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Exercise 5.20. Let A be a subring of an integral domain B such that B is finitely generated
over A. Show that there exists s 6= 0 in A and elements y1, . . . , yn in B, algebraically independent
over A and such that Bs is integral over B′

s, where B′ = A[y1, . . . , yn].

Proof. Let S = A \ 0 and let K = S−1A be the fraction field of A. Say B = A[b1, . . . , bm]
with b1, . . . , bm ∈ B. Then S−1B = K[b1, . . . , bm] is a finitely generated algebra over K. By
Noether Normalization, there exist y1/s1, . . . , yn/sn in S−1B with y1, . . . , yn ∈ B, s1, . . . , sn ∈
S such that y1/s1, . . . , yn/sn are algebraically independent over K and S−1B is integral over
K[y1/s1, . . . , yn/sn]. Then it is easy to see that y1, . . . , yn are algebraically independent over K
and S−1B is integral over K[y1, . . . , yn]. The fact that b1, . . . , bm ∈ B ⊆ S−1B are integral over
K[y1, . . . , yn] implies that there are equations

bri
i +

a(i,1)

s
bri−1
i + · · ·+

a(i,ri−1)

s
bi +

a(i,ri)

s
= 0

with a(i,j) ∈ A[y1, . . . , yn] =: B′ and s ∈ S for i = 1, 2, . . . ,m. (Here notice that we can always
make sure that the coefficients have the same denominator.) Clearly the above equations imply
that b1, . . . , bm are all integral over B′

s. Since Bs = B′
s[b1, . . . , bm], we conclude that Bs is integral

over B′
s. �

Exercise 5.23. Let A be a ring. Show that the following are equivalent:

i) Every prime ideal is an intersection of maximal ideals;
ii) In every homomorphic image of A the nilradical is equal to the Jacobson radical;
iii) Every prime ideal in A which is not maximal is equal to the intersection of the prime

ideals which contain it strictly.

A ring A with the three equivalent properties above is called a Jacobson ring.

Proof. i) ⇒ ii): Let B be an arbitrary ring that is a homomorphic image of A. Then clearly
every prime ideal of B is an intersection of maximal ideals. This implies that the nilradical of B,
which is the intersection of all prime ideals of B, is an intersection of certain (hence all) maximal
ideals of B. Therefore the nilradical of B contains the Jacobson radical of B. But, on the other
hand, the nilradical of B is always contained in the Jacobson radical of B. Hence the nilradical
of B is equal to the Jacobson radical of B.

ii) ⇒ iii): Let p be an arbitrary prime ideal of A that is not maximal and let B = A/p. Then
the nilradical of B, which is 0, is equal to the Jacobson radical of B. That is to say that the
intersection of all the maximal ideals of B is 0. Then, since the maximal ideals of B = A/p
correspond to the maximal ideals of A that contain p, we conclude that p is an intersection of all
the maximal ideals of A containing p, in which all the containments of p in the maximal ideals
are automatically strict. Hence p is equal to the intersection of the prime ideals which contain it
strictly.

iii) ⇒ i): Suppose that there is a prime ideal p of A that is not an intersection of maximal
ideals. Let B = A/p. Then B is a domain and its zero ideal is not the intersection of all maximal
ideals of B, i.e. the Jacobson radical of B is not zero. Choose f 6= 0 in the Jacobson radical of
B. Then Bf is a non-zero ring since f is not nilpotent. Choose a maximal ideal m of Bf and
let q = m ∩B. Then q is a prime ideal of B and q is not maximal in B since otherwise f would

1



2 MATH 831 HOMEWORK SOLUTIONS – ASSIGNMENT 9

be in q. Moreover, by our choice of q, every prime ideal of B that strictly contains q has non-
empty intersection with the multiplicatively closed set {fn |n ≥ 0} and therefore has to contain
f . Hence f is contained in the intersection of the prime ideals which contain q strictly. But
condition iii) implies that every prime ideal (in particular q) in B which is not maximal is equal
to the intersection of the prime ideals which contain it strictly. Thus we get a contradiction. �

Exercise 9.2. Let A be a Dedekind domain. If f = a0 + a1x + · · ·+ anxn is a polynomial with
coefficients in A, the content of f is the ideal c(f) = (a0, . . . , an) in A. Prove Gauss’s lemma
that c(fg) = c(f)c(g).

Proof. Since equality is a local property, we may assume that A is a discrete valuation ring
without loss of generality. As the case in which A is a field in easy, we may as well assume that
A is a discrete valuation ring of dimension one. Write

f = a0 + a1x + · · ·+ anxn and g = b0 + b1x + · · ·+ bmxm,

with ai, bj ∈ A. It is always true that c(fg) ⊆ c(f)c(g) (without any assumption on A). So
we only need to prove that c(fg) ⊇ c(f)c(g). Say the maximal ideal of A is generated by x,
c(f) = xsA and c(g) = xtA. That is to say that v(x) = 1,min{v(a0), . . . , v(an)} = s and
min{v(b0), . . . , v(bm)} = t. (Here recall that, for any a ∈ A, v(a) is defined to be max{n | a ∈
(xn)}.) Then there exist 0 ≤ n0 ≤ n, 0 ≤ m0 ≤ m such that v(an0) = s, v(bm0) = t and
v(ai) > s, v(bj) > t for all 0 ≤ i < n0, 0 ≤ j < m0. Also we can see that the coefficient of xn0+m0

in polynomial fg is

cn0+m0 =
∑

i+j=n0+m0

aibj

= a0bn0+m0 + · · ·+ an0−1bm0+1 + an0bm0 + an0+1bm0−1 + · · ·+ an0+m0b0,

in which we agree that ai = bj = 0 if i > n or j > m. Now it is easy to check that v(an0bm0) = s+t
and all the other terms have valuations strictly larger than s+t by our choice of n0,m0. Therefore
v(cn0+m0) = s + t, which implies that c(fg) ⊇ cn0+m0A = xs+tA = c(f)c(g). �

Exercise 9.4. Let A be a local domain which is not a field and in which the maximal ideal m
is principal and ∩∞n=1m

n = 0. Prove that A is a discrete valuation ring.

Proof. By assumption, there exists x ∈ m such that m = (x). Then, by Proposition 9.2, it is
enough to prove that every non zero ideal a of A is of the form (xk) for some k ≥ 0. Since
∩∞n=1m

n = 0, there exists k ≥ 0 such that (xk+1) 6⊇ a ⊆ (xk). Then the ideal (a : xk) is
either the unit ideal (1) or contained in m = (x) and, furthermore, direct checking shows that
a = (a : xk)(xk). If (a : xk) ⊆ (x), then we would get a = (a : xk)(xk) ⊆ (x)(xk) = (xk+1) which is
a contradiction to our choice of k. Hence (a : xk) = (1) and therefore a = (a : xk)(xk) = (xk). �

Exercise 9.8. Let a, b, c be three ideals in a Dedekind domain. Prove that

a ∩ (b + c) = (a ∩ b) + (a ∩ c)

a + (b ∩ c) = (a + b) ∩ (a + c)

Proof. As equality is a local property and, furthermore, sum and intersection of ideals both
commute with localization, we may assume that A is a discrete valuation ring without loss of
generality. Then the maximal ideal m of A is principal, say m = (x), and every ideal of A is of the
form of (xk) for some k ≥ 0. In particular, say a = (xa), b = (xb) and c = (xc) with a, b, c ∈ N.
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Then it is easy to check that

a ∩ (b + c) = (xa) ∩ (xmin(b,c)) = (xmax(a,min(b,c)))

a + (b ∩ c) = (xa) + (xmax(b,c)) = (xmin(a,max(b,c)))

(a ∩ b) + (a ∩ c) = (xmax(a,b)) + (xmax(a,c)) = (xmin(max(a,b),max(a,c)))

(a + b) ∩ (a + c) = (xmin(a,b)) ∩ (xmin(a,c)) = (xmax(min(a,b), min(a,c))).

So it suffices to prove that
max(a,min(b, c)) = min(max(a, b),max(a, c))

min(a,max(b, c)) = max(min(a, b), min(a, c))
(∗)

for any a, b, c ∈ N. But the equalities in (∗) can be proved directly. Hence the proof is finished. �

Note: The exercises are from ‘Introduction to Commutative Algebra’ by M. F. Atiyah
and I. G. Macdonald. All the quoted results are from the textbook unless different sources are
quoted explicitly. For the convenience of the readers, the number of the chapter is included when
a particular exercise is numbered. For example, Exercise m.n means the Exercise n from
Chapter m.


