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Exercise 9.7. Let A be a Dedekind domain and a 6= 0 an ideal in A. Show that every ideal in
A/a is principal.

Deduce that every ideal in A can be generated by at most 2 elements.

Proof. The fact that A has dimension one and a 6= 0 implies that A/a has Krull dimension zero,
which, together with the implicit assumption that A (hence A/a) is Noetherian, implies that
A/a is Artinian by Theorem 8.5. Let p1, p2, . . . , pn be all the minimal prime ideals over a. Then
p1, p2, . . . , pn are all the maximal ideals of A that contain a (since dim(A) = 1) and therefore
they account for all the prime ideals of A/a. By the structure theorem of Artinian rings, we
know that

A/a ∼=
n∏

i=1

(
A

a
)pi

∼=
n∏

i=1

Api

api

.

Notice that Api
is a discrete valuation ring (hence principal) for every 1 ≤ i ≤ n. This implies

that Api

api
is principal for every 1 ≤ i ≤ n and therefore A/a ∼=

∏n
i=1

Api

api
is principal. (In general,

any direct product of finitely many principal rings is still principal.)
It remains to show that every ideal b of A can be generated by at most 2 elements. If b = 0,

then there is nothing to prove. If b 6= 0, then choose 0 6= x ∈ b and let a = (x). Then what
we have just proved shows that A/(x) is principal and therefore b/(x) can be generated by one
element. Say b/(x), as an ideal in A/(x), is generated by y + (x). Then it is easy to check that
b = (x, y) which is generated by two elements. �

Exercise 9.9. (Chinese Remainder Theorem). Let a1, . . . , an be ideals and let x1, . . . , xn be
elements in a Dedekind domain A. Then the system of congruences x ≡ xi mod ai (1 ≤ i ≤ n)
has a solution x in A ⇐⇒ xi ≡ xj mod ai + aj whenever i 6= j.

Proof. ⇒: The system of congruences x ≡ xi mod ai (1 ≤ i ≤ n) has a solution x in A
simply says that there exists x ∈ A such that x − xi ∈ ai for 1 ≤ i ≤ n. Therefore xi − xj =
(x− xj)− (x− xi) ∈ aj + ai = ai + aj whenever i 6= j.
⇐: We prove this direction by induction on n. There is nothing to prove when n = 1. For

n = 2, the assumption that x1 ≡ x2 mod a1 + a2 simply says that x1 − x2 ∈ a1 + a2, i.e.
x1 − x2 = a1 + a2 with a1 ∈ a1, a2 ∈ a2. Then it is easy to check that x := x1 − a1 = x2 + a2 is
a solution of the system of congruences x ≡ xi mod ai (1 ≤ i ≤ 2).

Now let n > 2 and assume that the cases of less than n ideals are all proved. Remember that
we need to show that the system of congruences x ≡ xi mod ai (1 ≤ i ≤ n) has a solution x in
A provided that xi ≡ xj mod ai +aj whenever i 6= j. By induction hypothesis (for n−1 ideals),
there exists y ∈ A satisfying y ≡ xi mod ai (1 ≤ i ≤ n − 1). Next let us look at the following
system of congruences (for 2 ideals)

(∗)

{
x ≡ y mod ∩n−1

i=1 ai

x ≡ xn mod an.

Note that y − xn = (y − xi) + (xi − xn) ∈ ai + (ai + an) = ai + an for all 1 ≤ i ≤ n − 1.
Hence y − xn ∈ ∩n−1

i=1 (ai + an) = (∩n−1
i=1 ai) + an by Exercise 9.8 (assigned last time). Now,

by induction hypothesis (for 2 ideals), the system of congruences (∗) has a solution x in A.
1
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Finally it is straightforward to check that x is a solution of the system of congruences x ≡ xi

mod ai (1 ≤ i ≤ n) by our choices of y and system (∗). �

Exercise 10.3. Let A be a Noetherian ring, a an ideal and M a finitely generated A-module.
Using Krull’s Theorem and Exercise 14 of Chapter 3, prove that

∞⋂
n=1

anM =
⋂

m⊇a

Ker(M → Mm),

where m runs over all maximal ideals containing a.
Deduce that

M̂ = 0 ⇔ Supp(M) ∩ V (a) = ∅ (in Spec(A)),

where M̂ is the a-adic completion of M .

Proof. By Krull’s Theorem (Theorem 10.17), the submodule E = ∩∞n=1a
nM is annihilated by

some element of the form 1 + a with a ∈ a. Hence Em = 0 for all maximal ideals m containing a
since 1+a is a unit in Am if a ⊆ m. Therefore ∩∞n=1a

nM = E ⊆ ∩m⊇a Ker(M → Mm). Conversely,
let K = ∩m⊇a Ker(M → Mm). Then Km = 0 for all maximal ideals containing a, which implies
that K = aK by Exercise 3.14 (assigned). Hence K = aK = a2K = · · · = an = · · · ⊆ ∩∞n=1a

nM .
Therefore ∩∞n=1a

nM = ∩m⊇a Ker(M → Mm).

To prove the remaining part of the proof, first notice that M̂ = 0 NAK⇐⇒ M̂ = âM̂
Proposition 10.15⇐⇒

M = aM ⇐⇒ M = ∩∞n=1a
nM , i.e. M = ∩m⊇a Ker(M → Mm), i.e. Mm = 0 for all maximal

ideals m containing a ⇐⇒ Supp(M)∩V (a) contains no maximal ideal ⇐⇒ Supp(M)∩V (a) =
∅. �

Exercise 10.4. Let A be a Noetherian ring, a an ideal in A, and Â the a-adic completion. For
any x ∈ A, let x̂ be the image of x in Â. Show that

x not a zero-divisor in A ⇒ x̂ not a zero-divisor in Â

Does this imply that

A is an integral domain ⇒ Â is an integral domain?

Proof. The assumption that x not a zero-divisor in A says that the sequence 0 → A
x→ A is

exact. Since Â is flat over A (see Proposition 10.14), we have an exact sequence 0 → Â
bx→ Â,

which says that x̂ is not a zero-divisor in Â.
We have an example of an integral domain whose completion is not an integral domain. This

example is taken from Eisenbud’s book Commutative Algebra, page 187–188. Let R = k[x, y]
where k is a field of characteristic zero and m = (x, y). Then the completion of R with respect
to m is R̂ ∼= k[[x, y]]. Then let A = k[x, y]/(y2 − x2 − x3) and m = (x, y) ⊂ A where x, y

are the corresponding elements in A. Then the completion of A with respect to m is Â ∼=
A ⊗R R̂ ∼= k[[x, y]]/(y2 − x2 − x3). First it easy to see that y2 − x2 − x3 is irreducible in R
and therefore it is a prime element as R is a UFD. Hence A is an integral domain. To see
that Â ∼= k[[x, y]]/(y2 − x2 − x3) is not an integral domain, we make a claim that there exists
f ∈ k[[x, y]] such that f2 = 1 + x. Assuming the claim, we have that

y2 − x2 − x3 = y2 − x2(1 + x) = y2 − (xf)2 = (y + xf)(y − xf),

which shows that y2 − x2 − x3 is not a prime in k[[x, y]]. Therefore Â is not an integral domain.
It remains to show that there exists f ∈ k[[x, y]] such that f2 = 1 + x. To that end, it suffices

to find a0, a1, . . . ∈ k such that

(a0 + a1x + a2x
2 + · · ·+ anxn + · · · )2 = 1 + x.
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To make it explicit, we need a2
0 = 1, 2a0a1 = 1, 2a0a2 + a2

1 = 0, . . . etc. But it is easy to
solve this inductively: a0 = 1, a1 = 1/2, a2 = −1/8, . . . on and on. Therefore there exists
f = 1 + 1

2x− 1
8x2 + · · · ∈ k[[x]] ⊂ k[[x, y]] satisfying f2 = 1 + x. �

Exercise 10.6. Let A be a Noetherian ring and a an ideal in A. Prove that a is contained in
the Jacobson radical of A if and only if every maximal ideal of A is closed for the a-topology.

Proof. Recall that, for an element x ∈ A and an ideal a of A, the coset x + a = {x + a | a ∈ a} is
a subset of A.

Suppose that a is contained in the Jacobson radical of A. Let m be an arbitrary maximal ideal
in A. Then a ⊆ m. For any x /∈ m, it is straightforward to check that (x + a) ∩m = ∅. As x + a
is a open subset of A containing x, we conclude that x in not in the closure of m. Hence m is
closed.

Suppose that a is not contained in the Jacobson radical of A. Then there exists a maximal
ideal m of A such that a 6⊆ m. Hence an 6⊆ m for all n ≥ 0. This forces an + m = (1) for all
n ≥ 0. Hence there exist an ∈ an,mn ∈ m such that an + mn = 1, i.e. 1 − an = mn ∈ m, i.e.
(1 + an) ∩ m 6= ∅ for every n ≥ 0. Since {1 + an |n ≥ 0 forms a neighborhood basis for element
1, we conclude that 1 is in the closure of m. So m is not closed. �

Note: The exercises are from ‘Introduction to Commutative Algebra’ by M. F. Atiyah
and I. G. Macdonald. All the quoted results are from the textbook unless different sources are
quoted explicitly. For the convenience of the readers, the number of the chapter is included when
a particular exercise is numbered. For example, Exercise m.n means the Exercise n from
Chapter m.


