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Exercise 5.3. Let f : B → B′ be a homomorphism of A-algebras, and let C be an A-algebra.
If f is integral, prove that f ⊗ 1 : B ⊗A C → B′ ⊗A C is integral.

Proof. Because of Corollary 5.3, it is enough to show that, for every x ∈ B′ and c ∈ C, the
element x⊗ c ∈ B′⊗A C is integral over (f ⊗1)(B⊗A C) (since a typical element of B′⊗A C is of
the form

∑n
i=1 xi ⊗ ci with xi ∈ B′, ci ∈ C). Then x ∈ B′ satisfies a monic polynomial equation

xn + b1x
n−1 + · · ·+ bn−1x + bn = 0, with bi ∈ f(B)

for i = 1, 2, . . . , n. Now direct checking shows that

(x⊗ c)n + (b1 ⊗ c)(x⊗ c)n−1 + · · ·+ (bn−1 ⊗ cn−1)(x⊗ c) + (bn ⊗ cn) = 0,

in which bi ⊗ cn−i ∈ (f ⊗ 1)(B ⊗A C) for i = 1, 2, . . . , n. �

Exercise 5.5. Let A ⊆ B be rings, B integral over A.
i) If x ∈ A is a unit in B, then it is a unit in A.
ii) The Jacobson radical in A is the contraction of the Jacobson radical of B.

Proof. i): Since B is integral over A, the element x−1 ∈ B satisfies

(x−1)n + a1(x−1)n−1 + · · ·+ an−1(x−1) + an = 0, with ai ∈ A

for i = 1, 2, . . . , n. Multiply the above equation by xn−1 to get an equation

x−1 + a1 + · · ·+ an−1x
n−2 + anxn−1 = 0,

which implies that
x−1 = −(a1 + · · ·+ an−1x

n−2 + anxn−1) ∈ A,

which means x is a unit in A.
Alternatively, we can use lying-over to prove part i): If x ∈ A is not a unit in A, then x in

contained a some maximal ideal mA of A. By lying-over (Theorem 5.10), there exists a prime
ideal (which has to be maximal by Corollary 5.8) mB of B such that mB ∩ A = mA. Hence
x ∈ mB , which contradicts the assumption that x is a unit in B.

ii): Denote the Jacobson radicals of A and B by RA and RB respectively. We need to show
that RA = RB ∩ A. Choose x ∈ RB ∩ A and an arbitrary a ∈ A. Then 1 + ax ∈ A is a unit in
B by Proposition 1.9 and hence is a unit in A by part i). Therefore x ∈ RA by Proposition 1.9
again. Hence RB ∩ A ⊆ RA. (You may also use Corollary 5.8 to prove RB ∩ A ⊆ RA, which
is very similar to the next portion of the proof). On the other hand, choose x ∈ RA and an
arbitrary maximal ideal mB of B. Then mB∩A is a maximal ideal of A (by Corollary 5.8 since B
is integral over A). Therefore x ∈ mB ∩A ⊆ mB . Hence x ∈ RB , which implies that x ∈ RB ∩A.
Therefore RA ⊆ RB ∩A. Thus RA = RB ∩A. �

Exercise 5.7. Let A be a subring of B, such that the set B − A = B \ A is closed under
multiplication. Show that A is integrally closed in B.

Proof. Suppose, on the contrary, that A is not integrally closed in B. Then let C be the integral
closure of A in B and let n be the minimal degree of all monic polynomial equations satisfied by
some elements of C −A = C \A. Say x ∈ C −A = C \A satisfies

xn + a1x
n−1 + · · ·+ an−1x + an = 0, with ai ∈ A
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for i = 1, 2, . . . , n. Then clearly n ≥ 2 since x /∈ A. And also xn−1 + a1x
n−2 + · · ·+ an−1 /∈ A by

the minimality of n. But we have

x(xn−1 + a1x
n−2 + · · ·+ an−1) = −an ∈ A,

which contradicts the assumption that B −A = B \A is closed under multiplication. �

Exercise 5.8. i) Let A be a subring of an integral domain B, and let C be the integral
closure of A in B. Let f, g be monic polynomials in B[x] such that fg ∈ C[x]. Then f, g
are in C[x].

ii) Prove the same result without assuming that B (or A) is an integral domain.

Proof. We are going to prove part ii) once and for all since it is more general than part i). We
first claim that there is an extension ring D ⊇ B such that both f and g can be factorized as
products of degree one monic polynomials. Assume the claim and say

f(x) = (x− d1)(x− d2) · · · (x− dm) and g(x) = (x− d′1)(x− d′2) · · · (x− d′n),

in which di, d
′
j ∈ D for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then we have that the monic polynomial

f(x)g(x) = (x− d1)(x− d2) · · · (x− dm)(x− d′1)(x− d′2) · · · (x− d′n) ∈ C[x],

which implies that di, d
′
j are all integral over C and hence are integral over A by Corollary 5.4.

Since the coefficients of f and g can be expressed as polynomials in di and d′j , we conclude that
the coefficients are all integral over A. Finally, since f, g ∈ B[x] and C is the integral closure of
A in B, we conclude that the coefficients are all in C, i.e. f, g ∈ C[x].

To complete the proof, we need to prove the claim. It is enough to find an extension ring
D ⊇ B such that f(x) ∈ B[x] can be factorized as a product of degree one monic polynomials.
We prove it by induction on deg f(x). It is trivially true if deg f(x) = 1. If deg f(x) > 1, then
let D1 := B[t]

f(t)B[t] , which is a ring. For any h(t) ∈ B[t], denote the coset h(t) + f(t)B[t] ∈ D1 :=
B[t]

f(t)B[t] by h(t). Then the ring B is naturally embedded into D1 by b 7→ b. So we may as well
consider B as a subring of D1 by identifying b ∈ B with b ∈ D1. Keeping this identification in
mind, we can directly check that t ∈ D1 is a root of f(x) = 0 since f(t) = 0 ∈ D1. Therefore
f(x) = (x − t)f1(x) ∈ D1[x], in which deg f1(x) < deg f(x). By induction hypothesis, there
exists a extension ring D ⊇ D1 such that f1(x) ∈ D1[x] can be factorized as a product of degree
one monic polynomials. Thus f(x) = (x − t)f1(x) can be factorized as a product of degree one
monic polynomials in D1[x]. (Looks familiar? Find a algebra book containing field theory and
look up the proof of existence of splitting fields.) �

Exercise 5.9. Let A be a subring of a ring B and let C be the integral closure of A in B. Prove
that C[x] is the integral closure of A[x] in B[x].

Proof. By Exercise 5.3, C[x] = C ⊗A A[x] is integral over A[x] = A⊗A A[x].
To show that C[x] is the the integral closure of A[x] in B[x], we follow the hint provided by

the textbook. (Yon may look up Eisenbud’s book for another proof.) For any f ∈ B[x] that is
integral over A[x], it satisfy

fm + g1f
m−1 + · · ·+ gm−1f + gm = 0 with gi ∈ A[x].

Let r be an integer larger than the degrees of f, g1, g2, . . . , gm, and let f1 = f − xr, so that

(f1 + xr)m + g1(f1 + xr)m−1 + · · ·+ gm−1(f1 + xr) + gm = 0.

Expanding the powers (f1 + xr)i out and then collecting the terms in terms of the powers of f1,
we get an equation of the following form

fm
1 + h1f

m−1
1 + · · ·+ hm−1f1 + hm = 0,
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in which each hi is a polynomial expression of xr and the gj . In particular,

hm = (xr)m + g1(xr)m−1 + · · ·+ gm−1x
r + gm ∈ A[x],

which gives
−f1(fm−1

1 + h1f
m−2
1 + · · ·+ hm−1) = hm ∈ A[x].

Notice that, by our choice of r, both −f1 = xr − f and hm are monic, which implies that
fm−1
1 + h1f

m−2
1 + · · · + hm−1 is also monic. Now apply Exercise 5.8 to conclude that both

−f1 = xr − f and fm−1
1 + h1f

m−2
1 + · · · + hm−1 are in C[x]. But −f1 = xr − f ∈ C[x] implies

that f ∈ C[x]. �

Note: The exercises are from ‘Introduction to Commutative Algebra’ by M. F. Atiyah
and I. G. Macdonald. All the quoted results are from the textbook unless different sources are
quoted explicitly. For the convenience of the readers, the number of the chapter is included when
a particular exercise is numbered. For example, Exercise m.n means the Exercise n from
Chapter m.


