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Exercise 2.1. Show that (Z/mZ)⊗Z (Z/nZ) = 0 if m,n are coprime.

Proof. It suffices to prove that x⊗y = 0 for all x ∈ Z/mZ and y ∈ Z/nZ, since (Z/mZ)⊗Z(Z/nZ)
is generated by all the x ⊗ y. Notice that mx = 0 ∈ Z/mZ and ny = 0 ∈ Z/mZ. Therefore we
have

m(x⊗ y) = (mx)⊗ y = 0⊗ y = 0 and n(x⊗ y) = x⊗ (ny) = x⊗ 0 = 0.
Also notice that there exist integers s, t ∈ Z such that 1 = sm+ tn by the assumption that m,n
are coprime. Putting things together, we get that

x⊗ y = 1(x⊗ y) = (sm+ tn)(x⊗ y) = sm(x⊗ y) + tn(x⊗ y) = 0 + 0 = 0.

�

Alternative proof. We use the result of Exercise 2.2, which is proved below. Denote the Z-
module Z/nZ by M . Then (Z/mZ) ⊗Z (Z/nZ) = (Z/mZ) ⊗Z M ∼= M/mM . Then we can see
that mM = M using the information that m,n are coprime. (You are welcome to fill in the
details.) �

Exercise 2.2. Let A be a ring, a an ideal, M an A-module. Show that (A/a)⊗AM is isomorphic
to M/aM .

Proof. Tensoring M with the exact sequence 0 → a
i→ A → A/a → 0 where i denotes the

inclusion map, we get an exact sequence

a⊗A M
i⊗1−→ A⊗A M −→ A/a⊗A M −→ 0

by Proposition 2.18. Therefore A/a ⊗A M ∼= (A ⊗A M)/ Im(i ⊗ 1). But there is a canonical
isomorphism φ : A ⊗A M ∼= M by a ⊗ x 7→ ax (see Proposition 2.14) and, under this canonical
isomorphism, the image of i⊗ 1 is identified with φ(Im(i⊗ 1)). Therefore we have

A/a⊗A M ∼= (A⊗A M)/ Im(i⊗ 1) ∼= φ(A⊗A M)/φ(Im(i⊗ 1)) = M/φ(Im(i⊗ 1)).

As a ⊗A M is generated by all the a ⊗ x with a ∈ a and x ∈ M , we conclude that Im(i ⊗ 1) is
generated by all the a⊗ x ∈ A⊗A M with a ∈ a and x ∈M . Hence φ(Im(i⊗ 1)) is generated by
all the ax ∈M with a ∈ a and x ∈M , i.e. φ(Im(i⊗ 1)) = aM . Therefore

A/a⊗A M ∼= M/φ(Im(i⊗ 1)) ∼= M/aM.

�

Alternative proof. First there is a well-defined map f : A/a ×M → M/aM by ((a + a), x) 7→
ax + aM ∈ M/aM for every a + a ∈ A/a, x ∈ M . And it is easy to check that f is A-bilinear.
Therefore there exists an A-linear map φ : A/a ⊗A M → M such that φ(a ⊗ x) = ax for any
a = a + a ∈ A/a, x ∈ M . Conversely, there is a well-defined map ψ : M/aM → A/a ⊗M by
x+aM 7→ 1⊗x where 1 = 1+a ∈ A/a. It is also easy to check that ψ is an A-linear map. Finally,
direct checking proves that φ ◦ ψ = 1M/aM and ψ ◦ φ = 1A/a⊗M . (The last equality follows from
the fact that ψ ◦φ(a⊗x) = ψ(ax) = 1⊗ (ax) = (a1)⊗x = a⊗x for any a = a+a ∈ A/a, x ∈M .)
Therefore A/a⊗A M ∼= M/aM . �

Exercise 2.3. Let A be a local ring, M and N finitely generated A-modules. Prove that if
M ⊗A N = 0, then M = 0 or N = 0.
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Proof. Let m be the maximal ideal of A and k = A/m be the residue field. We may assume that
M 6= 0 and prove that N = 0. By Nakayama’s lemma (Proposition 2.6), we see that mM ( M .
Therefore A/m ⊗M ∼= M/mM ∼= kn 6= 0 is naturally a k-vector space with rank n > 0. Hence
M ⊗A N = 0 =⇒ A/m ⊗ (M ⊗A N) = 0 =⇒ (k ⊗A N)n ∼= kn ⊗A N ∼= (A/m ⊗M) ⊗A N =
0 =⇒ N/mN ∼= A/m⊗N = k⊗AN = 0 =⇒ N = mN =⇒ N = 0 by Nakayama’s lemma. �

Next we include Exercise 2.4, which will be used in the proof of Exercise 2.5.

Exercise 2.4. Let Mi(i ∈ I) be any family of A-modules, and let M be their direct sum. Prove
that M is flat ⇐⇒ each Mi is flat.

Sketch of proof. The module M = ⊕i∈IMi is flat if an only if the sequence
0 −→ N1 ⊗A M −→ N2 ⊗A M −→ N3 ⊗A M −→ 0 i.e.

0 −→ N1 ⊗A

(
⊕i∈I Mi

)
−→ N2 ⊗A

(
⊕i∈I Mi

)
−→ N3 ⊗A

(
⊕i∈I Mi

)
−→ 0

is exact for every exact sequence 0→ N1 → N2 → N3 → 0, if and only if the sequence

0 −→
⊕
i∈I

(N1 ⊗A Mi) −→
⊕
i∈I

(N2 ⊗A Mi) −→
⊕
i∈I

(N3 ⊗A Mi) −→ 0

is exact for every exact sequence 0 → N1 → N2 → N3 → 0 by Proposition 2.14 iii), if and only
if the sequence

0 −→ N1 ⊗A Mi −→ N2 ⊗A Mi −→ N3 ⊗A Mi −→ 0
is exact for every exact sequence 0 → N1 → N2 → N3 → 0 and for each Mi, if and only if each
Mi is flat. �

Exercise 2.5. Let A[x] be the polynomial ring in one indeterminate over a ring A. Prove that
A[x] is a flat A-algebra.

Proof. First we observe (or recall) that A, as an A-module, is flat because of the canonical
isomorphism M ⊗A A ∼= M .

Second we observe that the polynomial ringA[x], considered as an module overA, is isomorphic
to ⊕∞i=0A = A⊕A⊕ · · · . Indeed a natural one-to-one correspondence is defined by

a0 + a1x+ · · ·+ anx
n ←→ (a0, a1, . . . an, 0, 0, . . . ).

Finally we conclude that A[x] is a flat A-module by Exercise 2.4. That is to say A[x] is a flat
A-algebra. �

Exercise 2.8. i) If M and N are flat A-modules, then so is M ⊗A N ;
ii) If B is a flat A algebra and N is a flat B-module, then N is flat as an A-module.

Proof. Let 0→ N1 → N2 → N3 → 0 be an arbitrary exact sequence of A-modules.
i): Since M is a flat A-module, the sequence

0 −→ N1 ⊗A M −→ N2 ⊗A M −→ N3 ⊗A M −→ 0

is exact. But N is also flat over A. Therefore the sequence

0 −→ (N1 ⊗A M)⊗A N −→ (N2 ⊗A M)⊗A N −→ (N3 ⊗A M)⊗A N −→ 0

is exact. By Proposition 2.14 ii), (Ni⊗AM)⊗AN and Ni⊗A (M⊗AN) are naturally isomorphic
for each i = 1, 2, 3. Therefore the sequence

0 −→ N1 ⊗A (M ⊗A N) −→ N2 ⊗A (M ⊗A N) −→ N3 ⊗A (M ⊗A N) −→ 0

is exact. From this we conclude that M ⊗A N is a flat A-module.
ii): Since B is a flat A-algebra, the sequence

0 −→ N1 ⊗A B −→ N2 ⊗A B −→ N3 ⊗A B −→ 0
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is an exact sequence of B-modules. As N is flat over B, the sequence

0 −→ (N1 ⊗A B)⊗B N −→ (N2 ⊗A B)⊗B N −→ (N3 ⊗A B)⊗B N −→ 0

is exact. By Exercise 2.15 on page 27, (Ni ⊗A B) ⊗B N and Ni ⊗A (B ⊗B N) are naturally
isomorphic for each i = 1, 2, 3. Therefore the sequence

0 −→ N1 ⊗A (B ⊗B N) −→ N2 ⊗A (B ⊗B N) −→ N3 ⊗A (B ⊗B N) −→ 0

is exact. From this we conclude that B ⊗B N is flat as an A-module. Finally, as B ⊗B N ∼= N
as A-modules (and as B-modules), N is flat as an A-module. �

Note: The exercises are from ‘Introduction to Commutative Algebra’ by M. F. Atiyah
and I. G. Macdonald. All the quoted results are from the textbook unless different sources are
quoted explicitly. For the convenience of the readers, the number of the chapter is included when
a particular exercise is numbered. For example, Exercise m.n means the Exercise n from
Chapter m.


