Qualifying Examination in Algebra at GSU – Prepared by F. Enescu and Y. Yao Date: May 4, 2012

Please write your name on every page.

- (1) Show that any field extension of degree 2 is normal. Is it necessarily separable? Prove or give a counterexample.
- (2) Let E be the splitting field of $X^3 2$ over **Q**. Find the Galois group of E over **Q**. Please explain your answer fully.
- (3) Show that there is no simple group of order 80.
- (4) Let M be a \mathbb{Z} -module that is isomorphic to \mathbb{Z}^5 modulo the \mathbb{Z} -submodule generated by the column vectors of the following matrix

$$A = \begin{pmatrix} -2 & -8 & 6 & 4 \\ 3 & 9 & -6 & -3 \\ 4 & 16 & 12 & 16 \\ 7 & 19 & -12 & -5 \\ 6 & -6 & 12 & 18 \end{pmatrix}$$

- (a) Find the Smith normal form of A over \mathbb{Z} .
- (b) Find the invariant factors of A over \mathbb{Z} .
- (c) Find the elementary divisors of A over \mathbb{Z} .
- (d) Up to isomorphism, write M as a direct sum of cyclic \mathbb{Z} -modules.
- (5) Let $n \ge 1$ be an integer. Show that every abelian group of cardinality n is cyclic **if and only if** n is square-free.
- (6) Show that the elements $2(1 + i\sqrt{5})$ and 6 do not have a greatest common divisor in $\mathbb{Z}[i\sqrt{5}]$. (A greatest common divisor for a and b in a domain R is an element d of R such that it divides both a and b and has the property that any other common divisor c of a and b divides d.)