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Exercise 1.1. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce
that the sum of a nilpotent element and a unit is a unit.

Proof. Say xn = 0 for some n > 0. Then, by direct computation, we see that

(1 + x)(1− x + x2 + · · ·+ (−1)nxn) = 1 + (−1)nxn+1 = 1 + 0 = 1,

i.e. 1 + x is a unit in A.
Next let a ∈ A be a unit (therefore a−1 exists) and x ∈ A a nilpotent (i.e. xn = 0 for some

n > 0). We need to show that a + x = a(1 + a−1x) is a unit. Notice that xn = 0 implies
(a−1x)n = 0. Therefore a−1x is a nilpotent and hence 1 + a−1x is a unit by the first part of the
proof. Finally we deduce that a + x = a(1 + a−1x) is a unit as any product of units is still a
unit. �

Exercise 1.2. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x
with coefficients in A. Let f = a0 + a1x + · · ·+ anxn ∈ A[x]. Prove that

i) f is a unit in A[x] ⇐⇒ a0 is a unit in A and a1, . . . , an are nilpotent;
ii) f is nilpotent ⇐⇒ a0, a1, . . . , an are nilpotent;
iii) f is a zero-divisor ⇐⇒ there exists a 6= 0 in A such that af = 0;
iv) f is said to be primitive if (a0, a1, . . . , an) = (1). Prove that if f, g ∈ A[x], then fg is

primitive ⇐⇒ f and g are primitive.

Proof. i): If f is a unit, then there exist g = b0 + · · · + bmxm ∈ A[x] such that fg = 1. Direct
computation shows that a0b0 = 1, which proves that a0 is a unit in A. To prove that ai are
nilpotent for all i = 1, 2, . . . , n, it suffices to show ai ∈ p for every prime ideal p of A. For
any arbitrarily chosen and then fixed prime ideal p, we denote the quotient ring A/p by A and
denote an element a + p ∈ A by a. Then there is a ring homomorphism φ : A[x] → A[x] defined
by φ(c0 + · · · + crx

r) = c0 + · · · + crx
r. Since f = a0 + a1x + · · · + anxn is a unit in A[x],

φ(f) = a0 + a1x + · · ·+ anxn is a unit in A[x]. Now notice that A = A/p is an integral domain.
In general, if R is an integral domain, then every unit in R[x] has to have degree 0 (check for
yourself). Therefore our polynomial φ(f) = a0 + a1x + · · · + anxn has to have degree 0, i.e.
ai = ai + p are zero in A = A/p for all i = 1, 2, . . . , n, which is the same as saying ai ∈ p for
all i = 1, 2, . . . , n. Since the prime ideal p is arbitrary, we conclude that ai are nilpotent for all
i = 1, 2, . . . , n.

Conversely, we assume a0 is a unit and a1, . . . , an are nilpotent. Then am
i = 0 for a large enough

m ∈ N and all i = 1, 2, . . . , n. Then direct computation gives that (a1x+· · ·+anxn)n(m−1)+1 = 0.
That is to say (a1x + · · · + anxn) is nilpotent in A[x]. Finally f = a0 + (a1x + · · · + anxn) is a
unit by Exercise 1.1.

ii): If f is nilpotent, so is xf = a0x + a1x
2 + · · · + anxn+1 ∈ A[x]. Then 1 + xf is a unit in

A[x] by Exercise 1.1. As 1 + xf = 1 + a0x + a1x
2 + · · ·+ anxn+1, we conclude that a0, a1, . . . , an

are all nilpotent by part i).
Conversely, if a0, a1, . . . , an are all nilpotent, there exists a large enough m ∈ N such that

am
i = 0 for all i = 0, 1, . . . , n. Similarly we can show that f (n+1)(m−1)+1 = (a0 + a1x + · · · +

anxn)(n+1)(m−1)+1 = 0 by direct computation.
iii): The direction ⇐= is evident. To prove the =⇒ direction, we choose a particular

g ∈ {h ∈ A[x] |h 6= 0, hf = 0} 6= ∅ with minimal degree. Say g = b0 + b1x + · · · + bmxm with
1
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bm 6= 0. We claim that bmf = 0. If not, there exists an largest integer r ∈ {0, 1, . . . , n} such that
bmar 6= 0 (so that bmai = 0 for all i = r + 1, . . . , n). Then, for every i = r + 1, . . . , n, we have
aigf = 0 and the degree of aig = ai(b0 + b1x + · · ·+ bmxm) = aib0 + aib1x + · · ·+ aibm−1x

m−1

less than the degree of g. By our choice of g, we know that aig = 0 for all i = r + 1, . . . , n.
But then we have 0 = fg = (a0 + · · · + arx

r + ar+1x
r+1 + · · · + anxn)g = (a0 + · · · + arx

r)g =
(a0 + · · ·+ arx

r)(b0 + · · ·+ bmxm), which forces arbm = 0, which is a contradiction.
iv): First let us observe that an ideal I = (1) ⇐⇒ I 6⊆ m for every maximal ideal m of A.

For any such maximal ideal m, we denote the quotient ring A/m by A, an element a + m ∈ A by
a and the natural ring homomorphism A[x] → A

m [x] = A[x] by φm.
Second we observe that a polynomial f = a0 + a1x + · · · + anxn ∈ A[x] is primitive ⇐⇒

(a0, a1, . . . , an) = (1) ⇐⇒ for every maximal ideal m, there exists at least one i such that
ai 6= 0 ∈ A ⇐⇒ φm(f) 6= 0 ∈ A[x] for every maximal ideal m.

Third, just as in part i), we notice that A[x] is an integral domain for every maximal ideal m.
Now we have fg is primitive ⇐⇒ φm(fg) = φm(f)φm(g) 6= 0 ∈ A[x] for every maximal

ideal m ⇐⇒ φm(f) 6= 0 and φm(g) 6= 0 for every maximal ideal m ⇐⇒ f and g are both
primitive. �

Exercise 1.3. Generalize the results of Exercise 1.2 to a polynomial ring A[x1, . . . , xr] in several
indeterminates.

Solution. We state the generalizations without providing proof.
First let us set up notations. Every polynomial f ∈ A[x1, . . . , xr] can be written as

f =
∑

n1,...,nr∈N
a(n1,...,nr)x

n1
1 · · ·xnr

r ,

in which a(n1,...,nr) 6= 0 ∈ A for only finitely many (n1, . . . , nr). Notice A[x1, . . . , xr] can be
naturally viewed as A[x1][x2, . . . , xr], a polynomial ring over A[x1] with r − 1 indeterminates
x2, . . . , xr (so we may use induction). Accordingly, we can rearrange the terms of the above
polynomial f so that

f =
∑

n2,...,nr∈N

(∑
n1∈N

a(n1,...,nr)x
n1
1

)
xn2

2 · · ·xnr
r .

Furthermore we say that f is primitive if the set {a(n1,...,nr) |n1, . . . , nr ∈ N} generates the unit
ideal (1).

Then the following statements are true:
i) f is a unit in A[x1, . . . , xr] ⇐⇒ a(0,···0) is a unit in A and a(n1,...,nr) are nilpotent for

all (n1, . . . , nr) 6= (0, · · · 0);
ii) f is nilpotent ⇐⇒ a(n1,...,nr) are nilpotent for all (n1, . . . , nr);
iii) f is a zero-divisor ⇐⇒ there exists a 6= 0 in A such that af = 0;
iv) For f, g ∈ A[x1, . . . , xr], fg is primitive ⇐⇒ f and g are primitive.

�

Sketch of proof. i): Prove by induction on r, the number of the indeterminates. Use the results
in Exercise 1.2, part i) and ii).

ii): Prove by induction on r, the number of the indeterminates. Use the results in Exercise
1.2, part ii).

iii): The direction ⇐ is evident. To prove the ⇒ direction, we use induction on r, the number
of the indeterminates. Then we may mimic the proof of Exercise 1.2, part iii) to find a 6= 0 in A
such that af = 0.



MATH 831 HOMEWORK SOLUTIONS – ASSIGNMENT 1 3

iv): We may mimic the proof of Exercise 1.2, part iv) almost word by word. The only difference
is that our ring now has several indeterminates instead of one. �

Exercise 1.4. In the ring A[x], the Jacobson radical is equal to the nilradical.

Proof. The nilradical N is always contained in the Jacobson radical R as N is the intersection of
all prime ideals while R is the intersection of all maximal ideals. This is true for any ring.

On the other hand, if f = a0+a1x+· · ·+anxn is in the Jacobson radical R of A[x], then 1+xf
is a unit in A[x] (see Proposition 1.9). As 1 + xf = 1 + a0x + a1x

2 + · · ·+ anxn+1, we conclude
that a0, a1, . . . , an are all nilpotent by Exercise 1.2, part i). But then f = a0 + a1x + · · ·+ anxn

is a nilpotent by Exercise 1.2, part ii), i.e. f ∈ N. Therefore R = N in A[x]. �

Exercise 1.7. Let A be a ring in which every element x satisfies xn = x for some n > 1
(depending on x). Show that every prime ideal in A is maximal.

Proof. Let p be an arbitrary prime ideal of A. We need to prove that the only ideal of A properly
containing p is the unit ideal. Let a be an such ideal, i.e. p ( a. Then there exists an element
x ∈ a\p. By assumption, xn = x for some n > 1. That is to say that x(1−xn−1) = 0 ∈ p, which
implies (1−xn−1) ∈ p ( a since p is prime and x /∈ p. But then we have 1 = (1−xn−1)+xn−1 ∈ a
as n− 1 ≥ 1. Hence a = (1) is the unit ideal. �

Alternative proof of Exercise 1.7. Let p be an arbitrary prime ideal of A. To show that p is
maximal, it enough to prove that A/p is a field, i.e. every non-zero element of A/p is a unit. Since
there is a surjective ring homomorphism from A to A/p, every element x ∈ A/p satisfies xn = x
for some n > 1 (depending on x). But if x 6= 0 ∈ A/p, then xn = x implies xn−1 = 1 ∈ A/p since
A/p is an integral domain, which implies x is a unit as n− 1 ≥ 1. �

Note: The exercises are from ‘Introduction to Commutative Algebra’ by M. F. Atiyah
and I. G. Macdonald. All the quoted results are from the textbook unless different sources are
quoted explicitly. For the convenience of the readers, the number of the chapter is included when
a particular exercise is numbered. For example, Exercise m.n means the Exercise n from
Chapter m.


