
TEST EXPONENTS FOR MODULES

WITH FINITE PHANTOM PROJECTIVE DIMENSION

MELVIN HOCHSTER AND YONGWEI YAO

Abstract. Let (R,m) be an equidimensional excellent local ring of

prime characteristic p > 0. We give an alternate proof of the exis-
tence of a uniform test exponent for any given c ∈ R◦ and all ideals

generated by (full or partial) systems of parameters. This follows from
a more general result about the existence of a test exponent for any

given Artinian R-module. If we further assume R is Cohen-Macaulay,

then there exists a test exponent for any given c ∈ R◦ and all finite
length modules with finite (phantom) projective dimension.

0. Introduction

Throughout this paper R is a Noetherian ring of prime characteristic p > 0.
By (R,m, k), we indicate that R is a local ring with maximal ideal m and
residue field R/m = k.

Also, we always use q = pe, Q = pE , q0 = pe0 , q′ = pe
′
, q′′ = pe

′′
, etcetera,

to denote varying powers of p with e, E, e0, e
′, e′′ ∈ N.

Let M be an R-module. Then for any e ≥ 0, we can derive a left R-module
structure on the set M by r · m := rp

e

m for any r ∈ R and m ∈ M . For
technical reasons, we keep the original right R-module structure on M by
default. We denote the derived R-R-bimodule by eM . Thus, in eM , we have
r · m = m · rpe , which is equal to rqm in the original M . If R is reduced,
then eR, as a left R-module, is isomorphic to R1/q := {r1/p | r ∈ R}. We use
λl(−), λr(−) to denote the left and right lengths of a bimodule. It is easy to
see that λl( eM) = qα(R)λr( eM) = qα(R)λ(M) for any finite length module M
over (R,m, k), in which α(R) = logp[k : kp].

We say that R is F-finite if 1R (or, equivalently, eR for all e) is finitely
generated as an left R-module.

For any R-module M and e, we can always form a new R-module F e(M)
by scalar extension via F e : R → R by r 7→ rq. In other words, F e(M) has
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the R-module structure that is determined by the right R-module structure
of M ⊗R eR; and it is this R-module structure of F e(M) that we mean un-
less otherwise specified. If h ∈ HomR(M,N), then we correspondingly have
F e(h) : HomR(F e(M), F e(N)). Sometimes, especially when both M and N
are free, we may write F e(h) as h[q].

A very important concept in studying rings of characteristic p is tight
closure. Tight closure was first studied and developed by Hochster and Huneke
in the 1980s.

Definition 0.1 (Hochster-Huneke, [HH1]). Let R be a Noetherian ring of
prime characteristic p and N ⊆M be R-modules. The tight closure of N in M ,
denoted by N∗M , is defined as follows: An element x ∈M is said to be in N∗M if

there exists an element c ∈ R◦ such that x⊗c ∈ N [q]
M ⊆M⊗R eR for all e� 0,

where R◦ is the complement of the union of all minimal primes of the ring R

and N
[q]
M denotes the (right) R-submodule of F eR(M) = M ⊗R eR generated

by {x⊗ 1 ∈M ⊗R eR |x ∈ N}. The element x⊗ 1 ∈M ⊗R eR is denoted by

xp
e

M = xqM . (By our convention on F eR(M), we have cxqM = x⊗ c ∈ N [q]
M .)

Definition 0.2 ([HH2]). Let R be a Noetherian ring of prime characteristic
p, q0 = pe0 and let N ⊆ M be R-modules. We say c ∈ R◦ is a q0-weak test

element for N ⊆M if c(N∗M )
[q]
M ⊆ N

[q]
M for all q ≥ q0. In case N = 0, we may

simply call it a test element for M . By a q0-weak test element, we simply
mean a q0-weak test element for all R-modules. If a q0-weak test element
c remains a q0-weak test element under every localization, then we call c a
locally stable q0-weak test. Finally, in case q0 = 1, we simply call c a test
element or locally stable test element.

Definition 0.3 ([HH4]). Let R be a Noetherian ring of prime characteristic
p, c ∈ R, and N ⊆M (finitely generated) R-modules. We say that Q = pE is
a test exponent for c and N ⊆ M (over R) if, for any x ∈ M , the occurrence

of cxq ∈ N [q]
M for one single q ≥ Q implies x ∈ N∗M . In case N = 0, we may

simply call it a test exponent for c and M .

Remark 0.4. (1) It is easy to check the following statements: To say c ∈
R◦ is a test element for N ⊆ M is the same as to say c is a test
element for (0 ⊆ ) M/N . Similarly, to say Q = pE is a test exponent
for c and N ⊆M is the same as to say Q is a test exponent for c and
(0 ⊆ ) M/N

(2) However, by ‘a (q0-weak) test element for an ideal I’, we usually
mean ‘a (q0-weak) test element for I ⊆ R’ rather than ‘a (q0-weak)
test element for 0 ⊆ I’. Similarly, when we say ‘a test exponent for
c and an ideal I’, we usually mean ‘a test exponent for c and I ⊆ R’
rather than ‘a test exponent for c and 0 ⊆ I’.

Under mild conditions, test elements exist.
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Theorem 0.5. Let R be F-finite or essentially of finite type over an excellent

local ring (A, n) of characteristic p. Say
√

0
[q0]

= 0, where
√

0 is the nilradical
of R.

(1) One may choose c ∈ R◦ such that (Rred)c is regular.) Then c has a
power ck that is a completely stable q0-weak test element for all finitely
generated R-modules.

(2) In fact, there is a power ck that is a completely stable q0-weak test
element for all (not necessarily finitely generated) R-modules.

Proof. (1) See Theorem (6.1) of [HH2].
(2) It suffices to prove the case where R (and hence A) is reduced. Under

the assumption that R is F-finite, this was proved under the hypothesis that
Rc is weakly F-regular and Gorenstein in the thesis of Haggai Elitzur, [El].
From this we can see the remaining case as follows. First, replace A by its

completion and R by R⊗A Â. Henceforth, assume that A is complete. Since
A is excellent, this ring is reduced, and it is faithfully flat over R. It remains
true that Rc is regular. In particular, this means that Rc is weakly F-regular
and Gorenstein. We next make use of the Γ construction from §6 of [HH2].
Choose a coefficient field for K and a p-base Λ for K. For each cofinite
subset Γ of Λ the ring A has a faithfully flat purely inseparable extension AΓ,
and for all sufficiently small cofinite sets Γ ⊆ Λ, RΓ = AΓ ⊗A R is reduced
by Lemma (6.13) of [HH2], and RΓ

c is weakly F-regular and Gorenstein by
Lemma (6.19) of [HH2]. The ring RΓ is F-finite and (RΓ)c is weakly F-regular
and Gorenstein. Therefore, c has the required property for RΓ, and since this
ring is faithfully flat over R, for R as well. �

If there exists a test exponent for a locally stable test element c ∈ R◦ and
(finitely generated) R-modules N ⊆ M , then the tight closure of N in M
commutes with localization. This result is implicit in [McD] and is explicitly
stated in [HH4, Proposition 2.3]. Moreover, Hochster and Huneke showed in
[HH4] that the converse is true as below.

Theorem 0.6 ([HH4]). Let R be a Noetherian ring of prime characteristic
p with a given locally stable test element c, and N ⊆M finitely generated R-
modules. Assume that the tight closure of N in M commutes with localization.
Then there exists a test exponent for c and N ⊆M .

Given x = x1, . . . , xh in a local ring (R,m), we say that x is a (full) system

of parameters of R if h = dim(R) and
√

(x) = m; we say x is a partial system
of parameters of R if x can be expanded to a system of parameters of R.

In [HH4], Hochster and Huneke asked, among other questions, whether
there exists a uniform test exponent for a given test element and all ideals
generated by systems of parameters. This question has been recently answered
positively by R. Y. Sharp.
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Theorem 0.7 (Sharp, [Sh, Theorem 3.2]). Let (R,m) be an equidimensional
excellent local ring of prime characteristic p and c ∈ R◦. Then there exists
a test exponent for c and all ideals generated by (partial or full) systems of
parameters of R.

In Theorem 2.4, we use the Artinian property of Hdim(R)
m (R) and colon-

capturing to give an alternative proof of the above Theorem 0.7.
Next, we review the definition of phantom projective dimension.

Definition 0.8 ([Ab1], [HH1] and [HH3]). Let R be a Noetherian ring of
prime characteristic p. Let M be an R-module and

G• : · · · φn+1−→ Gn
φn−→ Gn−1

φn−1−→ · · · φ2−→ G1
φ1−→ G0 −→ 0

a complex of R-modules.

(1) We say that G• is stably phantom acyclic if

Ker(F e(φn)) ⊆ (Image(F e(φn+1)))∗F e(Gn) for all n ≥ 1 and all e ≥ 0.

(2) If G• is a stably phantom acyclic complex of finitely generated pro-
jective modules with H0(G•) ∼= M and Gn = 0 for all n ≥ r + 1 (for
some given r), we say that G• is a phantom projective resolution of
M of length r.

(3) We say that the phantom projective dimension of M is r if there is a
phantom projective resolution of M of length r and r is the minimum
such number. In this case, we write ppdR(M) = r.

Here we remark that, by the ‘rank and height’ phantom acyclicity the-
orem (cf. [HH1], Theorems (9.8) and (9.8)◦ and [AHH] Theorem 5.3(c) ),
ppdR(R/(x)) < ∞ for all (partial or full) systems of parameters (under cer-
tain assumptions on R, e.g., if (R,m) is excellent and equidimensional).

If (R,m) is Cohen-Macaulay, then pdR(M) = ppdR(M) for every finitely
generated R-module M . (We need to make sure that the ‘rank and height’
phantom acyclicity criterion holds, which is the case if (R,m) is excellent and
equidimensional.)

Inspired by Sharp’s result (Theorem 0.7), we then naturally ask whether
there is a uniform test exponent for a given c ∈ R◦ and all finitely generated R-
modules with (finite length and) finite phantom projective dimension. While
this question remains unsettled, we can give an affirmative answer in case R
is Cohen-Macaulay or in case dim(R) ≤ 2. Throughout this paper, we use
λ(M) to denote the length of an R-module M .

Theorem (Corollary 3.3, Corollary 3.4). Let (R,m) be an equidimensional
Noetherian excellent local ring of prime characteristic p. Assume either that
R is Cohen-Macaulay or dim(R) ≤ 2. Then, for any c ∈ R◦, there is a test
exponent for c and all R-modules M with λ(M) <∞ and ppd(M) <∞.
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1. Some preliminary results about test exponents

We first observe the following easy lemma about test exponents, although
it is not directly used in the sequel.

Lemma 1.1. Let R be a Noetherian ring of characteristic p. For any b, c ∈ R◦
and R-modules N ⊆M , the following are true.

(1) If Q is a test exponent for bc and N ⊆ M , then Q is a test exponent
for c and N ⊆M .

(2) If, for some q0 = pe0 , Q is a test exponent for cq0 and N
[q0]
M ⊆ F e0R (M),

then Q is a test exponent for c and N ⊆M .

Proof. (1) If cxq ∈ N
[q]
M ⊆ F eR(M) for some x ∈ M and pe = q ≥ Q, then

bcxq ∈ N [q]
M ∈ F eR(M) and hence x ∈ N∗M .

(2) Suppose cxq ∈ N [q]
M ⊆ F eR(M) for some x ∈ M and pe = q ≥ Q. Then

cq0xq0q ∈ N [q0q]
M ⊆ F e0+e

R (M), or, in other words, cq0(xq0)q ∈ (N
[q0]
M )

[q]

F
e0
R (M)

⊆

F eR(F e0R (M)). This implies xq0 ∈ (N
[q0]
M )∗

F
e0
R (M)

, which forces x ∈ N∗M . �

For simplicity, we state the next two results (i.e., Lemma 1.2 and Lemma 1.3)
in terms of test exponent for c and (0 ⊆ )M only. It is an easy task to give
the corresponding statements in terms of test exponents for c and N ⊆M .

Lemma 1.2. Let R be a Noetherian ring of characteristic p with the set of
minimal primes min(R) = {P1, P2, . . . , Pr} so that

√
0 = ∩ri=1Pi. For any

c ∈ R◦ (or simply c ∈ R) and any (finitely generated) R-module M , the
following statements are true.

(1) If Q is a test exponent for c + Pi and M/PiM over R/Pi for all
i = 1, 2, . . . , r, then Q is a test exponent for c and M .

(2) If Q is a test exponent for c +
√

0 and M/
√

0M over R/
√

0, then Q
is a test exponent for c and M .

Proof. (1) Suppose cxq = 0 ∈ F eR(M) for some x ∈M and pe = q ≥ Q. Then,
(c + Pi)(x + PiM)qM/PiM

= 0 ∈ F eR/Pi
(M/PiM), which implies x + PiM ∈

0∗M/PiM
for every i = 1, 2, . . . , r. This forces x ∈ 0∗M (see [HH1]).

(2) This follows similarly. �

The next lemma deals with module-finite and pure ring extensions. In
particular, the lemma applies to any reduced Nagata (e.g., excellent) ring and
its integral closure in its total quotient ring.

Lemma 1.3. Let R ⊆ S be an extension of Noetherian rings of characteristic
p, c ∈ R, and let M be a finitely generated R-module. Assume either (1)
R ⊆ S is module-finite, or (2) R ⊆ S is a pure extension with a common
weak test element in R. If Q is a test exponent for c and 0 ⊆ M ⊗R S over
S, then Q is a test exponent for c and 0 ⊆M .
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Proof. Suppose cxq = 0 ∈ F eR(M) for some x ∈ M and pe = q ≥ Q. Then
c(x ⊗ 1)q = 0 ∈ F eS(M ⊗R S) and hence x ⊗ 1 ∈ 0∗M⊗RS

, which implies
x ∈ 0∗M . �

The next lemma relies on the ‘colon-capturing’ property of tight closure,
which is systematically studied in [HH1, Section 7].

Lemma 1.4. Let (R,m) be a Noetherian local ring of characteristic p, dim(R) =
d, and x = x1, x2, . . . , xd and y = y1, y2, . . . , yd be two systems of parameters

such that (y) ⊆ (x). For each j = 1, 2, . . . , d, say yj =
∑d
i=1 xiaij with

aij ∈ R. Denote the resulting d× d matrix (aij)d×d by A. Then

(1) (y)∗ :R (x) ⊇ ((y) + det(A)))∗ and (y)∗ :R det(A) ⊇ (x)∗.

Further assume that (R,m) is equidimensional and, moreover, that R is either
excellent or a homomorphic image of a Cohen-Macaulay ring. Then

(2) If R is Cohen-Macaulay, (y) :R (x) = (y) + (det(A) and (y) :R
det(A) = (x)

(2 ◦) (y)∗ :R (x) = ((y) + (det(A)))∗ and (y)∗ :R det(A) = (x)∗.
(3) For any c ∈ R, if Q is a test exponent for c and (y) ⊆ R, then Q is a

test exponent for c and (x) ⊆ R.

Proof. (1) This is straightforward (cf. [HH1, Proposition 4.1(b)(k)]).

(2) Follows from the fact that Hd
m(R) may be viewed as the direct limit

of the modules R/(x)R as the system of parameters x varies, that when R is

Cohen-Macaulay the maps R/(x)R → Hd
m(R) are injective, and that under

our hypotheses there is a factorization R/(x)R→ R/(y)R→ Hd
m(R) in which

the first map is given on the numerators by multiplication by det(A), so that
multiplication by det(A) yields an injective map R/(x)R → R/(y)R. This is

equivalent to the second statement in (2). The annihilator W of (x) in Hd
m(R),

thought of as the directed union of the modules Ht = R/(xt1, . . . , x
t
d), is the

union of the annihilators Wt in the various Ht. In a given Ht, Wt is generated
by wt, the image of (x1 · · ·xd)t−1, each wtR ∼= R/(x), and each wt maps to
wt+1 in the direct limit system. It follows that W ∼= R/(x). Since the image

W ′ of R/(x)→ R/(y) ⊆ Hd
m(R) is already ∼= R/(x), it follows W ′ = W . Since

the annihilator of (x)R in R/(y)R is between W ′ and W , it is equal to W ′.
To prove (2◦) and (3), we may assume (R,m) is an equidimensional homo-

morphic image of a Cohen-Macaulay ring without loss of generality. (Indeed,
in case R is equidimensional and excellent, it suffices to prove (2◦) and (3) for

R̂.)
(2◦) By killing a maximal regular sequence in the kernel of the surjection

S → R, where S is Cohen-Macaulay local, we may assume that R and S have
the same dimension: we will have that R = S/I with I of pure height 0. We
can choose c̃ precisely in those minimal primes of S that do not contain I, so
that its image c in R is in R◦. Then c̃I is nilpotent, and after replacing c̃ by
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a suitable power we can choose an integer q0 = pe0 such that if c̃I [q0] = 0.
By Lemma 1.5 below we can choose a system of parameters x̃ for S that lifts

x and a matrix Ã = (ãij) over S that lifts A = (aij) such that if we define

ỹj =
∑d
i=1 x̃iãij , 1 ≤ j ≤ d, then ỹ is also a system of parameters for S.

For both statements, “⊇” has already been proved in (1). Now suppose
that u ∈ R is such that u(x) ⊆ (y)∗ (respectively, udet(A) ∈ (y)∗). Then

there exists q1 and b ∈ R◦ such that buq(x)[q] (respectively, b(udet(A))q)) is

contained in (y)[q] for all q ≥ q1. We can lift x, A and y as above to x̃, Ã and
ỹ. By a standard prime avoidance argument we can also lift b to an element

b̃ ∈ S◦, and u to an element ũ of S. Then for all q ≥ q1, b̃ũq(x̃)[q] (respectively,

b̃(ũdet(Ã))q) is contained in (ỹ)[q] + I. Raise both sides to the q0 power and
multiply by c̃. The contribution from I becomes 0, and, with q′ = qq0,

we obtain that c̃b̃q0 ũq
′
(x̃)[q′] (respectively, c̃b̃q0 ũq

′
det(Ã))q

′
) is contained in

(ỹ)[q′]. Since S is Cohen-Macaulay, we may apply part (2) to the systems of
parameters and matrix arising from x̃, ỹ and (ãij) by taking q th powers of all

elements to conclude that c̃b̃q0 ũq
′ ⊆ ((ỹ) + (det(Ã))[q′] (respectively, ⊆ (x̃)[q′])

for all q′ � 0. The required result now follows by taking images in R and
applying the definition of tight closure.

(3) Suppose cxq ∈ (x)[q] for some x ∈ R and q ≥ Q. Then c(det(A)x)q =
det(A)qcxq ∈ (y)[q] and hence det(A)x ∈ (y)∗, which implies x ∈ (y)∗ :R
det(A) = (x)∗ by part (2◦) above. �

Lemma 1.5. Let S be a Cohen-Macaulay ring of dimension d, let I be an ideal
of height 0, let R = S/I, let x and y be systems of parameters for R, and let

A = (aij) be a matrix over R such that for all j, 1 ≤ j ≤ d, yj =
∑d
i=1 aijxi.

Then we can choose liftings x̃ and Ã = (ãij) of the matrix A to S such that

if we define ỹj =
∑d
i=1 ãij x̃i for all j, 1 ≤ j ≤ d, then ỹ is also a system of

parameters for S.

Proof. We may lift x to a system of parameters x̃ by [HH1, Lemma 7.10],
and we assume this has been done. We prove by induction on k, 1 ≤ k ≤ d,
that we can choose the lifts ãij for all i and for 1 ≤ j ≤ k, the elements
ỹ1, . . . , ỹk are part of a system of parameters for S. We assume that this has
been done for 1 ≤ j ≤ k − 1 (we allow k − 1 = 0), and we construct the
elements ãik. First choose elements bik ∈ S arbitrarily that lift the aik. We
will show that we can choose δ1, . . . , δd ∈ I such that the choice ãik = bik + δi
for all i produces an element ỹk not in any minimal prime of (ỹ1, . . . , ỹk−1).

Let z =
∑d
i=1 bikx̃i. Let Q1, . . . , Qs be the minimal primes of (ỹ1, . . . , ỹk−1),

which will all have height k − 1. We may assume these are numbered so
that Q1, . . . , Qh contain z and Qh+1, . . . , Qs do not. Note that all of the Qv
that contain I occur for v ≥ h + 1, or else we would have yk in a minimal
prime of (y1, . . . , yk−1). Choose ∆ ∈ I ∩ (

⋂
v≥h+1Qv) − (

⋃
t≤hQt). This is
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possible, or else I ∩ (
⋂
v≥h+1Qv) ⊆

⋃
t≤hQt, and then I ∩ (

⋂
v≥h+1Qv) ⊆ Qt

for some t ≤ h, which is impossible, since neither I nor any Qv for v ≥ h+ 1
is contained in Qt for t ≤ h. Choose m so that ∆m ∈ (x̃)S, which is possible
because x̃ is a system of parameters for S. Then replace ∆ by ∆m+1, which

is in I(x̃), so that we may assume that ∆ =
∑d
i=1 δix̃i with the δi in I. These

choices for the δi give what we need, since then ỹk = z + ∆ and this element
is not in any of the minimal prime Qt of (ỹ1, . . . , ỹk−1): we have that z ∈ Qt
if and only if ∆ /∈ Qt. �

2. Test exponents for Artinian modules and
an alternative proof of Sharp’s theorem

We first prove a result about the existence of a test exponent for Artinian
modules. Although the argument can be traced back to [HH4] (for modules
of finite length), we include a proof here for the sake of convenience and
completeness.

Proposition 2.1 (Compare with [HH4, Proposition 2.6]). Let R be a Noe-
therian ring of prime characteristic p and N ⊆ M be R-modules such that
M/N is Artinian. Assume there exists d ∈ R◦ that is a q0-weak test element

for N
[q]
M ⊆ F eR(M) for all q � 0. Then, for any c ∈ R◦, there exists a test

exponent for c and N ⊆M .

Proof. For every e, let Ne = {u ∈M | cuq ∈ (N
[q]
M )FF e(M)}. Then, as shown in

the proof of [HH4, Proposition 2.6], N1 ⊇ N2 ⊇ · · · ⊇ Ne ⊇ Ne+1 ⊇ · · · ⊇ N
and hence there exists Q = pE such that Ne = NE for all e ≥ E.

Suppose cxq
′ ∈ N

[q′]
M for some x ∈ M and q′ ≥ Q. Then x ∈ Ne′ and

thus x ∈ Ne for all e ≥ E. This means cxq ∈ (N
[q]
M )FF e(M) ⊆ (N

[q]
M )∗F e(M) for

all q ≥ Q. Consequently, dcq0xqq0 = d(cxq)q0 ∈ (N
[q]
M )

[q0]
F e(M) = N

[qq0]
M for all

q � Q, which implies x ∈ N∗M . �

In the light of Theorem 0.5, we get the following consequence of Proposi-
tion 2.1.

Theorem 2.2. Let R be an algebra essentially of finite type over an excellent
local ring of characteristic p, c ∈ R◦, and M an Artinian R-module. Then
there exists a test exponent for c and M .

Proof. This follows immediately from Theorem 0.5(2) and Proposition 2.1.
�

We may refine Proposition 2.1 as follows when the Artinian R-module is
the highest local cohomology of R.
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Proposition 2.3. Let (R,m) be a Noetherian local ring of prime character-
istic p and c ∈ R◦. Assume (R,m) has the colon-capturing property and there
exists a q0-weak test element b ∈ R◦ for all parameter ideals of R.

Then there exists a test exponent for c and 0 ⊂ Hdim(R)
m (R).

Proof. Say dim(R) = d. Then Hd
m(R) = lim−→x

R
(x)R , in which x runs through all

systems of parameters of R. For any u ∈ R and any system of parameters x =
x1, . . . , xd of R, denote the image of u

(x1,...,xd) in Hd
m(R) by [ u

(x1,...,xd) ]. Recall

that, for any e ∈ N, there is a canonical isomorphism F eR(Hd
m(R)) ∼= Hd

m(R),

under which we may simply write [ u
(x1,...,xd) ]q

Hd
m(R)

= [ uq

(xq
1,...,x

q
d)

]. By colon-

capturing, we see that [ u
(x1,...,xd) ] ∈ 0∗

Hd
m(R)

if and only if u ∈ (x1, . . . , xd)
∗
R

(cf. [Sm, Proposition 2.5]). This implies that b is a weak test element for

0 ⊂ Hd
m(R). (Indeed, for any [ u

(x1,...,xd) ] ∈ 0∗
Hd

m(R)
, we have u ∈ (x1, . . . , xd)

∗
R.

Then buq ∈ (x1, . . . , xd)
[q] for all q ≥ q0, which implies b[ u

(x1,...,xd) ]q
Hd

m(R)
=

[ buq

(xq
1,...,x

q
d)

] = 0 ∈ F e(Hd
m(R)) for all q ≥ q0.) Consequently, b is a weak test

element for 0 ⊂ F e(Hd
m(R)) for all e ∈ N. Thus, by Proposition 2.1, there

exists a test exponent, say Q = pE , for c and Hd
m(R). �

Now we are ready to give a new proof of R. Y. Sharp’s result about a
uniform test exponent for c ∈ R◦ and all ideals generated by systems of
parameters.

Theorem 2.4 (Sharp, [Sh, Theorem 3.2]). Let (R,m) be an equidimensional
excellent local ring of prime characteristic p and c ∈ R◦. Then there exists
a test exponent for c and all ideals generated by (partial or full) systems of
parameters of R.

Proof. Say dim(R) = d. By Proposition 2.3, there is a test exponent Q for c

and Hd
m(R). Here we keep the same usage of [ u

(x1,...,xd) ] as in the above proof

of Proposition 2.3.
Now, it suffices to show that Q is a test exponent for c and (x1, . . . , xi) ⊆ R

for any (partial or full) system of parameters x = x1, . . . , xi of R. But,
then, it suffices to verify the case where x = x1, . . . , xd is any full system of
parameters, since for any q, cuq ∈ (xq1, . . . , x

q
i , x

qt
i+1, . . . , x

qt
d ) for all t if and

only if cuq ∈ (xq1, . . . , x
q
i ).

Finally, for any u ∈ R and q ≥ Q, suppose cuq ∈ (x)[q] = (xq1, . . . , x
q
d).

This implies c[ u
(x1,...,xd) ]q

Hd
m(R)

= 0 ∈ F eR(Hd
m(R)). Thus, by the choice of Q,

[ u
(x1,...,xd) ] ∈ 0∗

Hd
m(R)

, which forces u ∈ (x1, . . . , xd)
∗
R by colon-capturing as in

Proposition 2.3 (cf. [Sm, Proposition 2.5]). �

Next, we state a corollary of the theorem above.
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Corollary 2.5. Let (R,m) be an equidimensional excellent local ring of prime
characteristic p and c ∈ R◦. Then there exists a test exponent for c/1 and all
ideals generated by (partial or full) systems of parameters of RP (over RP )
for all P ∈ Spec(R).

Proof. By Theorem 2.4, there exists a test exponent, Q = pE , for c and
all ideals generated by (partial or full) systems of parameters of R. Fix an
arbitrary P ∈ Spec(R). It suffices to show that Q is a test exponent for c/1
and all ideals generated by (partial or full) systems of parameters of RP (over
RP ). Then, again, it suffices show that Q is a test exponent for c and all
ideals generated by (full) systems of parameters of RP (over RP ).

Say dim(RP ) = h. Then by prime avoidance, there exists x = x1, . . . , xh ∈
P such that x is a (partial) system of parameters of R. Then, for any 0 <
n ∈ N, xn := xn1 , . . . , x

n
h is also a (partial) system of parameters of R and,

moreover, xn1/1, . . . , x
n
h/1 is a (full) system of parameters of RP .

Let y = y1, . . . , yh be any full system of parameters of RP . We need to
prove that Q is a text exponent for c/1 and (y) ⊂ RP in order to finish the
proof. As there exists a positive integer n ∈ N such that (xn1 , . . . , x

n
h)RP ⊆ (y),

it suffices to prove that Q is a text exponent for c/1 and (xn1 , . . . , x
n
h)RP ⊂ RP

by Lemma 1.4(3).
Now suppose (c/1)vq ∈ (xn1 , . . . , x

n
h)[q]RP for some v ∈ RP and q ≥ Q.

Without loss of generality, we may assume v = u/1 with u ∈ R. That is,
there exists s ∈ R \ P such that scuq ∈ (xn1 , . . . , x

n
h)[q]R. Hence c(su)q ∈

(xn1 , . . . , x
n
h)[q]R, which implies su ∈ (xn1 , . . . , x

n
h)∗R. Therefore, v = u/1 ∈

(xn1 , . . . , x
n
h)∗RRP ⊆

(
(xn1 , . . . , x

n
h)RP

)∗
RP

. �

3. Modules with finite (phantom) projective dimension

Question 3.1. Assume (R,m) is an equidimensional local ring of prime char-
acteristic p that is either excellent or a homomorphic image of a Cohen-
Macaulay ring. For a given c ∈ R◦, does there exist a test exponent for c
and all finitely generated R-modules of finite phantom projective dimension?

If R is Cohen-Macaulay, then it is known that phantom projective di-
mension is the same as projective dimension. For this reason, the following
theorem may be viewed as a partial answer to the above question.

Theorem 3.2. Let (R,m) be a Cohen-Macaulay Noetherian local ring of
prime characteristic p with dim(R) = d. Fix any c ∈ R, if Q = pE is a
test exponent for c and all ideals generated by (full) systems of parameters of
R, then Q is a test exponent for c and all R-modules of finite length and of
finite projective dimension.

Proof. Let M 6= 0 be a typical R-module such that λ(M) <∞ and pd(M) <

∞. Suppose cuq
′

= 0 ∈ F e′(M) for some u ∈ M, q′ ≥ Q. We need to show
u ∈ 0∗M .
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Fix a minimal projective resolution G• of M as follows

G• : 0 −→ Gd
φd−→ Gd−1

φd−1−→ · · · φ2−→ G1
φ1−→ G0 −→ 0.

Then choose a system of parameters x of R such that (x) ⊆ AnnR(u) and
construct the Koszul complex K•(x,R) as follows

K•(x,R) : 0 −→ Kd
ψd−→ Kd−1

ψd−1−→ · · · ψ2−→ K1
ψ1−→ K0 −→ 0,

where Ki = R(d
i). In particular, ψd is represented by matrix (x1, x2, . . . , xd)

and the 0-th homology of K•(x,R) is R/(x). Thus the R-linear map h :
R/(x) → M = H0(G•) sending the class of 1 to u can be lifted to a chain

map g• : K•(x,R)→ G•. Denote g0(1) = y. Then cyq
′ ∈ (Image(φ1))

[q′]
G0

and
we now only need to show y ∈ (Image(φ1))∗G0

.

For every q, there is an induced R-linear chain map g
[q]
• : F e(K•(x,R))→

F e(G•). Now the fact that cyq
′ ∈ (Image(φ1))

[q′]
G0

(i.e., cuq
′

= 0) implies

that the chain map cg
[q′]
• is homotopic to the zero chain map. In particular,

there exists δd−1 ∈ HomR(F e
′
(Kd−1), F e

′
(Gd)) such that cg

[q′]
d = δd−1 ◦ψ[q′]

d .
Applying HomR(−, R), we get

c(Image(Hom(gd, R)))
[q′]
Kd

= Image(Hom(cg
[q′]
d , R))

⊆ Image(Hom(ψ
[q′]
d , R)) = (x)[q′],

which implies Image(Hom(gd, R)) ⊆ (x)∗R since q′ ≥ Q. That is to say that
there exists b ∈ R◦ such that

Image(Hom(bg
[q]
d , R)) = b Image(Hom(g

[q]
d , R))

= b(Image(Hom(gd, R)))
[q]
R ⊆ (x)[q] = Image(Hom(ψ

[q]
d , R))

for all q � 0. Therefore, the chain maps

Hom(bg
[q]
• , R) : Hom(F e(G•), R)→ Hom(F e(K•(x,R)), R)

are homotopic to 0 for all q � 0. Hence, there exist ε
[q]
1 ∈ HomR(F eG1), F e(K0))

such that Hom(bg
[q]
0 , R) = ε

[q]
1 ◦ Hom(φ

[q]
1 , R) for all q � 0. This, after going

through Hom(−, R), would in turn imply

byq ∈ b(Image(g0))
[q]
G0

= Image(bg
[q]
0 ) ⊆ Image(φ

[q]
1 ) = (Image(φ1))

[q]
G0
,

for all q � 0. We now conclude that y ∈ (Image(φ1))∗G0
and the proof is

complete. �

We remark that the above argument of using homotopy to determine mem-
bership in the tight closure has appeared in [Ab2].
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Corollary 3.3. Let (R,m) be a Cohen-Macaulay Noetherian excellent local
ring of prime characteristic p. Then, for any c ∈ R◦, there is a test exponent
for c and all R-modules of finite length and of finite (phantom) projective
dimension.

Proof. This follows from Theorem 0.7 and Theorem 3.2. �

We also notice that Question 3.1 reduces to the Cohen-Macaulay case if
dim(R) ≤ 2.

Corollary 3.4. Let (R,m) be an equidimensional excellent Noetherian local
ring of prime characteristic p with dim(R) ≤ 2. Then, for any given c ∈ R◦,
there exists a test exponent for c and all R-modules of finite length and of
finite phantom projective dimension.

Proof. By [HH1, Definition 9.1], we observe that any R-module of finite length
and of finite phantom projective dimension over R remains so after we extend
the scalar to the integral closure of R/P in its fraction field for every P ∈
min(R). Therefore, by Lemma 1.2 and Lemma 1.3, we may assume that R
is normal without loss of generality. (We may assume that R is complete as
well.) But now R is excellent Cohen-Macaulay and the claim follows from
Corollary 3.3. �

Lastly, we remark that Corollary 3.3 plays an important role in an upcom-
ing paper [HY], where the F-rational signature is defined and studied. To
be specific, the existence of a uniform test exponent allows us to characterize
F-rationality in terms of the (phantom) F-rational signature being positive.
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