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Exercise 3.1. Let S be a multiplicatively closed subset of a ring A, and let M be a finitely
generated A-module. Prove that S~*M = 0 if and only if there exists s € S such that sM = 0.

Proof. Suppose that S~'M = 0. Say that M is generated by 1, ..., z, as an A-module. Then for
every i =1,...,n, x;/1 =0in S~1M, which means that there is s; € S such that s;z; =0 € M.
Let s = 8189+ S,, which is in S. Then sz; = 0 for all i = 1,...,n and therefore xtM = 0 as M
is generated by x1,...,Z,.

Conversely, we assume that there exists s € S such that sM = 0. Then for any element
m/t € STIM with m € M and t € S, we have m/t = (sm)/(st) = 0/(st) =0 € S™'M. That
is, ST1M = 0. (Notice that this part of the proof does not rely on the fact that M is a finitely
generated A-module.) O

Exercise 3.2. Let a be an ideal of a ring A, and let S = 1 + a. Show that S~'a is contained in
the Jacobson radical of S~ A.

Use this result and Nakayama’s lemma to give a proof of Corollary 2.5 which does not depend
on determinants.

Proof. Let a/s be an arbitrary element in S~'a with s € S and a € a. To show that a/s is in
the Jacobson radical of S~ A, it suffices to show that for any r/t € S A with ¢t € S and r € A,
1+ (r/t)(a/s) is a unit in S~ A. Indeed, 1 + (r/t)(a/s) = (ts)/(ts) + (ra)/(ts) = (ts +ra)/(ts).
As t and s are both € S = 1+a and ra € a, we easily see that ts and ts+ra are both € 1+a = S.
Therefore we conclude that 1+ (r/t)(a/s) = (ts +ra)/(ts) is a unit since (ts)/(ts +ra) € S~1A
is its inverse.

To prove Corollary 2.5 by using the above result, we suppose that M is a finitely generated
A-module and a is a ideal of A such that aM = M. Then S™'M is a finitely generated S—!A-
module satisfying S™'M = S~'aM. As S~'a is contained in the Jacobson radical of S~'A, we
conclude that S™'M = 0 by Nakayama’s lemma. Then, by the above Exercise 3.1, there exists
re€S=1+a,ie. =1 mod a, such that zM = 0. O

Exercise 3.5. Let A be a ring. Suppose that, for each prime ideal p, the local ring A, has no
nilpotent element # 0. Show that A has no nilpotent element # 0. If each A, is an integral
domain, is A necessarily an integral domain?

Proof. Suppose that, for each prime ideal p, the local ring A, has no nilpotent element # 0, i.e.
the nilradical of A, is 0. Let M C A be the nilradical of A. Then, by Corollary 3.12, (M), is
the nilradical of Ay, hence (M), = 0 for every p € Spec(A). But this implies that 9t = 0 by
Proposition 3.8.

To answer the second part of the exercise, let A = k x k where k is a field. Then it is easy
to check that there are exactly two prime ideals, namely p = 0 x k and q = k& x 0, of A. We
know that p, is a prime ideal of A,. But it is easy to see that (1,0)p = 0 and (1,0) ¢ p.
Therefore p, = 0 in A, by the second part of the proof of Exercise 3.1. Therefore A, is an
integral domain. Similarly, A, is also an integral domain. But clearly A = k x k is not a domain
as (1,0)(0,1) = (0,0) =0 € A. |

Exercise 3.12. Let A be an integral domain and M an A-module. An element z € M is a
torsion element of M if Ann(x) # 0, that is z is killed by some non-zero element of A. Show
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that the torsion elements of M form a submodule of M. This submodule is called the torsion
submodule of M and is denoted by T'(M). If T(M) = 0, the module M is said to be torsion-free.
Show that

i) If M is any A-module, then M /T (M) is torsion-free.
ii) If f: M — N is a module homomorphism, then f(T'(M)) C T(N).
iii) If0 - M’ — M — M" is an exact sequence, then the sequence 0 — T'(M') — T (M) —
T(M") is exact.
iv) If M is any A-module, then T(M) is the kernel of the mapping  — 1 ® = of M to
K ®4 M, where K is the field of fractions of A.

Proof. The fact that T'(M) is actually an A-submodule follows from part iv). But as it is not
hard to prove it directly, we attach a direct proof: Let ,y € T(M) and r € A, it is enough to
show that x +y € T(M) and rz € T(M). There exist non-zero elements a,b such that ax = 0
and by = 0. Then ab # 0 as A is an integral domain. And clearly ab(xz 4+ y) = 0 and a(rz) = 0
and therefore © +y € T(M) and rz € T(M).

i): Let x+T (M) € T(M/T(M)) be any torsion element of M /T (M), where x € M. That is to
say that there exists a # 0 € A such that a(z+T(M)) = ax+T(M) =0+T(M) € M/T (M), i.e.
ax € T(M). But ax € T(M) means that there exists b # 0 € A such that b(ax) = 0 € M, which
implies that (ba)x = 0. Hence, as ba #0 € A, we get x € T(M), i.e. +T(M)=0¢€ M/T(M).
Therefore T(M/T(M)) = 0, that is, M /T (M) is torsion-free.

ii): For any y € f(T(M)), there exists z € T (M) such that y = f(x). There exists a #0 € A
such that axz = 0. Therefore ay = af(z) = f(azx) = f(0) = 0 € N, which implies that y € T(N).
Hence f(T'(M)) CT(N).

iii): To be specific, let us say we have an exact sequence 0 — M’ LA VNV By part ii),

we have a sequence

0 — T(M') -2 T(M) 25 T(M"),

in which ¢’ and 1’ are the restrictions of the homomorphisms ¢ and 1 respectively. Therefore
it is evident that ¢’ : T(M') — T(M) is injective and ¢' o ¢’ : T(M') — T(M") is a zero
map. Now all we need to show is that Ker(¢') C Im(¢'). Let € Ker(y') € T(M) C M.
That is, there exists a # 0 € A such that ax = 0 and 0 = ¢/(z) = ¥(x), i.e. = € Ker(e).
But Ker(v) = Im(¢) by assumption. Therefore x = ¢(y) for some y € M’. But then we have
¢(ay) = ad(y) = ax = 0, which implies that ay = 0 € M’ as ¢ is injective. Therefore y € T(M’)
and hence z = ¢'(y) € ¢'(T'(M')) = Im(¢'). All done.

iv): Let S = A\0. Then K = S~'A. By the canonical isomorphism K@M = S~ A®4 M =
S~1M, the kernel of the mapping = + 1®x of M to K ® 4 M is exactly the kernel of the mapping
x— x/1 of M to ST*M. But we have that x € Ker(M — S™1M) += 2/1=0€ S7'M <
ar =0 for some a € S (i.e. a£0€ A) < z € T(M). O

Exercise 3.13. Let S be a multiplicatively closed subset of an integral domain A. In the notation
of Exercise 3.12, show that T(S™*M) = S~'T(M). Deduce that the following are equivalent:
i) M is torsion-free.
ii) M, is torsion-free for all prime ideals p.
iii) My, is torsion-free for all prime ideals m.

Proof. i) = ii): Let p be any prime ideal of A and z/s € T(M,) in which z € M,s € A\ p.
That is to say that there exists a/t # 0 € A, such that 0 = (a/t)(z/s) = (az)/(ts) € M,. But
(ax)/(ts) = 0 € M, means there exists 7 € A\ p such that 0 = r(az) = (ra)z, which implies
that © € T(M) as ra # 0 € A. Hence x = 0 since M is torsion-free. Therefore x/s = 0. So
T(M,) =0, ie. M, is torsion-free.

ii) = iii): Evident.
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iii) = i): Suppose M is not torsion-free. Then choose x # 0 € T'(M) so that 0 C Ann(z) C (1).
That is, there exist a # 0 € A and a maximal ideal m of A such that ax = 0 and Ann(z) C m,
the latter of which implies that 2/1 # 0 in M, (as in the proof of Proposition 3.8). But we also
have (a/1)(z/1) = (ax)/1 =0/1 =0in My and a/1 # 0 € Ay, as A is an integral domain. Thus
x/1 is a non-zero torsion element of My, which is a contradiction. Hence M is torsion-free. [

Note: The exercises are from ‘Introduction to Commutative Algebra’ by M. F. Atiyah
and I. G. Macdonald. All the quoted results are from the textbook unless different sources are
quoted explicitly. For the convenience of the readers, the number of the chapter is included when
a particular exercise is numbered. For example, Exercise m.n means the Exercise n from
Chapter m.



