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FROBENIUS SPLITTING, STRONG F-REGULARITY,

AND SMALL COHEN-MACAULAY MODULES

MELVIN HOCHSTER AND YONGWEI YAO

Abstract. Let M be a finitely generated module over an (F-finite local) ring

R of prime characteristic p > 0. Let eM denote the result of restricting scalars
using the map F e : R → R, the e th iteration of the Frobenius endomorphism.

Motivated in part by the fact that in certain circumstances the splitting of eM
as e grows can be used to prove the existence of small (i.e., finitely generated)

maximal Cohen-Macaulay modules, we study splitting phenomena for eM from

several points of view. In consequence, we are able to prove new results about
when one has such splittings that generalize results previously known only

in low dimension, we give new characterizations of when a ring is strongly

F-regular, and we are able to prove new results on the existence of small
maximal Cohen-Macaulay modules in the multi-graded case. In addition, we

study certain corresponding questions when the ring is no longer assumed F-

finite and purity is considered in place of splitting. We also answer a question,
raised by Datta and Smith, by showing that a regular Noetherian domain,

even in dimension 2, need not be very strongly F-regular.

0. Introduction

Throughout this paper, all rings are assumed to be non-zero, commutative, with
identity, Noetherian and of prime characteristic p > 0, unless specified otherwise
explicitly. By a (graded) local ring (R,m, k), we indicate that m is the unique
(homogeneous) maximal ideal of R and k = R/m. We use N to denote the set of
all non-negative integers and use N+ to denote the set of all positive integers.

We often denote q := pe for varying e ∈ N. For every e ∈ N, there is the Frobenius
map (in fact a ring homomorphism) F e : R → R defined by F e(r) = rq = rp

e

for
all r ∈ R.

Given any R-module M and any e ∈ N, there is a derived R-module structure,
denoted eM , on the same abelian group M but with its scalar multiplication de-
termined by r ∗ x = rqx = rp

e

x for all r ∈ R and x ∈ eM . It is routine to verify
that Ann(M) ⊆ Ann(eM) ⊆

√
Ann(M) and Ass(M) = Ass(eM) for all e ∈ N. Very

often, for x ∈M , we use ex to denote the corresponding element in eM .
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When R is reduced, the R-module structure of eR is isomorphic to the natural
R-module structure of R1/q := {r1/pe | r ∈ R}, for every e.

Using this terminology, one can rephrase a result of E. Kunz as follows: a ring
R is regular if and only if eR is flat over R for some e ∈ N+ if and only if eR is flat
over R for all e ∈ N ([Ku1, Theorem 2.1]).

We say that R is F-finite if 1R is finitely generated over R; this is equivalent to
saying that eR is finitely generated over R for all (or some) e ∈ N+. By a result of
E. Kunz in [Ku2], every F-finite ring is excellent.

If R is F-finite and M is a finitely generated R-module, it is easy to see that eM
remains finitely generated over R for every e ∈ N.

Moreover, if e0M is finitely generated over R for some e0 ∈ N+, it follows that
both M and e0(R/Ann(M)) are finitely generated over R. Thus R/Ann(M) is an
F-finite ring, and hence e(R/Ann(M)) is finite over R/Ann(M) (or, equivalently,
over R) for all e ∈ N. Consequently, eM is finitely generated over R for all e ∈ N.

For any e ∈ N, the derived R-module eM can be roughly identified as the module
structure of M over the subring Rq := {rq = rp

e | r ∈ R}. Thus, in general, one
should expect that the “size” of eM will increase as e→ ∞.

Question 0.1. Assume that R is F-finite and M is a finitely generated R-module.
Will eM split (as a direct sum of two non-trivial submodules) for e≫ 0?

In [Ho3], Hochster proved several cases where such splitting occurs: the N-graded
case and the 1-dimensional case, for example; see Theorem 3.2. In [Yao2], Yao
proved the eventual splitting in the 2-dimensional case but under an assumption
involving strong F-regularity ; see Theorem 3.3.

In §3, we study the direct sum decomposability of eM without any dimension
restriction. We prove the following splitting result that greatly strengthens those
in [Ho3] and [Yao2].

Theorem (Corollary 3.7). If R is an F-finite domain (but not a perfect field) with
a module-finite extension that is strongly F-regular and M is a finitely generated
faithful R-module, then eM splits non-trivially over R for all sufficiently large e.

In §4, we prove that if the splitting of R from eM occurs “frequently enough”
then R is strongly F-regular.

Theorem (Corollary 4.3 and Remark 4.4). If R is F-finite or essentially of finite
type over a complete excellent semilocal ring, then R is strongly F-regular if and
only if for every finitely generated module M supported on Spec(R), eM has a direct
summand isomorphic to R for all e≫ 0.

It is desirable to define strong F-regularity without the assumption that the ring
be F-finite. Several possible definitions have been suggested in the literature. These
are all equivalent if the ring is F-finite, but, in the general case, there turn out to be
two notions that are not equivalent. One of these, discussed very briefly in [HH4,
Remark 5.2], is studied in [Hash], where it is called very strong F-regularity, and
in [DaSm, §6], where it is called F-pure regularity. In this manuscript we shall
use the former terminology (i.e., very strong F-regularity). More specifically, in
this paper, very strong F-regularity of R means that, for all c ∈ R \

⋃
P∈min(R) P ,

the R-linear map R → eR such that 1 7→ ec is pure over R for e ≫ 1. Note
that this property is easily shown, in the Noetherian case, to be inherited by all
localizations. The second extended definition is proposed (although in differing
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forms, and their equivalence needs a proof) in [Sm, §7.2] and in [Ho7, p. 166], and is
equivalent to the assumption that the ring is very strongly F-regular when localized
at any maximal (equivalently, prime) ideal (cf. Theorem 2.11). This turns out to
be weaker than very strong regularity, and is what we call strongly F-regular in this
paper. This terminology agrees with the terminology in [Hash]. The situation is
discussed in detail in §2. By [Hash, Corollary 3.35] the two notions are equivalent
for algebras that are essentially of finite type over an excellent local ring (this is
easily generalized to the case of algebras of finite type over an excellent semilocal
ring). In §2 we recall several results about strongly F-regular and very strongly
F-regular rings. For the most part, the results of §2 are available in some form in
[Hash, §3], but we have included a number of relatively short proofs that give the
results in the form we need, in some cases in somewhat greater generality. However,
we want to acknowledge explicitly that the paper [Hash] has priority.

While all regular local rings are strongly F-regular, we show in §6 that there
exists a regular Noetherian domain R of dimension two that is not very strongly
regular in the sense of [DaSm, 6.3.3], that is, there exists an element c ̸= 0 in R
such that the map R→ eR with 1 7→ ec is not pure for any e ∈ N+. One can already
use the ring constructed in [EHo, Remarks (2), p. 159] to give a counter-example,
but in §6 we construct a much larger family of examples. The proof that these rings
are Noetherian is somewhat more subtle than in the example from [EHo], where
the argument depends on knowing that the Krull dimension is two. These rings
are not excellent. In fact, we prove that an excellent regular ring is very strongly
F-regular (see Corollary 2.18). Quite recently, in [HoY], we show that every stronly
F-regular excellent ring is very strongly F-regular.

Theorem 4.2 offers a more general version of the the criterion for strong F-
regularity given in Corollary 4.3 that works for a large class of rings that are not
necessarily F-finite.

In §5, we prove in a multi-graded situation that if the numbers of direct sum-
mands of eM are “large enough” as e→ ∞ then R admits a small Cohen-Macaulay
module.

Theorem (Theorem 5.19). Let R = ⊕i∈NsRi be an Ns-graded domain with R0

being an F-finite field and Ri ̸= 0 for all i ∈ Ns. If dim(R) ⩽ s + 2, then there
exists a small Cohen-Macaulay Ns-graded R-module.

1. Preliminaries

As it is stated earlier, all rings are assumed to have prime characteristic p > 0.

Remark 1.1. Let R be a ring, M and N be R-modules, r ∈ R, x ∈ M , f ∈
HomR(M,N), P ∈ Spec(R), and e, e1 ∈ N.
(1) The notation ex means the very same element x ∈ M but considered as an

element in eM . In case e is understood from the context, we may just use x.
Thus r(ex) = (rq)x = e((rq)x).

(2) The notation ef means the very same map f ∈ HomR(M,N) but considered
as an R-linear map in HomR(

eM, eN). In case e is understood from the
context, we may just use f . Thus r(ef) = e((rq)f) = (rq)f and ef(ex) =
e(f(x)) for all r ∈ R and x ∈M .

(3) It is straightforward to see e1(eM) = e+e1M and e(MP ) ∼= (eM)P for all
P ∈ Spec(R). So we may write eMP without causing any confusion.
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Definition 1.2. Let R be an F-finite ring. For every P ∈ Spec(R), denote

α(RP ) := logp[k(P ) : k(P )
p]

in which k(P ) := RP /PP is the residue field of RP . This is, the field extension
k(P )p ⊆ k(P ) has a degree pα(RP ). In case (R,m, k) is local, clearly α(R) =
α(Rm) = logp[k : kp].

Remark 1.3. Let R be an F-finite ring and M an R-module. (We use λR(M) to
denote the length of M .)

(1) If (R,m, k) is local (and λR(M) < ∞), then λR(
eM) = qα(R)λR(M) for all

e ∈ N. This is because λR(ek) = qα(R) for the R-module k = R/m.
(2) Thus we have λR(0 :eM I) = qα(R)λR(0 :M I [q]) for any ideal I of a local ring

(R,m, k). (The equation obviously holds if the lengths are infinite.)
(3) For every P ∈ Spec(R), it is straightforward to see [k(P ) : k(P )q] = qα(RP )

for all q = pe; Thus the torsion-free rank of e(R/P ) over R/P is qα(RP ).
(4) For prime ideals P ⊆ Q, we have α(RP ) = α(RQ) + dim(RQ/PQ); see [Ku2,

Proposition 2.3]. This also implies dim(R) < ∞; also see [Ku2, Proposi-
tion 1.1].

(5) Thus α(RP ) ⩾ dim(R/P ) for every P ∈ Spec(R).

A very important concept in studying rings of prime characteristic p > 0 is
tight closure, which was first studied and developed by Hochster and Huneke in the
1980s.

Definition 1.4 ([HH2]). Let R be a ring, I an ideal of R, and M an R-module.

(1) Denote R◦ := R \
⋃

P∈min(R) P .

(2) For every q = pe, denote by I [q] the ideal generated by {xq |x ∈ I}. Or
equivalently, I [q] = I(eR).

(3) The tight closure of 0 in M , denoted 0∗M , consists of x ∈ M for which there
exists c ∈ R◦ such that 0 = x⊗ ec ∈M ⊗R

eR for all e≫ 0.
(4) If N ⊆ M are R-modules, the tight closure of N in M , denoted N∗

M , is the
inverse image of 0∗M/N in M . That is, u ∈ N∗

M if and only if its image in

M/N is in 0∗M/N .

(5) We say R is weakly F-regular if 0∗N = 0 for all finitely generated R-modules
N .

(6) We say R is F-regular if RP is weakly F-regular for all P ∈ Spec(R).

Discussion 1.5 (Splitting and purity). Recall that, for R-modules M and N , we
say that a map h ∈ HomR(M,N) is left split if there exists g ∈ HomR(N,M) such
that g ◦ h = IM , where IM stands for the identity map on M . We say that h ∈
HomR(M,N) is pure if, for all R-modules T , the induced map IT ⊗h : T ⊗R M →
T ⊗R N is injective. Left split implies pure and the converse holds if M/h(N) is
finitely presented. The notions are discussed and compared in [HoR1, §6], [HoR2,
§5(a)]. Throughout this paper, we use ER(N) to denote the injective hull of N
over the ring R. The most frequent occurrence is when (R,m, k) is local and
N = R/m = k.

A very useful criterion for purity for maps from (R,m, k) is the following (see,
for example [HoR1, Proposition 6.11]).
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Proposition 1.6. Let (R,m, k) be local and let M be any R-module. Then the
map h : R → M is pure if and only if the induced map ER(k) ∼= ER(k) ⊗R R →
ER(k)⊗R M is injective, i.e., if and only if the copy of k ∼= ku, where u is a socle
generator in ER(k), does not map to 0. □

Another important notion for rings of prime characteristic p > 0 is the Hilbert-
Kunz multiplicity.

Definition 1.7. Let (R,m, k) be a local ring with dim(R) = d, I an m-primary
ideal of R, and M a finitely generated R-module. The Hilbert-Kunz multiplicity of
M with respect to I, denoted eHK(I,M), is defined as

eHK(I,M) = lim
e→∞

λR(M/I [q]M)

qd
.

The existence of the (finite) limit is due to Monsky [Mo]. We often write eHK(m,M)
as eHK(M).

Remark 1.8. Let R, I and M be as in Definition 1.7 above.

(1) By considering M as a module over R/Ann(M), we see that

lim
e→∞

λR(M/I [q]M)

qdim(M)

exists (and is positive as long as M ̸= 0).
(2) Thus there exists a positive number C ∈ R such that λR(M/I [q]M) ⩽

Cqdim(M) for all q.
(3) Consequently, eHK(I,M) = 0 ⇐⇒ dim(M) < dim(R).

Discussion 1.9. The Γ construction. We give a brief recap of the Γ construction
developed in [HH4, §6], which gives a very well behaved method of transition from
algebras essentially finite type over a complete local ring to F-finite rings. Let A
be a complete local ring of prime characteristic p > 0, and let k be a coefficient
field for A. Let Γ denote a cofinite subset of a p-base Λ for k, i.e., Λ \ Γ is finite.
For each q := pe, Let ke denote k[γ1/p

e | γ ∈ Γ]. Define AΓ :=
⋃

e∈N+
ke⊗̂kA,

where ⊗̂k indicates the complete tensor product. Then AΓ is a faithfully flat purely
inseparable local extension of A, and the maximal ideal of A extends to the maximal
ideal of AΓ. The construction depends on the choice of coefficient field, although
this choice is not indicated in the notation. If A is the formal power series ring
k[[X1, . . . , Xn]], then AΓ =

⋃
e∈N+

ke[[X1, . . . , Xn]]. When B is complete local

ring module-finite over A with the same coefficient field k, BΓ ∼= B ⊗A A
Γ.

One has a natural isomorphism (A/J)Γ ∼= (AΓ/JAΓ) for every ideal J of A. If R
is essentially of finite type over A, we define RΓ := AΓ⊗AR, and R

Γ is faithfully flat
and purely inseparable overR. If S is essentially of finite type overR, SΓ ∼= RΓ⊗RS,
by the associativity of tensor. in particular, if W is any multipliciative system in
R, we have W−1(RΓ) ∼= (W−1R)Γ, and we may simply write W−1RΓ.

Note also that if Γ ⊆ Γ′ then RΓ ⊆ RΓ′
is faithfully flat.

One may identify Spec(RΓ) with Spec(R) using the maps obtained from contrac-
tion and taking the radical of the extension. It is of great importance that the rings
AΓ and RΓ are F-finite. If J is prime or radical ideal in R, then for all sufficiently
small choices of the cofinite set Γ, JRΓ has the same property in RΓ.
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2. Strong and very strong F-regularity

In this section, we discuss what the notion of strong F-regularity should be for a
Noetherian ring of characteristic p that is not necessarily F-finite. Two notions will
emerge: one we shall refer to as “strong F-regularity” and the other as “very strong
F-regularity.” The results given here will be needed in later sections. A number of
these results are implicitly or explicitly in the literature, especially in [Hash, §3]
and in [DaSm, §6] (where the term “F-pure regularity” is used instead of “very
strong F-regularity”). We follow the terminology of [Hash]. However, in a number
of cases we have given somewhat different proofs, which are short, and we state
some results in greater generality or more precisely than in the earlier papers. We
do want to emphasize that [Hash] establishes most of what we need, and §3 of that
paper, by and large, can be substituted for what we present here.

The notion of strong F-regularity was first defined in [HH1] for F-finite rings.
See also [HH4, Definition 5.1] for the case of F-finite rings, as well as [Sm, §7.1.2],
and [Ho7, p. 166] for suggestions of a general definition. It turns out that these
generalized definitions are equivalent. A different condition is given in [HH4, Re-
mark 5.3] and this idea is pursued in [DaSm, §6], but the term “F-pure regular” is
used. These issues are addressed further below in Discussion 2.3. In this section
we explore the properties of both notions and prove several results about classes of
rings for which they are equivalent. In Examples 6.7 we show that, in general, they
are different. When R has prime characteristic p and c ∈ R, we will have frequent
occasion to consider the map R → eR defined by the condition that 1 7→ ec. In
particular, we shall often be interested in whether this map is left split or whether
it is pure over R. In the main case, when R is reduced and c ∈ R◦, one can think
instead about whether the injection R ∼= Rc1/p

e → R1/pe

left splits over R, or is
pure as a map of R-modules. Alternatively, if Rpe

= {rpe | r ∈ R}, one can ask,
equivalently, whether the map Rpe → R such that 1 7→ c left splits, or is pure, over
Rpe

. We note:

Remark 2.1 ([HH4, Remarks 5.4]). Let h : R → S be a ring homomorphism (with
R and S being rings of any characteristic) and M an S-module.

(1) If there exists f ∈ HomR(R,M) that is pure (left split) then h : R → S is
pure (left split).

(2) When R and S have prime characteristic p > 0, we apply (1) to the map
F e ◦ h : R → S → S to obtain the following special case: if there exists f ∈
HomR(R,

e0M) that is pure (left split) for some e0 ∈ N+ then F e0 ◦h : R→ S
is pure (left split) thus h : R → S is pure (left split). If furthermore R = S
and h is the identity map, then F e : R → R is pure (left split) for all e ∈ N,
i.e., R is F-pure (in particular, R is reduced).

Definition 2.2. We define strong F-regularity of a ring R more generally as follows:
we say that R is strongly F-regular if, for every local ring Rm of R at a maximal
ideal m and every c ∈ (Rm)

◦, the Rm-linear map Rm → e(Rm) defined by 1 7→ ec
(hence r 7→ e(rqc) for all r ∈ R) is pure (or, equivalently, is left split in the F-finite
case) for some e ∈ N+ or, equivalently, for all e≫ 0.

Evidently, this agrees with the earlier definitions in [HH1, HH4] in the F-finite
case, which simply required that the map be left split. That property passes to
localizations. Moreover, in the F-finite case, if one has a splitting when one localizes
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at m, one also has it in a Zariski open neighborhood of m, so that the existence of
a splitting locally implies that there is a splitting globally.

A particularly noteworthy result is the equivalence of weak and strong F-regularity
for finitely generated N-graded algebras over a field of characteristic p > 0, proved
in [LS1]. It remains an open question whether this equivalence holds for locally ex-
cellent rings, and this question is open even for affine algebras over an algebraically
closed field.

Discussion 2.3. The problem of defining strong F-regularity when the ring is Noe-
therian but not F-finite has a long history.

(1) Smith [Sm, Definition 7.1.3] proposed that in the local case, the property
be defined by the condition that 0 be tightly closed in an injective hull of
the residue class field, and that the property be defined globally by the re-
quirement that all local rings at maximal ideals be strongly F-regular in this
sense.

(2) Hochster [Ho7, p. 166] proposed that the condition be defined by requiring
that every submodule of every module be tightly closed.

(3) In [HH4, Remark 5.2] the possibility is suggested of defining strong F-regularity
by requiring that for all c ∈ R◦, the map R → eR such that 1 7→ ec be pure
over R for e≫ 1. This idea is pursued in [Hash, Definition 3.4] and in [DaSm,
§6]. In [DaSm] this condition is considered even when R is not Noetherian
(since the authors are interested in valuation rings that may not be Noether-
ian). This property is called very strong F-regularity in [Hash] while Datta
and Smith say that R is F-pure regular when this condition holds. We use
the term “very strong F-regularity” here.

Thus, our definition of strongly F-regular for Noetherian rings can be rephrased as
requiring that all local rings of R at maximal ideals are very strongly F-regular,
and the condition of very strong F-regularity then turns out to hold for all local
rings of R. In §6 we construct regular Noetherian domains, even in dimension two,
that are not very strongly F-regular, which answers a question raised in [DaSm,
6.3.3]. In [HoY], we show that every stronly F-regular excellent ring is very strongly
F-regular.

Below we discuss the equivalence of Definition 2.2 here, of the definition proposed
in [Sm, Definition 7.1.3], and of the definition proposed in [Ho7, p. 166]. See
Theorem 2.11]. All of these are also equivalent to very strong F-regularity if the
ring is F-finite. The condition of very strong F-regularity is strictly stronger by the
results of §6, but is equivalent if the ring is F-finite or local; the local case is proved
in [Sm, 7.1.2], in [LS2, Proposition 2.9], and in [DaSm, Proposition 6.3.2].

Note that in the definition of F-pure regularity in [DaSm, §6] the authors work
with the assumption that c is not a zerodivisor rather than that c is an element of
R◦. However, this does not matter, since their condition implies that R is reduced,
and in a Noetherian ring R (the only case considered here), if R is reduced then
R◦ is precisely the set of nonzerodivisors.

Henceforth, when we use the term “R is strongly F-regular” we mean that R is
a Noetherian ring of prime characteristic p > 0 satisfying Definition 2.2. When we
use the term “R is very strongly F-regular” we mean that R is a Noetherian ring
of prime characteristic p > 0 such that for every c ∈ R◦ for all e ≫ 1 the map
θe : R → eR such that 1 7→ ec is pure, as indicated in Discussion 2.3. Note that
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the condition that θe is pure implies that c is a nonzerodivisor. Hence, in defining
the notion of very strongly F-regular ring, one may require instead that for every
nonzerodivisor c ∈ R, the map R→ eR such that 1 7→ ec is pure for all e≫ 1. Both
conditions imply that R is reduced, so that R◦ is the set of nonzerodivisors.

We next give several results that establish the equivalences stated in Discus-
sion 2.3 and show that strongly F-regular rings in the more general sense, i.e.,
without the condition that the ring be F-finite, have behavior very similar to what
one has in the F-finite case.

Remark 2.4. Let S be an R-algebra. If φ : R → S mapping 1 7→ c is pure (as a
map of R-modules), N is an R-module, u ∈ N , and u ⊗ c = 0 in N ⊗R S, then
u = 0 in N , since the induced map N ∼= N ⊗R R→ N ⊗R S sending

u 7→ u⊗ 1 7→ u⊗ c

is injective.

The following is also proved in [Hash, §3] and in [DaSm, §6], but since the
argument is very brief we include it here.

Remark 2.5. If R is very strongly F-regular, then every submodule of every R-
module is tightly closed. It suffices to see that if u is in the tight closure of 0 in N
then u = 0. Choose c ∈ R◦ such that u ⊗ ec = 0 in N ⊗R

eR for all e ≫ 0. Then
choose e ≫ 0 such that R → eR with 1 → ec is pure. Now Remark 2.4 gives the
result.

Remark 2.6. If W is any multiplicative system in R, then R◦ maps into (W−1R)◦,
and every element of (W−1R)◦ is a unit times the image of an element in R◦: in
fact, if w ∈W , c ∈ R, and w−1c ∈ (W−1R)◦, then c/1 is the image of an element of
R◦. To see this, choose an element d of R that is precisely in those minimal primes
of R to which c does not belong. The d/1 is in every minimal prime ofW−1R (since
c/1 is not in any of these) and so is nilpotent in W−1R. We may replace d by a
power so that d/1 is 0 in W−1R. Then c + d 7→ (c + d)/1 = c/1 has the required
property.

Remark 2.7. Let R be a Noetherian ring, let N be any R-module, not necessarily
finitely generated, and let u ∈ N be a nonzero element that is contained in every
nonzero submodule of N . Then u is killed by a maximal ideal m of R, and N injects
to an injective hull ER(k) of k = R/m, for some maximal ideal m of R, over R.
(Let m be any maximal ideal of R such that Ann(u) ⊆ m. If Ann(u) ⊊ m then
u /∈ mu, which implies mu = 0, a contradiction. So Ru ∼= R/m and the extension
k ∼= Ru ⊆ N must then be essential).

Remark 2.8. Let R be a Noetherian ring of prime characteristic p > 0. It follows
from Remark 2.7 that every submodule of every R-module is tightly closed if and
only if 0 is tightly closed in ER(R/m) for every maximal ideal m of R. (If u is
in in W ∗

N \W for some R-modules W ⩽ N , we can replace W by a submodule
W ′ of N maximal with respect to containing W but not containing u, by using
Zorn’s lemma, and then we may replace u by its image in N/W ′, which injects into
ER(R/m) for some maximal ideal m of R). Of course, if R is local this condition
need only be placed on the unique maximal ideal.
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Note also that ER(R/m) ∼= ERm
(Rm/mRm) and that 0 is tightly closed in this

module over R if and only if 0 is tightly closed in this module over Rm. (“If” is
clear, since c ∈ R◦ maps to c/1 ∈ (Rm)

◦. “Only if” follows from Remark 2.6.)

The following result is proved, essentially, in [Sm, §7.1.2], although a splitting is
used when only purity is needed. It is also proved in [LS2, Proposition 2.9], and in
[DaSm, 6.3.2].

Proposition 2.9. Let (R, m, k) be a local ring of prime characteristic p > 0. Then
0 is tightly closed in the injective hull ER(k) if and only if for every c ∈ R◦, there
exists e ∈ N+ such that the map R→ eR with 1 7→ ec is pure over R. □

Proposition 2.10. Assume that given rings are Noetherian of prime characteristic
p > 0.

(1) The localization of a strongly F -regular ring at any multiplicative system is
strongly F -regular.

(2) A finite product of Noetherian rings is strongly F -regular if and only if each
factor ring is strongly F -regular.

(3) If R is strongly F -regular, then every R-submodule of every R-module is
tightly closed, even if the modules are not finitely generated. In particular,
R is weakly F-regular and, hence, normal. Thus, R is a finite product of
normal domains, each of which is strongly F-regular.

(4) Strongly F-regular rings are F-regular.

Proof. (1) It suffices to show that RP is strongly F-regular for all primes P : we may
then apply this to the primes disjoint fromW . Choose a maximal ideal m containing
P . Then Rm is strongly F-regular, and we may replace R by Rm without loss of
generality. Now assume that R is local and let W = R\P , with P prime. Given an
element c/w ∈ (W−1R)◦, choose c+ d ∈ R◦ as in Remark 2.6 so that c+ d 7→ c/1
in W−1R. Then there exists e so that R → eR with 1 7→ e(c + d) is pure. Then
W−1R → W−1(eR) ∼= e(W−1R) with 1/1 7→ e((c+ d)/1) is pure, and this map has
the same image as W−1R→ e(W−1R) with 1 7→ e(c/w).

(2) This is immediate from the local nature of the definition.

(3) Suppose that R is strongly F-regular. For the first statement, by Remark 2.8,
it suffices to show that 0 is tightly closed in ER(R/m) for every maximal ideal m.
Suppose that a nonzero element u ∈ ER(R/m) is in the tight closure of 0 over
R. Then this remains true over Rm, contradicting Proposition 2.9. The second
statement is clear: it is the case of the first statement where the modules are
finitely generated. The last statement is clear from (2).

(4) This follows at once from (1) and (3). □

Now we are ready to show the equivalence among some of the definitions of
‘strong F-regularity’ in the literature. In Theorem 2.11 below, (4) is how the notion
is defined in [Sm] while (5) is how the notion is defined in [Ho7]. We have:

Theorem 2.11. For a ring R of prime characteristic p, the following are equiva-
lent:

(1) R is strongly F-regular.
(2) RP is strongly F-regular for all P ∈ Spec(R).
(3) Rm is strongly F-regular for all m ∈ Max(R).
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(4) 0∗M = 0 over Rm for all m ∈ Max(R) and for all Rm-modules M or, equiva-
lently forM = ER(R/m). (Note thatM is not necessarily finitely generated.)

(5) 0∗M = 0 for all R-modules M . (Again, note that M is not necessarily finitely
generated.)

Proof. (1) ⇒ (2): This follows from Proposition 2.10(1).
(2) ⇒ (3) is clear.
(3) ⇒ (4): Apply Proposition 2.9 and Remark 2.8.
(4) ⇒ (5): The fact that 0 is tightly closed in ER(R/m) ∼= ERm

(Rm/mRm)
over Rm implies that this holds over R as well, and we may then apply the first
paragraph of Remark 2.8.

(5) ⇒ (1): For every m ∈ Max(R), we have 0∗ER(R/m) = 0 (over R, and, hence,

over Rm by the second paragraph of Remark 2.8) which implies that Rm is strongly
F-regular by Proposition 2.9. □

If (R,m, k) is an F-finite regular local ring, then eR is free over R for all e by
[Ku1, Theorem 2.1]. Thus for any c ∈ R◦, the R-linear map R → eR sending 1 to
c splits if and only if e is large enough such that c /∈ m[pe] = m(eR). This shows
that every F-finite regular ring is strongly F-regular. In fact every regular local
ring (F-finite or not) is strongly F-regular, since 0∗M = 0 for all R-modules M . We
also note:

Proposition 2.12. Let h : R → S be a homomorphism of rings of prime charac-
teristic p. If h is pure over R, c ∈ R and β : S → eS with β(1) = e(h(c)) is pure
over R (e.g., over S), then α : R→ eR with 1 7→ ec is pure over R.

Proof. The map R→ eS which may be thought of as either of the composites eh◦α
or β ◦ h is pure (because the second composition is). Since eh ◦ α is pure, α must
be pure. □

Corollary 2.13. If R → S is pure, R◦ maps into S◦, and S is strongly F-regular
(respectively, very strongly F-regular), then R is strongly F-regular (respectively,
very strongly F-regular). In particular, if S is faithfully flat over R and S is strongly
F-regular (respectively, very strongly F-regular), then R is strongly F-regular (re-
spectively, very strongly F-regular).

We have the following criterion of strong F-regularity.

Theorem 2.14 ([HH4, Theorem 5.9], [HH1, Theorem 3.3]). Let R be an F-finite
ring and c ∈ R◦ such that Rc is strongly F-regular. Then R is strongly F-regular if
and only if there exists e ∈ N+ such that the R-linear map R → eR determined by
1 7→ ec is left split.

The above criterion of strong F-regularity can be considerably generalized in
certain cases where one does not have F-finiteness, including, for example, to all
rings essentially of finite type over an excellent semilocal rings. Such rings are
quite well-behaved with respect to the property of strong F-regularity. We shall
prove below that for such rings, strong F-regularity is equivalent to very strong
F-regularity and that the strongly F-regular locus is open. Note that the results
for the case when the semilocal base is local are proved in [Hash, §3].

We first need the lemma just below. We will use results on flat local exten-
sions (R,m, k) → (S, n, l) from [HH4, Lemma 7.10] which depends on [Mat, Corol-
lary 20.F]. Note that in [HH4, Lemma 7.10(b)] the restriction that M be finitely
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generated is not needed: if z1, . . . , zd ∈ n have images that are a regular sequence
in S/mS, then they are a regular sequence on every module of the form M ⊗R S:
this follows by a direct limit argument, since M is the directed union of its finitely
generated submodules.

Lemma 2.15. Let φ : (R,m, k) → (S, n, l) be a flat ring homomorphism of local
rings such that S/mS is regular. For any c ∈ R and e ∈ N, if the R-linear map
f : R → eR sending 1 to ec is pure then the S-linear map g : S → eS sending 1 to
eφ(c) is pure.

Proof. Since S is faithfully flat over R, we may think of R as a subring of S and
assume that φ is an inclusion map. Let z = z1, . . . , zd be elements of S whose
images in S/mS form a regular system of parameters. Let z = z1 · · · zd. Then

Hd
(z)(S)

∼= lim−→t
(S/At), where At := (zt1, . . . , z

t
d)S.

Let E = ER(R/m) be the injective hull of R/m, and let u be a generator of the
socle of E. By [HH4, Lemma 7.10] we may identify ES(S/n) with

ES := E ⊗R Hd
(z)(S)

∼= lim−→
t

(
E ⊗R (S/At)

)
,

and a socle generator in each E ⊗R (S/At) is represented by ηt := u⊗ zt−1. These

all map to the socle element in E ⊗R Hd
(z)(S), which we denote η. (In the case

where S/mS is a field, i.e., when n = mA, this is [Yao1, Remark 2.3(3)].) Note
that the maps between consecutive terms in the direct limit system are induced by
multiplication by z.

By Proposition 1.6, it will be sufficient to show that the induced S-linear map
θ : ES → ES ⊗S

eS does not kill u⊗ η, and we may think of θ as the induced map

θ : E ⊗S Hd
(z)(S) → (E ⊗S Hd

(z)(S))⊗ eS.

Note that θ(u ⊗ η) = u ⊗ η ⊗ ec. By a direct limit argument, it suffices to show
that for every t, the induced map θt : E ⊗S (S/At) → (E ⊗S (S/At)) ⊗ eS does
not kill u ⊗ z̃t−1, where z̃ is the image of z in S/At. Thus, we need to prove that
θt(u⊗ z̃t−1) = u⊗ z̃t−1 ⊗ ec ∈ E ⊗R (S/At)⊗S

eS, is not 0. With q = pe, as usual,
we have that

E ⊗R (S/At)⊗S
eS ∼= E ⊗R

e(S/Aqt) ∼= (E ⊗R
eR)⊗eR

e(S/Aqt),

and θt(u⊗ z̃t−1) may be identified with (u⊗ ec)⊗eR ⊗ezq(t−1), where z denotes the
image of z in (S/Aqt). Since the zi form a regular sequence on (E ⊗R

eR)⊗eR
eS, if

(u⊗ec)⊗zq(t−1) were 0 in (E⊗R
eR)⊗eR

e(S/Aqt) then (u⊗ec)⊗1 ∈ Aq((E⊗R
eR)⊗eR

eS), which translates to (u⊗ ec)⊗ 1 = 0 in (E ⊗ eR)⊗eR
e(S/Aq). Since

e(S/Aq) is
faithfully flat, and therefore pure, over eR, the map E⊗R

eR→ (E⊗eR)⊗eR
e(S/Aq)

such that v 7→ v⊗1 is injective. Thus, if θt(u⊗ec⊗z̃t−1) = 0, we have that u⊗ec = 0
in E ⊗R

eR, contradicting our hypothesis. □

Proposition 2.16. Let R be a Noetherian ring of prime characteristic p > 0. If
there is a Zariski open cover {D(fλ) |λ ∈ Λ} of Spec(R) such that every Rfλ is
very strongly F-regular for every λ ∈ Λ, then R is very strongly F-regular.

Proof. First, pass to a finite subcover, say {D(fλi
) | 1 ≤ i ≤ n}. Let c ∈ R◦ be

given. Choose ei ∈ N+ such that Rfλi
→ eRfλi

with 1 7→ ec/1 is pure, and let e
denote the supremum of the ei. Then R→ eR with 1 7→ ec is pure. □
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Theorem 2.17. Let R be a Noetherian ring. Suppose that for every prime ideal p
of R, Spec(R/p) contains a non-empty open set on which there is a finite bound for
the multiplicities of all local rings; this holds if the singular locus of Spec(R/p) is not
dense, and, in particular, this holds whenever R is excellent. Then the multiplicity
function e

(
(R/I)P

)
is bounded on Spec(R/I) for every ideal I of R. In particular,

the multiplicity function e
(
RP

)
is bounded on Spec(R).

Proof. We use Noetherian induction on I. If I ⊆ P , and S(P ) is the set of minimal
primes p of I contained in P such that the dimension of RP /pRP is equal to the
dimension of RP , then

e(RP /IP ) =
∑

p∈S(P )

ℓ(Rp/IRp) e(RP /pRP ).

Consequently if we have a bound Bp for multiplicities of the local rings of R/p for
every minimal prime p of I we get the bound

∑
p∈Min(I) ℓ(Rp/IRp)Bp. Thus, we

may assume that I = p is prime. By assumption, there exists f /∈ p such that we
have a bound B for the multiplicities of the local rings of (R/p)f . For primes P
not containing f , the multiplicity of (R/p)P is at most B. For primes P containing
f , we have e ((R/p)P ) ⩽ e ((R/(p+ fR))P ), which is bounded by the hypothesis of
Noetherian induction applied to p+ fR. □

The following result, with the hypothesis that the singular locus is not dense
in every homomorphic image domain of the regular ring R, also appears with a
different proof in [DET, Theorem 7.1.4].

Corollary 2.18. Let R be an regular ring of prime characteristic p > 0. Suppose
that the multiplicity function e

(
RP

)
is bounded on Spec(R); this holds, for example,

if for every prime ideal p of R, the singular locus in Spec(R/p) is not dense. Then
R is very strongly F-regular. In particular, excellent regular rings are very strongly
F-regular.

Proof. Let c ∈ R◦ be given. By Theorem 2.17 we can choose e so that pe is a strict
upper bound for the multiplicities of all the local rings of R/cR. We shall show
that the map R→ eR such that 1 → ec is pure.

It suffices to check this after localizing at a prime P . Therefore we may assume
that (R,m) is regular local. Since e(R/cR) < pe, we see that c /∈ mpe

, and so

c /∈ m[pe]. Since R̂ is faithfully flat over R, it suffices to show that the corresponding

map of completions is pure. We may then make a faithfully flat extension of R̂,
enlarging the residue class field to an algebraically closed field. In this F-finite case,
eR is module-finite and free over R, and ec is part of a free basis, since the expansion
of m to eR is e

(
m[pe]

)
. □

In our next major result, Theorem 2.21, we make essential use of the Γ construc-
tion 1.9. When Λ is a set, we use the terminology “for all Γ ≺≺cof Λ” to mean “for
all sufficiently small cofinite subsets of Λ.” In other words, a statement holds for
all Γ ≺≺cof Λ precisely if there exists Γ0 cofinite in Λ such that the statement holds
for all Γ ⊆ Γ0 that are cofinite in Λ. The following fact about the Γ construction
is proved in [HoJ, Theorem 5.5(i)].

Theorem 2.19. Let R be a ring of prime characteristic p > 0 essentially of finite
type over an complete local ring A, and let Λ denote a p-base for a coefficient field
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k for A. Then for all Γ ≺≺cof Λ, the singular locus in RΓ maps homeomorphically
to the singular locus of R under the restriction of the canonical homeomorphism
Spec(RΓ) ≈ Spec(R).

Note that an excellent local ring is strongly F-regular if and only if its F-signature
is positive (cf. [AL]). We will need the following result from [Yao1, Theorem 5.6]

Theorem 2.20. If (R,m) → (S, n) is flat local with regular closed fiber, then R
and S have the same F-signature.

Part (2) of the result that follows is parallel to Theorem 2.19.

Theorem 2.21. Let R be a ring essentially of finite type over a complete local
ring (A,m) of prime characteristic p > 0, let k ⊆ A be a coefficient field, so that
k ∼= A/m, and let Λ be a p-base for k. Then:

(1) For each prime P of R, RP is strongly F-regular (equivalently, very strongly
F-regular) if and only if for all Γ ≺≺cof Λ, R

Γ
P is strongly F-regular.

(2) For all Γ ≺≺cof Λ, the strongly F -regular locus of R is the same as the strongly
F -regular locus of RΓ, and is open.

(3) R is strongly F-regular if and only if for all Γ ≺≺cof Λ we have that RΓ is
strongly F -regular.

(4) R is strongly F-regular if and only if R is very strongly F-regular.

Proof. (1) follows from (2) by reduction to the F-finite case (the parenthetical
comment holds because we are in the local case), while (3) is a special case of (2).

(2) Since the strongly F-regular locus of RΓ (which is open, because of the F-finite
condition) can only increase as the cofinite subset Γ shrinks, the locus stabilizes for
all Γ ≺≺cof Λ. But this stabilized open locus (which is a subset of the strong F-
regular locus of R) must agree with the strongly F-regular locus of R. If not, there
is a prime P ∈ Spec(RΓ) such that RΓ

P is not strongly F-regular but RP∩R is. But
then, if the cofinite subset Γ is taken sufficiently smaller, the fiber of R→ RΓ at P
is a field and, hence P is in the strongly F-regular locus of RΓ by Theorem 2.20, a
contradiction.

(4) The “if” implication is clear. For the “only if” implication, note that the
strong F-regularity of R implies the same for RΓ (for all Γ ≺≺cof Λ), which then
implies the very strong F-regularity of RΓ, and this in turn implies the same for R
in light of Corollary 2.13. □

Remark 2.22. The following results in the case where B is local are essentially
in [Hash, §3]. We also note that Theorem 2.23(2) is proved in the local case in
[DaMuSm, Remark 3.2.2(2)] with the weaker assumption that the local ring B is a
G-ring instead an excellent local ring.

Theorem 2.23. Let R be a Noetherian ring of prime characteristic p > 0 that is

essentially of finite type over an excellent semilocal ring B. Let B̂ be the completion

of B with respect to its Jacobson radical, and let R̃ := B̂ ⊗B R.

(1) R is strongly F-regular if and only if R̃ is strongly F-regular.
(2) R is strongly F-regular if and only if it is very strongly F-regular, and the

same holds for R̃.
(3) The strongly F-regular locus of R is open. Moreover, if J is the radical ideal

that defines the complement of the strongly F-regular locus of R̃, and I is the
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radical ideal that defines the complement of the strongly F-regular locus of R,

we have that I = J ∩R and J = Rad(IR̃).

Proof. Note that if the local rings of B at its maximal ideals are A1, . . . , Ah, then

B̂ ∼=
∏h

i=1 Âi. Let R̃i := Âi ⊗B R. Then R̃ ∼=
∏h

i=1 R̃i.

(1) “If” follows because R̃ is faithfully flat over R. Now assume that R is strongly

F-regular. Any prime ideal Q of R̃ lies over a prime ideal of P of R, and R̃Q
∼=

(R̃P )QR̃P
. Thus, it suffices to prove the result when R is replaced by RP , and we

may first replace R by Rm where m is maximal in R. Thus, by Proposition 2.10(2),
there is no loss of generality in replacing B by its localization Ai at a maximal ideal,

and we henceforth assume that B = A is local. Suppose that R̃ has a maximal ideal
M at which the localization is not strongly F-regular. Let P be the contraction

of M to R. Since A is excellent, A → Â is geometrically regular, and, hence, so

is R → R̃. Consequently, R → R̃M has geometrically regular fibers, which implies

that the closed fiber of the map RP → R̃M is regular. It follows from Theorem 2.20

that R̃M is strongly F-regular after all, a contradiction.

(2) By part (1), if R is strongly F-regular then so is R̃. But then R̃ is very
strongly F-regular by Theorem 2.21(4) applied to the factors Ri, and hence R is

very strongly F-regular because R→ R̃ is faithfully flat, see Corollary 2.13.
(3) Now let J be the defining radical ideal of the complement of the strongly

F-regular locus of R̃, which is closed by Theorem 2.21(2) applied to the factors Ri,
and let I be its contraction to R. We want to show that I defines the complement
of the strongly F-regular locus of R (which proves that it is closed), and that

J = Rad(IR̃). Let P be a prime ideal of R. Then RP is strongly F-regular if and

only if R̃P := (R \ P )−1R̃ is by part (1), and the condition that R̃P be strongly
F-regular is equivalent to the condition that the multiplicative system R \P meets
J . This says exactly that J ∩ R = I is not contained in P , which says that that
P /∈ V (I) Thus, I defines the complement of the strongly F-regular locus of R.

It remains only to show that J is the radical of IR̃. Otherwise, there exists a

prime Q of R̃ that contains IS but not J . Then Q contracts to a prime P of R
with I ⊆ P , which forces that RP is not strongly F-regular. But since Q does not

contain J , R̃Q is strongly F-regular, a contradiction, since it is faithfully flat over
RP . □

Recall that a Noetherian ring is called locally excellent if its localization at each
maximal ideal (equivalently, every prime ideal) is excellent. Now we are ready
to generalize Theorem 2.14 in a way that substantially relaxes the hypothesis of
F-finiteness on the ring. This generalization is used in §4.

Theorem 2.24. Let R be a locally excellent ring and c ∈ R◦ be such that Rc is
strongly F-regular. If the map θe : R → eR such that 1 7→ ec is pure for some e
over R, then R is strongly F-regular. If R is very strongly F-regular, the converse
holds: if there exists c ∈ R◦ such that Rc is strongly F-regular, there must exist e
such that θe is pure over R.

In particular, if C is a class of locally excellent rings for which we know that the
conditions strongly F-regular and very strongly regular are equivalent, and c ∈ R◦

is such that Rc is strongly F-regular, then the purity of θe for some e is necessary
and sufficient for strong F-regularity.
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Proof. The condition that θe be pure for some e over R is obviously necessary
for very strong F-regularity. We only need to show the ‘if’ direction, for which it
suffices to prove that RP is strongly F-regular for all P ∈ Spec(R) such that c ∈ P .
Thus, without loss of generality, we may assume that (R,m, k) is an excellent local
ring with c ∈ m. If we replace R by its completion, Rc remains strongly F-regular,

by Theorem 2.23(1), where we may take R = B. It suffices to show that R̃ = R̂
is F-regular. Thus, we have reduced to proving the result when R is complete.
Choose a p-base Λ for k. By Lemma 2.15, RΓ → eRΓ such that 1 7→ ec remains
pure for all Γ ≺≺cof Λ: one only needs the mRΓ remain prime. By Theorem 2.14,
RΓ is strongly F-regular, and, hence, so is R. □

Remark 2.25. We already know that we can take C to include all F-finite rings
and all rings essentially of finite type over an excellent semilocal ring. We do not
know whether the conditions of strong F-regularity and very strong F-regularity
are equivalent for all excellent rings.

3. From strong F-regularity to the splitting of eM

Let R be an F-finite ring andM be a finitely generated R-module. We investigate
whether and when eM splits non-trivially for e≫ 0.

The case when λR(M) < ∞ is well understood. For simplicity (and in fact
without loss of generality), we assume (R,m, k) is local and M is an R-module of
finite length. There exists e0 ∈ N+ such that m[pe0 ] ⊆ AnnR(M). Then e0M is
annihilated by m and hence e0M ∼= kn0 for some n0 ∈ N+. In fact n0 = λ(e0M) =

pe0α(R)λ(M). Thus eM ∼= kq
α(R)

for all e ⩾ e0. In fact the following is true for the
case dim(M) = 0.

Observation 3.1. Let M ̸= 0 be a module over an (F-finite or not) ring R such that
λ(M) <∞. Then eM is indecomposable for all e ∈ N+ if and only if λ(M) = 1 and
R/Ann(M) is a perfect field.

For the case dim(M) = 1 or 2, there are the following results of Hochster and
Yao:

Theorem 3.2 ([Ho3, Theorem 5.16(2)]). Let (R,m, k) be an F-finite local ring and
M a finitely generated R-module with dim(M) = 1. Fix any P ∈ Ass(M) with

dim(R/P ) = 1 and let A = R/P be the integral closure of R/P in its fraction field
k(P ). Then, for any n ∈ N+,

eM has a direct summand isomorphic to An for all
e≫ 0.

Theorem 3.3 ([Yao2, Theorem 1.8]). Let (R,m, k) be an F-finite local ring and
M a finitely generated R-module with dim(M) = 2. If, for some P ∈ AssR(M)
with dim(R/P ) = 2, there exists a module-finite extension A of R/P such that A
is strongly F-regular, then for every n ∈ N+,

eM has a direct summand isomorphic
to An for all e≫ 0.

When dim(M) > 2, some cases of the splitting of eM are proved in [Ho3,
Fact 5.14, Theorem 5.16] and [Yao2, Theorem 1.11].

The goal of this section is to generalize Theorem 3.3 to all positive dimensions.
We start with some preparation.

For any F-finite ring R, any finitely generated R-module M , and any e ∈ N+,
denote by ♯(eM) the largest rank of all free direct summands of eM . If moreover
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(R,m, k) is local, Tucker showed in [Tu] that the following limits exist

lim
e→∞

♯(eR)

qdim(R)+α(R)
= s(R) ∈ R and lim

e→∞

♯(eM)

qdim(R)+α(R)
= r s(R) ∈ R,

in which r is the torsion-free rank of M (assuming R is a domain). The limit s(R)
is called the F-signature of R; see [HL]. Also, Aberbach and Leuschke proved in
[AL] that (R,m, k) is strongly F-regular if and only if s(R) > 0. So for a finite
generated faithful module over a strongly F-regular F-finite local ring (R,m, k),
♯(eM) grows at the same magnitude as qdim(R)+α(R) when e → ∞. Without the
local assumption, at least the following properties hold:

Proposition 3.4.1 Let R be an F-finite strongly F-regular domain and M a finitely
generated R-module supported on Spec(R). Denote by F the fraction field of R.

(1) For every x ∈M such that AnnR(x) = 0, there exists e0 ∈ N+ such that the
R-linear map from R to e0M defined by 1 7→ e0x is left split.

(2) The sequence {♯(eM)}e∈N+ is non-decreasing.
(3) If α(F ) > 0 (e.g., dim(R) > 0) then lime→∞ ♯(eM) = ∞.

Proof. (1) There exists h ∈ HomR(M,R) such that h(x) = c ∈ R◦. Then there
exists e0 ∈ N+ such that the R-linear map hc from R to e0R sending 1 to e0c is left
split. Note that hc = h ◦ hx where hx is the R-linear map from R to e0M sending
1 to e0x. Thus hx is left split, as required.

(2) Say ♯(eM) = a for e ∈ N+. Then eM ∼= Ra ⊕N , hence e+1M ∼= (1R)a ⊕ 1N .
By Remark 2.1, 1R has a free direct summand of rank (at least) 1. Thus e+1M has
a free direct summand of rank (at least) a, meaning ♯(e+1M) ⩾ a = ♯(eM). This
proves that the sequence {♯(eM)}e∈N+

is non-decreasing.
(3) There exists x ∈ M such that AnnR(x) = 0. By (1), ♯(e0M) ⩾ 1 for some

e0 ∈ N+. This implies ♯(e0+eM) ⩾ ♯(eR) for all e ∈ N+. Thus it suffices to prove
lime→∞ ♯(eR) = ∞, that is, to prove that for every n ∈ N+, there exists en ∈ N+

such that ♯(eM) ⩾ n for all e ⩾ en.
The existence of e1 is immediate, since ♯(eR) ⩾ 1 for all e ⩾ 1 by Remark 2.1.

Assume that there exists en such that ♯(eM) ⩾ n for all e ⩾ en. We may further
assume en > (logp n)/α(F ). Write enR ∼= Rn ⊕ k. Note that enR has torsion-free

rank penα(F ) > n; see Remark 1.3. Thus k has a positive torsion-free rank. By (1),

there exists e′ ∈ N+ such that ♯(e
′
k) ⩾ 1. Let en+1 = en + e′, so that

en+e′R ∼= e′(Rn ⊕ k) = (e
′
R)n ⊕ e′k.

Thus ♯(en+1M) ⩾ n + 1; see Remark 2.1. By (2), ♯(eM) ⩾ n + 1 for all e ⩾ en+1.
This completes the proof. □

If R is strongly F-regular, then R is a direct product of strongly F-regular do-
mains. Thus Proposition 3.4 has a global version as follows.

Theorem 3.5. Let R be an F-finite strongly F-regular ring and M a finitely gen-
erated R-module supported on Spec(R). Write R = R1 × · · · ×Rm with each Ri an
F-finite strongly F-regular domain. Denote by Fi the fraction field of Ri.

(1) For every x ∈M such that AnnR(x) = 0, there exists e0 ∈ N+ such that the
R-linear map from R to e0M defined by 1 7→ e0x is left split.

(2) The sequence {♯(eM)}e∈N+
is non-decreasing.

1See [DSPY] for a more detailed investigation about the growth of ♯(eM) as e → ∞.
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(3) If α(Fi) > 0 (e.g., dim(Ri) > 0) for all i ∈ {1, . . . ,m}, then lime→∞ ♯(eM) =
∞.

Proof. This follows from Proposition 3.4 via component-wise consideration over
Ri. □

We are ready to generalize Theorem 3.2 and Theorem 3.3 without the restriction
on dimensions or the local assumption. We use MinR(M) to denote the set of
minimal primes of an R-module M .

Theorem 3.6. Let R be an F-finite ring and M a finitely generated R-module.
If there exist distinct P1, . . . , Pm ∈ MinR(M) such that, for every i ∈ {1, . . . ,m},
α(RPi

) > 0 (e.g., dim(R/Pi) > 0) and there is a module-finite domain extension Ai

of R/Pi such that Ai is strongly F-regular, then for every n ∈ N+ there exists en ∈
N+ such that, for every e ⩾ en,

enM admits a direct summand that is isomorphic
to (⊕m

i=1Ai)
n over R.

Proof. Replacing M by eM for e ≫ 0, we may assume
√
AnnR(M) = AnnR(M).

Then replacing R by R/AnnR(M), we may assume that R is reduced and M
is faithful over R. Thus for each i ∈ {1, . . . ,m}, Pi ∈ Min(M) = Min(R) and
RPi

∼= (R/Pi)Pi
= k(Pi) is a field.

Let W = R \ (
⋃m

i=1 Pi). Then W−1R ∼= RP1
× · · · × RPm

, a direct product of
fields. Moreover, W−1M ∼= MP1

× · · · ×MPm
is a finitely generated module over

W−1R. For each i, as MPi
̸= 0, we see MPi

∼= (RPi
)si = k(Pi)

si with si ∈ N+.
Then

W−1(eM) ∼= e(W−1M) ∼= e[(RP1
)s1 × · · · × (RPm

)sm ]

∼= (eRP1
)s1 × · · · × (eRPm

)sm

∼= (RP1
)s1p

eα(RP1
)

× · · · × (RPm)smpeα(RPm
)

for all e ∈ N+; see Remark 1.3.
Regarding each Ai as an R-module, we see W−1Ai

∼= APi
, which is a finitely

generated module over the field RPi
. So APi

∼= (RPi
)ri for some ri ∈ N+.

Let A :=
∏m

i=1Ai, which is naturally an R-algebra. It is easy to see

W−1A ∼= (RP1)
r1 × · · · × (RPm)rm .

Since α(RPi) ⩾ 1 for all i, there exists e′ ∈ N+ such that sip
e′α(RPi

) ⩾ ri
for all i. Thus W−1(e

′
M) admits a direct summand isomorphic to W−1A over

W−1R. Lifting the relevant W−1R-linear maps, we obtain R-linear maps φ ∈
HomR(A,

e′M) and ψ ∈ HomR(
e′M,A) such that ψ ◦ φ = c IA ∈ HomR(A,A) for

some c ∈W , i.e., the map ψ ◦φ is multiplication by c. Trivially, for all e ∈ N+, we

have R-linear maps eφ ∈ HomR(
eA, e′+eM) and eψ ∈ HomR(

e′+eM, eA) such that
eψ ◦ eφ = e(c IA) ∈ HomR(

eA, eA); see Remark 1.1.
Consider c := (c + P1, . . . , c + Pm) ∈

∏m
i=1(R/Pi)

◦ ⊆
∏m

i=1A
◦
i = A◦. Since

A is strongly F-regular, there exists e′′ ∈ N+ such that the A-linear map hc ∈
HomA(A,

e′′A) sending 1 to c is left split; that is, there exists g ∈ HomA(
e′′A,A)

such that g ◦ hc = IA.

Let h1 ∈ HomA(A,
e′′A) be defined by sending 1 to 1 (hence a 7→ ap

e′′

for all

a ∈ A). Clearly e′′ψ ◦ e′′φ ◦ h1 ∈ HomR(A,
e′′A) and e′′ψ ◦ e′′φ ◦ h1(1) = c, hence
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e′′ψ ◦ e′′φ ◦ h1 = hc. Therefore

g ◦ e′′ψ ◦ e′′φ ◦ h1 = g ◦ hc = IA,

which shows that e′′φ ◦ h1 ∈ HomR(A,
e′+e′′M) is left split. Let e0 = e′ + e′′. Then

e0M admits a direct summand isomorphic to A as an R-module.
Without affecting the claim, we replace M by e0M . Write M ∼= A⊕N , so that

eM ∼= eA ⊕ eN for all e ∈ N+. Applying Theorem 3.5 to the F-finite strongly F-
regular domains A, we see that for every n ∈ N+ there exists en ∈ N+ such that
eA admits a direct summand isomorphic to An over A for every e ⩾ en. Thus eM
admits a direct summand isomorphic to An ∼= (⊕m

i=1Ai)
n over R for every e ⩾ en.

Now the proof is complete. □

Corollary 3.7. Let R be an F-finite ring and M a finitely generated R-module. If
there exists P ∈ Min(M) such that α(RP ) > 0 (e.g., dim(R/P ) > 0) and there is
a module-finite domain extension A of R/P such that A is strongly F-regular, then
eM splits non-trivially over R for all e≫ 0.

Theorem 3.6 clearly generalizes Theorem 3.3. Also note that in Theorem 3.2,
A = R/P is regular and hence strongly F-regular. Thus Theorem 3.6 recovers
Theorem 3.2.

Corollary 3.8. Let R be an F-finite ring and M a finitely generated R-module. If
there exists P ∈ Min(M) such that dim(R/P ) ⩽ 1 and α(RP ) > 0, then eM splits
non-trivially over R for all e≫ 0.

Proof. In case dim(R/P ) = 0, Corollary 3.7 applies with A = R/P .
In case dim(R/P ) = 1 (so that α(RP ) > 0 automatically), Corollary 3.7 applies

with A = R/P , the integral closure of R/P in its fraction field. □

One might wonder what happens if there exist P ∈ Min(M) such that α(RP ) = 0
(which is equivalent to R/P being a perfect field). We make the following remarks
concerning this case.

Remark 3.9. Let R be an F-finite ring and M be a finitely generated R-module.
Assume that there exists m ∈ Min(M) with dim(R/m) = 0. LetH =

⋃∞
i=1(0 :M mi)

and K = ker(M →Mm). Let r = λR(H), so that 1 ⩽ r <∞. Then

(1) An elementary proof should verify the following direct sum decompositions:

M = H ⊕K hence eM = eH ⊕ eK for all e ∈ N+.

(2) For all e≫ 0 (such that m(eH) = m[pe]H = 0), we see eH ∼= (R/m)rp
eα(Rm)

.
(3) Therefore, eM remains indecomposable for all e ∈ N+ if and only if K = 0,

r = 1 and α(Rm) = 0 if and only if M ∼= R/m and R/m is a perfect field.

4. From the splitting of eM to strong F-regularity

In light of Theorem 3.6, with R being F-finite, we wonder whether the eventual
splitting of R off eM would imply the strong F-regularity of R. In fact, we can ask
the question without assuming that R is F-finite, as follows.

Question 4.1. Let R be such that, for every finitely generated faithful R-module
M , there exists e ∈ N+ such that eM admits a pure map R → eM . Is R strongly
F-regular? (This is a partial converse of Theorem 3.6.)
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We are able to answer the question positively for locally excellent rings, which
establishes a characterization of strong F-regularity. For any ring R, its total frac-
tion ring is Q(R) = W−1R with W consisting of all nonzerodivisors of R. By the
integral closure of R, denoted R, we mean the integral closure of R in Q(R). We
say that R is normal if R is reduced and R = R. Thus, normal Noetherian rings
are finite products of normal integral domains.

In the following theorem, we consider modules over both R and R that may not
be finitely generated, as well as finitely generated modules. To make sure that this
is clear, we describe modules that may not be finitely generated as arbitrary.

Theorem 4.2. Let R be a locally excellent ring. For the eight statements below we
have (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (7) ⇒ (8). Moreover, if R is in a class
of rings for which very strongly F-regular and strongly F-regular are equivalent,
such as F-finite rings or rings essentially of finite type over an excellent semilocal
ring, then (8) ⇒ (1) and all of the statements below are equivalent.

(1) R is very strongly F-regular.
(2) For every module M that is finitely generated over R or over R and sup-

ported on all of Spec(R), eM (as an R-module) admits a pure R-submodule
isomorphic to R for all e≫ 0.

(3) For every module M that is finitely generated over either R or R and that is
faithful over R, there exists e ∈ N+ such that eM admits a pure submodule
isomorphic to R.

(4) There exists an arbitrary module N over R such that, for every M ∈ {N} ∪
{P ∈ Spec(R) | dim(RP ) ⩾ 2}, there exists e ∈ N+ such that eM admits a
pure submodule isomorphic to R.

(5) There exists an arbitrary module N over R and there exists e1 ∈ N+ such that
e1N admits a pure submodule isomorphic to R, and for every P ∈ Spec(R)
such that dim(RP ) ⩾ 2, there exists e ∈ N+ such that ePP , as an RP -module,
admits a pure submodule isomorphic to RP .

(6) There exists e1 ∈ N+ such that e1R admits a pure submodule isomorphic to
R, and for every P ∈ Spec(R) such that dim(RP ) ⩾ 2, there exists e ∈ N+

such that ePP , as an RP -module, admits a pure submodule isomorphic to RP .
(7) The ring R is normal, and for every P ∈ Spec(R) such that dim(RP ) ⩾ 2,

there exists e ∈ N+ such that ePP , as an RP -module, admits a pure submodule
isomorphic to RP .

(8) R is strongly F-regular.

Proof. (1) ⇒ (2): Since R is very strongly F-regular, R is normal, i.e., R = R. Let
M be a finitely generated R-module supported on Spec(R). As R is reduced, there
exist x ∈M and an R-linear map h : M → R such that h(x) = c ∈ R◦. Then there
exists e ∈ N+ such that the R-linear map hc : R→ eR sending 1 to ec is pure. Note
that hc = h ◦ hx where hx is the R-linear map from R to eM sending 1 to ex. Thus
hx is a pure map, as required. (This is similar to the proof of Proposition 3.4(1).)

(2) ⇒ (3): This is clear.
(3) ⇒ (4): This implication holds because, for example, R is finitely generated

over R and faithful over R while every M ∈ {P ∈ Spec(R) | dim(RP ) ⩾ 2} is
finitely generated and faithful over R.

(4) ⇒ (5): This is immediate, since pure maps localize.
(5) ⇒ (6): The pure map R→ e1N factors through e1R by Remark 2.1.
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(6) ⇒ (7): Since e1R admits a pure submodule isomorphic to R, we see that R
is reduced and the embedding R ⊆ R is pure by Remark 2.1, which implies that
R = R, i.e., that R is normal.

(7) ⇒ (8): The hypothesis of (6) passes to RP for all P ∈ Spec(R). To prove R is
strongly F-regular, it suffices to show RP is strongly F-regular for all P ∈ Spec(R)
(cf. [HH4, Theorem 5.5]). Thus we may assume that (R,m, k) is local without loss
of generality, so that (R,m, k) is an excellent, local, normal domain. (This the the
only implication where the assumption that R is locally excellent is needed.)

We are going to prove the strong F-regularity of (R,m, k) by induction on
dim(R). When dim(R) ⩽ 1, the normality of R implies that R is regular (hence
strongly F-regular). For the rest of the proof, let dim(R) ⩾ 2. By assumption,
there exist e ∈ N+ and c ∈ m \ {0} such that the R-linear map R→ em determined
by 1 7→ ec is pure; that is, the embedding R(ec) ⊆ em is pure.

Next, we prove that the embedding R(ec) ⊆ eR is pure. For this, it suffices to
show that the embedding R(ec) ⊆ N is pure for every finitely generated R-module
N such that R(ec) ⊆ N ⊆ eR. For any such N , consider the short exact sequence

0 −→ N ∩ em
ι−→ N −→ N/(N ∩ em) −→ 0,

in which ι is the embedding map. This induces the following exact sequence

· · · −→ HomR(N,R)
ι∗−→ HomR(N ∩ em, R) −→ Ext1R(N/(N ∩ em), R) −→ · · ·

with ι∗ being the restriction map. Since the R-linear map hc : R → N ∩ em deter-
mined by hc(1) =

ec is pure (hence is left split), there exist g ∈ HomR(N ∩ em, R)
such that g◦hc = IR. Note that N/(N∩em) ∼= (N+em)/em ⊆ e(R/m), which implies
m ⊆ Ann(N/(N∩em)). Since R is normal, the S2 property indicates that m contains
an R-regular sequence of length (at least) two. Hence Ext1R(N/(N∩em), R) = 0 and
therefore the restriction map ι∗ is surjective onto HomR(N ∩ em, R). In particular,
there exists f ∈ HomR(N,R) such that

f |N∩em = ι∗(f) = g ∈ Hom(N ∩ em, R).

This implies

f ◦ hc = IR,

which proves that theR-linear mapR→ N sending 1 to ec is left split. As mentioned
earlier, this shows that the embedding R(ec) ⊆ eR is pure.

By the induction hypothesis, RP is strongly F-regular for all P ∈ Spec(R)\{m},
hence Rc is strongly F-regular. Thus R is strongly F-regular by Theorem 2.24,
which completes the proof. □

In the case where R is F-finite or essentially of finite type over a excellent semilo-
cal ring, Theorem 4.2 takes a simpler form, since very strong F-regularity is equiv-
alent to strong F-regularity and it is always true that R is module-finite over R:

Corollary 4.3. Let R be a ring that is F-finite or essentially of finite type over an
excellent semilocal ring. The following statements are equivalent:

(1) R is strongly F-regular.
(2) For every finitely generated R-module M supported on all of Spec(R), eM

admits a pure submodule isomorphic to R for all e≫ 0.
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(3) For every finitely generated faithful R-module M , there exists e ∈ N+ such
that eM admits a pure submodule isomorphic to R.

(4) There exists an arbitrary module N over R such that, for every M ∈ {N} ∪
{P ∈ Spec(R) | dim(RP ) ⩾ 2}, there exists e ∈ N+ such that eM admits a
pure submodule isomorphic to R.

(5) There exists an arbitrary module N over R and there exists e1 ∈ N+ such that
e1N admits a pure submodule isomorphic to R, and for every P ∈ Spec(R)
such that dim(RP ) ⩾ 2, there exists e ∈ N+ such that ePP , as an RP -module,
admits a pure submodule isomorphic to RP .

(6) There exists e1 ∈ N+ such that e1R admits a pure submodule isomorphic to
R, and for every P ∈ Spec(R) such that dim(RP ) ⩾ 2, there exists e ∈ N+

such that ePP , as an RP -module, admits a pure submodule isomorphic to RP .
(7) R is normal, and for every P ∈ Spec(R) such that dim(RP ) ⩾ 2, there exists

e ∈ N+ such that ePP admits a pure submodule isomorphic to RP .

Remark 4.4. WhenR is F-finite or essentially of finite type over a complete semilocal
ring A, then we can use “direct summand” to replace “pure submodule”. In the
latter case, we can use the product structure of the complete base ring to reduce to
the case where the base ring (A, m) is complete and local. Choose a coefficient field
k for A and a p-base Λ for k. Suppose R→M is pure with 1 7→ u. For sufficiently
small cofinite Γ, the closed fiber of A → AΓ is a field and hence RΓ → RΓ ⊗M
is pure over RΓ (by an argument similar to the proof of Lemma 2.15). Since RΓ

is F-finite, we get a splitting of RΓ → RΓ ⊗M over RΓ. Restricting this splitting
to M , we get an R-linear map M → RΓ with u 7→ 1. Thus, it will suffice to get a
splitting of R ⊆ RΓ over R. For this purpose, it suffices to split A → AΓ: we can
then tensor with R. But since this map is pure, we get an injective A-linear map
EA(A/m) → EA(A/m)⊗A A

Γ. Now that A is complete, we get a splitting map by
Matlis duality.

5. Splitting and small maximal Cohen-Macaulay modules

Let (R,m) be a local ring with and M a finitely generated R-module of Krull
dimenson d. We say M is Cohen-Macaulay if there exists an proper M -regular
sequence of length d, which means that there exist x1, . . . , xd ∈ m such that∑d

i=1 xiM ̸= M and (
∑j−1

i=1 xiM :M xj) =
∑j−1

i=1 xiM for all j ∈ {1, . . . , d}. If
M is a finitely generated Cohen-Macaulay module over (R,m) then MP is Cohen-
Macaulay over RP for all P ∈ Supp(M), where Supp(M) := {P ∈ Spec(R) |MP ̸=
0}. In this case, x1, . . . , xd ∈ m form a regular sequence on M if and only if they
are a system of parameters for R/AnnRM .

In general (i.e., without assuming that R is local), we say that a finitely generated
R-module M ̸= 0 is Cohen-Macaulay if MP is Cohen-Macaulay over RP for all
P ∈ Supp(M).

A finitely generated module over a local ring R is called a maximal Cohen-
Macaulay module over R or a small Cohen-Macaulay module over R ifM is Cohen-
Macaulay and has Krull dimension equal to dim(R).

Here is question concerning the existence of small Cohen-Macaulay modules.

Question 5.1 (Hochster). Do small Cohen-Macaulay modules exist over complete
local rings?
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Note that by replacing R by a quotient by a minimal prime, this question reduces
to the case of a complete local domain.

In the equicharacteristic case, the existence of big (i.e., not necessarily finitely
generated) Cohen-Macaulay modules was established in [Ho2], and the existence
of big Cohen-Macaulay algebras was proved in [Ho5, HH2, HH4]. There is an
exposition with further motivation for the problem in [Ho3, Ho4]. The case of
dimension 3 in mixed characteristic was settled in [Ho6] using the results of [He].
Relatively recent breakthroughs using almost mathematics and perfectoid geometry
have settled the issue in mixed characteristic in general [And, Bha, HeMa].

In this section, we investigate the existence of small Cohen-Macaulay R-modules
via the splitting of eM for any finitely generated module M over any F-finite ring
R.

Hochster used the splitting of eM in proving the existence of small maximal
Cohen-Macaulay modules (cf. [Ho3, Proposition 5.11]). The results concern N-
graded rings. A form of Theorem 5.2 below was first proved by R. Hartshorne
(the ring was assumed to have an isolated singularity) and later, independently, by
Peskine and Szpiro (unpublished). There are also results on the existence of small
Cohen-Macaulay modules in [Ha1, Ha2, Scho1, Scho2].

Hanes used a related idea to construct graded small Cohen-Macaulay modules
with negative a-invariant in the N-graded case in certain instances, which enabled
him to construct small Cohen-Macaulay modules over Segre products.

Theorem 5.2. Let R = ⊕∞
i=0Ri be an equidimensional N-graded ring (of prime

characteristic p > 0) with R0 being a perfect field and dim(R) = d.

(1) If d = 3, then there exists a graded small Cohen-Macaulay R-module.
(2) If there is a finitely generated graded R-module M with dim(M) = d whose

non-Cohen-Macaulay locus consists of the maximal homogeneous ideal only,
then there exists a graded small maximal Cohen-Macaulay R-module.

We are going to extend the above results to a greater generality. The general
idea is that sufficient splitting of eM implies sufficient depth. To make this idea
precise, we need to define the splitting number of a (graded) module over a (graded)
ring.

For simplicity, we only study rings R = ⊕i∈NsRi graded by the semigroup (Ns,+)
where 0 ⩽ s ∈ Z. By abuse of notation, we write 0 for the zero element of (Ns,+).
When s = 0, we agree that N0 = {0}; thus an N0-graded ring is simply a ring
R = R0.

We call a ring R to be Ns-graded local if R is Ns-graded with (R0,m0, k) local;
and if this is the case, we write the Ns-graded local ring as (R,m, k) with m being
the maximal homogeneous ideal. Clearly, an N0-graded local ring is simply a local
ring.

In the sequel, we are going to encounter modules graded by 1
peNs or 1

peZs for

various e ⩾ 0 (see Remark 5.4). To embrace them all, we describe Qs-graded
modules as follows: We say that a module M over an Ns-graded ring R = ⊕i∈NsRi

is Qs-graded if

M = ⊕j∈QsMj over Z and RiMj ⊆Mi+j

for all i ∈ Ns and j ∈ Qs. Clearly, this covers all modules graded by 1
peNs or 1

peZs.

When s = 0, an Q0-graded module (over an N0-graded ring R) is simply an ordinary
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R-module. Also, for any k ∈ Qs, we use M(k) to denote the ‘shifted’ Qs-graded
R-module in which the j-graded piece of M(k) is Mk+j , i.e., M(k)j =Mk+j .

Remark 5.3. Let R = ⊕i∈NsRi be a Ns-graded local ring (of any characteristic) and
M = ⊕j∈QsMj a Qs-graded R-module, with s ⩾ 0.

(1) There is the following direct sum decomposition of M over R induced by the
given grading:

M =
⊕

i∈[0, 1)s∩Qs

M[i] where M[i] :=
⊕

j∈i+Zs

Mj ,

in which [0, 1) := {r ∈ R | 0 ⩽ r < 1} and [i] := i+Zs is the coset represented
by i in the quotient group Qs/Zs. Note that each M[i](i) is Zs-graded.

(2) Assume thatM is indecomposable over R. Then there exists i0 ∈ [0, 1)s such
that M = M[i0], so that M(i0) is Zs-graded. If, furthermore, M is finitely
generated over R, then there exists i ∈ [i0] such that M(i) is Ns-graded.

Remark 5.4. Let R = ⊕i∈NsRi be a Ns-graded local ring (of prime characteristic
p > 0) and M = ⊕j∈QsMj a Qs-graded R-module, with s ∈ N.
(1) For every e ∈ N, the R-module eM is a Qs-graded R-module in following

sense: for all x ∈ M and i ∈ Qs, the element ex ∈ eM is homogeneous of
degree i ∈ Qs if and only if x ∈M is homogeneous of degree pei ∈ Qs.

(2) Applying Remark 5.3(1) to the graded module eM , we see the following direct
sum decomposition of eM over R induced by grading:

eM =
⊕

i∈[0, pe)s∩Qs

e(Mi+peZs) where Mi+peZs :=
⊕

j∈i+peZs

Mj .

Note that (e(Mi+peZs))( i
pe ) =

e(Mi+peZs(i)) is Zs-graded over R.

(3) In particular, ifM is an Ns-graded R-module, then eM is 1
qN

s-graded over R.

(In this case, we sometimes still say that eM is Qs-graded for simplicity.) We
see the following direct sum decomposition of eM over R induced by grading:

eM =
⊕

i∈[0, pe)s∩Ns

e(Mi+peNs) where Mi+peNs :=
⊕

j∈i+peNs

Mj .

Note that (e(Mi+peNs))( i
pe ) =

e(Mi+peNs(i)) is Ns-graded over R.

Definition 5.5. Let R be a Ns-graded local ring (of any characteristic) andM ̸= 0
a finitely generated Qs-graded R-module, with s ∈ N.
(1) The splitting number ofM , denote Θ(M), is the supremum of all n ∈ N+ such

that M can be written as a direct sum of n non-zero graded R-submodules,
that is,

Θ(M) = sup{n ∈ N+ |M = ⊕n
i=1Mi, Mi ̸= 0, Mi is Qs-graded} <∞.

(2) Using Card(−) to denote cardinality, we also define

θ(M) = Card{i ∈ [0, 1)s ∩Qs |M[i] ̸= 0},
which is simply the number of non-zero direct summands in the direct sum
decomposition described in Remark 5.3(1).

Remark 5.6. Let R and M be as in Definition 5.5 above. Then

(1) It is obvious that Θ(M) ⩾ θ(M).
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(2) In case s = 0, Θ(M) simply means the maximum number n ∈ N+ such that
M can be written as a direct sum of n non-zero submodules over the local
ring R.

(3) Further assume that R is F-finite of prime characteristic p > 0. Then, for
every e ∈ N, we can study Θ(eM) and θ(eM) since eM is finitely generated
and Qs-graded over R in light of Remark 5.4(1). For every e ∈ N, it is routine
to see the following

θ(eM) = Card{i ∈ [0, pe)s ∩Qs |Mi+peNs ̸= 0}.

In particular, if M is Ns-graded over R (as in Remark 5.4(3)), then

θ(eM) = Card{i ∈ [0, pe)s ∩ Ns |Mi+peNs ̸= 0}.

Remark 5.7. Let R be a ring (of prime characteristic p > 0), I an ideal of R, and
M an R-module. Then

(1) There are natural isomorphisms Hi
I(

eM) ∼= eHi
I(M) for all i ∈ Z and all

e ∈ N+.
(2) Assume R is F-finite and M is finitely generated over R. Then there are

natural isomorphisms e
(
M̂ I

) ∼= (̂eM)I over R̂I for all e ∈ N+, where N̂ I

stands for the I-adic completion of any R-module N .

For any (Noetherian) ring R, any ideal I, and any finitely generated R-module
M such that IM ̸=M , the depth of M with respect to I is

depth(I,M) := min{i ∈ N | ExtiR(R/I,M) ̸= 0},

which agrees with the maximum of the lengths of all M -regular sequences in I.
Also, we say that M satisfies St, with t ∈ N, if

depth(P,M) ⩾ min{dim(MP ), t}

for all P ∈ Spec(R) (or equivalently, depth(PP ,MP ) ⩾ min{dim(MP ), t} for all
P ∈ Spec(R). (We agree that the dimension of the zero module is −∞.)

The following results are well-known, see [BH] for example. In [BH], the results
are stated for N-graded rings/modules. In our case (the case below with general
s), we can first make M a Zs-graded R-module by scaling degrees (multiplying all
degrees used for M and R by a suitable positive integer) and then shifting degrees
by adding a vector of positive constants, so that both M and R become Ns-graded,
and then regard both the ring and the module as N-graded by taking the degree of
a form of multi-degree i = (i1, . . . , is) ∈ Ns to be its total degree |i| := i1 + · · ·+ is.

Remark 5.8. Let (R,m, k) be an Ns-graded local ring andM ̸= 0 a finitely generated
Qs-graded R-module.

(1) We have depth(m,M) = depth(mRm,Mm) = min{i ∈ N | Hi
m(M) ̸= 0}.

(2) Also, M is small Cohen-Macaulay over R if and only if Mm is small Cohen-
Macaulay over Rm.

(3) Furthermore, M satisfies St as an R-module if and only if Mm satisfies St as
an Rm-module.

Note that, in the next theorem, when s = 0, an N0-graded local ring is none
other than a local ring and a Q0-graded R-module is none other than an R-module.
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Theorem 5.9. Let (R,m, k) be an F-finite Ns-graded local ring (of prime charac-
teristic p > 0) and M ̸= 0 a finitely generated Qs-graded R-module, with s ∈ N.
For some fixed m ∈ {0, . . . ,dim(M)− 1}, let

K := HomR(⊕m
i=0 H

i
m(M), E(R/m)) = HomR̂

m(⊕m
i=0 H

i
m(M), E(R/m)).

Assume that, for some e ∈ N,

Θ(eM) > λR̂m

(
K

m[q]K

)
qα(Rm).

Then there exists a finitely generated Ns-graded non-zero R-module N such that
depth(m, N) ⩾ m+1. In fact, N can be chosen as a graded direct summand of eM
subject to a proper shift.

Proof. Let u = Θ(eM) and write down a direct sum decomposition as follows

eM =M1 ⊕ · · · ⊕Mu

in which Mi ̸= 0 are Qs-graded R-submodules of eM .
We claim that, for some j ∈ {1, . . . , u}, depth(m,Mj) ⩾ m + 1, or equiva-

lently, ⊕m
i=0 H

i
m(Mj) = 0 by Remark 5.8. To prove by contradiction, suppose

⊕m
i=0 H

i
m(Mj) ̸= 0 for all j ∈ {1, . . . , u}. Then

HomR(R/m, ⊕m
i=0 H

i
m(Mj)) ̸= 0,

which implies

λR(HomR(R/m, ⊕m
i=0 H

i
m(Mj))) ⩾ 1 for all j ∈ {1, . . . , u}.

By Matlis duality, Remark 1.3 and Remark 5.7, we have

λR̂m

(
K

m[q]K

)
qα(Rm) = λR(HomR(R/m

[q], ⊕m
i=0 H

i
m(M)))qα(Rm)

= λR(HomR(R/m,
e(⊕m

i=0 H
i
m(M))))

= λR(HomR(R/m, ⊕m
i=0 H

i
m(

eM)))

= λR(HomR(R/m, ⊕m
i=0 H

i
m(⊕u

j=1Mj)))

= λR(⊕u
j=1 HomR(R/m, ⊕m

i=0 H
i
m(Mj)))

=

u∑
j=1

λR(HomR(R/m, ⊕m
i=0 H

i
m(Mj))) ⩾ u = Θ(eM),

which is a contradiction. So there exists j ∈ {1, . . . , u} such that depth(m,Mj) ⩾
m+ 1.

By Remark 5.3, there exists i ∈ Qs such that N := Mj(i) is an Ns-graded R-
module. Clearly, depth(m, N) = depth(m,Mj) ⩾ m+1. The proof is complete. □

Corollary 5.10. Let (R,m, k), M , m and K be as in Theorem 5.9. Assume that
there exists n ∈ N such that

dimR̂
m(K) ⩽ n and lim sup

e→∞

Θ(eM)

qn+α(Rm)
= ∞.

Then there exists a finitely generated Ns-graded non-zero R-module N such that
depth(m, N) ⩾ m + 1. In fact, N can be chosen as an Ns-graded direct summand
of eM , for some e ∈ N, up to a shift.
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Proof. Since dimR̂
m(K) ⩽ n, there exists 0 < C ∈ R such that λR̂m

(
K

m[q]K

)
⩽ Cqn

for all q = pe, see Remark 1.8. So λR̂m

(
K

m[q]K

)
qα(Rm) ⩽ Cqn+α(Rm) for all q = pe.

Because lim sup Θ(eM)
qn+α(Rm) = ∞, there exists e ∈ N such that

Θ(eM) > λR̂m

(
K

m[q]K

)
qα(Rm).

Now Theorem 5.9 applies, which completes the proof. □

Corollary 5.11. Let (R,m, k) be an F-finite Ns-graded local ring with dim(R) = d
and M a finitely generated Qs-graded R-module.

(1) Assume that, for some n ∈ N, we have

lim sup
e→∞

Θ(eM)

qn+α(Rm)
= ∞.

Then there exists a finitely generated Ns-graded non-zero R-module N such
that depth(m, N) ⩾ n + 1. In fact, N can be chosen as a graded direct
summand of eM , for some e ∈ N, up to a shift.

(2) Assume that

lim sup
e→∞

Θ(eM)

qd−1+α(Rm)
= ∞.

Then there exists a finitely generated Ns-graded non-zero R-module N that
is Cohen-Macaulay. In fact, N can be chosen as a graded direct summand of
eM , for some e ∈ N, up to a shift.

(3) In particular, if there is an upper bound B for the Hilbert-Kunz multiplicities
(with respect to m) of all indecomposable Ns-graded R-modules that are direct
summands of eM , then there exists a small Cohen-Macaulay Ns-graded R-
module.

Proof. (1) Let K := HomR(⊕n
i=0 H

i
m(M), E(R/m)), which can be naturally identi-

fied with HomR̂
m(⊕n

i=0 H
i
m(M), E(R/m)). It is known that dimR̂

m(K) ⩽ n (which
holds quite generally, by localization and local duality, cf. [BH, 8.1.1]); so the claim
follows from Corollary 5.10.

(2) This is a special case of (1), when n = d− 1.
(3) Observe that eHK(m,

eR) = eHK(m, R)q
d+α(Rm). Thus

Θ(eR) ⩾
eHK(m, R)q

d+α(Rm)

B
, which implies lim

e→∞

Θ(eM)

qd−1+α(Rm)
= ∞.

Now the claim follows from (2). □

Review 5.12. Let (R,m, k) be a Cohen-Macaulay local ring (of any characteristic)
with dim(R) = d. Assume that R admits a canonical module ωR. Then, for every
P ∈ Spec(R), (ωR)P is a canonical module for RP . For every P ∈ Spec(R), let
E(R/P ) be the injective hull of R/P , so that E(R/P ) is automatically a module

over R̂P
P , the P -adic (or PP -adic) completion of RP . LetM be a finitely generated

R-module. By local duality (and Matlis duality), for all i, we have

(1) Hi
m(M) ∼= HomR(Ext

d−i
R (M,ωR),E(R/m)) over R̂m;

(2) HomR(H
i
m(M),E(R/m)) ∼= ̂Extd−i

R (M,ωR)
m over R̂m.
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We say that a finitely generated R-moduleM is equidimensional is dim(R/P ) =
dim(M) for all P ∈ Min(M). The non-Cohen-Macaulay locus of M consists of
P ∈ Supp(M) such that MP is not Cohen-Macaulay over RP .

Lemma 5.13. Let (R,m, k) be a local ring (of any characteristic) that is excel-
lent or is a homomorphic image of a Gorenstein ring, M be a finitely generated
equidimensional R-module with dim(M) = d, and I be an ideal defining the non-
Cohen-Macaulay locus of M . Let r, t, u ∈ N and 0 ⩽ m ⩽ d− 1. Then

(1) dim(R/I) < r ⇐⇒ dimR̂
m

(
HomR(⊕d−1

i=0 Hi
m(M), E(R/m))

)
< r.

(2) M has St ⇐⇒ dimR̂
m

(
HomR(H

i
m(M), E(R/m))

)
⩽ i− t for all 0 ⩽ i < d.

(3) dimR̂
m(HomR(⊕m

i=0 H
i
m(M), E(R/m))) ⩽ u ⇐⇒ depth(MP ) > dim(MP ) +

m− d for all P ∈ Supp(M) such that dim(MP ) < d− u.

Proof. If R is excellent, we may pass to the completion of R. This allows us to
assume that R is a homomorphic image of a Gorenstein local ring S. By replacing
R by a proper quotient of S (which does not affect either side of the claims), we
may further assume that R is Cohen-Macaulay with canonical module ωR (or even
that R is Gorenstein) and dim(M) = dim(R) = d, without loss of generality.

(1) We have (by local duality and Matlis duality, with some of the small details
skipped, with P denoting a varying prime ideal)

dim(R/I) < r ⇐⇒ MP is CM (or 0) for all P such that dim(R/P ) ⩾ r

⇐⇒ ⊕i⩾1 Ext
i
RP

(MP , ωRP
) = 0 for all P with dim(R/P ) ⩾ r

⇐⇒ dimR

(
⊕i⩾1 Ext

i
R(M, ωR)

)
< r

⇐⇒ dimR

(
⊕d−1

i=0 Extd−i
R (M, ωR)

)
< r

⇐⇒ dimR̂
m

(
⊕d−1

i=0
̂Extd−i

R (M, ωR)
m

)
< r

⇐⇒ dimR̂
m

(
HomR̂

m(⊕d−1
i=0 Hi

m(M), E(R/m))
)
< r.

(2) Similarly, we have (by local duality and Matlis duality, with some of the
small details skipped, with P denoting prime ideals in Supp(M))

M has St ⇐⇒ depth(MP ) ⩾ min{t,dim(MP )} for all P

⇐⇒ Ext
dim(MP )−i
RP

(MP , ωRP
) = 0,∀P and ∀i < min{t, dim(MP )}

⇐⇒ ExtiRP
(MP , ωRP

) = 0,∀P and ∀i > dim(MP )−min{t,dim(MP )}

⇐⇒ ExtiRP
(MP , ωRP

) = 0 for all P and all i > dim(MP )− t

⇐⇒ ExtiRP
(MP , ωRP

) = 0 as long as dim(MP ) < i+ t and i > 0

⇐⇒ dimR

(
ExtiR(M, ωR)

)
⩽ d− i− t for all i ∈ {1, . . . , d}

⇐⇒ dimR

(
Extd−i

R (M, ωR)
)
⩽ i− t for all i ∈ {0, . . . , d− 1}

⇐⇒ dimR̂
m

(
̂Extd−i

R (M, ωR)
m

)
⩽ i− t for all 0 ⩽ i ⩽ d− 1

⇐⇒ dimR̂
m

(
HomR(H

i
m(M), E(R/m))

)
⩽ i− t for all 0 ⩽ i ⩽ d− 1.
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(3) Again, we have (by local duality and Matlis duality, with some of the small
details skipped, with P ∈ Supp(M))

dimR̂
m(HomR(⊕m

i=0 H
i
m(M), E(R/m))) ⩽ u

⇐⇒ dim(⊕i⩾d−m ExtiR(M, ωR)) ⩽ u

⇐⇒ ⊕i⩾d−m ExtiRP
(MP , ωRP

) = 0,∀P such that dim(MP ) < d− u

⇐⇒ depth(MP ) > dim(RP )− (d−m),∀P such that dim(MP ) < d− u.

Note that, for all P ∈ Supp(M), dim(RP ) = dim(MP ). □

Lemma 5.14. Let R = ⊕i∈NsRi be an F-finite Ns-graded ring with R0 being a
field, and M = ⊕i∈QsMi a finitely generated Qs-graded R-module. Then Θ(eM) ⩾
θ(eM)qα(Rm) for all e ∈ N.

Proof. Fix any e ∈ N and denote n := qα(Rm) = [R0 : Rpe

0 ]. Let {b1, . . . , bn} be a
basis of R0 as a module over its subfield Rq

0, where q = pe.
As in Remark 5.4, we have the following direct sum decomposition over R

eM =
⊕

i∈[0, pe)s∩Qs

e(Mi+peNs), where Mi+peNs :=
⊕

j∈i+peNs

Mj .

Since R0 is a field, Mi+peNs and Mj are all free over R0 for all i ∈ [0, pe)s ∩Qs and
j ∈ i+ peNs. Therefore we have the following direct sum decompositions over Rq

0:

Mi+peNs =

n⊕
r=1

(Rq
0brMi+peNs)

=

n⊕
r=1

Rq
0br

⊕
j∈i+peNs

Mj

 =

n⊕
r=1

 ⊕
j∈i+peNs

Rq
0brMj

 .

It is immediate to verify that e
(⊕

j∈i+peNs R
q
0brMj

)
is actually a graded R-module

for every r ∈ {1, . . . , n} and every i ∈ [0, pe)s ∩Qs. This establishes the following
decomposition of eM as a direct sum of graded R-modules:

(†) eM =
⊕

i∈[0, pe)s∩Qs

n⊕
r=1

e

 ⊕
j∈i+peNs

Rq
0brMj

 .

Moreover, e
(⊕

j∈i+peNs R
q
0brMj

)
̸= 0 for some (equivalently, for all) r ∈ {1, . . . , n}

if and only if e
(⊕

j∈i+peNs Mj

)
̸= 0.

Thus there are exactly θ(eM)n non-zero graded direct summands in the above
decomposition (†) of eM . This proves Θ(eM) ⩾ θ(eM)n = θ(eM)qα(Rm). □

Theorem 5.15. Let R = ⊕i∈NsRi be an F-finite Ns-graded local ring and M a
finitely generated equidimensional Qs-graded R-module. Assume that, for some
n ∈ N, one of the following conditions hold:

(a) lim supe→∞
Θ(eM)

qn+α(Rm) = ∞; or

(b) R0 is a field and lim supe→∞
θ(eM)
qn = ∞.

Then (with m denoting the maximal graded ideal of R)
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(1) If the defining ideal of the non-Cohen-Macaulay locus of M , denoted I, sat-
isfies dim(R/I) ⩽ n, then there exists an Ns-graded small Cohen-Macaulay
R-module N of dimension dim(M).

(2) If M satisfies St for some t ∈ N, then there exists a finitely generated Ns-
graded R-module N such that depth(m, N) ⩾ min{t+ n+ 1,dim(M)}.

(3) If depth(MP ) > dim(MP ) +m− d, for some m ∈ {0, . . . ,dim(M)− 1} and
for all P ∈ Supp(M) such that dim(MP ) < d−n, then there exists a finitely
generated Ns-graded R-module N such that depth(m, N) ⩾ m+ 1.

In each case, N can be chosen as a graded direct summand of eM , for some e ∈ N,
up to a shift.

Proof. Since condition (b) implies condition (a), it suffices to assume condition (a).
Then the claim follows from Corollary 5.10 and Lemma 5.13. □

To find a small Cohen-Macaulay module over an Ns-graded local ring R, it suf-
fices to find one such module over R/P for some P ∈ Min(R) such that dim(R/P ) =
dim(R). One advantage of working over an Ns-graded local domain is that we can
use group theory to estimate the growth of θ(eR) as e→ ∞.

Remark 5.16. Let R = ⊕i∈NsRi be an Ns-graded domain (of any characteristic).
Then

G := {i ∈ Ns |Ri ̸= 0} is a subsemigroup of Ns.

Fix homogeneous elements gj ∈ Rij \ {0}, with j ∈ {1, . . . , n} and ij ∈ Ns, such
that {g1, . . . , gn} generates R as an algebra over R0. It is clear that G is precisely
the subsemigroup of Ns generated by {i1, . . . , in}. Let (G) denote the subgroup of
Zs generated by G; so that (G) ∼= Zr for some r ∈ N. Clearly, r is the maximum
cardinality of all linearly independent subsets of {i1, . . . , in} over Z (or over Q).
By proper permutation, we may assume that {i1, . . . , ir} is linearly independent
over Z; so that the subsemigroup (H) generated by H := {i1, . . . , ir} is free, i.e.,
(H) ∼= Nr. This further implies the following (see Remark 5.3 and Remark 5.6 for
relevant notations):

(1) Let M be a finitely generated Qs-graded faithful R-module. Then there
exists x ∈ Mi0 such that AnnR(x) = 0, which implies (for any fixed p ∈ N+

and e ∈ N)

Card{i ∈ [0, pe)s ∩Qs |Mi+peNs ̸= 0} ⩾ Card([0, pe)s ∩ (i0 +G))

⩾ Card([0, pe)s ∩ (i0 + (H))).

It is routine to see that

lim sup
e→∞

Card([0, pe)s ∩ (i0 + (H)))

per
> 0.

(2) Consequently, when R is further assumed to have prime characteristic p > 0,
we see (cf. Remark 5.6)

lim sup
e→∞

θ(eR)

per
> 0.

Definition 5.17. In the situation of Remark 5.16, we call r the grading dimension
of the Ns-graded domain R.
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Theorem 5.18. Let R = ⊕i∈NsRi be an Ns-graded domain with R0 being an F-
finite field. Assume that the grading dimension of R is r. Let M be a finitely
generated Qs-graded faithful R-module (e.g., M = R). Denote by m the unique
homogeneous maximal ideal of R.

(1) If the non-Cohen-Macaulay locus of M is defined by an ideal I that satisfies
dim(R/I) < r, then there exists an Ns-graded small Cohen-Macaulay R-
module (of maximal dimension).

(2) IfM satisfies the St condition with t ∈ N, then there exists a finitely generated
Ns-graded R-module N such that depth(m, N) ⩾ min{t+ r, dim(R)}.

(3) If depth(MP ) > dim(MP ) +m− d, for some m ∈ {0, . . . ,dim(M)− 1} and
for all P ∈ Supp(M) such that dim(MP ) ⩽ d− r, then there exists a finitely
generated Ns-graded R-module N such that depth(m, N) ⩾ m+ 1.

Proof. This follows from Theorem 5.15 and Remark 5.16.
□

Theorem 5.19. Let R = ⊕i∈NsRi be an Ns-graded domain with R0 being an F-
finite field. Assume that the grading dimension of R is r. Then there exists a finitely
generated Ns-graded R-module N such that depth(N) ⩾ min{2 + r, dim(R)}.

In particular, if dim(R) ⩽ r + 2, then there exists an Ns-graded small Cohen-
Macaulay R-module.

Proof. Let R be the integral closure of R in its fraction field. Then R is module-
finite over R and is Ns-graded. Moreover, R satisfies the S2 condition as a ring,
hence it has the S2 condition as an R-module. Now both claims follow from Theo-
rem 5.18. □

6. Examples of regular Noetherian domains that are not very
strongly F-regular

In this section we generalize a construction in [EHo, Remarks (2), p. 159] to
give a large family of regular rings that are not very strongly F-regular. We shall
construct many regular Noetherian domains R with a nonzero element c ∈ R such
that the map R → eR with 1 7→ ec is not pure over R for any choice of e ∈ N+.
Of course, all regular rings R are strongly F-regular in the sense of Definition 2.2.
Moreover, we can arrange that R/cR is a strongly F-regular domain such that every
local ring at a maximal ideal has an isolated singularity, and, in fact, is the local
ring at a maximal ideal of an affine hypersurface over a field. However, the rings
we construct are not excellent. In each of these domains there is an element c such
that c is inMhs

s for a family of maximal ideals {Ms : s ∈ N+} such that the positive
integers hs → ∞ as s→ ∞. Note:

Proposition 6.1. If the map R → eR such that 1 7→ ec is pure, then for every
maximal ideal M of R we have that c /∈M [pe].

Proof. The purity implies that the induced map R/M → eR/(M(eR)) ∼= R/M [pe],
sending 1 to c, is injective, and so c /∈M [pe]. □

Discussion 6.2. The construction is based on a refinement of the method in [Ho1],
which utilizes an idea of Nagata [Na, p. 203] for constructing Noetherian rings of in-
finite Krull dimension. In [Ho1], the rings constructed have the property that every
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nonzero element is in only finitely many maximal ideals, and then the Noetherian
property for the local rings at maximal ideals implies that the ring is Noetherian.

We summarize some results of [Ho1] in the simplest case, which is all that we
will need here. Let B1, . . . , Bn, . . . be a sequence of domains finitely generated over
an algebraically closed field k, and for every s ∈ N+ let Ms be a maximal ideal of
Bs. In this situation, the conditions that certain rings be absolutely Noetherian or
absolutely domains imposed in [Ho1] are automatic.

Let C =
⊗

s∈N+
Bs. Then each MnC is prime in C, and if V is the complement

of the union of these prime ideals in C, V −1C has as its maximal ideals precisely the
ideals ms = V −1MsC. The local rings (V −1C)ms

are all essentially of finite type
over a field, although the field depends on s. In fact the residue class field is the
fraction field Ls of the domainDs =

⊗
t∈N+,t̸=sBt, andDs embeds in C ∼= Ds⊗kBs

with image disjoint from MsC. It follows that Ls embeds in

(V −1C)ms
∼= CMsC

∼= (Ls ⊗Bs)Qs
,

where Qs is the extension Ms(Ls ⊗k Bs) = Ls ⊗k Ms. Thus, the local rings of
V −1C are Noetherian, and even excellent, since they are essentially of finite type
over a field. In [Ho1] it is shown that V −1C is Noetherian, by proving that every
nonzero element belongs to only finitely many maximal ideals.

The situation we deal with here has an extra difficulty, because we want there
to be an element c that is in every maximal ideal. The following result is used to
prove the Noetherian property.

Theorem 6.3. Let R = lim−→λ
Rλ, where the rings Rλ are Noetherian, the maps in

the direct limit system are faithfully flat (and so injective) and let c ∈ Rλ0 be an
element that is in the Jacobson radical of Rµ for all µ ≥ λ0. Suppose that R/cR is
Noetherian. Then R is Noetherian.

Proof. If not, let P be an ideal of R that is maximal with respect to not being
finitely generated. As in the proof of Cohen’s theorem [Na, Theorem (3.4), p. 8]
P is prime. Since R/cR is Noetherian, every ideal of R containing c is finitely
generated. Thus, we may assume c /∈ P but that we have finitely many elements
r1, . . . , rh ∈ P that generate P (R/cR). Choose λ1 so that these elements and c are
in R1 := Rλ1 . Let p denote the contraction of P to R1. Then P ⊆ pR + cR. But
when we write u ∈ P as v+cr with v ∈ pR and r ∈ R, we have that cr = u−v ∈ P ,
and so r ∈ P . It follows that P = pR+ cP . But if P = pR+ cjP for some integer
j ≥ 1, then we have P = pR+ cj(pR+ cP ) = pR+ cj+1P . It follows by induction
on j that P = pR+ cjP ⊆ pR+ cjR for all j ∈ N+.

To complete the proof, it suffices to show that P = pR. Suppose, to the contrary,
that r ∈ P \ pR and that r ∈ Rµ for some µ ≥ λ1. Then, for all j ∈ N+,
r ∈ (pR+ cjR)∩Rµ. Since Rµ → R is faithfully flat, we have that r ∈ pRµ + cjRµ

for all j ∈ N+. If r is not 0 inRµ/pRµ, choose a maximal idealM ofRµ that contains
AnnRµ(r mod pRµ). This maximal ideal also contains c. After we localize at M,
we have that the image of r is not 0, but is in every power of the maximal ideal, a
contradiction. □

Construction 6.4. We now give the construction for a family of choices for the ring
R. Let k be an algebraically field. Let X1, . . . , Xs, . . . be a sequence of mutually
disjoint finite sets of indeterminates over k. For every s ∈ N+, let Gs denote
an irreducible polynomial of positive degree without constant term in k[Xs]. Let
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X =
⋃

s∈N+
Xs, and let T = k[X ]. Let S = T/(Gs −Gs′ : s, s

′ ∈ N+). Let c denote

the common image of the various Gs in S, and also, by slight abuse of notation,
in localizations of S. Let Ps = (Xs)T , and let Qs be its image PsS in S. We
shall show that the ideals PsS are prime. Let W = S \

⋃
s∈N+

Qs. We shall show

that R = W−1S is a regular Noetherian ring whose maximal ideals are simply
the ideals of the form W−1Qs =: Ms, s ∈ N+, that c is a nonzero element in the
Jacobson radical of R, and R/cR is a domain, each of whose local rings (R/cR)Ms

has the form Ls[Xs]/(Gs) for a suitable field extension Ls of k. Specific examples
are discussed in 6.8.

In proving that R has the right properties it will be convenient to introduce
additional rings as follows. For t ≥ 1, let Tt := k[Xs : 1 ≤ s ≤ t] and let St :=
Tt/(Gs −Gs′ : 1 ≤ s, s′ ≤ t). Note that S1 may be identified with T1, since the set
of differences Gs −Gs′ contains only 0 in this case. We let ct denote the common
value of the Gs for 1 ≤ s ≤ t in St. Let Qs,t = PsSt. Let Wt = St \

⋃t
s=1Qs,t. We

have an obvious map St → St′ for t ≤ t′ induced by Tt ⊆ Tt′ . Let Rt := (Wt)
−1St.

The following result gives a catalogue of the properties we need to know about this
construction. Note that once we have established this result, we shall simply write
c for the image of any of the elements ct in R.

Before giving the result we note the following fact: Let B be an arbitrary ring and
c ∈ B a nonzerodivisor. Suppose that

⋂
n∈N+

cnB = 0, which holds if either (1) B is

an N-graded ring and c is a form of positive degree or (2) B is any Noetherian ring
and c is in the Jacobson radical of B. If B/cB is a domain, then B is a domain.
(Otherwise there are nonzero elements in B whose product is zero, and we can
factor a highest power of c from each to produce an example where neither element
is divisible by c. But then, taking images modulo cB, we get a contradiction,
since B/cB is a domain. Some hypothesis like (1) or (2) is necessary. If x, c are
indeterminates and k is a field, the ring B := k[x, c]/(x− xc) is not a domain and
the image c of c is a nonzerodivisor in B, but B/cB ∼= k is a domain.)

Proposition 6.5. Let all notation be as in 6.4.

(1) For all t ≥ 1, St+1
∼= St[Xt+1]/(Gt+1 − ct) and is nonzero free module over

St. Hence, St′ is free over St for all t ≤ t′. Since c1 is a nonzerodivisor in
S1, ct is a nonzerodivisor in St for all t ≥ 1.

(2) S = lim−→t
St with injective maps, and we think of the maps as inclusions.

(3) For all t, ctSt is a prime ideal in St. In fact, St/ctSt is the tensor product
over k of the domains Ts/GsTs, 1 ≤ s ≤ t.

(4) Each of the ideals Qs,t is a prime ideal in St containing ct. The complement

of
⋃t

s=1Qs,t/ctSt in St/ctSt is the image of Wt mod ctSt.
(5) For all t ≥ 1 and for all s, 1 ≤ s ≤ t, we have Qs,t+1 ∩ St = Qs,t, while

Qt+1,t+1 ∩ St = ctSt.
(6) For all t ≥ 1, Wt+1 ∩ St =Wt, and

⋃
t∈N+

Wt =W .

(7) The element ct is in the Jacobson radical of Rt for all t ≥ 1.
(8) All of the rings Rt are regular domains, and R = lim−→t

Rt.

Proof. (1) The isomorphism stated is clear. Freeness follows because, after a change
of variables over k, Gt+1 may be thought of as monic in one of the variables in Xt+1,
and this is also true for Gt+1 − ct viewed as a polynomial in St[Xt+1].

(2) This is clear: the maps may be thought of as inclusions because they are
nonzero free and so faithfully flat.
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(3) It is also clear that St/ctSt is a tensor product as stated, since this is equiva-
lent to dividing by the ideal generated by all the Gs, 1 ≤ s ≤ t. The ring k[Xs]/(Gs)
is a domain because Gs is irreducible. Moreover, a tensor product of domains over
an algebraically closed field is a domain.

(4) From the definitions, it is immediate that St/Qs,t is the tensor product over
k of the rings k[Xj ]/(Gj) as j runs through all values with j ̸= s and 1 ≤ j ≤ t.
It is also evident that ct, which may be identified with cs, is in this prime. The
second statement is clear, since if u ∈ St, we have that u /∈ Qs,t if and only if its
image in St/Qs,t is not 0, and St/Qs,t

∼= (St/ctSt)/(Qs,t/ctSt).
(5) Note that Qs,t+1 ∩ St is the kernel of the composition map

(∗) γ : St → St+1/Qs,t+1
∼=

⊗
1≤j≤t+1, j ̸=s

k[Xj ]/Gjk[Xj ] =: C,

while Qs,t is the kernel of the map

(∗∗) β : St → St/Qs,t
∼=

⊗
1≤j≤t, j ̸=s

k[Xj ]/Gjk[Xj ] =: B.

When s < t+1, the result now follows because we have an injection ι : B → C (com-
ing from the fact that C ∼= B ⊗k (k[Xt+1]/Gt+1k[Xt+1]) such that γ = ι ◦ β. When
s = t+1, we have a similar situation, but C in (∗) becomes

⊗
1≤j≤t k[Xj ]/Gjk[Xj ]

and B in (∗∗) becomes the same ring if we replace Qs,t by ctSt.
(6) We have that u ∈ St is inWt+1 if and only if it is not in any Qs,t+1, 1 ≤ s ≤ t,

and from part (6) this means that is not in any Qs,t, 1 ≤ s ≤ t and not in ctSt.
Since ct is in all of the Qs,t, this simply says that u is not in any Qs,t, 1 ≤ s ≤ t.
It follows that an element of W is in St if and only if it is in Wt, and since S is the
union of the St, the result follows.

(7) By construction, Rt is a semilocal ring whose maximal ideals are theW−1
t Qs,t,

1 ≤ s ≤ t, and these all contain ct.
(8) For every t ≥ 1 the ring Rt is a domain, because ct is a nonzerodivisor in

the Jacobson radical of Rt and Rt/ctRt is a domain. Note that A := (Rt)W−1
t Qs,t

is the localization of St at the prime ideal generated by Xs. Hence, A/ctA may
be identified with the local ring of Ls,t[Xs]/(Gs) at (Xs), where Ls,t is the fraction
field of

⊗
1≤j≤t, j ̸=s k[X ]/(Gj). This is the local ring at the origin of a hypersurface

domain of dimension ns − 1, where ns is the cardinality of Xs. Therefore, A has
dimension ns. Since its maximal ideal is generated by the image of Xs, A is regular.

□

Remark 6.6. Suppose that we also assume that for every s, the indeterminates in
Xs have been assigned positive integer degrees, so that the polynomial ring k[Xs]
has a (possibly non-standard) N-grading, and that we also assume that every Gs

is weighted homogeneous. Then, for t ≥ 1, all of the rings St are domains. We
can see this as follows. We may give St the structure of an N-graded algebra over
k as follows: let degj denote degree with respect to the original weighted grading
on the variables in Xj , and for 1 ≤ s ≤ t, let ds := lcm{degj(Gj) | 1 ⩽ j ⩽
t}/ degs(Gs). Scale the degrees of all of the variables in Xs by giving x ∈ Xs the

new degree ds degs(x). This gives all of the finitely many variables in
⋃t

j=1 Xj

positive integer degrees in such a way that all of the Gj have the same degree,
namely lcm{degj(Gj) | 1 ⩽ j ⩽ t}. This makes St an N-graded k-algebra in which
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ct is a form of degree lcm{degj(Gj) | 1 ⩽ j ⩽ t}. The element ct is a nonzerodivisor
in St by Proposition 6.5(1). Since St/ctSt is a domain, we see that St is a domain.

We now have the following:

Theorem 6.7. Let all notation be as in 6.4. Then:

(1) The ring R is a regular domain, and its maximal ideals are precisely the
ideals Ms for s ∈ N+. The height of Ms is ns, where ns is the cardinality of
Xs.

(2) The element c is prime. The ring S/cS is the ascending union over t of the
rings

k[X1]/(G1)⊗k · · · ⊗k k[Xt]/(Gt),

and may also be described as
⊗

s∈N+
k[Xs]/Gsk[Xs].

(3) The local ring (R/cR)Ms
is the same as the localization of the homogeneous

affine hypersurface (Ls[Xs])/(Gs) at the ideal generated by Xs, where Ls is
the fraction field of

⊗
t∈N+\{s} k[Xt]/Gtk[Xt].

(4) Let hs denote the largest positive integer h such that Gs ∈ (Xs)
h. Then we

have that c ∈Mhs
s for all s ∈ N+.

(5) If the set of integers {hs : s ∈ N+} defined in part (4) is not bounded, then
R is not very strongly F-regular: the map R → eR with 1 7→ ef is not pure
for any choice of e.

We note only that (5) follows from Proposition 6.1.

Examples 6.8. We consider the following specific examples. We use Construc-
tion 6.4 and Theorem 6.7. Recall from Construction 6.4 that Ms = (Xs)R. In all
of these examples, R is regular Noetherian and is not very strongly F-regular. The
rings R are not excellent, but the local rings of R/cR are essentially of finite type
over a field. We do not know whether R itself is locally excellent.

(1) For every s let Xs := {Xs, Ys} and let Gs := Xas
s − Y bs

s , where as, bs are
relatively prime. Give Xs degree bs and Ys degree as. Choose the pairs so
that as → ∞ and bs → ∞ as s→ ∞. E.g., one may choose (as, bs) = (s, s+1)
for all s ∈ N+. Then the ring R constructed is regular of dimension 2.

(2) For every s let Xs := {Xs, Ys, Zs} with standard grading and choose Gs :=
Xhs

s + Y hs
s +Zhs

s where hs is chosen to be an integer not divisible by p such
that hs → ∞ as s → ∞. Then R is regular of dimension 3, and (R/cR)Ms

has an isolated singularity for all s.

(3) For every s let Xs consist of ns := h2s variables with the standard grading,
where hs ≥ 2, and let Gs be a form of degree hs with coefficients in k chosen
in general position (that is, we avoid a proper closed subset of the affine
space of possible coefficients for the form). Suppose also that hs → ∞ as
s→ ∞. Then R is regular of infinite Krull dimension, and (R/cR)Ms

has an
isolated singularity that is strongly F-regular for all s. To see this it suffices
to see that k[Xs]/Gs is F-regular (hence, strongly F-regular). We may use
the criterion in [HH5, Corollary 7.13(b)]. Since Gs is in general position, it
has an isolated singularity. It therefore suffices to check that K[Xs]/(Gs) is
F-pure with a negative a-invariant, but the lattter condition is clear. Finally,
since Gs is in general position, it suffices from [HoR2, §5(c), Proposition 4.19,
p. 158] (the number should have been 5.19, not 4.19) to show that there exists
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a homogeneous choice of G of degree hs in h2s variables whose quotient ring
is F-pure, and we may take G to be the determinant of an hs × hs matrix of
indeterminates.

Quite recently, in [HoY], we show that every stronly F-regular excellent ring is
very strongly F-regular.
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