TEST EXPONENTS FOR MODULES WITH FINITE PHANTOM PROJECTIVE DIMENSION

MELVIN HOCHSTER AND YONGWEI YAO

ABSTRACT. Let (R, \mathfrak{m}) be an equidimensional excellent local ring of prime characteristic p > 0. We give an alternate proof of the existence of a uniform test exponent for any given $c \in R^{\circ}$ and all ideals generated by (full or partial) systems of parameters. This follows from a more general result about the existence of a test exponent for any given Artinian *R*-module. If we further assume *R* is Cohen-Macaulay, then there exists a test exponent for any given $c \in R^{\circ}$ and all finite length modules with finite (phantom) projective dimension.

0. INTRODUCTION

Throughout this paper R is a Noetherian ring of prime characteristic p > 0. By (R, \mathfrak{m}, k) , we indicate that R is a local ring with maximal ideal \mathfrak{m} and residue field $R/\mathfrak{m} = k$.

Also, we always use $q = p^e$, $Q = p^E$, $q_0 = p^{e_0}$, $q' = p^{e'}$, $q'' = p^{e''}$, etcetera, to denote varying powers of p with $e, E, e_0, e', e'' \in \mathbb{N}$.

Let M be an R-module. Then for any $e \ge 0$, we can derive a left R-module structure on the set M by $r \cdot m := r^{p^e}m$ for any $r \in R$ and $m \in M$. For technical reasons, we keep the original right R-module structure on M by default. We denote the derived R-R-bimodule by ${}^{e}M$. Thus, in ${}^{e}M$, we have $r \cdot m = m \cdot r^{p^e}$, which is equal to $r^q m$ in the original M. If R is reduced, then ${}^{e}R$, as a left R-module, is isomorphic to $R^{1/q} := \{r^{1/p} \mid r \in R\}$. We use $\lambda^{l}(-), \lambda^{r}(-)$ to denote the left and right lengths of a bimodule. It is easy to see that $\lambda^{l}({}^{e}M) = q^{\alpha(R)}\lambda^{r}({}^{e}M) = q^{\alpha(R)}\lambda(M)$ for any finite length module M over (R, \mathfrak{m}, k) , in which $\alpha(R) = \log_{p}[k : k^{p}]$.

We say that R is *F*-finite if ${}^{1}R$ (or, equivalently, ${}^{e}R$ for all e) is finitely generated as an left R-module.

For any *R*-module *M* and *e*, we can always form a new *R*-module $F^e(M)$ by scalar extension via $F^e: R \to R$ by $r \mapsto r^q$. In other words, $F^e(M)$ has

Date: October 4, 2011.

²⁰⁰⁰ Mathematics Subject Classification. Primary 13A35; Secondary 13C13, 13H10.

Both authors were partially supported by the National Science Foundation (DMS-9970702, DMS-0400633, DMS-0901145, and DMS-0700554) and the second author was also partially supported by the Research Initiation Grant of Georgia State University.

the *R*-module structure that is determined by the right *R*-module structure of $M \otimes_R {}^eR$; and it is this *R*-module structure of $F^e(M)$ that we mean unless otherwise specified. If $h \in \operatorname{Hom}_R(M, N)$, then we correspondingly have $F^e(h) : \operatorname{Hom}_R(F^e(M), F^e(N))$. Sometimes, especially when both *M* and *N* are free, we may write $F^e(h)$ as $h^{[q]}$.

A very important concept in studying rings of characteristic p is tight closure. Tight closure was first studied and developed by Hochster and Huneke in the 1980s.

Definition 0.1 (Hochster-Huneke, [HH1]). Let R be a Noetherian ring of prime characteristic p and $N \subseteq M$ be R-modules. The *tight closure* of N in M, denoted by N_M^* , is defined as follows: An element $x \in M$ is said to be in N_M^* if there exists an element $c \in R^\circ$ such that $x \otimes c \in N_M^{[q]} \subseteq M \otimes_R {}^eR$ for all $e \gg 0$, where R° is the complement of the union of all minimal primes of the ring R and $N_M^{[q]}$ denotes the (right) R-submodule of $F_R^e(M) = M \otimes_R {}^eR$ generated by $\{x \otimes 1 \in M \otimes_R {}^eR | x \in N\}$. The element $x \otimes 1 \in M \otimes_R {}^eR$ is denoted by $x_M^{p^e} = x_M^q$. (By our convention on $F_R^e(M)$, we have $cx_M^q = x \otimes c \in N_M^{[q]}$.)

Definition 0.2 ([HH2]). Let R be a Noetherian ring of prime characteristic $p, q_0 = p^{e_0}$ and let $N \subseteq M$ be R-modules. We say $c \in R^\circ$ is a q_0 -weak test element for $N \subseteq M$ if $c(N_M^*)_M^{[q]} \subseteq N_M^{[q]}$ for all $q \ge q_0$. In case N = 0, we may simply call it a *test element* for M. By a q_0 -weak test element, we simply mean a q_0 -weak test element for all R-modules. If a q_0 -weak test element c remains a q_0 -weak test. Finally, in case $q_0 = 1$, we simply call c a *test element* or *locally stable* test element.

Definition 0.3 ([HH4]). Let R be a Noetherian ring of prime characteristic $p, c \in R$, and $N \subseteq M$ (finitely generated) R-modules. We say that $Q = p^E$ is a test exponent for c and $N \subseteq M$ (over R) if, for any $x \in M$, the occurrence of $cx^q \in N_M^{[q]}$ for one single $q \ge Q$ implies $x \in N_M^*$. In case N = 0, we may simply call it a test exponent for c and M.

- Remark 0.4. (1) It is easy to check the following statements: To say $c \in R^{\circ}$ is a test element for $N \subseteq M$ is the same as to say c is a test element for $(0 \subseteq) M/N$. Similarly, to say $Q = p^E$ is a test exponent for c and $N \subseteq M$ is the same as to say Q is a test exponent for c and $(0 \subseteq) M/N$
 - (2) However, by 'a $(q_0$ -weak) test element for an ideal I', we usually mean 'a $(q_0$ -weak) test element for $I \subseteq R$ ' rather than 'a $(q_0$ -weak) test element for $0 \subseteq I$ '. Similarly, when we say 'a test exponent for c and an ideal I', we usually mean 'a test exponent for c and $I \subseteq R$ ' rather than 'a test exponent for c and $0 \subseteq I$ '.

Under mild conditions, test elements exist.

Theorem 0.5. Let R be F-finite or essentially of finite type over an excellent local ring (A, \mathfrak{n}) of characteristic p. Say $\sqrt{0}^{[q_0]} = 0$, where $\sqrt{0}$ is the nilradical of R.

- (1) One may choose $c \in R^{\circ}$ such that $(R_{red})_c$ is regular.) Then c has a power c^k that is a completely stable q_0 -weak test element for all finitely generated R-modules.
- (2) In fact, there is a power c^k that is a completely stable q_0 -weak test element for all (not necessarily finitely generated) R-modules.

Proof. (1) See Theorem (6.1) of [HH2].

(2) It suffices to prove the case where R (and hence A) is reduced. Under the assumption that R is F-finite, this was proved under the hypothesis that R_c is weakly F-regular and Gorenstein in the thesis of Haggai Elitzur, [El]. From this we can see the remaining case as follows. First, replace A by its completion and R by $R \otimes_A \widehat{A}$. Henceforth, assume that A is complete. Since A is excellent, this ring is reduced, and it is faithfully flat over R. It remains true that R_c is regular. In particular, this means that R_c is weakly F-regular and Gorenstein. We next make use of the Γ construction from §6 of [HH2]. Choose a coefficient field for K and a p-base Λ for K. For each cofinite subset Γ of Λ the ring A has a faithfully flat purely inseparable extension A^{Γ} , and for all sufficiently small cofinite sets $\Gamma \subseteq \Lambda$, $R^{\Gamma} = A^{\Gamma} \otimes_A R$ is reduced by Lemma (6.13) of [HH2], and R_c^{Γ} is weakly F-regular and Gorenstein by Lemma (6.19) of [HH2]. The ring R^{Γ} is F-finite and $(R^{\Gamma})_c$ is weakly F-regular and Gorenstein. Therefore, c has the required property for R^{Γ} , and since this ring is faithfully flat over R, for R as well.

If there exists a test exponent for a locally stable test element $c \in \mathbb{R}^{\circ}$ and (finitely generated) \mathbb{R} -modules $N \subseteq M$, then the tight closure of N in Mcommutes with localization. This result is implicit in [McD] and is explicitly stated in [HH4, Proposition 2.3]. Moreover, Hochster and Huneke showed in [HH4] that the converse is true as below.

Theorem 0.6 ([HH4]). Let R be a Noetherian ring of prime characteristic p with a given locally stable test element c, and $N \subseteq M$ finitely generated R-modules. Assume that the tight closure of N in M commutes with localization. Then there exists a test exponent for c and $N \subseteq M$.

Given $\underline{x} = x_1, \ldots, x_h$ in a local ring (R, \mathfrak{m}) , we say that \underline{x} is a (full) system of parameters of R if $h = \dim(R)$ and $\sqrt{(\underline{x})} = \mathfrak{m}$; we say \underline{x} is a partial system of parameters of R if \underline{x} can be expanded to a system of parameters of R.

In [HH4], Hochster and Huneke asked, among other questions, whether there exists a uniform test exponent for a given test element and all ideals generated by systems of parameters. This question has been recently answered positively by R. Y. Sharp. **Theorem 0.7** (Sharp, [Sh, Theorem 3.2]). Let (R, \mathfrak{m}) be an equidimensional excellent local ring of prime characteristic p and $c \in R^{\circ}$. Then there exists a test exponent for c and all ideals generated by (partial or full) systems of parameters of R.

In Theorem 2.4, we use the Artinian property of $\mathrm{H}^{\dim(R)}_{\mathfrak{m}}(R)$ and coloncapturing to give an alternative proof of the above Theorem 0.7.

Next, we review the definition of phantom projective dimension.

Definition 0.8 ([Ab1], [HH1] and [HH3]). Let R be a Noetherian ring of prime characteristic p. Let M be an R-module and

$$G_{\bullet}: \quad \cdots \xrightarrow{\phi_{n+1}} G_n \xrightarrow{\phi_n} G_{n-1} \xrightarrow{\phi_{n-1}} \cdots \xrightarrow{\phi_2} G_1 \xrightarrow{\phi_1} G_0 \longrightarrow 0$$

a complex of R-modules.

(1) We say that G_{\bullet} is stably phantom acyclic if

 $\operatorname{Ker}(F^{e}(\phi_{n})) \subseteq (\operatorname{Image}(F^{e}(\phi_{n+1})))^{*}_{F^{e}(G_{n})} \text{ for all } n \geq 1 \text{ and all } e \geq 0.$

- (2) If G_{\bullet} is a stably phantom acyclic complex of finitely generated projective modules with $H_0(G_{\bullet}) \cong M$ and $G_n = 0$ for all $n \ge r+1$ (for some given r), we say that G_{\bullet} is a *phantom projective resolution* of M of length r.
- (3) We say that the *phantom projective dimension* of M is r if there is a phantom projective resolution of M of length r and r is the minimum such number. In this case, we write $ppd_R(M) = r$.

Here we remark that, by the 'rank and height' phantom acyclicity theorem (cf. [HH1], Theorems (9.8) and (9.8)° and [AHH] Theorem 5.3(c)), $ppd_R(R/(\underline{x})) < \infty$ for all (partial or full) systems of parameters (under certain assumptions on R, e.g., if (R, \mathfrak{m}) is excellent and equidimensional).

If (R, \mathfrak{m}) is Cohen-Macaulay, then $\mathrm{pd}_R(M) = \mathrm{ppd}_R(M)$ for every finitely generated *R*-module *M*. (We need to make sure that the 'rank and height' phantom acyclicity criterion holds, which is the case if (R, \mathfrak{m}) is excellent and equidimensional.)

Inspired by Sharp's result (Theorem 0.7), we then naturally ask whether there is a uniform test exponent for a given $c \in R^{\circ}$ and all finitely generated Rmodules with (finite length and) finite phantom projective dimension. While this question remains unsettled, we can give an affirmative answer in case Ris Cohen-Macaulay or in case dim $(R) \leq 2$. Throughout this paper, we use $\lambda(M)$ to denote the length of an R-module M.

Theorem (Corollary 3.3, Corollary 3.4). Let (R, \mathfrak{m}) be an equidimensional Noetherian excellent local ring of prime characteristic p. Assume either that R is Cohen-Macaulay or dim $(R) \leq 2$. Then, for any $c \in R^{\circ}$, there is a test exponent for c and all R-modules M with $\lambda(M) < \infty$ and $ppd(M) < \infty$.

We first observe the following easy lemma about test exponents, although it is not directly used in the sequel.

Lemma 1.1. Let R be a Noetherian ring of characteristic p. For any $b, c \in R^{\circ}$ and R-modules $N \subseteq M$, the following are true.

- (1) If Q is a test exponent for bc and $N \subseteq M$, then Q is a test exponent for c and $N \subseteq M$.
- (2) If, for some $q_0 = p^{e_0}$, Q is a test exponent for c^{q_0} and $N_M^{[q_0]} \subseteq F_R^{e_0}(M)$, then Q is a test exponent for c and $N \subseteq M$.

Proof. (1) If $cx^q \in N_M^{[q]} \subseteq F_R^e(M)$ for some $x \in M$ and $p^e = q \ge Q$, then $bcx^q \in N_M^{[q]} \in F_R^e(M)$ and hence $x \in N_M^*$.

(2) Suppose $cx^{q} \in N_{M}^{[q]} \subseteq F_{R}^{e}(M)$ for some $x \in M$ and $p^{e} = q \geq Q$. Then $c^{q_{0}}x^{q_{0}q} \in N_{M}^{[q_{0}q]} \subseteq F_{R}^{e_{0}+e}(M)$, or, in other words, $c^{q_{0}}(x^{q_{0}})^{q} \in (N_{M}^{[q_{0}]})_{F_{R}^{e_{0}}(M)}^{[q]} \subseteq F_{R}^{e}(F_{R}^{e}(M))$. This implies $x^{q_{0}} \in (N_{M}^{[q_{0}]})_{F_{R}^{e}(M)}^{*}$, which forces $x \in N_{M}^{*}$. \Box

For simplicity, we state the next two results (i.e., Lemma 1.2 and Lemma 1.3) in terms of test exponent for c and $(0 \subseteq M)$ only. It is an easy task to give the corresponding statements in terms of test exponents for c and $N \subseteq M$.

Lemma 1.2. Let R be a Noetherian ring of characteristic p with the set of minimal primes $\min(R) = \{P_1, P_2, \ldots, P_r\}$ so that $\sqrt{0} = \bigcap_{i=1}^r P_i$. For any $c \in R^\circ$ (or simply $c \in R$) and any (finitely generated) R-module M, the following statements are true.

- (1) If Q is a test exponent for $c + P_i$ and M/P_iM over R/P_i for all i = 1, 2, ..., r, then Q is a test exponent for c and M.
- (2) If Q is a test exponent for $c + \sqrt{0}$ and $M/\sqrt{0}M$ over $R/\sqrt{0}$, then Q is a test exponent for c and M.

Proof. (1) Suppose $cx^q = 0 \in F_R^e(M)$ for some $x \in M$ and $p^e = q \ge Q$. Then, $(c+P_i)(x+P_iM)_{M/P_iM}^q = 0 \in F_{R/P_i}^e(M/P_iM)$, which implies $x+P_iM \in 0^*_{M/P_iM}$ for every $i = 1, 2, \ldots, r$. This forces $x \in 0^*_M$ (see [HH1]).

(2) This follows similarly.

The next lemma deals with module-finite and pure ring extensions. In particular, the lemma applies to any reduced Nagata (e.g., excellent) ring and its integral closure in its total quotient ring.

Lemma 1.3. Let $R \subseteq S$ be an extension of Noetherian rings of characteristic $p, c \in R$, and let M be a finitely generated R-module. Assume either (1) $R \subseteq S$ is module-finite, or (2) $R \subseteq S$ is a pure extension with a common weak test element in R. If Q is a test exponent for c and $0 \subseteq M \otimes_R S$ over S, then Q is a test exponent for c and $0 \subseteq M$.

Proof. Suppose $cx^q = 0 \in F_R^e(M)$ for some $x \in M$ and $p^e = q \ge Q$. Then $c(x \otimes 1)^q = 0 \in F_S^e(M \otimes_R S)$ and hence $x \otimes 1 \in 0^*_{M \otimes_R S}$, which implies $x \in 0^*_M$.

The next lemma relies on the 'colon-capturing' property of tight closure, which is systematically studied in [HH1, Section 7].

Lemma 1.4. Let (R, \mathfrak{m}) be a Noetherian local ring of characteristic p, dim(R) = d, and $\underline{x} = x_1, x_2, \ldots, x_d$ and $\underline{y} = y_1, y_2, \ldots, y_d$ be two systems of parameters such that $(\underline{y}) \subseteq (\underline{x})$. For each $j = 1, 2, \ldots, d$, say $y_j = \sum_{i=1}^d x_i a_{ij}$ with $a_{ij} \in R$. Denote the resulting $d \times d$ matrix $(a_{ij})_{d \times d}$ by A. Then

(1) $(y)^* :_R (\underline{x}) \supseteq ((y) + \det(A)))^*$ and $(y)^* :_R \det(A) \supseteq (\underline{x})^*$.

Further assume that (R, \mathfrak{m}) is equidimensional and, moreover, that R is either excellent or a homomorphic image of a Cohen-Macaulay ring. Then

- (2) If R is Cohen-Macaulay, $(\underline{y}) :_R (\underline{x}) = (\underline{y}) + (\det(A) \text{ and } (\underline{y}) :_R \det(A) = (\underline{x})$
- $(2^{\circ}) (y)^* :_R (\underline{x}) = ((y) + (\det(A)))^* and (y)^* :_R \det(A) = (\underline{x})^*.$
- (3) For any $c \in R$, if Q is a test exponent for c and $(\underline{y}) \subseteq R$, then Q is a test exponent for c and $(\underline{x}) \subseteq R$.

Proof. (1) This is straightforward (cf. [HH1, Proposition 4.1(b)(k)]).

(2) Follows from the fact that $\operatorname{H}_{\mathfrak{m}}^{d}(R)$ may be viewed as the direct limit of the modules $R/(\underline{x})R$ as the system of parameters \underline{x} varies, that when R is Cohen-Macaulay the maps $R/(\underline{x})R \to \operatorname{H}_{\mathfrak{m}}^{d}(R)$ are injective, and that under our hypotheses there is a factorization $R/(\underline{x})R \to R/(\underline{y})R \to \operatorname{H}_{\mathfrak{m}}^{d}(R)$ in which the first map is given on the numerators by multiplication by det(A), so that multiplication by det(A) yields an injective map $R/(\underline{x})R \to R/(\underline{y})R$. This is equivalent to the second statement in (2). The annihilator W of (\underline{x}) in $\operatorname{H}_{\mathfrak{m}}^{d}(R)$, thought of as the directed union of the modules $H_t = R/(x_1^t, \ldots, x_d^t)$, is the union of the annihilators W_t in the various H_t . In a given H_t, W_t is generated by w_t , the image of $(x_1 \cdots x_d)^{t-1}$, each $w_t R \cong R/(\underline{x})$, and each w_t maps to w_{t+1} in the direct limit system. It follows that $W \cong R/(\underline{x})$. Since the image W' of $R/(\underline{x}) \to R/(\underline{y}) \subseteq \operatorname{H}_{\mathfrak{m}}^{d}(R)$ is already $\cong R/(\underline{x})$, it follows W' = W. Since the annihilator of (\underline{x})R in $R/(\underline{y})R$ is between W' and W, it is equal to W'.

To prove (2°) and (3), we may assume (R, \mathfrak{m}) is an equidimensional homomorphic image of a Cohen-Macaulay ring without loss of generality. (Indeed, in case R is equidimensional and excellent, it suffices to prove (2°) and (3) for \widehat{R} .)

 (2°) By killing a maximal regular sequence in the kernel of the surjection $S \to R$, where S is Cohen-Macaulay local, we may assume that R and S have the same dimension: we will have that R = S/I with I of pure height 0. We can choose \tilde{c} precisely in those minimal primes of S that do not contain I, so that its image c in R is in R° . Then $\tilde{c}I$ is nilpotent, and after replacing \tilde{c} by

a suitable power we can choose an integer $q_0 = p^{e_0}$ such that if $\widetilde{c}I^{[q_0]} = 0$. By Lemma 1.5 below we can choose a system of parameters $\underline{\widetilde{x}}$ for S that lifts \underline{x} and a matrix $\widetilde{A} = (\widetilde{a}_{ij})$ over S that lifts $A = (a_{ij})$ such that if we define $\widetilde{y}_j = \sum_{i=1}^d \widetilde{x}_i \widetilde{a}_{ij}, 1 \leq j \leq d$, then \widetilde{y} is also a system of parameters for S.

For both statements, " \supseteq " has already been proved in (1). Now suppose that $u \in R$ is such that $u(\underline{x}) \subseteq (\underline{y})^*$ (respectively, $u \det(A) \in (\underline{y})^*$). Then there exists q_1 and $b \in R^\circ$ such that $bu^q(\underline{x})^{[q]}$ (respectively, $b(u \det(A))^q$)) is contained in $(\underline{y})^{[q]}$ for all $q \ge q_1$. We can lift \underline{x} , A and \underline{y} as above to $\underline{\tilde{x}}$, A and $\underline{\tilde{y}}$. By a standard prime avoidance argument we can also lift b to an element $\overline{\tilde{b}} \in S^\circ$, and u to an element \tilde{u} of S. Then for all $q \ge q_1$, $\widetilde{b}\widetilde{u}^q(\underline{\tilde{x}})^{[q]}$ (respectively, $\widetilde{b}(\widetilde{u}\det(A))^q)$ is contained in $(\underline{\tilde{y}})^{[q]} + I$. Raise both sides to the q_0 power and multiply by \tilde{c} . The contribution from I becomes 0, and, with $q' = qq_0$, we obtain that $\widetilde{c}\widetilde{b}^{q_0}\widetilde{u}^{q'}(\underline{\tilde{x}})^{[q']}$ (respectively, $\widetilde{c}\widetilde{b}^{q_0}\widetilde{u}^{q'} \det(A))^{q'}$) is contained in $(\underline{\tilde{y}})^{[q']}$. Since S is Cohen-Macaulay, we may apply part (2) to the systems of parameters and matrix arising from $\underline{\tilde{x}}, \underline{\tilde{y}}$ and (\widetilde{a}_{ij}) by taking q th powers of all elements to conclude that $\widetilde{c}\widetilde{b}^{q_0}\widetilde{u}^{q'} \subseteq ((\underline{\tilde{y}}) + (\det(A))^{[q']})$ (respectively, $\subseteq (\underline{\tilde{x}})^{[q']}$) for all $q' \gg 0$. The required result now follows by taking images in R and applying the definition of tight closure.

(3) Suppose $cx^q \in (\underline{x})^{[q]}$ for some $x \in R$ and $q \geq Q$. Then $c(\det(A)x)^q = \det(A)^q cx^q \in (\underline{y})^{[q]}$ and hence $\det(A)x \in (\underline{y})^*$, which implies $x \in (\underline{y})^* :_R \det(A) = (\underline{x})^*$ by part (2°) above. \Box

Lemma 1.5. Let S be a Cohen-Macaulay ring of dimension d, let I be an ideal of height 0, let R = S/I, let \underline{x} and \underline{y} be systems of parameters for R, and let $A = (a_{ij})$ be a matrix over R such that for all $j, 1 \leq j \leq d, y_j = \sum_{i=1}^{d} a_{ij}x_i$. Then we can choose liftings $\underline{\tilde{x}}$ and $\overline{A} = (\tilde{a}_{ij})$ of the matrix A to S such that if we define $\overline{y}_j = \sum_{i=1}^{d} \tilde{a}_{ij} \tilde{x}_i$ for all $j, 1 \leq j \leq d$, then $\underline{\tilde{y}}$ is also a system of parameters for S.

Proof. We may lift \underline{x} to a system of parameters $\underline{\tilde{x}}$ by [HH1, Lemma 7.10], and we assume this has been done. We prove by induction on $k, 1 \leq k \leq d$, that we can choose the lifts \tilde{a}_{ij} for all i and for $1 \leq j \leq k$, the elements $\tilde{y}_1, \ldots, \tilde{y}_k$ are part of a system of parameters for S. We assume that this has been done for $1 \leq j \leq k - 1$ (we allow k - 1 = 0), and we construct the elements \tilde{a}_{ik} . First choose elements $b_{ik} \in S$ arbitrarily that lift the a_{ik} . We will show that we can choose $\delta_1, \ldots, \delta_d \in I$ such that the choice $\tilde{a}_{ik} = b_{ik} + \delta_i$ for all i produces an element \tilde{y}_k not in any minimal prime of $(\tilde{y}_1, \ldots, \tilde{y}_{k-1})$. Let $z = \sum_{i=1}^d b_{ik} \tilde{x}_i$. Let Q_1, \ldots, Q_s be the minimal primes of $(\tilde{y}_1, \ldots, \tilde{y}_{k-1})$, which will all have height k - 1. We may assume these are numbered so that Q_1, \ldots, Q_h contain z and Q_{h+1}, \ldots, Q_s do not. Note that all of the Q_v that contain I occur for $v \geq h + 1$, or else we would have y_k in a minimal prime of (y_1, \ldots, y_{k-1}) . Choose $\Delta \in I \cap (\bigcap_{v > h+1} Q_v) - (\bigcup_{t < h} Q_t)$. This is possible, or else $I \cap (\bigcap_{v \ge h+1} Q_v) \subseteq \bigcup_{t \le h} Q_t$, and then $I \cap (\bigcap_{v \ge h+1} Q_v) \subseteq Q_t$ for some $t \le h$, which is impossible, since neither I nor any Q_v for $v \ge h+1$ is contained in Q_t for $t \le h$. Choose m so that $\Delta^m \in (\underline{\widetilde{x}})S$, which is possible because $\underline{\widetilde{x}}$ is a system of parameters for S. Then replace Δ by Δ^{m+1} , which is in $I(\underline{\widetilde{x}})$, so that we may assume that $\Delta = \sum_{i=1}^d \delta_i \widetilde{x}_i$ with the δ_i in I. These choices for the δ_i give what we need, since then $\widetilde{y}_k = z + \Delta$ and this element is not in any of the minimal prime Q_t of $(\widetilde{y}_1, \ldots, \widetilde{y}_{k-1})$: we have that $z \in Q_t$ if and only if $\Delta \notin Q_t$.

2. Test exponents for Artinian modules and an alternative proof of Sharp's theorem

We first prove a result about the existence of a test exponent for Artinian modules. Although the argument can be traced back to [HH4] (for modules of finite length), we include a proof here for the sake of convenience and completeness.

Proposition 2.1 (Compare with [HH4, Proposition 2.6]). Let R be a Noetherian ring of prime characteristic p and $N \subseteq M$ be R-modules such that M/N is Artinian. Assume there exists $d \in R^{\circ}$ that is a q_0 -weak test element for $N_M^{[q]} \subseteq F_R^e(M)$ for all $q \gg 0$. Then, for any $c \in R^{\circ}$, there exists a test exponent for c and $N \subseteq M$.

Proof. For every e, let $N_e = \{u \in M \mid cu^q \in (N_M^{[q]})_{F^e(M)}^F\}$. Then, as shown in the proof of [HH4, Proposition 2.6], $N_1 \supseteq N_2 \supseteq \cdots \supseteq N_e \supseteq N_{e+1} \supseteq \cdots \supseteq N$ and hence there exists $Q = p^E$ such that $N_e = N_E$ for all $e \ge E$. Suppose $cx^{q'} \in N_M^{[q']}$ for some $x \in M$ and $q' \ge Q$. Then $x \in N_{e'}$ and

Suppose $cx^{q'} \in N_M^{[q]}$ for some $x \in M$ and $q' \geq Q$. Then $x \in N_{e'}$ and thus $x \in N_e$ for all $e \geq E$. This means $cx^q \in (N_M^{[q]})_{F^e(M)}^F \subseteq (N_M^{[q]})_{F^e(M)}^*$ for all $q \geq Q$. Consequently, $dc^{q_0}x^{qq_0} = d(cx^q)^{q_0} \in (N_M^{[q]})_{F^e(M)}^{[q_0]} = N_M^{[qq_0]}$ for all $q \gg Q$, which implies $x \in N_M^*$.

In the light of Theorem 0.5, we get the following consequence of Proposition 2.1.

Theorem 2.2. Let R be an algebra essentially of finite type over an excellent local ring of characteristic $p, c \in R^{\circ}$, and M an Artinian R-module. Then there exists a test exponent for c and M.

Proof. This follows immediately from Theorem 0.5(2) and Proposition 2.1. \Box

We may refine Proposition 2.1 as follows when the Artinian R-module is the highest local cohomology of R.

Proposition 2.3. Let (R, \mathfrak{m}) be a Noetherian local ring of prime characteristic p and $c \in R^{\circ}$. Assume (R, \mathfrak{m}) has the colon-capturing property and there exists a q_0 -weak test element $b \in R^{\circ}$ for all parameter ideals of R.

Then there exists a test exponent for c and $0 \subset \mathrm{H}^{\dim(R)}_{\mathfrak{m}}(R)$.

Proof. Say dim(R) = d. Then $\operatorname{H}_{\mathfrak{m}}^{d}(R) = \varinjlim_{\underline{x}} \frac{R}{(\underline{x})R}$, in which \underline{x} runs through all systems of parameters of R. For any $u \in R$ and any system of parameters $\underline{x} = x_1, \ldots, x_d$ of R, denote the image of $\frac{u}{(x_1, \ldots, x_d)}$ in $\operatorname{H}_{\mathfrak{m}}^{d}(R)$ by $[\frac{u}{(x_1, \ldots, x_d)}]$. Recall that, for any $e \in \mathbb{N}$, there is a canonical isomorphism $F_R^e(\operatorname{H}_{\mathfrak{m}}^d(R)) \cong \operatorname{H}_{\mathfrak{m}}^d(R)$, under which we may simply write $[\frac{u}{(x_1, \ldots, x_d)}]_{\operatorname{H}_{\mathfrak{m}}^d(R)}^q = [\frac{u^q}{(x_1^q, \ldots, x_d^q)}]$. By colon-capturing, we see that $[\frac{u}{(x_1, \ldots, x_d)}] \in \operatorname{O}_{\operatorname{H}_{\mathfrak{m}}^d(R)}^*$ if and only if $u \in (x_1, \ldots, x_d)_R^*$ (cf. [Sm, Proposition 2.5]). This implies that b is a weak test element for $0 \subset \operatorname{H}_{\mathfrak{m}}^d(R)$. (Indeed, for any $[\frac{u}{(x_1, \ldots, x_d)}] \in \operatorname{O}_{\operatorname{H}_{\mathfrak{m}}^d(R)}^*$, we have $u \in (x_1, \ldots, x_d)_R^*$. Then $bu^q \in (x_1, \ldots, x_d)^{[q]}$ for all $q \ge q_0$, which implies $b[\frac{u}{(x_1, \ldots, x_d)}]_{\operatorname{H}_{\mathfrak{m}}^d(R)}^q = [\frac{bu^q}{(x_1^q, \ldots, x_d^q)}] = 0 \in F^e(\operatorname{H}_{\mathfrak{m}}^d(R))$ for all $q \ge q_0$.) Consequently, b is a weak test element for exists a test exponent, say $Q = p^E$, for c and $\operatorname{H}_{\mathfrak{m}}^d(R)$. □

Now we are ready to give a new proof of R. Y. Sharp's result about a uniform test exponent for $c \in R^{\circ}$ and all ideals generated by systems of parameters.

Theorem 2.4 (Sharp, [Sh, Theorem 3.2]). Let (R, \mathfrak{m}) be an equidimensional excellent local ring of prime characteristic p and $c \in R^{\circ}$. Then there exists a test exponent for c and all ideals generated by (partial or full) systems of parameters of R.

Proof. Say dim(R) = d. By Proposition 2.3, there is a test exponent Q for c and $\operatorname{H}^{d}_{\mathfrak{m}}(R)$. Here we keep the same usage of $\left[\frac{u}{(x_1,\ldots,x_d)}\right]$ as in the above proof of Proposition 2.3.

Now, it suffices to show that Q is a test exponent for c and $(x_1, \ldots, x_i) \subseteq R$ for any (partial or full) system of parameters $\underline{x} = x_1, \ldots, x_i$ of R. But, then, it suffices to verify the case where $\underline{x} = x_1, \ldots, x_d$ is any full system of parameters, since for any q, $cu^q \in (x_1^q, \ldots, x_i^q, x_{i+1}^{qt}, \ldots, x_d^{qt})$ for all t if and only if $cu^q \in (x_1^q, \ldots, x_i^q)$.

Finally, for any $u \in R$ and $q \geq Q$, suppose $cu^q \in (\underline{x})^{[q]} = (x_1^q, \ldots, x_d^q)$. This implies $c[\frac{u}{(x_1, \ldots, x_d)}]^q_{\mathrm{H}^d_{\mathfrak{m}}(R)} = 0 \in F^e_R(\mathrm{H}^d_{\mathfrak{m}}(R))$. Thus, by the choice of Q, $[\frac{u}{(x_1, \ldots, x_d)}] \in 0^*_{\mathrm{H}^d_{\mathfrak{m}}(R)}$, which forces $u \in (x_1, \ldots, x_d)^*_R$ by colon-capturing as in Proposition 2.3 (cf. [Sm, Proposition 2.5]).

Next, we state a corollary of the theorem above.

Corollary 2.5. Let (R, \mathfrak{m}) be an equidimensional excellent local ring of prime characteristic p and $c \in R^{\circ}$. Then there exists a test exponent for c/1 and all ideals generated by (partial or full) systems of parameters of R_P (over R_P) for all $P \in \operatorname{Spec}(R)$.

Proof. By Theorem 2.4, there exists a test exponent, $Q = p^E$, for c and all ideals generated by (partial or full) systems of parameters of R. Fix an arbitrary $P \in \text{Spec}(R)$. It suffices to show that Q is a test exponent for c/1 and all ideals generated by (partial or full) systems of parameters of R_P (over R_P). Then, again, it suffices show that Q is a test exponent for c and all ideals generated by (full) systems of parameters of R_P (over R_P).

Say dim $(R_P) = h$. Then by prime avoidance, there exists $\underline{x} = x_1, \ldots, x_h \in P$ such that \underline{x} is a (partial) system of parameters of R. Then, for any $0 < n \in \mathbb{N}, \ \underline{x}^n := x_1^n, \ldots, x_h^n$ is also a (partial) system of parameters of R and, moreover, $x_1^n/1, \ldots, x_h^n/1$ is a (full) system of parameters of R_P .

Let $\underline{y} = y_1, \ldots, y_h$ be any full system of parameters of R_P . We need to prove that Q is a text exponent for c/1 and $(\underline{y}) \subset R_P$ in order to finish the proof. As there exists a positive integer $n \in \mathbb{N}$ such that $(x_1^n, \ldots, x_h^n)R_P \subseteq (\underline{y})$, it suffices to prove that Q is a text exponent for c/1 and $(x_1^n, \ldots, x_h^n)R_P \subset \overline{R_P}$ by Lemma 1.4(3).

Now suppose $(c/1)v^q \in (x_1^n, \ldots, x_h^n)^{[q]}R_P$ for some $v \in R_P$ and $q \ge Q$. Without loss of generality, we may assume v = u/1 with $u \in R$. That is, there exists $s \in R \setminus P$ such that $scu^q \in (x_1^n, \ldots, x_h^n)^{[q]}R$. Hence $c(su)^q \in (x_1^n, \ldots, x_h^n)^{[q]}R$, which implies $su \in (x_1^n, \ldots, x_h^n)^*_R$. Therefore, $v = u/1 \in (x_1^n, \ldots, x_h^n)^*_R R_P \subseteq ((x_1^n, \ldots, x_h^n)R_P)^*_{R_P}$.

3. Modules with finite (phantom) projective dimension

Question 3.1. Assume (R, \mathfrak{m}) is an equidimensional local ring of prime characteristic p that is either excellent or a homomorphic image of a Cohen-Macaulay ring. For a given $c \in R^{\circ}$, does there exist a test exponent for c and all finitely generated R-modules of finite phantom projective dimension?

If R is Cohen-Macaulay, then it is known that phantom projective dimension is the same as projective dimension. For this reason, the following theorem may be viewed as a partial answer to the above question.

Theorem 3.2. Let (R, \mathfrak{m}) be a Cohen-Macaulay Noetherian local ring of prime characteristic p with $\dim(R) = d$. Fix any $c \in R$, if $Q = p^E$ is a test exponent for c and all ideals generated by (full) systems of parameters of R, then Q is a test exponent for c and all R-modules of finite length and of finite projective dimension.

Proof. Let $M \neq 0$ be a typical *R*-module such that $\lambda(M) < \infty$ and $pd(M) < \infty$. Suppose $cu^{q'} = 0 \in F^{e'}(M)$ for some $u \in M, q' \geq Q$. We need to show $u \in 0_M^*$. Fix a minimal projective resolution G_{\bullet} of M as follows

$$G_{\bullet}: \qquad 0 \longrightarrow G_d \xrightarrow{\phi_d} G_{d-1} \xrightarrow{\phi_{d-1}} \cdots \xrightarrow{\phi_2} G_1 \xrightarrow{\phi_1} G_0 \longrightarrow 0.$$

Then choose a system of parameters \underline{x} of R such that $(\underline{x}) \subseteq \operatorname{Ann}_R(u)$ and construct the Koszul complex $K_{\bullet}(\underline{x}, R)$ as follows

$$K_{\bullet}(\underline{x}, R): \qquad 0 \longrightarrow K_d \xrightarrow{\psi_d} K_{d-1} \xrightarrow{\psi_{d-1}} \cdots \xrightarrow{\psi_2} K_1 \xrightarrow{\psi_1} K_0 \longrightarrow 0,$$

where $K_i = R^{\binom{d}{i}}$. In particular, ψ_d is represented by matrix (x_1, x_2, \ldots, x_d) and the 0-th homology of $K_{\bullet}(\underline{x}, R)$ is $R/(\underline{x})$. Thus the *R*-linear map h: $R/(\underline{x}) \to M = H_0(G_{\bullet})$ sending the class of 1 to u can be lifted to a chain map $g_{\bullet}: K_{\bullet}(\underline{x}, R) \to G_{\bullet}$. Denote $g_0(1) = y$. Then $cy^{q'} \in (\operatorname{Image}(\phi_1))_{G_0}^{[q']}$ and we now only need to show $y \in (\operatorname{Image}(\phi_1))_{G_0}^*$.

For every q, there is an induced R-linear chain map $g_{\bullet}^{[q]}: F^e(K_{\bullet}(\underline{x}, R)) \to F^e(G_{\bullet})$. Now the fact that $cy^{q'} \in (\operatorname{Image}(\phi_1))_{G_0}^{[q']}$ (i.e., $cu^{q'} = 0$) implies that the chain map $cg_{\bullet}^{[q']}$ is homotopic to the zero chain map. In particular, there exists $\delta_{d-1} \in \operatorname{Hom}_R(F^{e'}(K_{d-1}), F^{e'}(G_d))$ such that $cg_d^{[q']} = \delta_{d-1} \circ \psi_d^{[q']}$. Applying $\operatorname{Hom}_R(-, R)$, we get

$$c(\operatorname{Image}(\operatorname{Hom}(g_d, R)))_{K_d}^{[q']} = \operatorname{Image}(\operatorname{Hom}(cg_d^{[q']}, R))$$
$$\subseteq \operatorname{Image}(\operatorname{Hom}(\psi_d^{[q']}, R)) = (\underline{x})^{[q']},$$

which implies Image(Hom (g_d, R)) $\subseteq (\underline{x})_R^*$ since $q' \geq Q$. That is to say that there exists $b \in R^\circ$ such that

$$Image(Hom(bg_d^{[q]}, R)) = b Image(Hom(g_d^{[q]}, R))$$
$$= b(Image(Hom(g_d, R)))_R^{[q]} \subseteq (\underline{x})^{[q]} = Image(Hom(\psi_d^{[q]}, R))$$

for all $q \gg 0$. Therefore, the chain maps

$$\operatorname{Hom}(bg_{\bullet}^{[q]}, R) : \operatorname{Hom}(F^e(G_{\bullet}), R) \to \operatorname{Hom}(F^e(K_{\bullet}(\underline{x}, R)), R)$$

are homotopic to 0 for all $q \gg 0$. Hence, there exist $\epsilon_1^{[q]} \in \operatorname{Hom}_R(F^eG_1), F^e(K_0)$) such that $\operatorname{Hom}(bg_0^{[q]}, R) = \epsilon_1^{[q]} \circ \operatorname{Hom}(\phi_1^{[q]}, R)$ for all $q \gg 0$. This, after going through $\operatorname{Hom}(-, R)$, would in turn imply

$$by^q \in b(\text{Image}(g_0))_{G_0}^{[q]} = \text{Image}(bg_0^{[q]}) \subseteq \text{Image}(\phi_1^{[q]}) = (\text{Image}(\phi_1))_{G_0}^{[q]}$$

for all $q \gg 0$. We now conclude that $y \in (\text{Image}(\phi_1))_{G_0}^*$ and the proof is complete.

We remark that the above argument of using homotopy to determine membership in the tight closure has appeared in [Ab2]. **Corollary 3.3.** Let (R, \mathfrak{m}) be a Cohen-Macaulay Noetherian excellent local ring of prime characteristic p. Then, for any $c \in R^{\circ}$, there is a test exponent for c and all R-modules of finite length and of finite (phantom) projective dimension.

<i>Proof.</i> This follows from Theorem 0.7 and Theorem 3.2.]
--	--	---

We also notice that Question 3.1 reduces to the Cohen-Macaulay case if $\dim(R) \leq 2$.

Corollary 3.4. Let (R, \mathfrak{m}) be an equidimensional excellent Noetherian local ring of prime characteristic p with $\dim(R) \leq 2$. Then, for any given $c \in R^{\circ}$, there exists a test exponent for c and all R-modules of finite length and of finite phantom projective dimension.

Proof. By [HH1, Definition 9.1], we observe that any R-module of finite length and of finite phantom projective dimension over R remains so after we extend the scalar to the integral closure of R/P in its fraction field for every $P \in$ min(R). Therefore, by Lemma 1.2 and Lemma 1.3, we may assume that Ris normal without loss of generality. (We may assume that R is complete as well.) But now R is excellent Cohen-Macaulay and the claim follows from Corollary 3.3.

Lastly, we remark that Corollary 3.3 plays an important role in an upcoming paper [HY], where the F-rational signature is defined and studied. To be specific, the existence of a uniform test exponent allows us to characterize F-rationality in terms of the (phantom) F-rational signature being positive.

References

- [Ab1] I. Aberbach, Finite phantom projective dimension, Amer. J. Math. 116 (1994), no. 2, 447–477. MR 1295816 (95g:13020)
- [Ab2] I. Aberbach, Tight closure in F-rational rings, Nagoya Math. J. 135 (1994), 43–54.
 MR 1295816 (95g:13020)
- [AHH] I. Aberbach, M. Hochster and C. Huneke, Localization of tight closure and modules of finite phantom projective dimension, J. Reine Angew. Math. 434 (1993), 67–114. MR 1195691 (94h:13005)
- [El] H. Elitzur, Tight closure in Artinian modules, thesis, University of Michigan, 2003.
- [HH1] M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, Jour. of Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 91g:13010
- [HH2] M. Hochster and C. Huneke, F-regularity, test elements, and smooth base change, Tans. Amer. Math. Soc. 346 (1994), 1–62. MR 95d:13007
- [HH3] M. Hochster and C. Huneke, *Phantom homology*, Mem. Amer. Math. Soc. 103 (1993), no. 490, vi+91 pp. ISSN 0065-9266. MR 1144758 (93j:13020)
- [HH4] M. Hochster and C. Huneke, Localization and test exponents for tight closure, Dedicated to William Fulton on the occasion of his 60th birthday. Michigan Math. J. 48 (2000), 305–329. MR 2002a:13001
- [HY] M. Hochster and Y. Yao, The F-rational signature and drops in the Hilbert-Kunz multiplicity, preprint.

TEST EXPONENTS

- [McD] M. McDermott, Tight closure, plus closure and Frobenius closure in cubical cones, Thesis, University of Michigan, 1996.
- [Sh] R. Y. Sharp, Tight closure test exponents for certain parameter ideals, Michigan Math. J., 54 (2006), no. 2, 307–317. MR 2252761 (2007e:13008)
- [Sm] K. Smith, F-rational rings have rational singularities, Amer. J. Math. 119 (1997), no. 1, 159–180. MR 1428062 (97k:13004)

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 $E\text{-}mail\ address:\ \texttt{hochsterQumich.edu}$

Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303

 $E\text{-}mail\ address:\ \texttt{yyao@gsu.edu}$