpU˚

i q ď
X

|U˚
i | t´1

2

\

. Together with (4.24), this gives eGpŨiq ď
X

|U˚
i | t´1

2

\

` αi ` a2tp|Zi
1
| ` |W 1

i X Vq1|q. �

For i P rrs, if |Wi| ě 2εn, then Z̃izZi “ H by Claim 4.12, and therefore, βi “ 0. If |Wi| ă 2εn,

then ZizZ̃i “ H by pQ2q; for any j P Lztiu, we have Z̃jzZj “ H and W 1
j Ď Vqi again by Claim 4.12.

Hence βi “ ř

jPLztiu |Zi
j |p|W 1

j | ´ nq ď 0 because |W 1
j | ď n. Together with (4.16), for i P rrs,

βi “
#

0 if |Wi| ě 2εn (including i “ 1),
ř

jPLztiu |Zi
j |p|W 1

j | ´ nq ď 0 otherwise.
(4.25)

We are ready to finish our proof. Write zi :“ |Z̃i| and wi :“ |W 1
i | for i P rrs. Further, write

nl :“ |Z1
1 X Vl| for P ras. Then z1 “ ř

lPras nl. By (4.16), we have eGpŨ1q “ f1 ď ztpn1, . . . , na, w1q.
We separate the cases when a ě 2 and when a “ 1.

The case when a ě 2. Note that there are at most r ´ b indices i P rrs such that |Wi| ă 2εn. By
Claim 4.13, and using that

řr
i“2

|U˚
i | “ pk ´ a ´ 1qn, we have

ÿ

iPrrs

eGpŨiq ď f1 ` pan ´ z1 ` n ´ w1qa2t `
Z

t ´ 1

2
pk ´ a ´ 1qn

^

` pr ´ bqt1 `
ÿ

i:|Wi|ă2εn

αi

Since epGq “ epG1q ` ř

iPrrs eGpŨiq, it follows that

epGq ď f1 ` pan ´ z1 ` n ´ w1qa2t `
Z

t ´ 1

2
pk ´ a ´ 1qn

^

` pr ´ bqt1 ` epG1q `
ÿ

i:|Wi|ă2εn

αi.

Claim 4.4 and (4.25) together imply that

epG1q ď trpkqn2 `
ÿ

iPrrs

pβi ´ αiq ď trpkqn2 ´
ÿ

i:|Wi|ă2εn

αi.

Together with f1 ď ztpn1, . . . , na, w1q, this gives

epGq ď trpkqn2 ` ztpn1, . . . , na, w1q ` pan ´ z1 ` n ´ w1qa2t `
Z

t ´ 1

2
pk ´ a ´ 1qn

^

` pr ´ bqt1.

If an ´ z1 ` n ´ w1 ą 0, then by applying (E3) repeatedly, we have

ztpn1, . . . , na, w1q ` pan ´ z1 ` n ´ w1qa2t ` pr ´ bqt1 ď ztpnq.
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This implies that epGq ď trpkqn2 ` ztpnq `
X

t´1

2
pk ´ a ´ 1qn

\

. Otherwise an ` n “ z1 ` w1, which
implies that

epGq ď trpkqn2 ` ztpnq `
Z

t ´ 1

2
pk ´ a ´ 1qn

^

` pr ´ bqt1.

This is the desired bound for t ě a. When t ă a, the bound for eGpŨiq given by Claim 4.13
contains no t1 term. We thus obtain epGq ď trpkqn2 ` ztpnq `

X

t´1

2
pk ´ a ´ 1qn

\

, regardless whether
an ´ z1 ` n ´ w1 ą 0.

Now consider the case a ě 2 and b “ 1. If an ´ z1 ` n ´ w1 ą 0, then we choose a large constant
C˚ ą 0 such that

ztpn1, . . . , na, w1q ` pan ´ z1 ` n ´ w1qa2t ` pr ´ bqt1 ď ztpnq ´ C˚

and thus epGq ď trpkqn2 ` ztpnq ` t´1

2
pk ´ a´ 1qn´C˚ ă g2pn, r, k, tq. Otherwise an`n “ z1 `w1.

Since b “ 1, this forces that, for all i ě 2, we have W 1
i “ H and, by pQ2q,Z̃i “ Zi. Now, by Claim 4.9,

we have
řr

i“2
eGpŨiq ď pr ´ 1qt t´1

2
anu and consequently, epGq ď trpkqn2 ` ztpnq ` pr ´ 1qt t´1

2
anu,

as desired.

The case when a “ 1. Let L1 Y L2 Y L3 be a partition of r2, rs such that i P L1 if and only if

|Z̃i| ă n, i P L2 if and only if |Z̃i| “ n, and i P L3 if and only if |Z̃i| ą n. The following properties
hold for L1, L2 and L3.

pR1q If i P L1, then Z
j
i ‰ H for some j ‰ i. By pQ2q, we have i P L and, by Claim 4.12,

Z̃i “ Zi
i ( Vi and W 1

i Ď Vqi .

pR2q If i P L2, then Z̃i “ Zi
i “ Vi. Otherwise Z̃i ‰ Zi

i , then |Zi
i | ă n and Z

j
i ‰ H for some j ‰ i.

By pQ2q and (4.12), we have Z̃i “ Zi
i , a contradiction.

pR3q If i P L3, then Z̃i * Zi. By Claim 4.12, we have |Wi| ă 2εn, which implies that Zj
i “ H for

j ‰ i by pQ2q. Thus, Zi
i “ Vi ( Z̃i.

By pR1q, for every i P L1, GrŨis is a bipartite graph of maximum degree at most t ´ 1, and

thus eGpŨiq ď pt ´ 1qmintzi, wiu. For i P L2, since Z̃i “ Vi is an independent set, we have

eGpŨiq ď pt ´ 1qwi ` eGpW 1
i q ď pt ´ 1qwi ` αi. For i P L3, using (4.5) and the independence of Zi

j

for all j P rrs, we have

eGpŨiq “ eGppZ̃izViq Y W 1
i q ` eGppZ̃izViq Y W 1

i , Z
i
i q

ď αi ` pt ´ 1qp|Z̃izVi| ` |W 1
i |q “ αi ` pt ´ 1qpzi ´ n ` wiq.

Using
ř

iPL1YL3
pzi ´ nq “ n ´ z1 and

řr
i“2

wi “ bn ´ w1, we derive that

ÿ

iPL1

mintzi, wiu `
ÿ

iPL2

wi `
ÿ

iPL3

pzi ´ n ` wiq

“bn ´ w1 `
ÿ

iPL1

pmintzi, wiu ´ wiq `
ÿ

iPL3

pzi ´ nq

“bn ´ w1 `
ÿ

iPL1

pzi ´ n ` mintn ´ wi, n ´ ziuq `
ÿ

iPL3

pzi ´ nq

“bn ´ w1 ` n ´ z1 `
ÿ

iPL1

mintn ´ wi, n ´ ziu.
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Therefore,

r
ÿ

i“2

eGpŨiq ď
ÿ

iPL1

pt ´ 1qmintzi, wiu `
ÿ

iPL2

ppt ´ 1qwi ` αiq `
ÿ

iPL3

ppt ´ 1qpzi ´ n ` wiq ` αiq

“ pt ´ 1qpbn ´ w1 ` n ´ z1q `
ÿ

iPL1

pt ´ 1qmintn ´ wi, n ´ ziu `
ÿ

iPL2YL3

αi.

Recall that epG1q ď trpkqn2 ` ř

iě2
pβi ´ αiq by Claim 4.4 and (4.16). For i P L1 Y L2, we have

Z̃i “ Zi
i and thus βi “ 0 by (4.25). It follows that (note that L X L3 “ H)

ÿ

iě2

βi “
ÿ

iPL3

βi “
ÿ

iPL3

ÿ

jPLztiu

|Zi
j |p|W 1

j | ´ nq “
ÿ

jPL

ÿ

iPL3ztju

|Zi
j |p|W 1

j | ´ nq “
ÿ

jPL

pn ´ zjqpwj ´ nq

Note that 1 P L by (4.19) and pn´ z1qpw1 ´nq ď 0 by Claim 4.8. Furthermore, since n´ zj “ 0 for
j P L2, it follows that

ř

iě2
βi “ ř

jPL1
pn´ zjqpwj ´nq. Consequently, epG1q ď trpkqn2 ` ř

jPL1
pn´

zjqpwj ´ nq ´
ř

iě2
αi.

Recall that eGpŨ1q “ f1 ď ztpz1, w1q. By (E3), we have ztpz1, w1q`pt´1qpn´z1`n´w1q ď ztpnq.
Thus, combining these estimates together, we get

epGq “ epG1q `
r

ÿ

i“1

eGpŨiq ď trpkqn2 ` ztpnq ` pt ´ 1qpb ´ 1qn ` y,

where y :“ ř

iPL1
ppt ´ 1qmintn ´ wi, n ´ ziu ´ pn ´ ziqpn ´ wiqq. For each i P L1, let yi :“

mintn ´ wi, n ´ ziu and y1
i :“ maxtn ´ wi, n ´ ziu. Then yi ď y1

i and thus,

pt ´ 1qmintn ´ wi, n ´ ziu ´ pn ´ ziqpn ´ wiq “ yipt ´ 1 ´ y1
iq ď tpt ´ 1q2{4u.

Since L1 Ď Lzt1u, we have |L1| ď b ´ 1. Consequently, epGq ď trpkqn2 ` ztpnq ` pt ´ 1qpb ´ 1qn `
pb ´ 1qtpt ´ 1q2{4u “ g2pn, r, k, tq. �
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[4] P. Erdős, On some new inequalities concerning extremal properties of graphs, Theory of Graphs (Proc. Colloq.,

Tihany, 1966), 1968, pp. 77–81. MR232703 Ò1
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