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Abstract. We show that, under mild conditions, the (normalized) Frobenius splitting
numbers of a local ring of prime characteristic are lower semicontinuous.

1. Introduction and terminology

Throughout this paper, all rings are assumed to be commutative Noetherian of positive
characteristic p with p prime (unless stated otherwise explicitly). Let q = pe denote a power
of the characteristic of the ring with e > 0. By a local ring (R,m, k) we mean a Noetherian
ring R with only one maximal ideal m and the residue field k.

In recent years, a number of authors have studied a sequence of numbers associated to a
local ring (R,m, k) of prime characteristic p > 0, called here the Frobenius splitting numbers,
that arise naturally in connection to the Frobenius homomorphism F : R → R, F (r) = rp,
for all r ∈ R.

Let us assume that R is reduced and denote by R1/q the ring of qth roots of elements in R
where q = pe with e > 0. Further assume that R is F-finite, which by definition means that
R1/q is module finite over R for all q. Write

R1/q ∼= R⊕ae ⊕Me,

which is a direct sum decomposition of R1/q overR such thatMe has no free direct summands.
The number ae is called the eth Frobenius splitting number of R and much work has been
dedicated to investigating the size of these numbers as in [8, 1, 2, 3, 13, 15, 16]. They are
intimately connected to the notions of F-purity and strong F-regularity and in fact they can
be defined more generally for local rings of prime characteristic, F-finite or not.

Our main result of the paper states that under mild conditions these numbers are lower
semicontinuous, and therefore they exhibit a natural geometric behavior. In fact, we con-
jecture that the lower semicontinuity of these numbers holds for all excellent locally equidi-
mensional rings.

We will now proceed to define the (normalized) Frobenius splitting numbers of a (not
necessarily F-finite or reduced) Noetherian local ring (R,m, k).

For any e > 0, we let R(e) be the R-algebra defined as follows: as a ring R(e) equals R while
the R-algebra structure is defined by r · s = rqs, for all r ∈ R, s ∈ R(e). Note that when R is
reduced we have that R(e) is isomorphic to R1/q as R-algebras. Also, R(e) as an R(e)-algebra
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is simply R as an R-algebra. For example, given an ideal I of R, we have R/I ⊗R R(e) is
(naturally isomorphic to) R/I [q], in which I [q] is the ideal of R generated by {xq : x ∈ I}.

Let E = ER(k) denote the injective hull of the residue field k = R/m. We have a natural
short exact sequence of R-modules:

0→ k
ψ→ E

φ→ E/k → 0,

which induces an exact sequence

R(e) ⊗R k
1⊗ψ−→ R(e) ⊗R E

1⊗φ−→ R(e) ⊗ E/k −→ 0.

One can see that Ke := Im(1 ⊗R ψ) is finitely generated over R(e) and killed by m[q].
Therefore it has finite length as an R(e)-module.

Let u be a socle generator of E. The reader can note that Ke is in fact the R(e)-submodule
of R(e) ⊗R E generated by 1⊗ u.

Definition 1.1. Let (R,m, k) be a local ring of positive prime characteristic p > 0 and let
e > 0. Also let E = E(k), ψ, φ and Ke be as above.

(1) the eth normalized Frobenius splitting number of R, denoted by se(R), is defined as

se(R) :=
λR(e)(Ke)

qdim(R)
=
λR(e)(Im(1⊗R ψ))

qdim(R)
.

(2) in the particular case when R is F-finite, let α(R) = logp[k : kp] so that [k : kq] = qα(R)

for all q = pe. Then the eth Frobenius splitting number of R, denoted by ae(R), is
defined as

ae(R) = se(R) · qdim(R)+α(R).

(3) also, for a prime ideal P in R, we will use se(P ) and ae(P ) to denote se(RP ) and
ae(RP ) respectively.

The reader should note that Yao has shown in [16, Lemma 2.1] that when R is F-finite
the numbers ae(R) are exactly the numbers ae (mentioned earlier in the introduction) such
that

R(e) = R⊕ae ⊕Me,

is a direct sum decomposition of R(e) over R where Me has no free direct summands.
Yao has showed the following characterization of regular local rings which emphasizes the

importance of these numbers in full generality, see [16, Lemma 2.5]. The corresponding
result for F-finite rings was known from work of Huneke and Leuschke [8].

Theorem 1.2. Let (R,m, k) be a local ring of positive characteristic p, where p is prime.
Then R is regular if and only if

se(R) = 1 for some (equivalently, for all) e > 1.

One important point to make is that if R is F-finite reduced then the Frobenius splitting
numbers can be defined directly as we did at the beginning of our introduction, while in the
general case it is necessary to first consider the normalized Frobenius splitting numbers.
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We remark that the limit of the sequence of normalized Frobenius splitting numbers,
when it exists, is a remarkable invariant of the ring, namely the F-signature. That is, the
F-signature of R, denoted s(R), equals

s(R) := lim
e→∞

se(R) if it exists.

In fact, this is why se(R) is called the eth normalized Frobenius splitting number.
In general, we have an upper F-signature (respectively, lower F-signature) of R defined by

s+(R) = lim supe→∞ se(R) (respectively, s−(R) = lim infe→∞ se(R)). An important result
states that for an excellent local ring R, s+(R) > 0 if and only if s−(R) > 0 if and only if R
is strongly F-regular (see [4, Theorem 0.2] and [16, Theorem 1.3 (2)]). For more information
on the Frobenius splitting numbers, the F-signature and related concepts, we refer the reader
to [8, 1, 2, 3, 4, 13, 15, 16].

2. The conjecture

We are now in position to state the aim of our paper. We remind the reader that a function
f : X → R, with X a topological space, is lower semicontinuous if the set X6r := {x ∈ X :
f(x) 6 r} is closed or, equivalently, X>r := {x ∈ X : f(x) > r} is open for all r ∈ R.

A ring (R,m, k) is equidimensional if dim(R/P ) = dim(R) for all minimal primes P of R.
A ring R is locally equidimensional if RP is equidimensional for all P ∈ Spec(R). If P ⊆ Q
are prime ideals in an equidimensional and catenary ring R, then ht(Q) = ht(P ) + ht(Q/P )
(see [11, Lemma 2 on page 250]).

It is also helpful to remind the reader of the following notations: for any ideal P in R, we
denote V (I) := {P ∈ Spec(R) : I ⊆ P} which is a closed subset in Spec(R). For x ∈ R, we
denote D(x) := {Q ∈ Spec(R) : x /∈ Q} which is an open subset of Spec(R).

Conjecture 2.1. Let R be a Noetherian ring of prime characteristic p and fix e > 0. Let
se : Spec(R)→ Q be defined by

se(P ) := se(RP ), ∀P ∈ Spec(R).

If R is excellent and locally equidimensional, then se is lower semicontinuous.

In this paper we will show that Conjecture 2.1 holds true in many significant cases. In
light of the fact that the F-signature and the Hilbert-Kunz multiplicity of a ring exhibit at
times parallel behavior, it is perhaps interesting to note here that Shepherd-Barron proved
in [12] that the Hilbert-Kunz functions are upper semicontinuous for an excellent and locally
equidimensional ring of prime characteristic.

First we note the following rather general fact.

Proposition 2.2. Let R be a Noetherian ring (not necessarily of prime characteristic p) and
M a finitely generated R-module. For a prime ideal P of R, let #P (M) equal the maximal
number of free copies of RP as direct summands in MP . Consider the function

Spec(R)→ Q defined by P 7→ #P (M).

Then this function is lower semicontinuous.
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Proof. Let r ∈ R and P ∈ Spec(R) such that #P (M) > r. Let n = #P (M). Then there
exists a R-linear surjection

MP → R⊕nP → 0.

Note that (HomR(M,Rn))P ∼= HomRP
(MP , R

⊕n
P ) and so one can lift the above surjection

to φ ∈ HomR(M,R⊕n), which gives the following exact sequence

M
φ−→ R⊕n −→ C −→ 0,

in which C is the cokernel of φ. This forces CP = 0 as φP is surjective.
But CP = 0 implies that there exists x 6∈ P such that Cx = 0, which gives the following

exact sequence

Mx
φx−→ R⊕nx −→ 0.

Thus, for all Q ∈ D(x) = {Q ∈ Spec(R) : x /∈ Q}, there is an exact sequence

MQ −→ R⊕nQ −→ 0,

which implies that #Q(M) > n > r for all Q in the open set D(x). �

Lemma 2.3. Let R be a ring of prime characteristic p, F-finite and locally equidimensional.
Then, on a connected component of Spec(R), the number dim(RP ) + α(RP ) is constant,

in which α(RP ) is as described in Definition 1.1 (2).

Proof. This was essentially proved by Kunz in [9, Corollary 2.7]. �

Remark 2.4. The reader should be aware that Kunz states his result under the hypothesis
that R is equidimensional. In the generality stated in [9] the result is not correct as Shepherd-
Barron showed in [12].

The error in the proof of Kunz is in the last line of his proof where he assumes without
proof that ht(Q) = ht(P ) + ht(Q/P ) for prime ideals P ⊆ Q in R. For our Lemma stated
above, this follows from the condition that R is locally equidimensional: if we localize at Q
we get an equidimensional ring RQ and in an equidimensional excellent local ring the relation
holds as remarked at the beginning of this section (cf. [11, Lemma 2 on page 250]).

As an immediate consequence we obtain:

Corollary 2.5. Let R be a F-finite locally equidimensional ring of positive characteristic p,
p prime. Define ae : Spec(R)→ Q by ae(P ) = ae(RP ) (the F-finite property localizes, so the
definition is possible).

Then the Frobenius splitting numbers and the normalized Frobenius splitting numbers are
lower semicontinuous, i.e., both se and ae are lower semicontinuous functions for all e.
Moreover, these functions are proportional on each connected component of Spec(R) (with a
possibly different factor of proportionality on each component).

Proof. As remarked earlier, we have the relationship

ae(RP ) = se(RP ) · qdim(RP )+α(RP ), ∀P ∈ Spec(R).

Since lower semicontinuity can be checked on each connected component of Spec(R), we
may assume Spec(R) is connected without loss of generality.
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But then ae(P ) = ae(RP ) and se(P ) = se(RP ) are proportional, as dim(RP ) + α(RP ) is
constant by Lemma 2.3. Hence it suffices to show ae is lower semicontinuous.

Also note that ae(RP ) is simply #P (R(e)) as in Proposition 2.2. Since R(e) is finitely
generated over R because R is F-finite, we can apply Proposition 2.2 and conclude that ae is
lower semicontinuous. This implies that se is lower semicontinuous as well by the fact that
they are related by proportionality. �

This Corollary answers our Conjecture 2.1 in the F-finite case. Much more work will be
needed if we are not under the presence of the F-finite condition as our next sections will
show.

We will need the following criteria attributed to Nagata; see [10].

Proposition 2.6. Let R be a Noetherian ring and U be a subset of Spec(R). Then U is
open if and only if both of the following statements hold

(i) if P ∈ U , Q ∈ Spec(R) and Q ⊆ P , then Q ∈ U .
(ii) for all P ∈ U , U ∩ V (P ) contains a nonempty open subset of V (P ); or equivalently,

for all P ∈ U , there exists x ∈ R \ P such that D(x) ∩ V (P ) ⊆ U .

3. Homomorphic images of regular rings

Throughout this section we let R = S/I where S is a regular ring of prime characteristic
p and I an ideal of S. As always q = pe.

Proposition 3.1. Let R = S/I be a homomorphic image of regular local ring (S, n, k). Then

se(R) · qdim(R) = λS

(
S

n[q] : (I [q] : I)

)
= λS

(
(I [q] : I) + n[q]

n[q]

)
,

for any nonnegative integer e.

Proof. We can make a faithfully flat extension of S (and hence R) by first completing and
then enlarging the residue field of S (and hence R) to its algebraic closure. This flat local
extension has its closed fiber equal to a field. Note that the rings are F-finite after extension.

In [16, Remark 2.3 (3)], it is shown that the normalized Frobenius splitting number is un-
changed under such extensions. Also, λS

(
S

n[q]:(I[q]:I)

)
is not affected under such an extension.

So, it is enough to check the equality se(R) · qdim(R) = λS
(

S
n[q]:(I[q]:I)

)
under the additional

hypothesis that R is F-finite and this is observed in [2] (see the remarks immediately after
[2, Theorem 4.2]). (The reader might be also interested in [5, 6].)

Finally, the equality λS
(

S
n[q]:(I[q]:I)

)
= λS

( (I[q]:I)+n[q]

n[q]

)
holds true by Matlis Duality as shown

in [2, page 11]. �

We will also need the following lemma. A proof is included for completeness.

Lemma 3.2. Let R be a Noetherian ring, P a prime ideal in R and L ⊆ M be R-modules
such that M/L is finitely generated over R. Assume that λRP

(MP/LP ) = n <∞.
Then there exists x ∈ R \ P and a filtration of Rx-modules

Lx = M0 ⊆M1 ⊆ · · · ⊆Mn = Mx



6 FLORIAN ENESCU AND YONGWEI YAO

such that Mi/Mi−1
∼= (R/P )x for all i = 1, . . . , n.

Proof. Let L = N0 ⊆ N1 ⊆ · · · ⊆ Nr = M be a prime filtration of L ⊆ M such that
Ni/Ni−1

∼= R/Qi, where Qi ∈ Spec(R) for i = 1, . . . , r.
For each of the indices i such that Qi 6⊆ P , choose xi ∈ Qi but not in P . Let x be

the product of all these elements xi. Tensoring the original filtration with Rx, we get
(Ni/Ni−1)x ∼= (R/Qi)x = 0 for all these i (such that Qi 6⊆ P ).

For the remaining indices j (so that Qj ⊆ P ), since (M/L)P has finite length over RP , we
conclude that λRP

((R/Qj)P ) <∞, which forces Qj = P in this case. Moreover, we see that
there are precisely n many indices j such that Qj = P .

Thus, by tensoring L = N0 ⊆ N1 ⊆ · · · ⊆ Nr = M with Rx, removing the repeated terms
and relabeling everything properly, we obtain a required filtration over Rx. �

Lemma 3.3. Let A→ B be a flat homomorphism of Noetherian rings and consider

M0 ⊆M1 ⊆ · · · ⊆Mn,

which is a filtration of A-modules. Write Mi/Mi−1 = Ni for i = 1, . . . , n. Assume that x is
a sequence in B that is regular on Ni ⊗A B for all i = 2, . . . , n.

(1) there is the following natural isomorphism

M1 ⊗B + (x)(Mn ⊗B)

M0 ⊗B + (x)(Mn ⊗B)
∼=
M1

M0

⊗ B

(x)B
.

(2) assume furthermore that λB

(
Ni⊗AB

(x)(Ni⊗AB)

)
<∞ for i = 1, . . . , n. Then

λB

(
Mn

M0

⊗A
B

(x)B

)
=

n∑
i=1

λB

(
Ni ⊗A

B

(x)B

)
.

Proof. Since A → B is a flat ring homomorphism, the hypotheses on the given filtration
of A-modules are stable under the scalar extension along A → B. Thus, without loss of
generality, we assume A = B. And we choose to use A when presenting the proof.

(1) Note that x is a regular sequence on Mn/M1 by a routine short exact sequence argu-
ment. Next, consider the short exact sequence

0 −→M1/M0 −→Mn/M0 −→Mn/M1 −→ 0.

Tensoring with A/(x)A, we get

0 −→ M1

M0

⊗ A

(x)A
−→ Mn

M0

⊗ A

(x)A
−→ Mn

M1

⊗ A

(x)A
−→ 0,

since the Koszul homology H1

(
x, Mn

M1

)
= 0. But also note the natural isomorphisms

Mn

M0

⊗ A

(x)A
∼=

Mn

M0 + (x)Mn

and
Mn

M1

⊗ A

(x)A
∼=

Mn

M1 + (x)Mn

.

So using these natural isomorphisms, one sees M1

M0
⊗ A

(x)A
∼= M1+(x)Mn

M0+(x)Mn
, which finishes the

proof of this part.
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(2) Consider a piece of the filtration, which gives a short exact sequence

0 −→ Mi−1

M0

−→ Mi

M0

−→ Mi

Mi−1

−→ 0, i = 2, . . . , n.

Note that since x are a regular sequence on Ni, we get that the Koszul homology H1(x, Ni) =
0. Applying the long exact sequence of Koszul homology with respect to x, we get an exact
sequence as follows

0 −→ Mi−1

M0

⊗A
A

(x)A
−→ Mi

M0

⊗A
A

(x)A
−→ Mi

Mi−1

⊗A
A

(x)A
−→ 0.

Using the additivity of the length function and summing over all such short exact sequences
for 2 = 1, . . . , n, we obtain that

λA

(
Mn

M0

⊗ A

(x)A

)
=

n∑
i=1

λA

(
Mi

Mi−1

⊗ A

(x)A

)
=

n∑
i=1

λA

(
Ni ⊗

A

(x)A

)
. �

Theorem 3.4. Let R be a homomorphic image of a regular ring of prime characteristic p
and assume that R is excellent and locally equidimensional.

Then the normalized Frobenius splitting numbers are lower semicontinuous, i.e., se is lower
semicontinuous for every e > 0.

Proof. Using the notations introduced at the beginning of the section we let R = S/I. Let
P = P/I be a prime ideal of R, in which P is a prime ideal of S containing I. Quite
generally, denote Q := Q/I for all Q ∈ Spec(S) ∩ V (I). Let K = (I [q] :S I), an ideal in S.

Let m := λSP

((
K+P [q]

P [q]

)
P

)
. Then Proposition 3.1 allows us to write

se(P ) = λSP

((
K + P [q]

P [q]

)
P

)
· 1

qht(P/I)
= m · 1

qht(P/I)
.

Consider P [q] ⊆ K + P [q] ⊆ S. Applying Lemma 3.2 to P [q] ⊆ K + P [q] and K + P [q] ⊆ S,
we can find x in S \ P and a filtration

P [q]
x = M0 ⊆M1 ⊆ · · · ⊆Mm ⊆Mm+1 ⊆ · · · ⊆Mm+n = Sx

such that Mm = (K + P [q])x and Mi/Mi−1
∼= (S/P )x for all i = 1, . . . ,m+ n.

Since R is excellent, the regular locus of S/P is open (and non-empty), so there exists
y /∈ P such that R/P = S/P becomes regular when localizing at y. We can replace x by xy
and hence simply assume that (S/P )x is in fact regular.

Consider any Q ∈ D(x) ⊆ Spec(S) such that P ⊆ Q. Since (S/P )x is regular we obtain
that (S/P )Q is regular as well. Let us choose x = x1, . . . , xd in S such that their images
in (S/P )Q form a regular system of parameters (of the regular local ring (S/P )Q). More
explicitly, we have QQ = (P + (x))Q and d = dim((R/P )Q) = ht(Q/P ).

Note that Proposition 3.1 also allows us to write

se(Q/I) = λSQ

((
K +Q[q]

Q[q]

)
Q

)
· 1

qht(Q/I)
= λSQ

((
K + (P + (x))[q]

P [q] + (x)[q]

)
Q

)
· 1

qht(Q/I)
.
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Remember that m = λSP

((
K+P [q]

P [q]

)
P

)
and d = ht(Q/P ), which equals dim(RQ)−dim(RP )

since R is locally equidimensional.
Our plan is to show that

(∗) λSQ

((
K + (P [q] + (x)[q])

P [q] + (x)[q]

)
Q

)
= m · λSQ

((
S

P + (x)[q]

)
Q

)
= m · qd.

This will show that se(Q/I) = se(P/I).
In order to prove our claim let us return to the filtration we considered above

P [q]
x = M0 ⊆M1 ⊆ · · · ⊆Mm ⊆Mm+1 ⊆ · · · ⊆Mm+n = Sx,

in which Mm = (K + P [q])x and Mi/Mi−1
∼= (S/P )x for all i = 1, . . . ,m+ n.

Applying Lemma 3.3 (1) to the filtrationM0 ⊆Mm ⊆ · · · ⊆Mm+n with A = Sx → B = SQ
and the sequence x[q] := xq1, . . . , x

q
d which is regular on (S/P )Q, we get

(†)
(

(K + P [q]) + (x)[q]

P [q] + (x)[q]

)
Q

∼=
(K + P [q])x

P [q]
x

⊗ SQ
(x)[q]SQ

.

Then, applying Lemma 3.3 (2) to the filtration M0 ⊆M1 ⊆ · · · ⊆Mm, we see

λSQ

(
(K+P [q])x

P [q]
x
⊗ SQ

(x)[q]SQ

)
=

m∑
i=1

λSQ

((
S
P

)
x
⊗ SQ

(x)[q]SQ

)
= m · λSQ

(
SQ

(P+(x)[q])SQ

)
.

Since x are a regular system of parameters on (S/P )Q, we deduce λSQ

(
SQ

(P+(x)[q])SQ

)
=

qd = qht(Q/P ) and hence

(‡) λSQ

(
(K + P [q])x

P [q]
x

⊗ SQ
(x)[q]SQ

)
= m · qd = m · qht(Q/P ).

Combining (†) and (‡), we see our claim (∗) that λSQ

((K+(P [q]+(x)[q])

P [q]+(x)[q]

)
Q

)
= m · qht(Q/P ),

which then implies

se(Q/I) = λSQ

((
K + (P + (x))[q]

P [q] + (x)[q]

)
Q

)
· 1

qht(Q/I)

= m · qht(Q/P ) · 1

qht(Q/I)
= λSP

((
K + P [q]

P [q]

)
P

)
· 1

qht(P/I)
= se(P/I).

In summary, for any given prime ideal P/I of R (i.e., P ∈ V (I) ⊆ Spec(S)), there is
x ∈ S \ P such that sq(Q/I) = se(P/I) for all Q ∈ D(x) ∩ V (P ).

Now, to prove the lower semicontinuity of se : Spec(R) → Q, let r ∈ R be a number
and let U = {Q : se(Q) > r} ⊆ Spec(R). To show that U is open it is enough to apply
Proposition 2.6.

Part (i) in Proposition 2.6 is satisfied by [16, Proposition 5.2] where it is shown that
the normalized Frobenius splitting numbers can only increase by localization over a locally
equidimensional ring.
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Part (ii) follows from what we just proved earlier: For any P = P/I ∈ U , the work right
above shows D(x) ∩ V (P ) ⊆ U , in which x ∈ S \ P is as obtained above and x denotes the
image of x in R. This completes the proof. �

Remark 3.5. The reader should note that under the conditions of Theorem 3.4, the same
proof shows that the set X>r = {Q ∈ Spec(R) : se(Q) > r} is open for all r ∈ R.

4. Gorenstein excellent rings

We state the following lemma about Gorenstein rings.

Lemma 4.1. Let (R,m, k) be a local Gorenstein ring of prime positive characteristic p and
dimension d. Let x = x1, . . . , xd be any system of parameters for R.

Then, for any u ∈ R such that its image generates the socle of R/(x), we have

se(R) · qd = λ

(
Ruq + (x)[q]

(x)[q]

)
for all e > 0.

(When dim(R) = 0, we agree that (x) = 0 by convention.)

Proof. Note that the statement is clear when dim(R) = 0. (In fact, the following proof also
works for the case of dim(R) = 0 if we agree that x = 1 and (x)[n] = 0 for all n > 0.)

Denote x :=
∏d

i=1 xi and (x)[n] := (xn1 , . . . , x
n
d) for all n > 0. As R is Gorenstein, the

injective hull of k = R/m can be obtained as

E = ER(k) = lim−→

{
R

(x)

·x−→ R

(x)[2]

·x−→ · · · ·x−→ R

(x)[n]

·x−→ R

(x)[n+1]

·x−→ · · ·
}
.

Note that all the maps in the direct system above are injective.
Consider the R-linear injective map f : k = R

m

·u→ R
(x)

defined by f(r + m) = ru + (x) for

r ∈ R, which induces an injective R-linear map ψ : k → E as all the maps in the direct
system above are injective.

By Definition 1.1, we see

se(R) · qd = λR(e)

(
Im
(
R(e) ⊗R k

1⊗ψ−→ R(e) ⊗R E
))

.

Moreover, by the property of tensor product and direct limit, we see

R(e) ⊗R E = lim−→
{
R(e) ⊗ R

(x)

1⊗(·x)−→ · · · 1⊗(·x)−→ R(e) ⊗ R
(x)[n]

1⊗(·x)−→ R(e) ⊗ R
(x)[n+1]

1⊗(·x)−→ · · ·
}
.

Thus, the image of the homomorphism R(e) ⊗R k
1⊗ψ−→ R(e) ⊗R E is exactly the image of

R(e) ⊗R R
m

in the direct limit of the following direct system

R(e) ⊗ R
m

1⊗(·u)−→ R(e) ⊗ R
(x)

1⊗(·x)−→ · · · 1⊗(·x)−→ R(e) ⊗ R
(x)[n]

1⊗(·x)−→ R(e) ⊗ R
(x)[n+1]

1⊗(·x)−→ · · · .

However, by the meaning of R(e), the above direct system can be written as

R

m[q]

·uq

−→ R

(x)[q]

·xq

−→ · · · ·x
q

−→ R

(x)[nq]

·xq

−→ R

(x)[n+1]q

·xq

−→ · · · ,
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in which R
(x)[nq]

·xq

−→ R
(x)[(n+1)q] is injective for every n since x is regular on R.

Putting things together, we see

se(R) · qd = λR(e)

(
Im
(
R(e) ⊗R k

1⊗ψ−→ R(e) ⊗R E
))

= λR

(
Im

(
R

m[q]

·uq

−→ R

(x)[q]

))
= λR

(
Ruq + (x)[q]

(x)[q]

)
. �

Theorem 4.2. Let R be an excellent Gorenstein ring. Then the normalized Frobenius split-
ting numbers are lower semicontinuous, i.e., se is lower semicontinuous for every e > 0.

Proof. Let r ∈ R and let P be a prime ideal in R such that se(P ) > r.
By prime avoidance, we can choose x = x1, . . . , xk that is a regular sequence on R such

that their images form a system of parameters on RP , where k = ht(P ). Let u ∈ R be such
that its image in RP generates the socle modulo (x), the ideal generated by x.

Let m := λRP

(( (uq)+(x)[q]

(x[q])

)
P

)
. By Lemma 4.1 we get that

m = λRP

(((uq) + (x)[q]

(x[q])

)
P

)
= se(P ) · qht(P ).

Now we proceed as in the proof of Theorem 3.4. Applying Lemma 3.2 to (x)[q] ⊆ (uq) +
(x)[q] ⊆ R and (x) ⊆ (u) + (x) ⊆ R, we therefore obtain x ∈ R \ P and filtrations

(x)[q]
x = M0 ⊆M1 ⊆ · · · ⊆Mm ⊆Mm+1 ⊆ · · · ⊆Mm+n = Rx(4.2.1)

and (x)x = N0 ⊆ N1 ⊆ · · · ⊆ Nt = Rx,(4.2.2)

in which Mm = ((uq) + (x)[q])x, N1 = (Ru + (x))x, and Mi/Mi−1
∼= Nj/Nj−1

∼= (R/P )x for
all i = 1, . . . ,m+ n and all j = 1, . . . , t.

Similarly, since R is excellent and thus the regular locus of R/P is open, we may just as
well further assume that (R/P )x is regular.

Let Q be any prime ideal in D(x) ∩ V (P ). As (R/P )Q is regular, let y = y1, . . . , yh be
chosen such that their images in (R/P )Q form a regular system of parameters. (In particular,
we have QQ = (P + (y))Q and h = ht(Q/P ).) It then follows that y is a regular sequence on
(R/(x))Q (because of the filtration (4.2.1)). Thus x,y form a system of parameters of RQ.

As in the proof of Theorem 3.4, we apply Lemma 3.3 to the filtration (4.2.1) and Rx → RQ

to deduce that

λRQ

((
(uq) + (x)[q] + (y)[q]

(x)[q] + (y)[q]

)
Q

)
= m · qh = m · qht(Q/P ).

Next, we show that the image of u generates the socle of
(

R
(x,y)

)
Q

: Note that RQ is

Gorenstein and QRQ = (P + (y))RQ. Applying Lemma 3.3 (1) to the filtration (4.2.2),
Rx → RQ and the sequence y that is regular on (R/P )Q, we deduce that the image of u
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generates the following submodule in
(

R
(x,y)

)
Q(

(u) + (x) + (y)

(x) + (y)

)
Q

=

(
N1 + (y)Nt

N0 + (y)Nt

)
Q

∼=
N1

N0

⊗ RQ

(y)RQ

∼=
R

P
⊗ RQ

(y)RQ

=
RQ

(P + (y))RQ

∼=
RQ

QRQ

.

Thus, as RQ is Gorenstein, the image of u generates the socle of
(

R
(x,y)

)
Q

.

Applying again Lemma 4.1 to RQ and x,y, we get that

se(Q) · qht(Q) = m · qht(Q/P ) = se(P ) · qht(P )+ht(Q/P ).

Note that ht(P )+ht(Q/P ) = ht(Q) because R is Gorenstein, hence locally equidimensional.
So in summary, we see

se(Q) = se(P ) for all Q ∈ D(x) ∩ V (P ).

Finally, we show the lower semicontinuity of the normalized Frobenius splitting numbers
by applying Proposition 2.6. Note that the normalized Frobenius splitting number can only
increase under localization by in [16, Proposition 5.2]. Thus we need to check only part (ii)
of Proposition 2.6 for U = {Q : se(Q) > r}. But part (ii) is clear by now since, for any
P ∈ U , there is x ∈ R \ P such that D(x) ∩ V (P ) ⊆ U by the work above. It follows that
U = {Q : se(Q) > r} is open. �

Remark 4.3. The reader should note that under the conditions of Theorem 4.2, the same
proof shows that the set X>r = {Q ∈ Spec(R) : se(Q) > r} is open for all r ∈ R.

5. Essentially of finite type over a semi-local excellent ring

In the following theorem, Â denotes the completion of a semi-local ring A with respect

to its Jacobson radical. Note that Â is isomorphic to
∏

m Âm in which m runs over all the

(finitely many) maximal ideals m of A while Âm is the m-adic completion of A (or of Am).

In particular, Â is a homomorphic image of a regular ring.

Theorem 5.1. Let R be a ring of prime characteristic p that is essentially of finite type

over an excellent semi-local ring A. Assume that R⊗A Â is locally equidimensional.
Then the normalized Frobenius splitting numbers are lower semicontinuous, i.e., se is lower

semicontinuous for every e > 0.

Proof. Let us fix a nonnegative integer e and let r ∈ R be any number. We plan to show

that the set W = {Q : Q ∈ Spec(P ), se(Q) > r} is open by passing to R ⊗A Â, where
Theorem 3.4 applies. Fix a prime ideal P ∈ W , i.e., se(P ) > r.

Let S = R⊗A Â and let C = {P ′ ∈ Spec(S) : se(P
′) 6 r}. Note that Theorem 3.4 applies

to S since S is essentially of finite type over Â. Therefore, the normalized Frobenius splitting
numbers are lower semicontinuous on S. Thus, C is closed in Spec(S) so there exists an ideal
I of S such that V (I) = C.

We claim that I ∩ (R \ P ) 6= ∅: By way of contradiction, suppose I ∩ (R \ P ) = ∅. Then
there exists a prime ideal P ′ ∈ Spec(S) such that P ′ ∈ V (I) = C and P ′∩(R\P ) = ∅, which
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simply means P ′ ∩ R ⊆ P . Denote P1 := P ′ ∩ R ∈ Spec(R). Now, since A is excellent, we
see that R→ S has geometrically regular fibers (cf. [10, 33.E Lemma 4]) and hence the map
RP1 → SP ′ has a regular closed fiber. Thus, by [16, Theorem 5.6], we see se(P

′) = se(P1).
Moreover, by [16, Proposition 5.2] and also noting that R is locally equidimensional (since S
is so), we have se(P1) > se(P ). Consequently, se(P

′) > se(P ) > r, contradicting the choice
of P ′ with P ′ ∈ C.

Now that I ∩ (R \ P ) 6= ∅, let x ∈ I ∩ (R \ P ) and consider Q ∈ Spec(R) such that x /∈ Q
(that is, Q ∈ D(x) ⊆ Spec(R)).

As S is faithfully flat over R, there exists Q′ ∈ Spec(S) such that Q′ ∩ R = Q. Hence
x /∈ Q′ and thus I 6⊆ Q′. This says that Q′ /∈ V (I) = C, or simply, se(Q

′) > r.
We can see that RQ → SQ′ is faithfully flat and so se(Q) > se(Q

′) by [16, Lemma 5.1].
(Or use [16, Theorem 5.6] to deduce that se(Q) = se(Q

′).) Thus se(Q) > r.
Putting everything together, we get se(Q) > r for all Q ∈ D(x). That is

P ∈ D(x) ⊆ W.

By the choice of x, P lies in the above open neighborhood D(x). This shows that the
normalized Frobenius splitting numbers are lower semicontinuous on R. �

By Ratliff’s theorem, the completion of an equidimensional excellent local ring remains
equidimensional (see [14, Corollary B.4.3 and Theorem B.5.1]). We have the following

Corollary 5.2. If R is an excellent locally equidimensional semi-local ring (e.g., R is an
excellent equidimensional local ring) of prime characteristic p, the function se : Spec(R)→ Q
is lower semicontinuous.

Remark 5.3. The reader should note that under the conditions of Theorem 5.1, the proof
shows that the set X>r = {Q ∈ Spec(R) : se(Q) > r} is open for all r ∈ R. (To do this, one
accordingly defines C = {P ′ ∈ Spec(S) : se(P

′) < r} = V (I) because of Remark 3.5.)

Remark 5.4. Note that the proof of Theorem 5.1 relies on the lower semicontinuity of se on

the ring S = R ⊗A Â. Although this is covered in Theorem 3.4, we would like to point out
that the lower semicontinuity of se on S can also be proved via Γ-construction (see [7]). By
applying Γ-construction, one may reduce the lower semicontinuity of se on S to the F-finite
case and therefore Corollary 2.5 applies.

Remark 5.5. In general, one may study the notion of eth normalized Frobenius splitting
numbers of any finitely generated module M . Indeed, for any local ring (R,m, k) of prime
characteristic p and any finitely generated module R-module M , one may define se(M) :=
#(eM)

qdim(R) , in which #(eM) is the same as defined in [16, Definition 2.2].

Thus, for any fixed e > 0, there is a function se,M : Spec(R)→ Q defined by P 7→ se(MP ).
Note that se,R = se when M = R. Correspondingly, one may conjecture that se,M is lower
semicontinuous if the ring is excellent and locally equidimensional (cf. Conjecture 2.1). In
fact, the lower semicontinuity of se,M can be verified in the cases when R is as in Corollary 2.5,
as in Theorem 3.4, as in Theorem 4.2 and with M being (locally) maximal Cohen-Macaulay,
or as in Theorem 5.1. Note that when R is as in Theorem 5.1, one may also prove the lower
semicontinuity of se,M via the approach described in Remark 5.4.
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