
MATH 831 HOMEWORK SOLUTIONS – ASSIGNMENT 6

Exercise 3.14. Let M be an A-module and a an ideal of A. Suppose that Mm = 0 for all
maximal ideals m ⊇ a. Prove that M = aM .

Proof. Let A = A/a, M = M/aM and m = m/a for all maximal ideals m ⊇ a. Then M
is naturally an A-module and it suffices to show M = 0 to conclude that M = aM . As the
maximal ideals of A are exactly the ideals of the form m = m/a where m are maximal ideals of A
such that m ⊇ a, it is enough to prove that Mm = 0 for all maximal ideals m ⊇ a by Proposition
3.8. But

Mm
∼=

Mm

aMm
(check for yourself).

Therefore Mm = 0 as Mm = 0. �

Alternative proof. Suppose, on the contrary, that M 6⊇ aM . Choose x ∈ M \ aM . Then, clearly,
we have a ⊆ (aM :A x) ( (1) where (aM :A x) := {a ∈ A | ax ∈ aM} (which is an ideal). Choose
a maximal ideal m of A such that m ⊇ (aM :A x) ⊇ a. Then the assumption that Mm = 0
implies that x/1 = 0 ∈ Mm, which implies that there exists s ∈ A \m such that sx = 0. But this
definitely contradicts our choice that m ⊇ (aM :A x). Hence M = aM . �

Note that, in the above two proofs of Exercise 3.14, all we need is that Mm = aMm for all
maximal ideals m of A such that m ⊇ a.

Exercise 3.15. Let A be a ring, and let F be the A-module An. Show that every set of n
generators of F is a basis of F .

Deduce that every set of generators of F has at least n elements.

Proof. Let x1, x2, . . . , xn ∈ F = An be a set of n generators of F . Say xi = (ai1, ai2, . . . , ain) for

1 ≤ i ≤ n. Let ei = (0, . . . , 0,
i
1, 0, . . . , 0) be the i-th standard basis element of F = An. Then, as

x1, x2, . . . , xn generate F , there exist bi1, bi2, . . . , bin such that ei = bi1x1 + bi2x2 + · · ·+ binxn.
Let U = (aij)n×n and V = (bij)n×n be the two resulted matrices. Then we have V U = En

where En is the n× n identity matrix. Hence UV = En. (Indeed, V U = En implies that det(U)
is a unit in A therefore U−1 exists and therefore V = V UU−1 = U−1 just as in linear algebra.)

Now it is clear that x1, . . . , xn are linearly independent over A. Indeed, for any c1, c2, . . . , cn ∈
A such that c1x1 + c2x2 + · · ·+ cnxn = 0, we have (c1, c2, . . . , cn)U = 0. Thus (c1, c2, . . . , cn) =
(c1, c2, . . . , cn)UV = 0. Hence x1, x2, . . . , xn form a basis of F .

Consequently, every set of generators of F has at least n elements. If, on the contrary, F is
generated by y1, . . . , ym for some m < n, then clearly F is also generated by y1, . . . , ym, ym+1 =
0, . . . , yn = 0. But then by the above result, y1, . . . , ym, ym+1 = 0, . . . , yn = 0 form a basis of F ,
which is impossible. �

Exercise 6.3. Let M be an A-module and let N1, N2 be submodules of M . If M/N1 and M/N2

are Noetherian, so is M/(N1 ∩N2). Similarly with Artinian in place of Noetherian.

Proof. Define f : M → M
N1

⊕ M
N2

by f(x) = (x + N1, x + N2) for any x ∈ M . It is easy to
check that f is an A-linear homomorphism. Therefore f induces an injective A-homomorphism
f : M

Ker(f) →
M
N1
⊕ M

N2
. As M/N1 and M/N2 are Noetherian (Artinian), so is M

N1
⊕ M

N2
by Corollary

6.4, and so is M
Ker(f) by Proposition 6.3.
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Hence it is enough to show that Ker(f) = N1 ∩ N2. Indeed, for any x ∈ M , we have
that x ∈ Ker(f) ⇐⇒ f(x) = (x + N1, x + N2) = (0, 0) ∈ M

N1
⊕ M

N2
⇐⇒ x ∈ N1 and

x ∈ N2 ⇐⇒ x ∈ N1 ∩N2. �

Exercise 6.4. Let M be a Noetherian A-module and let a be the annihilator of M in A. Prove
that A/a is a Noetherian ring.

If we replace “Noetherian” by “Artinian” in this result, is it still true?

Proof. As M is Noetherian, it is finitely generated. Say M is generated by x1, x2, . . . , xn. Define

f : A →
n copies︷ ︸︸ ︷

M ⊕ · · · ⊕M = Mn by f(a) = (ax1, ax2, . . . , axn) for any a ∈ A. It is easy to see that
f is an A-linear map. As M is Noetherian, so is Mn by Corollary 6.4, and so is A/ Ker(f) by
Proposition 6.3.

Hence it is enough to show that Ker(f) = a, the annihilator of M . Indeed, for any a ∈ A, we
have that a ∈ Ker(f) ⇐⇒ f(a) = (ax1, ax2, . . . , axn) = (0, 0, . . . , 0) ∈ Mn ⇐⇒ ax1 = ax2 =
· · · = axn = 0 ⇐⇒ aM = 0, i.e. a ∈ {a ∈ A | aM = 0} =: a.

However, the result is not true if we replace “Noetherian” by “Artinian”. For example, let
A = Z and M = G as in Example 3) on page 74. That is, G is the subgroup of Q/Z consisting
of all elements whose order is a power of fixed prime number p. Then G is an Artinian Z-module
as shown in the textbook. Moreover, the annihilator of G is 0: Indeed, for any 0 6= n ∈ Z, there
is 1

p|n| + Z ∈ Q/Z, which is in G, such that n( 1
p|n| + Z) = n

p|n| + Z 6= 0 ∈ G (since n
p|n| /∈ Z). But

A/0 ∼= A = Z is not Artinian as shown in Example 2) on page 74. �

Exercise 7.1. Let A be a non-Noetherian ring and let Σ be the set of ideals in A which are not
finitely generated. Show that Σ has maximal elements and that the maximal elements of Σ are
prime ideals.

Hence a ring in which every prime ideal is finitely generated is Noetherian (I. S. Cohen).

Proof. The existence of maximal elements of Σ is a consequence of Zorn’s lemma. Indeed, let
Ω ⊆ Σ be a totally ordered subset of Σ (under containment). Let b = ∪a∈Ωa. Then b is an ideal
of A since Ω is totally ordered. If b is finitely generated, say b = (b1, b2, . . . , br), then bi ∈ ai

for some ai ∈ Ω. We may assume that a1 ⊆ a2 ⊆ · · · ⊆ ar since Ω is totally ordered. Therefore
b = (b1, b2, . . . , br) ⊆ ∪r

i=1ai = ar ⊆ ∪a∈Ωa = b, which forces ar = (b1, b2, . . . , br), which is
contrary to the choice that ar ∈ Ω ⊆ Σ. Therefore b is not finitely generated. Hence b ∈ Σ is an
upper bound for Ω. So Σ has at least one maximal element.

Suppose that there is a maximal element a of Σ such that a is not a prime ideal of A. Then
there exist x, y ∈ A \ a such that xy ∈ a.

As x /∈ a, i.e. a ( a + (x), and a is a maximal element of Σ, we have a + (x) /∈ Σ, i.e. a + (x)
is finitely generated. Say a + (x) = (c1, c2, . . . , cn). Write ci = ai + bix where ai ∈ a, bi ∈ A
for each i = 1, 2, . . . , n and let a0 = (a1, a2, . . . , an). Then clearly we have a0 ⊂ a and therefore
a + (x) = (c1, c2, . . . , cn) ⊆ a0 + (x) ⊆ a + (x), which forces a0 + (x) = a + (x).

Let (a : x) = {a ∈ A | ax ∈ a}. Then obviously a0 + x(a : x) ⊆ a. On the other hand, for any
a ∈ a, we can write a = a0 + bx with a0 ∈ a0, b ∈ A. Therefore bx = a− a0 ∈ a, i.e. b ∈ (a : x).
Hence a = a0 + bx ∈ a0 + x(a : x). So we have a = a0 + x(a : x).

By our choice of x and y, we have y ∈ (a : x) and y /∈ a. Together with the easy fact that
a ⊂ (a : x), we know that (a : x) is strictly larger than a and hence is finitely generated, say by
z1, z2, . . . , zm.

But then a = a0+x(a : x) = (a1, . . . , an)+x(z1, . . . , zm) = (a1, . . . , an, xz1, . . . , xzm) is finitely
generated, which is a contradiction. Hence a has to be a prime ideal of A.

Hence a ring in which every prime ideal is finitely generated is Noetherian. �
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Note: The exercises are from ‘Introduction to Commutative Algebra’ by M. F. Atiyah
and I. G. Macdonald. All the quoted results are from the textbook unless different sources are
quoted explicitly. For the convenience of the readers, the number of the chapter is included when
a particular exercise is numbered. For example, Exercise m.n means the Exercise n from
Chapter m.


