
MATH 831 HOMEWORK SOLUTIONS – ASSIGNMENT 4

Exercise 2.7. Let p be a prime ideal in A. Show that p[x] is a prime ideal in A[x]. If m is a
maximal ideal in A, is m[x] a maximal ideal in A[x]?

Proof. We denote the quotient ring A/p by A and denote an element a + p ∈ A by a. Then
there is a ring homomorphism φ : A[x] → A[x] defined by φ(c0 + · · · + crx

r) = c0 + · · · + crx
r.

Now notice that A = A/p is an integral domain as p is a prime ideal in A. In general, if R is
an integral domain, then R[x] is also an integral domain (check for yourself). Therefore Ker(φ),
the kernel of the above map from A[x] to A[x], is a prime ideal in A[x] as A[x] is an integral
domain. But it is easy to check that Ker(φ) is exactly p[x]. Hence p[x] is a prime ideal in A[x].
Also notice that φ is surjective so that A[x]/p[x] ∼= A[x]

Now suppose that m is a maximal ideal in A. Let k = A/m (which is a field). Applying
the last paragraph to the case of p = m, we get A[x]/m[x] ∼= k[x]. As k[x] is never a field (for
example, x 6= 0 is never a unit in k[x]), we conclude that m[x] is never a maximal ideal in A[x].

Alternatively, let M = {f(x) ∈ A[x] | f(0) ∈ m}, i.e. M consists of all polynomials f(x) such
that the constant terms, which can be identified as f(0), are in m. Then direct checking will
show that M is an proper ideal in A[x] and m[x] ( M. �

Exercise 2.9. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of A-modules. If M ′ and
M ′′ are finitely generated, then so is M .

Proof. To be specific, let’s say the exact sequence is (0 →)M ′ φ→ M
ψ→ M ′′ → 0. That implies

that Im(φ) = Ker(ψ) and ψ is surjective. Say M ′ is generated by x1, . . . , xm and denote φ(xi)
by yi for i = 1, . . . ,m. Then Ker(ψ) = Im(φ) is generated by y1, . . . , ym. Say M ′′ is generated
by u1, . . . , un. Then, as ψ is surjective, there exist v1, . . . , vn ∈ M such that ψ(vi) = ui for
i = 1, . . . , n. Let N be the A-submodule of M generated by v1, . . . , vn. Then ψ(N) contains
u1 = ψ(v1), . . . , un = ψ(vn), a set of generators of M ′′. Therefore ψ(N) = M ′′.

Now for any z ∈ M , as ψ(z) ∈ M ′′ = ψ(N), there exists v ∈ N such that ψ(v) = ψ(z). That
is ψ(z − v) = 0, i.e. z − v ∈ Ker(ψ) = Im(φ). Hence z = (z − v) + v ∈ Im(φ) +N . Therefore we
conclude that M = Im(φ) +N is finitely generated (e.g. by y1, . . . , ym and v1, . . . , vn). �

Exercise 2.10. Let A be a ring, a an ideal contained in the Jacobson radical of A; let M be an
A-module and N a finitely generated A-module, and let u : M → N be a homomorphism. If the
induced homomorphism M/aM → N/aN is surjective, then u is surjective.

Proof. Let L = Coker(u), i.e. L = N/ Im(u). Then we have an exact sequence M → N → L→ 0.
Applying the right exact functor (A/a)⊗A, we get an exact sequence

(A/a)⊗AM
1⊗Au−→ (A/a)⊗A N −→ (A/a)⊗A L −→ 0.

By the canonical isomorphism proved in Exercise 2.2 (see Assignment 3), we have the following
exact sequence

M/aM
u−→ N/aN −→ L/aL −→ 0,

in which u is induced from u. As u is surjective by assumption, we get that L/aL = 0 from above
exact sequence. That is to say L = aL. Then, as L is finitely generated and a is contained in
the Jacobson radical, we conclude that L = 0 by Nakayama’s lemma (Proposition 2.6), which in
turn implies N = Im(u) as L = N/ Im(u). Hence u is surjective. �
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Exercise 2.11. Let A be a ring 6= 0. Show that Am ∼= An ⇒ m = n.
If φ : Am → An is surjective, then m ≥ n.
If φ : Am → An is injective, is it always the case that m ≤ n?

Proof. As A is a non-zero ring, there exists a maximal ideal m in A. Denote the quotient field
A/m by k.

Suppose that Am ∼= An. Then k ⊗A (Am) ∼= k ⊗A (An). By the canonical isomorphisms
described in Proposition 2.14, iii) and iv), we get km ∼= kn, which implies that m = n by the
uniqueness of rank of a vector space.

Suppose that φ : Am → An is surjective. Applying k⊗A to the exact sequence Am
φ→ An → 0,

we get an exact sequence k ⊗A (Am)
1⊗Aφ−→ k ⊗A (An) → 0, in which 1 ⊗A φ can be viewed as a

k-homomorphism. By the canonical isomorphisms described in Proposition 2.14, iii) and iv), we
get an exact sequence

km −→ kn −→ 0

of k-vector spaces. Then kn is a homomorphic image of km implies that m ≥ n.
Actually, if φ : Am → An is injective, then m ≤ n is always true. Let ei ∈ Am be the i-th

standard basis element, (0, . . . , 0,
i
1, 0, . . . , 0), of Am and let φ(ei) = (ai1, ai2, . . . , ain) ∈ An for

i = 1, 2, . . . ,m. Then we denote the m× n matrix (aij) 1≤i≤m
1≤j≤n

by D. By getting rid of the easy-

to-prove trivial cases, we may assume that m,n > 0 and D 6= 0. Let r be the largest integer in
{1, 2, . . . ,min{m,n}} such that there exists a non-zero r×r minor of D. By possibly rearranging
the orders of the basis elements of Am and An, we may assume that the non-zero r × r minor is

at the upper-left coner of D, i.e.
∣∣∣∣(aij) 1≤i≤r

1≤j≤r

∣∣∣∣ 6= 0.

Suppose, on the contrary, that m > n. Then m ≥ r + 1 and we denote the (r + 1) × r block
matrix at the upper-left coner of D by D′. That is D′ = (aij) 1≤i≤r+1

1≤j≤r
. For each i = 1, 2, . . . , r+1,

let ai ∈ A be the r×r minor ofD′ by removing its i-th row and let bi = (−1)iai. Then br+1 6= 0 by
our construction (choice). For each j = 1, 2, . . . , n,

∑r+1
i=1 aijbi can be realized as the determinant

of a (r+1)× (r+1) matrix. If 1 ≤ j ≤ r, then the matrix has two identical columns (up to ±1).
If r + 1 ≤ j ≤ n, then the determinant of the matrix is an (r + 1)× (r + 1) minor (up to ±1) of
D . Therefore we have

∑r+1
i=1 aijbi = 0 for all 1 ≤ j ≤ n. But this means that

φ(b1, . . . , br+1, 0, . . . , 0) =

(
r+1∑
i=1

ai1bi, . . . ,
r+1∑
i=1

ainbi

)
= (0, . . . , 0) ∈ An,

which is a contradiction to the injectivity of φ since (b1, . . . , br+1, 0, . . . , 0) 6= (0, . . . , 0) ∈ Am.
Therefore an injective A-linear map φ : Am → An implies that m ≤ n. �

Exercise 2.13. Let f : A→ B be a ring homomorphism, and let N be a B-module. Regarding
N as an A-module by restriction of scalars, form the B-module NB = B ⊗A N . Show that the
homomorphism g : N → NB which maps y to 1⊗y is injective and that g(N) is a direct summand
of NB .

Proof. It is evident that the map g : N → NB defined by y 7→ 1⊗y is A-linear and is also B-linear
if we the scalar multiplication of B on NB = B ⊗A N is induced by the B-module structure of
N (i.e. b(

∑n
i=1 bi ⊗ yi) =

∑n
i=1 bi ⊗ (byi) for any b, bi ∈ B and yi ∈ N).

As the mapping (b, y) 7→ by is an A-bilinear map from B ×N to N , we have an A-linear map
p : NB = B ⊗A N → N such that p(b ⊗ y) = by for all b ∈ B and y ∈ N . Notice that p is also
B-linear (for each of the two natural B-module structures on B ⊗A N).
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It is easy to check that the composition map p ◦ g : N → N is the identity map on N : Indeed,
p ◦ g(y) = p(g(y)) = p(1⊗ y) = 1y = y for any y ∈ N . But the fact that p ◦ g = 1N implies that
g is injective and NB = g(N) ⊕ Ker(p). Therefore g(N) is a direct summand of NB if both are
considered as A-modules (or as B-modules if the the B-module structure of NB is as described in
the first paragraph). (Recall that the ‘supposed’ B-module structure of NB = B ⊗A N obtained
from A-module N by scalar extension is inherited from B, i.e. b(

∑n
i=1 bi ⊗ yi) =

∑n
i=1(bbi)⊗ yi

for any b, bi ∈ B and yi ∈ N .) �

Note: The exercises are from ‘Introduction to Commutative Algebra’ by M. F. Atiyah
and I. G. Macdonald. All the quoted results are from the textbook unless different sources are
quoted explicitly. For the convenience of the readers, the number of the chapter is included when
a particular exercise is numbered. For example, Exercise m.n means the Exercise n from
Chapter m.


