Problems for the Qualifying Examination in Algebra at GSU Date: May 10, 2011 Prepared by F. Enescu and Y. Yao

- (1) Let G be a group, $H \leq G$ such that $|H| < \infty$, and P is a Sylow p-subgroup of H (with p a prime divisor of |H|). Denote by N(H) and N(P) the normalizers of H and P in G respectively.
 - (a) Prove that $N(H) \leq N(P)$ if P is normal in H.
 - (b) Prove that HN(P) = G if H is normal in G.
- (2) Let R be a commutative non-zero ring with unity. Assume that every ideal I of R, with $I \neq R$, is prime. Show that R is a field.
- (3) Consider the polynomial $f(x) = x^4 4x^2 + 1 \in \mathbb{Q}[x]$. You may use the fact that f(x) is irreducible over \mathbb{Q} without a proof.
 - (a) Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ is a splitting field of f(x) over \mathbb{Q} .
 - (b) Determine the structure of the Galois group of $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ over \mathbb{Q} , with explanations.
- (4) Consider the integer $57575 = 5^2 \cdot 7^2 \cdot 47$.
 - (a) Prove or disprove: There exists a group of order 57575 that is not abelian.
 - (b) Classify all groups of order 57575.
- (5) Let F ⊆ K be an algebraic extension of fields. Prove that the following statements are equivalent:
 (a) Every separable polynomial in F[x] that is irreducible over F remains irreducible over K.
 (b) F is separably closed in K (i.e., no element a ∈ K \ F is separable over F).
 Hints: A separable polynomial is a polynomial with no repeated roots. For one direction, you might want to work in a (properly chosen) extension field L of K. You may quote the fact that the separable closure of F in L, defined as {a ∈ L | a separable over F}, is a field. Viete's formula (describing relation between roots and coefficients) could help too.
- (6) Let $R = \mathbb{Q}[x]$ and M be the quotient of R^3 modulo the R-submodule generated by the columns of the 3×3 matrix xI A where I is the 3×3 identity matrix and

$$A = \begin{pmatrix} 2 & 2 & 3 \\ -1 & -1 & -3 \\ 1 & 2 & 4 \end{pmatrix}.$$

- (a) Find the Smith normal form of xI A over R.
- (b) Up to isomorphism, express M as a direct sum of cyclic R-modules.
- (c) What are the free rank, the invariant factors, and the elementary divisors of M over R?
- (d) Determine the rational canonical form and the Jordan canonical form of A over \mathbb{Q} .