
ON THE VANISHING OF (CO)HOMOLOGY FOR MODULES
ADMITTING CERTAIN FILTRATIONS

OLGUR CELIKBAS AND YONGWEI YAO

ABSTRACT. We study the vanishing of (co)homology along ring homomorphisms for modules that admit
certain filtrations and generalize a theorem of Celikbas-Takahashi. Our work produces new classes of rigid and
test modules, particularly over local rings of prime characteristic. Additionally, it provides applications in the
study of torsion in tensor products of modules, including a conjecture of Huneke-Wiegand.

1. INTRODUCTION

Throughout the paper, all rings are assumed to be commutative and Noetherian. By a local ring, we mean
a ring with a unique maximal ideal. The research in this paper has been initiated by the following result:

Theorem 1.1 (Celikbas-Takahashi [10]). Let R be a local ring and let M be a finitely generated R-module
such that depthR(M) ⩾ 1. If TorR

n (m
tM,N) = 0 for some finitely generated R-module N, where t ⩾ 0 and

n ⩾ 0, then TorR
n (M,N) = 0.

The main purpose of this paper is to extend Theorem 1.1 by considering its conclusion along ring homo-
morphisms. Our main result, which extends Theorem 1.1, is concerned with the vanishing of (co)homology
for modules (not necessarily finitely generated) that admit a certain filtration. More precisely, we have:

Theorem 1.2. Let f : R → S be a ring homomorphism and let M ̸= 0 be a finitely generated S-module.
Assume the following hold:

(i) (R,m) is local.
(ii) S is Noetherian and mS ⊆ Jac(S).

(iii) There is an element of m which is a non zero-divisor on M.
(iv) There is a filtration of M of the form Mt ⩽Mt−1 ⩽ · · ·⩽M1 ⩽M0 =M, where each Mi is an S-module,

and mMi−1 ⩽ Mi ⩽ Jac(S)Mi−1 for all i = 1, . . . , t.
If TorR

n (Mi,N) = 0, where N is a finitely generated R-module, n ⩾ 0, and 1 ⩽ i ⩽ t, then it follows

TorR
n (Mi−1,N) = TorR

n (Mi−2,N) = · · ·= TorR
n (M,N) = 0.

Theorem 1.2 is subsumed by Theorem 2.3, which is proved in section 2; see Theorem 2.4 for an Ext
version of the theorem. Let us note here that it is not difficult to reprove Theorem 1.1 by using Theorem 1.2:
if R = S and f is the identity map, then our assumption on the filtration of M forces Mi =miM for all i ⩾ 0,
and hence Theorem 1.1 follows.

Let R be a ring of prime characteristic p and let F be the Frobenius map. For each R-module M, each
iteration Fe defines a new R-module structure on M, denoted by eM, where r · x = rpe

x for r ∈ R and x ∈ M.
For a given ideal I = (x1, . . . ,xr) of R, we define I[p

e] = (xpe

1 , . . . ,xpe

r ) for each e ⩾ 1.
Assume (R,m) is local ring of prime characteristic p. Then hypothesis (iv) in Theorem 1.2 implies that

m[pe]Mi−1 ⩽ Mi ⩽mMi−1 for all i = 1, . . . , t. One way to obtain such a filtration is to assume there are ideals
I1, . . . , It of R such that m[pe] ⊆ I j ⊆m for all j = 1, . . . , t, and set Mi = (I1 · · · Ii)M for all i = 1, . . . , t, which
would imply Mi = IiMi−1. Hence we can apply Theorem 1.2 for the special case where f = Fe and conclude:
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Corollary 1.3. Let (R,m) be a local ring of prime characteristic p, and let M and N be nonzero finitely
generated R-modules such that depthR(M) ⩾ 1. Let I1, . . . , It be ideals of R such that m[pe] ⊆ I j ⊆ m for all
j = 1, . . . , t, where e ⩾ 0 and t ⩾ 1. If TorR

n (
e
(
(I1 · · · Ii)M

)
,N) = 0 for some n ⩾ 1 and for some i, where

1 ⩽ i ⩽ t, then it follows:

TorR
n (

e((I1 · · · Ii)M
)
,N) = TorR

n (
e((I1 · · · Ii−1)M

)
,N) = · · ·= TorR

n (
e(I1M

)
,N) = TorR

n (
eM,N) = 0.

In Section 3, we show that each filtration module Mi in Theorem 1.2, with 1 ⩽ i ⩽ t, is a big test module
over R; see Definition 3.1 and Corollary 3.3. If M is big Tor-rigid over R, then each filtration module Mi
in Theorem 1.2, with 1 ⩽ i ⩽ t, is a big rigid-test module over R; see Corollary 3.5. We make use of this
fact and obtain new classes of big test modules, for example, over rings of prime characteristic p. One such
result is the following proposition, which is proved in Corollary 3.10(iii) in light of 3.8(ii).

Proposition 1.4. Let (R,m) be a local complete intersection ring of prime characteristic p with positive
depth, e ⩾ 0, and let t ⩾ 1. If TorR

n
(

e(mt),N
)
= 0 or TorR

n

(
e
((

m[pe]
)t
)
,N

)
= 0 for some finitely generated

R-module N and n ⩾ 1, then pdR(N)⩽ n.

2. PROOF OF THEOREM 1.2

The following proposition is key to proving Theorem 1.2. A module M (not necessarily finitely generated)
over a local ring (R,m) is said to have positive grade, denoted by gradeR(M) ⩾ 1, if HomR(R/m,M) = 0;
when M is finitely generated, we also write depth instead of grade; see [5, 1.2.3].

Proposition 2.1. Let f : R → S be a ring homomorphism such that (R,m) is local and S is Noetherian. Let
M ̸= 0 be a finitely generated S-module, t ⩾ 1, and assume the following conditions hold:

(i) mS ⊆ Jac(S).
(ii) There is a filtration of M of the form Mt ⩽ Mt−1 ⩽ · · ·⩽ M1 ⩽ M0 = M, where each Mi is an S-module

and mMi−1 ⩽ Mi ⩽ Jac(S)Mi−1 for all i = 1, . . . , t.
Let F• be a minimal complex of finitely generated free R-modules:

F• : · · · −→ Fn+1
fn+1−→ Fn

fn−→ Fn−1 −→ ·· ·
(1) Assume Hn(Mi ⊗R F•) = 0 for some integer n and some i with 1 ⩽ i ⩽ t. Then 1Mi−1 ⊗ fn+1 = 0.

Moreover, if gradeR(M)⩾ 1, then Hn(Mi−1 ⊗R F•) = 0.
(2) If Hn(Mi ⊗R F•) = 0 for some integer n and Mi−1 is faithful as an R-module for some i with 1 ⩽ i ⩽ t,

then fn+1 is the zero map.
(3) If Mi ̸= 0 and Hn−1(Mi⊗R F•) = Hn(Mi⊗R F•) = 0 for some integers n and i with 1 ⩽ i ⩽ t, then Fn = 0.

Proof. It suffices to prove the case when i = 1 (note that gradeR(M) ⩾ 1 =⇒ gradeR(Mi) ⩾ 1 for all
i = 1, . . . , t). Tensoring F• with M over R, we obtain the complex

M⊗R F• : · · · −→Cn+1
gn+1−→Cn

gn−→Cn−1 −→ ·· ·
where Ci = M⊗R Fi and gi = 1M ⊗ fi. Similarly, tensoring F• with M1 over R, we obtain the complex

M1 ⊗R F• : · · · −→ Dn+1
hn+1−→ Dn

hn−→ Dn−1 −→ ·· · .
where Di = M1 ⊗R Fi and hi = 1M1 ⊗ fi.

As Fi is free over R, we may assume Di ⩽Ci for all i and D• is a subcomplex of C•. Since F• is minimal
over (R,m) and mM ⩽ M1, we see that im(gn+1)⩽mCn ⩽ Dn.

(1) Assume Hn(M1⊗R F•) = 0, that is, ker(hn) = im(hn+1). Notice Dn+1 ⩽ Jac(S)Cn+1 as M1 ⩽ Jac(S)M.
Therefore im(hn+1)⩽ Jac(S) im(gn+1). Putting it all together, we see

(∗) im(gn+1)⩽ ker(gn)∩mCn ⩽ ker(gn)∩Dn = ker(hn) = im(hn+1)⩽ Jac(S) im(gn+1)⩽ im(gn+1),

which shows that Jac(S) im(gn+1) = im(gn+1). As Ci is a finitely generated S-module for each i, we conclude
that im(gn+1) = 0 by Nakayama’s lemma. This proves that the function 1M ⊗ fn+1 is zero. Moreover, we
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see from (∗) that ker(gn)∩mCn = 0, which implies that mker(gn) ⩽ ker(gn)∩mCn = 0. If gradeR(M) ⩾ 1
(so that gradeR(Cn)⩾ 1), we must have ker(gn) = 0, and hence Hn(M⊗R F•) = ker(gn)/ im(gn+1) = 0.

(2) Assume Hn(M1 ⊗R F•) = 0 for some integer n and M is faithful as an R-module. From (1) above,
we see 1M ⊗ fn+1 = 0, which implies that the entries of a matrix representing fn+1 are all contained in the
annihilator of M. Therefore fn+1 is the zero map.

(3) Assume M1 ̸= 0 and Hn−1(M1⊗R F•) = Hn(M1⊗R F•) = 0 for some integer n. It follows from part (1)
that 1M ⊗ fn = 0 and 1M ⊗ fn+1 = 0. Since D• is viewed as a subcomplex of C•, we obtain 1M1 ⊗ fn = 0 and
1M1 ⊗ fn+1 = 0. Now, from the assumption that Hn(M1 ⊗R F•) = 0, we see

M1 ⊗R Fn = ker(1M1 ⊗ fn) = im(1M1 ⊗ fn+1) = 0.

As Fn is free over R and M1 ̸= 0, this implies that Fn = 0. □

Remark 2.2. The general idea used to prove the first two parts of Proposition 2.1 stems from the work of
Levin and Vascencelos [20, Lemma, page 316] (see also [10, the proof of 1.2 and 2.2]). Moreover, our proof
in part (3) of the proposition is similar to some of the arguments in the proof of [13, 2.5].

Theorem 1.2, which is advertised in the introduction, is subsumed by the next result.

Theorem 2.3. Let f : R → S be a ring homomorphism such that (R,m) is local and S is Noetherian. Let
M ̸= 0 be a finitely generated S-module, t ⩾ 1, and assume the following conditions hold:

(i) mS ⊆ Jac(S).
(ii) There is a filtration of M of the form Mt ⩽ Mt−1 ⩽ · · ·⩽ M1 ⩽ M0 = M, where each Mi is an S-module

and mMi−1 ⩽ Mi ⩽ Jac(S)Mi−1 for all i = 1, . . . , t.
Then, for each n ⩾ 0, and 1 ⩽ i ⩽ t, and for each finitely generated R-module N, we have the following:

(a) If gradeR(M)⩾ 1 and TorR
n (Mi,N) = 0, then TorR

n (Mi−1,N) = 0.
(b) If TorR

n (Mi,N) = 0 and Mi−1 is a faithful R-module, then pdR(N)⩽ n.
(c) Assume Mi ̸= 0 and TorR

n−1(Mi,N) = TorR
n (Mi,N) = 0. Then pdR(N)⩽ n−1. In the case where n = 0

(i.e., Mi ⊗R N = 0), we get N = 0.

Proof. The claims follow from Proposition 2.1 by letting F• be a minimal free resolution of N over R. In
part (c), when n = 0, we get F0 = 0, which implies N = 0. □

One can obtain a variant version of Theorem 2.3 in terms of the Ext modules.

Theorem 2.4. Assume the same setup as in Theorem 2.3. Then, for each n ⩾ 0, and 1 ⩽ i ⩽ t, and for each
finitely generated R-module N, we have the following:

(a) If gradeR(M)⩾ 1 and ExtnR(N,Mi) = 0, then ExtnR(N,Mi−1) = 0.
(b) If ExtnR(N,Mi) = 0 and Mi−1 is a faithful R-module, then pdR(N)⩽ n−1.
(c) Assume Mi ̸= 0 and ExtnR(N,Mi) = Extn+1

R (N,Mi) = 0. Then pdR(N)⩽ n−1. In the case where n = 0
(i.e., HomR(N,Mi) = Ext1R(N,Mi) = 0), we get N = 0.

Proof. Let G• be the minimal free resolution of N over R. Then HomR(G•,M) ∼= HomR(G•,R)⊗R M as
complexes. As ExtnR(N,Mi) = H−n(HomR(G•,R)⊗R Mi), we can apply Proposition 2.1 with the complex
HomR(G•,R) and establish the claims. □

In the next section, we establish some corollaries of Theorem 2.3 and extend several results from the
literature concerning rigid and test modules.

3. ON RIGID AND TEST MODULES

Test and rigid modules are defined for finitely generated modules in the literature. However, our argu-
ments work with modules that are not necessarily finitely generated. Therefore, motivated by big Cohen-
Macaulay modules [5, page 323], we define “big” versions of test and rigid modules.

Definition 3.1. Let R be a ring and let M ̸= 0 be an R-module (not necessarily finitely generated).
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(i) M is called a big test module (or a big pd-test module) provided that the following condition holds: if
N is a finitely generated R-module and TorR

i (M,N) = 0 for all i ≫ 0, then pdR(N)< ∞; cf. [6, 1.1].
(ii) M is called a big Tor-rigid module provided that the following condition holds: if N is a finitely

generated R-module and TorR
n (M,N) = 0 for some n ⩾ 0, then TorR

i (M,N) = 0 for all i ⩾ n; cf. [1].
(iii) M is called a big rigid-test module provided that M is both test and Tor-rigid; cf. [21, 2.3].
(iv) M is called a big strongly-rigid module provided that the following condition holds: if N is a finitely

generated R-module and TorR
n (M,N) = 0 for some n ⩾ 1, then pdR(N)< ∞; cf. [12, 2.1].

When M is finitely generated, we drop the word big. For example, we call a finitely generated big test
module a test module.

There are various classes of test and rigid modules in the literature. For example, the residue field is
rigid-test and strongly-rigid over all local rings. Also, finitely generated modules are Tor-rigid over regular
local rings, and finitely generated modules of infinite projective dimension are test over hypersurface rings;
see, [18, 1.9] for the details. Note that, by definition, each strongly-rigid module is a test module. Similarly,
each rigid-test module is strongly-rigid, but we do not know if the converse is true. More precisely, we do
not know if each strongly-rigid module is Tor-rigid, in general. On the other hand, in light of the Auslander-
Buchsbaum formula, if R is a local ring of depth at most one and M is a finitely generated R-module, then
M is strongly-rigid if and only if M is rigid-test.

Our aim is to make use of Theorem 1.2 and obtain new classes of big rigid and big test modules, and
extend some known results in this direction. Let us note that Theorem 1.2 allows one to generalize many
results (for example results from [21]) along ring homomorphisms; here we obtain only a few such results
to demonstrate some useful applications of Theorem 1.2.

We first turn our attention to the following beautiful result of Levin and Vascencelos:

3.2 (Levin-Vascencelos, [20, 1.1 and Lemma, page 316]). Let (R,m) be a local ring and M and N are
finitely generated R-modules such that mM ̸= 0. If TorR

n (mM,N) = TorR
n+1(mM,N) = 0 for some n ⩾ 0, then

pdR(N)⩽ n. Therefore, mM ̸= 0 is a test module; see also [8, 2.9].

As mentioned in the introduction, for the special case where R = S and f is the identity map, our assump-
tion on the filtration of M in Theorem 1.2 forces Mi = miM for each i ⩾ 0. Therefore, the next corollary
yields an extension of the result of Levin and Vascencelos recorded in 3.2. The corollary also shows that
certain characterizations of local rings in terms of test modules carry over along ring homomorphisms:

Corollary 3.3. Let f : R → S be a ring homomorphism such that (R,m) is local, S is Noetherian, and
mS ⊆ Jac(S). Let M be a finitely generated S-module. Assume there is a filtration of M of the form

0 ̸= Mt ⩽ Mt−1 ⩽ · · ·⩽ M1 ⩽ M0 = M,

where each Mi is a nonzero S-module and mMi−1 ⩽ Mi ⩽ Jac(S)Mi−1 for all i = 1, . . . , t. Let H = M j, for
some j, where 1 ⩽ j ⩽ t. Then:

(1) H is a big test module over R. In fact, if TorR
n−1(H,N) = TorR

n (H,N) = 0 for some finitely generated
R-module N and some integer n ⩾ 0, then pdR(N)⩽ n−1.

(2) The following statements are equivalent:
(i) R is regular.

(ii) pdR(H)< ∞.
(iii) TorR

n (T,H) = TorR
n+1(T,H) = 0 for some n ⩾ 0 and (finitely generated) test module T over R.

(iv) idR(H)< ∞.
(v) ExtnR(T,H) = Extn+1

R (T,H) = 0 for some n ⩾ 0 and (finitely generated) test module T over R.

Proof. (1) This follows from Definition 3.1(i) and Theorem 2.3(c).
(2) It is clear that part (i) implies part (ii), and part (ii) implies part (iii). If part (iii) holds, then (1) implies

that pdR(T ) < ∞, so that R is regular since TorR
i (T,R/m) = 0 for all i ≫ 0. This shows the equivalence of

parts (i), (ii), and (iii). As part (i) implies part (iv), and part (iv) implies part (v), it suffices to prove that
part (v) implies part (i), which follows from Theorem 2.4(c). □
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The following observation is used in Corollaries 3.5 and 3.7, and Lemma 4.3.

3.4. Let f : (R,m)→ (S,n) be a local ring homomorphism of local rings and let M be a finitely generated
S-module (thus a not necessarily finitely generated R-module via f ). Assume M admits a filtration of the
form

0 ̸= Mt ⩽ Mt−1 ⩽ · · ·⩽ M1 ⩽ M0 = M,

where each Mi is a nonzero S-module and mMi−1 ⩽ Mi for all i = 1, . . . , t. Then, for each integer i with
1 ⩽ i ⩽ t, Mi−1/Mi is annihilated by m so that there is a short exact sequence of R-modules

(3.4.1) 0 → Mi → Mi−1 → k⊕ri → 0

for some cardinality ri, where 0 ⩽ ri ⩽ ∞ and k = R/m. Note that, if Mi ̸= Mi−1 (e.g., Mi ⩽ nMi−1), then
Mi−1/Mi ̸= 0, and hence 1 ⩽ ri ⩽ ∞.

Next, we extend [10, 2.5] and observe that the filtration modules enjoy further properties if the module
considered in Theorem 1.2 has positive grade:

Corollary 3.5. Let f : (R,m) → (S,n) be a local ring homomorphism and let M be a finitely generated
S-module. Assume the following hold:

(i) M ̸= 0 and gradeR(M)⩾ 1.
(ii) There is a filtration of M of the form

Mt ⩽ Mt−1 ⩽ · · ·⩽ M1 ⩽ M0 = M,

where each Mi is an S-module and mMi−1 ⩽ Mi ⩽ nMi−1 for all i = 1, . . . , t.
Then the following hold:

(a) If Mi−1 is big strongly-rigid over R for some i, where 1 ⩽ i ⩽ t, then Mi is big strongly-rigid over R.
(b) If Mi−1 is big Tor-rigid over R for some i, where 1 ⩽ i ⩽ t, and TorR

n (Mi,N) = 0 for some n ⩾ 0 and for
some finitely generated R-module N, then pdR(N)⩽ n so that TorR

j (Mi,N) = 0 for all j ⩾ n.
(c) If Mi−1 is big Tor-rigid over R for some i, where 1⩽ i⩽ t, then Mi is big strongly-rigid and big Tor-rigid

over R.
(d) It follows that:

M is big Tor-rigid over R =⇒ M1 is big rigid-test over R =⇒ ···=⇒ Mt is big rigid-test over R.

Proof. Since M ̸= 0, gradeR(M) ⩾ 1 and mMi−1 ⩽ Mi ⩽ nMi−1, we observe that 0 ̸= Mi ̸= Mi−1 for all
i = 1, . . . , t. 1 Part (c) is an immediate consequence of part (b), and part (d) is a consequence of parts (a) and
(c). To prove parts (a) and (b), we assume TorR

n (Mi,N) = 0 for some n ⩾ 0 and for some finitely generated
R-module N, so Theorem 2.3(a) implies that TorR

n (Mi−1,N) = 0 since M has positive grade.
(a) If Mi−1 is big strongly-rigid, then the vanishing of TorR

n (Mi−1,N) implies that pdR(N)< ∞.
(b) Assume Mi−1 is big Tor-rigid. As TorR

n (Mi−1,N) = 0, it follows that TorR
j (Mi−1,N) = 0 for all j ⩾ n.

Hence (3.4.1) yields the exact sequence

0 = TorR
n+1(Mi−1,N)→ TorR

n+1(k
⊕ri ,N)→ TorR

n (Mi,N) = 0,

which implies pdR(N)⩽ n and the vanishing of TorR
j (Mi,N) for all j ⩾ n. □

Remark 3.6. Under the setup of Corollary 3.5, if M is Tor-rigid over R (so that finitely generated over R)
and TorR

n (Mi,M j) = 0 for some i ⩾ 1, j ⩾ 1, and n ⩾ 1, Mi and M j have finite projective dimension and this
forces R to be regular. See Corollary 3.3(2).

Corollary 3.7. Let f : (R,m) → (S,n) be a local ring homomorphism and let M be a finitely generated
S-module. Assume the following hold:

(i) M is big Tor-rigid as an R-module (so M ̸= 0) and gradeR(M)⩾ 1.

1 Thus Mi is a big test module over R for each i = 1, . . . , t; see Corollary 3.3(1).
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(ii) There is a filtration of M of the form

Mt ⩽ Mt−1 ⩽ · · ·⩽ M1 ⩽ M0 = M,

where each Mi is an S-module and mMi−1 ⩽ Mi ⩽ nMi−1 for all i = 1, . . . , t.
Consider Mi for some i ⩾ 1. Given a finitely generated R-module N, we have:

(a) If TorR
n (N,Mi) = 0 for some n ⩾ 1, then pdR(N)⩽ n.

(b) If Mi is finitely generated over R and ExtnR(N,Mi) = 0 for some n ⩾ 1, then pdR(N)⩽ n−1.
(c) Assume ExtnR(M j,Mi) = 0 or TorR

n (M j,Mi) = 0 for some j ⩾ 1 and n ⩾ 1 and further assume that
Mi ⊕M j is finitely generated over R. Then pdR(M j)< ∞ and so R is regular.

Proof. As M is big Tor-rigid, Corollary 3.5(d) implies that each Mi is a big rigid-test, and hence a big
Tor-rigid, module over R for every i = 1, . . . , t. Also observe that 0 ̸= Mi ̸= Mi−1 for all i = 1, . . . , t.

(a) If TorR
n (N,Mi) = 0, we conclude from Corollary 3.5(b) that pdR(N)⩽ n.

(b) Note that depthR(Mi) = 1 for all i = 1, . . . , t; see the short exact sequence (3.4.1). Thus, if
ExtnR(N,Mi) = 0, it follows from [21, 6.1(ii)] that pdR(N)⩽ n−1.

(c) From (a) and (b), we see that pdR(M j)<∞. Now the regularity of R follows from Corollary 3.3(2). □

We also need the following results of Avramov-Miller [4], Funk-Marley [14, 15], and Koh-Lee [19] in
the sequel:

3.8. Let (R,m) be a local ring of prime characteristic p.
(i) If dim(R) = 1, then eR is a big rigid-test module for each e ≫ 0; see [19, 2.6] and [14, 15, 3.2].

(ii) If R is a complete intersection, then eR is a big rigid-test module for each e ⩾ 1; [4, Thm].

Corollary 3.9. Let f : (R,m) → (S,n) be the Frobenius map Fe for some e ⩾ 1, where R = S has prime
characteristic p and R is an F-finite local complete intersection ring of positive depth. Let v ⩾ 0 be an
integer. Assume there is a filtration of M = vS of the form

Mt ⩽ Mt−1 ⩽ · · ·⩽ M1 ⩽ M0 = M,

where each Mi is an S-module and mMi−1 ⩽ Mi ⩽ nMi−1 for all i = 1, . . . , t. 2 If ExtnR(
eN,M j) = 0 or

TorR
n (

eN,M j) = 0 for some nonzero finitely generated S-module N, j ⩾ 1, and n ⩾ 1, then R is regular.

Proof. Note that M is a Tor-rigid R-module by 3.8(ii). Given the vanishing of Ext or Tor, it follows from
Corollary 3.7 that pdR(

eN)< ∞. Hence R is regular due to [3, 1.1]. □

In the following corollary, we give some specific examples of filtration modules that are big strongly-rigid
modules or big rigid-test modules.

Corollary 3.10. Let (R,m) be a local ring of prime characteristic p, and let M ̸= 0 and N ̸= 0 be finitely
generated R-modules such that depthR(M)⩾ 1. Let e ⩾ 0 and t ⩾ 1 be integers.

(i) If TorR
n
(

e(mtM),N
)
= 0 or TorR

n

(
e
((

m[pe]
)tM

)
,N

)
= 0 for some n ⩾ 1, then TorR

n (
eM,N) = 0.

(ii) If eM is a big strongly-rigid module, then e(mtM) and e
((

m[pe]
)tM

)
are big strongly-rigid modules.

(iii) Assume that eM is a big Tor-rigid module. Then e(mtM) and e
((

m[pe]
)tM

)
are big rigid-test modules.

In fact, if TorR
n
(

e(mtM),N
)
= 0 or TorR

n

(
e
((

m[pe]
)tM

)
,N

)
= 0 for some n ⩾ 1, then pdR(N)⩽ n.

Proof. The claim in part (i) is a direct consequence of Theorem 2.3 because e(mtM) and e
((

m[pe]
)tM

)
are

specific examples of filtration modules Mi of the module considered in the theorem. Consequently, both
part (ii) and part (iii) follow from Corollary 3.5(a)(b)(d). □

2 This implies that, as an S-module, M1 satisfies v(n[pe+v]S
)
= n[p

e](vS) =m(vS)⩽ M1 ⩽ n(vS) = v(n[pv]S
)
.
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Remark 3.11. Let R be a ring of prime characteristic p, M = T ⊕ΩRT for some finitely generated R-module
T ̸= 0, and let e ⩾ 1. There is an exact sequence of R-modules 0 → e(ΩRT )→ eF → eT → 0, where F ̸= 0 is
a free R-module. Thus, if TorR

n (
eM,N) = 0 for some n ⩾ 1, then TorR

n (
e(ΩRT ),N) = TorR

n (
eT,N) = 0 so that

TorR
n (

eF,N) = 0, which implies that TorR
n (

eR,N) = 0. In particular, if eR is a big strongly-rigid module over
R (respectively, a big test module over R), then so is eM.

Corollary 3.12. Let (R,m) be a Cohen-Macaulay local ring of prime characteristic p, and let T ̸= 0 be a
finitely generated R-module such that depthR(T ) ⩾ 1. Let M = T ⊕ΩRT , e ⩾ 1, and t ⩾ 1. Let X denote
e(mtM) or e

((
m[pe]

)tM
)

. Assume at least one of the following conditions:

(i) dim(R) = 1 and e ≫ 0.
(ii) R is a complete intersection.

Then both eM and X are big strongly-rigid modules.

Proof. Since depthR(T ) ⩾ 1 and R is Cohen-Macaulay, we see depthR(M) ⩾ 1 and hence gradeR(
eM) ⩾ 1.

Thus both Corollary 3.5 and Corollary 3.10 apply. The claim that eM is a big strongly-rigid module follows
from Remark 3.11 and 3.8. Now, applying either Corollary 3.5(a) or Corollary 3.10(ii), we conclude that X
is a big strongly-rigid module. □

Remark 3.13. Let (R,m) be a local ring of prime characteristic p, M ̸= 0 be a finitely generated R-module
such that depthR(M) = 0, t ⩾ 1 and e ≫ 0. In this case, eM is a big rigid-test module by [19, 2.6].

Let X denote e(mtM) or e
((

m[pe]
)tM

)
. Since depthR(M) = 0, we cannot apply our results such as Corol-

lary 3.5 and Corollary 3.10 to deduce that X is a big rigid-test module. However, if X ̸= 0 and gradeR(X) = 0,
then X is a big rigid-test module due to [19, 2.6].

4. ON TORSION IN TENSOR PRODUCTS OF MODULES

In this section, we consider the following conjecture of Huneke-Wiegand. Set (−)∗ = HomR(−,R).

Conjecture 4.1 ([17, page 473-474]). Let R be a one-dimensional local ring and let M be a finitely generated
R-module which has rank. If M⊗R M∗ is nonzero and torsion-free, then M is free.

Recall that a finitely generated module M over a ring R is said to have rank if there is a nonnegative
integer r such that Mp

∼= R⊕r
p for each associated prime ideal p of R. For example, if M has finite projective

dimension over a local ring, or R is a domain, then M has rank. Conjecture 4.1 fails if the module considered
does not have rank, or the ring in question has dimension at least two; see [11, 8.5 and page 447] for example.
Note that, in Conjecture 4.1, it suffices to additionally assume that M is a torsion-free module which has
positive constant rank.

Conjecture 4.1 is wide open in general. It turns out that, over Gorenstein rings, the conjecture is a special
case of a celebrated conjecture of Auslander and Reiten [2] on the vanishing of cohomology that stems
from the representation theory of finite dimensional algebras; this is one of the main motivations to study
Conjecture 4.1; see also [11, 8.6].

Huneke and Wiegand [17, 3.1] proved that Conjecture 4.1 holds over hypersurface rings. There are also
several other cases where the conjecture holds, for example, if R is a Cohen-Macaulay local ring of minimal
multiplicity [16, 3.6], or M is an integrally closed m-primary ideal [7, 2.17]. Note that Conjecture 4.1 holds
if the module M in question is strongly-rigid [7, 2.15]. Therefore, Corollary 3.12 yields new classes of
modules establishing the conjecture over local rings of prime characteristic.

If M is a finitely generated module over a local ring (R,m) such that M has rank and 0 ̸= M ⊗R M∗ is
torsion-free, then SuppR(M) = Spec(R); see, for example, [9, 1.3]. Therefore, the following result of Dey
and Kobayashi [13] establishes Conjecture 4.1 for nonzero modules that are of the form mN.

Theorem 4.2 ([13, 1.5(1)]). Let (R,m) be a local ring of depth one and let M = mN for some finitely
generated R-module N. Assume SuppR(M) = Spec(R) and Mp is free over Rp for each associated prime p
of R. If M⊗R M∗ is nonzero and torsion-free, then M is free and R is regular.
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Lemma 4.3. Let (R,m) be a local ring of positive depth and let M be a nonzero finitely generated R-module.
Assume there is a filtration of M of the form

0 ̸= Mt ⩽ Mt−1 ⩽ · · ·⩽ M1 ⩽ M0 = M,

where each Mi is a nonzero R-module and mMi−1 ⩽ Mi for all i = 1, . . . , t. Then it follows

M satisfies (P) =⇒ M1 satisfies (P) =⇒ ···=⇒ Mt satisfies (P),

where the property (P) denotes one of the following: (a) being not torsion, (b) being faithful, (c) being
locally free on the set of associated primes of R, or (d) having rank.

Proof. Assume M satisfies (P). Note that it is enough to show M1 satisfies (P).
For property (a), if M1 is torsion, then xM1 = 0 for some non zero-divisor x ∈m. Since xM ⊆mM ⊆ M1,

we see that x2M = 0 and hence M is torsion. This shows that M1 is not torsion.
For property (b), since mM ⊆ M1, it is enough to show that mM is faithful. Let y ∈ AnnR(mM). Then

ymM = 0 and hence ym= 0 since M is faithful. This implies y = 0 as m contains a non zero-divisor.
For properties (c) and (d), we see from the exact sequence (3.4.1) that Mp

∼= (M1)p for each associated
prime p of R. This gives the required conclusions. □

We recall the following basic facts for the proof of Theorem 4.5; note that (−)∗ = HomR(−,R).

4.4. Let R be a ring and let M and N be finitely generated R-modules.
(i) Let ⊤R(M) denote the torsion submodule of M and set M = M/⊤R(M). Assume 0 ̸= N and M⊗R N is

torsion-free. Then M⊗R N ∼= M⊗R N, and M is free if and only if M is free; see [17, 1.1].
(ii) If N is torsionless, that is, if the natural map N → N∗∗ is injective, then N embeds into a free R-module

so that it is torsion-free; see, for example, [5, 1.4.19]. Also if N is torsion-free and locally free on each
associated prime of R, then the kernel of N → N∗∗ is zero when localized at each associated prime of
R, hence the kernel is torsion so that it vanishes and N is torsionless.

Theorem 4.5. Let f : R → S be a ring homomorphism, where (R,m) is a local ring of positive depth, S is
Noetherian, and mS ⊆ Jac(S). Let M be a finitely generated S-module. Assume:

(i) There is a filtration of M of the form

0 ̸= Mt ⩽ Mt−1 ⩽ · · ·⩽ M1 ⩽ M0 = M,

where each Mi is a nonzero S-module and mMi−1 ⩽ Mi ⩽ Jac(S)Mi−1 for all i = 1, . . . , t.
(ii) M is finitely generated as an R-module via f and SuppR(M) = Spec(R).

(iii) Mp is free over Rp for each associated prime p of R.
Then the following hold:

(a) If 0 ̸= N is a finitely generated torsionless R-module and Mi ⊗R N is a torsion-free R-module for some
i ∈ {1, . . . , t}, then N is free and Mi is torsion-free over R.

(b) If Mi ⊗R M j is a torsion-free R-module for some i, j ∈ {1, . . . , t}, then both Mi and M j are free over R
and R is regular.

(c) Assume depth(R) = 1. If 0 ̸= Mi ⊗R M∗
i is a torsion-free R-module for some i ∈ {1, . . . , t}, then Mi is

free over R and R is regular.

Proof. (a) There is an exact sequence of finitely generated R-modules 0 → N → F → C → 0 where F is
free; see 4.4(ii). Tensoring this sequence with Mi over R, we obtain an injection TorR

1 (Mi,C) ↪→ Mi⊗R N. By
Lemma 4.3(c), for each associated prime p of R, we have that (Mi)p is free over Rp and so TorR

1 (Mi,C)p = 0.
This implies that TorR

1 (Mi,C) is a torsion R-module and hence it vanishes as Mi ⊗R N is torsion-free over R.
Also M is a faithful R-module; see, for example, [13, 2.12]. So Lemma 4.3(b) shows that Mi−1 is faithful.
As TorR

1 (Mi,C) = 0, Theorem 2.3(b) implies that pdR(C) ⩽ 1. Now the sequence 0 → N → F → C → 0
shows that N ̸= 0 is free. Consequently, Mi is torsion-free over R because Mi ⊗R N is torsion-free over R.

(b) Note that (M j)p ∼= (M j)p for each associated prime p of R. Hence Lemma 4.3(c) implies that (M j)p is
free over Rp for each associated prime p of R. Therefore, M j is a torsionless R-module; see 4.4(ii). It follows
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that 0 ̸= Mi ⊗R M j ∼= Mi ⊗R M j; see 4.4(i). Thus M j ̸= 0, so part (a) implies that M j is free over R. As
Mi ̸= 0, we conclude from 4.4(i) that M j is free over R, which implies that R is regular due to Corollary 3.3.
By interchanging the roles of Mi and M j, we see that Mi is free over R as well.

(c) As 0 ̸= M∗
i is a torsionless R-module, part (a) implies that M∗

i is free over R and Mi is torsion-free over
R. Then Mi is free over R, given that depth(R) = 1; see [7, 2.13]. So R is regular by Corollary 3.3. □

We finish this section with the following corollary of Theorem 4.5, which establishes Conjecture 4.1 for
certain filtration modules.

Corollary 4.6. Let f : (R,m)→ (S,n) be a finite local ring homomorphism, where R is a one-dimensional
domain, and let 0 ̸= M be a finitely generated S-module that is torsion-free as an R-module. Assume that
there is a filtration of M of the form

Mt ⩽ Mt−1 ⩽ · · ·⩽ M1 ⩽ M0 = M,

where each Mi is an S-module and mMi−1 ⩽ Mi ⩽ nMi−1 for all i = 1, . . . , t. If M j ⊗R M∗
j is a torsion-free

R-module for some j, where 1 ⩽ j ⩽ t, then M j is free over R.

Proof. Since M is torsion-free over R and miM ⊆Mi, we see that 0 ̸=Mi is torsion-free over R. Thus M∗
i ̸= 0,

which implies Mi ⊗R M∗
i ̸= 0. On the other hand, as M ̸= 0 is a torsion-free R-module and R is a domain, we

have SuppR(M) = Spec(R). Consequently, if M j ⊗R M∗
j is a torsion-free R-module for some j ∈ {1, . . . , t},

then Theorem 4.5(c) implies that M j is free over R and R is regular (hence M is free over R as well). □
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