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Abstract. Let (R,m) be a Noetherian local ring of prime characteristic p. We
define the F-rational signature of R, denoted by r(R), as the infimum, taken over
pairs of ideals I ⊊ J such that I is generated by a system of parameters and J
is a strictly larger ideal, of the drops eHK(I,R)) − eHK(J,R) in the Hilbert-Kunz
multiplicity. If R is excellent, then R is F-rational if and only if r(R) > 0. The
proof of this fact depends on the following result in the sequel: Given an m-primary
ideal I in R, there exists a positive δI ∈ R+ such that, for any ideal J ⊋ I,
eHK(I,R) − eHK(J,R) is either 0 or at least δI . We study how the F-rational
signature behaves under deformation, flat local ring extension, and localization.

0. Introduction

Throughout this paper rings are assumed to be Noetherian rings of prime charac-
teristic p (unless stated otherwise explicitly). By (R,m, k), we mean that R is a local
ring, with m the unique maximal ideal and k = R/m the residue field of R.
Hochster and Huneke introduced and developed tight closure theory for rings of

prime characteristic p; see [HH1] or Definition 1.1. One can define several types
of rings (singularities) via tight closure, including F-rational rings, weakly F-regular
rings, F-regular rings, and strongly F-regular rings; see [HH1] and [HH2] for detailed
definitions. For example, we say that a ring R is F-rational if all parameter ideals are
tightly closed (cf. Definition 1.2). It has been established that F-rationality in prime
characteristic corresponds to rational singularity in characteristic 0 via reduction to
characteristic p; see [Sm2], [Ha] and also [MS].

There are several invariants defined for (local) rings of prime characteristic p. One
such invariant is the F-signature of R, denoted s(R); see Definition 1.12 and Defi-
nition 1.13. It has been shown in [HL] and [AL] that an excellent local ring R is
strongly F-regular if and only if s(R) > 0; see Theorem 1.14 for more details.
Another numerical invariant defined for (R,m, k) is the Hilbert-Kunz multiplicity

eHK(I, R), in which I is an m-primary ideal of R; cf. Notation 1.10. This invariant is
closely connected to tight closure in the sense that (under mild conditions) m-primary
ideals I and J have the same tight closure if and only if eHK(I, R) = eHK(J,R); see
Theorem 1.11 for details.
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The focus of this paper is to define a new invariant, the F-rational signature.

Definition 0.1. Let (R,m, k) be a local ring of prime characteristic p. We define
the F-rational signature of R, denoted rR(R) or simply r(R), as follows (here s.o.p.
stands for system of parameters of R, and we agree that eHK(J,R) = 0 if J = R)

rR(R) = inf{eHK(I, R)− eHK(J,R) | I is generated by a s.o.p. and I ⊊ J}.

In the above definition, a priori, I runs over all ideals of R generated by a system of
parameters. In Section 2, we show that, under mild conditions, r(R) can be defined
via one single choice of ideal generated by a system of parameters; see Theorem 2.5.

In Section 3, we establish a result regarding eHK(I, R) − eHK(J,R) for m-primary
ideals I ⊊ J . To be specific, Theorem 3.1 shows that there exists a real number δ > 0,
depending only on I, such that eHK(I, R)− eHK(J,R) is either 0 or at least δ, for all
J containing I. This result will be used to prove Theorem 4.1.
In Section 4, using Theorem 3.1, we prove that, under mild conditions (e.g., when

R is excellent), r(R) > 0 if and only if R is F-rational; see Theorem 4.1. This justifies
our choice of the term ‘F-rational signature’ for r(R).

In Section 5, we establish results on how the F-rational signature behaves under
deformation, local flat extension and localization; see Theorem 5.1, Theorem 5.6,
Theorem 5.7 and Theorem 5.9.

In Section 6, we define phantom F-rational signature, denoted r′(R), using modules
of finite length and of finite phantom projective dimension. Making use of a result in
[HoY], we show that (under mild conditions, e.g., if R is excellent) R is F-rational if
and only if r′(R) > 0; see Theorem 6.3.
In the final section, we calculate the F-rational signature of some specific rings of

interest.
Following the definition of F-rational signature in an earlier version of this manu-

script, Sannai defined the dual F-signature in [San], and Smirnov and Tucker defined
the relative F-rational signature and the Cartier signature in [STu]. It is conjectured
in [STu] that these three notions agree. These three invariants detect F-rationality,
can only increase under localization, and can detect regularity.

Sannai’s definition is as follows. If R is local F-finite Cohen-Macaulay with canon-
ical module ω, eω denotes ω viewed as an R-module via restriction of scalars from
the e th iteration of the Frobenius endomorphism (the notation F e

∗ (ω) might also
be used), and N(e) denotes the greatest integer N such that there is a surjection
eω ↠ ωN , then the dual F-signature is

(†) lim sup
e→∞

N(e)

rank eω
.

The proof in [San] that the positivity of this invariant detects F-rationality depends
strongly on the results of this paper. However, it is not known whether the limit of
the fraction in the expression in (†) exists.

In the alternative theory developed in [STu], the ring need not be assumed to
be F-finite and Cohen-Macaulay. The relative F-rational signature is defined as the

infimum of ratios
eHK(x)− eHK(I)

ℓ
(
I/(x)

) as (x) ⊊ I run through pairs consisting of an ideal
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(x) generated by a system of parameters and an ideal I of R that contains (x). It
is proved that the positivity of this invariant detects F-rationality (again, utilizing
the results of this paper), and that it can only increase under localization. We refer
the reader to Definition 3.3 of [STu] for the definition of Cartier signature, which
is a lower semicontinuous invariant. All three of these variant notions of F-rational
signature appear to be quite difficult to compute.

Lastly, a quite different way of detecting rational singularities of hypersurfaces in
equal characteristic 0 is explored in [ClM].

1. Background and preliminary results

Let R be a Noetherian ring of prime characteristic p. The Frobenius homomorphism
F : R → R is defined by r 7→ rp for r ∈ R. For any e ∈ N, we have the iterated
Frobenius homomorphism F e : R → R by r 7→ rq for r ∈ R, where q = pe. From
now on, q is an abbreviation for pe for various e ∈ N. Similarly, we use Q = pE, q0 =
pe0 , q′ = pe

′
, q′′ = pe

′′
, etc. to denote varying powers of p.

Let M be an R-module. For any e ⩾ 0, we define a left R-module structure on
the set M by r ·m = rp

e
m for any r ∈ R and m ∈ M . We keep the original right

R-module structure on M . We denote the resulting R-R-bimodule by eM : we have
r ·m = m · rpe , which is equal to rqm in the original M .

If R is reduced, then eR, as a left R-module, is isomorphic to R1/q. (One way to
interpret R1/q is as follows: Let P1, . . . , Pn be the minimal primes of R, so that R is,

up to natural isomorphism, a subring of
∏n

i=1R/Pi ⊆
∏n

i=1 κ(Pi) ⊆
∏n

i=1 κ(Pi)
1/q, in

which κ(Pi) is the fraction field of R/Pi. Then R
1/q = {a ∈

∏n
i=1 κ(Pi)

1/q | aq ∈ R}.)
We use λl(−), λr(−) to denote the left and right lengths of a bimodule. It is easy

to see that λl( eM) = qα(R)λr( eM) = qα(R)λ(M) for any finite length R-module M ,
where α(R) = logp[k : kp].

We recall that R is F-finite if 1R is a finitely generated left R-module. If this is the
case, it is easy to see that eM is a finitely generated left R-module for every e ∈ N
and for every finitely generated R-module M .

For an ideal I of R, we denote by I [q] the ideal generated by {rq | r ∈ I}. Then
R/I ⊗R

eM ∼= e(M/I [q]M) ∼= eM ⊗R R/I
[q] for every R-module M and every e ∈ N.

(Note that if M is an R-S-bimodule and N is an S-T -bimodule then M ⊗S N is
defined and is naturally an R-T -bimodule.)
A very important concept in studying rings of characteristic p is tight closure.

Tight closure was first studied and developed by Hochster and Huneke in the 1980s.

Definition 1.1 ([HH1]). Let R be a Noetherian ring of characteristic p and N ⊆M
be R-modules. The tight closure of N in M , denoted by N∗

M , is defined as follows:
An element x ∈ M is said to be in N∗

M if there exists an element c ∈ R◦ such that

x⊗ c ∈ N
[q]
M ⊆M ⊗R

eR for all e≫ 0, where R◦ is the complement of the union of all

minimal primes of the ring R and N
[q]
M denotes the right R-submodule of M ⊗R

eR
generated by {x⊗ 1 ∈M ⊗R

eR |x ∈ N}. The element x⊗ 1 ∈M ⊗R
eR is denoted

by xp
e

M = xqM and M ⊗R
eR is denoted by F e(M).
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With the above notation, the Frobenius closure of N in M , denoted NF
M , is defined

as follows: x ∈ NF
M if and only if xqM ∈ N

[q]
M for some q (thus for all q ≫ 1).

Given R-modules N ⊆ M , N∗
M/N , as an R-submodule of M/N , is exactly 0∗M/N ;

we say that N is tightly closed (in M) if N∗
M = N . It is clear that NF

M ⊆ N∗
M .

Definition 1.2 ([FW], [HH2, 4.1], [Hu, 3.11]). A Noetherian ring R of characteristic
p is said to be F-rational if every parameter ideal of R (i.e., every (proper) ideal whose
height is equal to its minimal number of generators) is tightly closed. (The ideal 0 is
a parameter ideal; thus, an F-rational ring is reduced.)

Remark 1.3. Further assume that (R,m, k) is local, of dimension d. Then R is F-
rational if and only if all ideals generated by a system of parameters (s.o.p.) are
tightly closed. The ‘only if’ direction is clear since every ideal generated by a s.o.p. is
a parameter ideal. Conversely, for every parameter ideal I = (x1, . . . , xi) with height
i, there exist xi+1, . . . , xd such that x1, . . . , xi, xi+1, . . . , xd form a s.o.p., hence I∗ ⊆
∩n∈N(x1, . . . , xi, xni+1, . . . , x

n
d)

∗ = ∩n∈N(x1, . . . , xi, xni+1, . . . , x
n
d) = (x1, . . . , xi) = I.

Theorem 1.4 ([HH2, Theorem 4.2]). For a Noetherian ring of characteristic p the
following hold:

(1) An F-rational ring is normal. So, an F-rational local ring is a domain.
(2) An F-rational ring that is a homomorphic image of a Cohen-Macaulay ring is

Cohen-Macaulay.
(3) A local ring (R,m) that is a homomorphic image of a Cohen-Macaulay ring is

F-rational if and only if it is equidimensional and the ideal generated by one
system of parameters is tightly closed.

(4) Let R be an F-rational ring that is a homomorphic image of a Cohen-Macaulay
ring. Then every localization of R is F-rational.

(5) If (R,m) is a homomorphic image of a Cohen-Macaulay ring and x ∈ m is a
non-zero-divisor such that R/xR is F-rational, then R is F-rational.

The notion of test element is very important in studying tight closure.

Definition 1.5 ([HH1], [HH2]). Let R be a Noetherian ring of characteristic p, c ∈ R◦

and e0 ⩾ 0. We say that c is a pe0-weak test element if, for every finitely generated
R-module M and all x ∈ 0∗M , we have 0 = x ⊗ c ∈ M ⊗R

eR for all e ⩾ e0. Also,
we say that c ∈ R◦ is a parameter pe0-weak test element if cxq ∈ I [q] for every ideal
I generated by a system of parameters, all x ∈ I∗, and all q = pe with e ⩾ e0. A
pe0-weak test element c is said to be locally (completely) stable if c is a pe0-weak test
element for (the completion of) every local ring of R. A (parameter, locally stable,
completely stable) weak test element means a (parameter, locally stable, completely
stable) pe-weak test element for some e ⩾ 0. A (parameter, locally stable, completely
stable) test element means a p0-weak (parameter, locally stable, completely stable)
test element.

Clearly, every (weak) test element is a parameter (weak) test element. The exis-
tence of (weak) test elements is established in the following
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Theorem 1.6 (Existence of test elements, [HH2]). Let R be a reduced algebra of finite
type over an excellent local ring (B,m) of characteristic p. Let c ∈ R◦ be such that
R[c−1] is F-regular and Gorenstein (e.g., R[c−1] is regular, so such c exists). Then c
has a power that is a completely stable test element for R.

If we remove the assumption that R is reduced, then a completely stable weak test
element exists.

In particular, if (R,m) is a reduced excellent local ring of characteristic p, then
every element in the defining ideal of the singular locus of R has a power which
is a completely stable test element for R. By [Ku], an F-finite ring is excellent.
Therefore completely stable test elements always exist for reduced F-finite local rings
of characteristic p.

One of the major questions in tight closure theory was whether tight closure com-
mutes with localization, i.e., whether (N∗

M)P = (NP )
∗
MP

for every P ∈ Spec(R) and
every finitely generated R-module N ⊆ M . The question has been answered by
Brenner and Monsky in [BM], which shows that tight closure does not commute with
localization in general. One reason why the question was hard is that the definition
of tight closure involves infinitely many equations (i.e., we need 0 = x⊗ c ∈M ⊗R

eR
for all q ≫ 0 to make sure that an element x ∈M is in 0∗M). There is a notion of test
exponent, which has been introduced in [HH4] to avoid the infinitely many equations
in the definition of tight closure.

Definition 1.7 ([HH4]). Let R be a (reduced) Noetherian ring of prime characteristic
p, c ∈ R◦ (a test element), and N ⊆ M R-modules. We say that q0 = pe0 is a
test exponent for c and N ⊆ M if, for any x ∈ M , we have x ∈ N∗

M whenever

x⊗ c ∈ N
[q]
M ⊆ F e(M) for one single q ⩾ q0.

If there exists a test exponent for a locally stable test element c ∈ R◦ and finitely
generated R-modules N ⊆M , then the tight closure of N inM commutes with local-
ization. This result is implicit in [McD] and is explicitly stated in [HH4, Proposition
2.3]. Moreover, Hochster and Huneke showed in [HH4] that the converse is true.

Theorem 1.8 ([HH4]). Let R be a (reduced) Noetherian ring of prime characteristic
p with a given locally stable test element c, and N ⊆M finitely generated R-modules.
Assume that the tight closure of N in M commutes with localization. Then there
exists a test exponent for c and N ⊆M .

In particular, if λ(M/N) <∞, then there exists a test exponent for c and N ⊆M ,
since tight closure commutes with localization in this case (cf. [HH1, Proposition 8.9]).

Next we review the Hilbert-Kunz multiplicity.

Theorem 1.9. Let (R,m, k) be a Noetherian local ring of prime characteristic p with
dim(R) = d and M a finitely generated R module. Then (with q = pe)

(1) For any R-module L with λR(L) <∞, the limit

lim
e→∞

λr(L⊗R
eM)

qd



6 MELVIN HOCHSTER AND YONGWEI YAO

exists by [Se]. (The statement in [Se, Page 278, Theorem] is stronger, but
its proof requires F-finiteness. However, the result quoted here does not need
F-finiteness, as it always reduces to the F-finite case.)

(2) In particular, if L = R/I, with I an m-primary ideal, the limit

lim
e→∞

λrR(R/I ⊗R
eM)

qd
= lim

e→∞

λR(M/I [q]M)

qd

exists. This particular case was first proved in [Mo].

Notation 1.10. Let (R,m) be a Noetherian local ring of prime characteristic p with
dim(R) = d, L and M finitely generated R-modules with λR(L) <∞.

(1) We denote eHK(L,M) := lime→∞
λrR(L⊗R

eM)

qd
, which is positive if and only if

dim(M) = d.
(2) In the case where L = R/I with I an m-primary ideal, we usually write

eHK(L,M) as eHK(I,M), which is called the Hilbert-Kunz multiplicity of M
with respect to I. In particular, eHK(I,M) > 0 if and only if dim(M) = d.

The following result is referred to as ‘the length criterion for tight closure’ in [HH1].
In [HH1, Theorem 8.17], more general results are proved.

Theorem 1.11 ([HH1, Theorem 8.17]). Let (R,m) be a local Noetherian ring, let M
and K ⊆ L be R-modules such that dim(M) = dim(R) and λ(L) <∞, and let I ⊆ J
be m-primary ideals of R.

(1) If K ⊆ 0∗L, then eHK(L,M) = eHK(L/K,M). In particular, if J ⊆ I∗, then
eHK(I,M) = eHK(J,M).

(2) Conversely, assume that R is an analytically unramified, quasi-unmixed ring
with a completely stable test element (e.g., (R,m) is a complete domain). If
eHK(L,R) = eHK(L/K,R), then K ⊆ 0∗L. In particular, eHK(I, R) = eHK(J,R)
implies J ⊆ I∗.

Next, we review F-signature, which was first introduced and studied in [HL] by
C. Huneke and G. Leuschke for F-finite rings.

Definition 1.12. Let (R,m, k) be an F-finite local ring with d = dimR and M a
finitely generated R-module. For each e ∈ N, write eM ∼= Rae⊕Me as left R-modules,
where Me has no non-zero free direct summand.

(1) Denote ae by #( eM,R) and α(R) = logp[k : kp] <∞.

(2) We define s(M) = lime→∞
#( eM,R)

qα(R)+d , whose existence is due to [Tu].

In particular, we call s(R) the F-signature of R (see [HL]).

In [Yao], a definition of F-signature is given for all Noetherian local rings of prime
characteristic p and it is equivalent to Definition 1.12 when R is F-finite.

Definition 1.13. Let (R,m, k) be a Noetherian local ring of characteristic p and M
a finitely generated R-module. Let E = ER(k) be the injective hull of k and let

ψ : k → E and ϕ : E → E/k be such that 0 → k
ψ→ E

ϕ→ E/k → 0 is exact.

(1) Denote #( eM) = λr(ker(ϕ⊗R 1 eM)) = λr(Image(ψ ⊗R 1 eM)) for all e ∈ N.
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(2) We define s(M) := lime→∞
#( eM)

qdim(R) , whose existence is proved in [Tu].

In particular, we call s(R) the F-signature of R.

Theorem 1.14 ([HL], [AL]). Let (R,m, k) be a Noetherian local ring of prime char-
acteristic p. Then the following are true:

(1) If s(R) > 0, then R is an F-regular and Cohen-Macaulay domain [HL].
(2) If R is excellent (e.g., F-finite), then s(R) > 0 ⇐⇒ R is strongly F-regular;

see [AL]. Although the argument in [AL] addresses the F-finite case only, it
can be generalized to the case where (R,m) is excellent. We sketch an alternate
proof of this in Remark 3.6 assuming only that (R,m) is excellent.

(3) We have eHK(I, R)− eHK(J,R) ⩾ λR(J/I) s(R) for any two m-primary ideals
I ⊆ J of R (see [HL]). Therefore

s(R) ⩽ inf{eHK(I1)− eHK(I2) | I1 ⊂ I2,
√
I1 = m, I2/I1 ∼= k}.

(4) The inequality (e(R) − 1)(1 − s(R)) ⩾ eHK(R) − 1 is proved in [HL]. Hence,
s(R) ⩾ 1 =⇒ R is regular =⇒ s(R) = 1.

(5) Moreover, in [HL] it is shown that if R is Gorenstein then s(R) = eHK((x), R)−
eHK((x, u), R) for any system of parameters x and u ∈ ((x) :R m) \ (x).

Remark 1.15. In [WY], K.-i. Watanabe and K. Yoshida asked whether inf{eHK(I1)−
eHK(I2) | I1 ⊂ I2,

√
I1 = m, I2/I1 ∼= k} is equal to s(R). This is proved affirmatively

for approximately Gorenstein rings by Polstra and Tucker [PT].

The next result is used in Section 5. The exact statement of the following theorem
can be found in [HH2, Theorem 7.10], which refers readers to a more general result
in [Mat1, 20.F].

Theorem 1.16. Let (R,m, k) → (S, n, l) be a local flat ring homomorphism. If
x1, x2, . . . , xt form a regular sequence on S/mS, then they form a regular sequence on
S and R → S/(x1, x2, . . . , xt)S is again a (faithfully) flat local homomorphism.

2. Defining F-rational signature

We have defined the F-rational signature r(R) in Definition 0.1. Now we define the
more general notion r(M) (and give some equivalent ways of defining it), as follows.

Definition 2.1. Let (R,m, k) be a local ring of prime characteristic p andM a finitely
generated R-module. Define

rR(M) = inf{eHK((x),M)− eHK(J,M) | x is a s.o.p. and (x) ⊊ J}.

If no confusion arises, we may simply write rR(M) as r(M). In particular, r(R) is
called the F-rational signature of R.

In the definition above, x, a priori, runs over all (full) systems of parameters of R.
It is also straightforward to see that

rR(M) = inf{eHK((x),M)− eHK((x, u),M) | x is a s.o.p. and ((x) :R u) = m}
= inf{eHK((x),M)− eHK((x, v),M) | x is a s.o.p. and v /∈ (x)}.
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Observation 2.2. Let (R,m, k) and M be as in Definition 2.1. Denote the m-adic

completions of R and M by R̂ and M̂ respectively. We observe:

(1) The m-primary ideals of R naturally correspond to the mR̂-primary ideals of

R̂, with the corresponding ideals sharing the same Hilbert-Kunz multiplicities

and the same number of generators over R and R̂. Hence the ideals of R
generated by systems of parameters of R naturally correspond to the ideals of

R̂ generated by systems of parameters of R̂. Consequently, rR(M) = rR̂(M̂).
(See Theorem 5.7(3) for a more general statement.)

(2) If dim(M) < dim(R), then r(M) = 0 because eHK(I,M) = 0 for any m-
primary ideal I.

(3) Suppose that R is a domain (e.g., the local ring (R, m) is F-rational, cf. [HH2,
Theorem 4.2(b)]) and say that the torsion-free rank of M is n (i.e., MP

∼= Rn
P

when P = 0 ∈ Spec(R)). Then, by the additivity of Hilbert-Kunz multiplicity
with respect to short exact sequences [Se], eHK(J,M) = n eHK(J,R) for any
m-primary ideal J of R. This implies that r(M) = n r(R) from the definitions
of r(M) and r(R). Obviously, n > 0 if and only if dim(M) = dim(R).

(4) If R̂ is not F-rational (in particular, if R is not F-rational), then there exists

a system of parameters x of R (hence, of R̂) and u ∈ (((x)R̂)∗ ∩ R) \ (x)R,
which gives eHK((x),M)− eHK((x, u),M) = 0. This implies that r(M) = 0 for
any finitely generated R-module M .

(5) If R is not a normal Cohen-Macaulay domain, then r(M) = 0 for any M .
Indeed, if R is not a normal domain, then R can not be F-rational. If R is not

Cohen-Macaulay, then R̂ is not Cohen-Macaulay, so can not be F-rational.
Hence, r(M) = 0 for any finitely generated R-module M , by part (4) above.

The following result relates eHK(I,M)− eHK(J,M), in which I ⊆ J and I is gener-
ated by a system of parameters of a Cohen-Macaulay local ring R andM is a maximal
Cohen-Macaulay R-module, to the limit of a sequence determined intrinsically by the
image of the natural and injective map J/I → lim−→x s.o.p.

R/(x) ∼= Hdim(R)
m (R).

Proposition 2.3. Let (R,m, k) be a Noetherian local Cohen-Macaulay ring of prime
characteristic p with dimR = d and let M be a finitely generated maximal Cohen-
Macaulay module. Denote H = Hd

m(R).
Let L be an R-module and ψ : L → H an R-linear map such that λR(ψ(L)) < ∞.

There is an induced bimodule homomorphism ψ ⊗R 1 eM : L ⊗R
eM → H ⊗R

eM for
every e ∈ N. Then

lim
e→∞

λr(Image(ψ ⊗R 1 eM))

qd
= eHK(I,M)− eHK(J,M)

for any ideals I ⊆ J such that I = (x) is generated by a system of parameters and
J/I ∼= ψ(L). Moreover, such ideals I ⊆ J always exist.
Conversely, for any m-primary ideals I ⊆ J such that I is generated by a system of

parameters, there exist an R-module L and an R-linear (inclusion) map ψ : L → H

such that ψ(L) ∼= J/I and eHK(I,M)− eHK(J,M) = lime→∞
λr(Image(ψ⊗R1 eM ))

qd
.
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Proof. To prove the claim in the first paragraph, we may simply replace L by ψ(L)
and, hence, assume L ⊆ H, λR(L) < ∞, where ψ is the inclusion map. Since
H = lim−→x s.o.p.

R/(x), with injective maps in the system, there exists a system of

parameters x = x1, x2, . . . , xd of R such that R/(x) ∼= K ⊆ H and L ⊆ K. Say
L corresponds to (x, u)/(x) ⊆ R/(x) under the isomorphism R/(x) ∼= K, where
u = u1, u2, . . . , ur.

Let ϕ : K → H be the inclusion map. Then there is an induced bimodule homomor-
phism ϕ⊗R 1 eM : K ⊗R

eM → H ⊗R
eM for every e ∈ N. As M is Cohen-Macaulay,

we see that, for every e ∈ N, eM is a big (i.e., not necessarily finitely generated)
Cohen-Macaulay left R-module. From this it is straightforward to see that the maps
ϕ⊗R 1 eM : K ⊗R

eM → H ⊗R
eM are injective for all e ∈ N.

Hence, by our set-up, for all e ∈ N we have

λr(Image(ψ ⊗R 1 eM)) = λr(Image(L⊗R 1 eM → K ⊗R 1 eM))

= λr
(
Image

(
(x, u)

(x)
⊗ 1 eM → R

(x)
⊗ 1 eM

))
= λr

(
R

(x)
⊗R

eM

)
− λr

(
R

(x, u)
⊗R

eM

)
= λ

(
M

(x)[q]M

)
− λ

(
M

(x, u)[q]M

)
,

which gives the existence of

lim
e→∞

λr(Image(ψ ⊗R 1 eM))

qd
= lim

e→∞

λ
(

M
(x)[q]M

)
− λ

(
M

(x,u)[q]M

)
qd

,

and this is eHK((x),M)− eHK((x, u),M).
The other direction follows immediately by embedding J/I ⊆ R/I to Hd

m(R) just
as in the above proof. □

Concerning F-rational signature, Proposition 2.3 shows the following:

Theorem 2.4. Let (R,m, k) be a Noetherian Cohen-Macaulay local ring of char-
acteristic p with dim(R) = d and M a finitely generated maximal Cohen-Macaulay
R-module. Then

(1) rR(M) = inf
{
lime→∞

λr(Image(ψ⊗R1 eM ))
qd

∣∣∣ 0 → k
ψ→ Hd

m(R) is exact
}
;

(2) For any fixed system of parameters x, we always have

rR(M) = inf{eHK((x),M)− eHK((x, u),M) | ((x) :R u) = m}.

Proof. (1). Apply Proposition 2.3 to all injective maps ψ : k → Hd
m(R).

(2). For every exact sequence 0 → k
ψ→ Hd

m(R), L = Image(ψ) is contained in
(0 :Hd

m(R) m), the socle of Hd
m(R). Say R/(x) ∼= K ⊆ Hd

m(R). Then, since R is

Cohen-Macaulay, L ⊆ (0 :Hd
m(R) m) = (0 :K m), i.e., ψ factors through K. Hence,

lime→∞
λr(Image(ψ⊗R1 eM ))

qd
= eHK((x),M)− eHK((x, u),M) for some u ∈ ((x) :R m) \ (x)

by Proposition 2.3. Now (2) follows from (1). □
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It turns out that Theorem 2.4(2) remains true without the Cohen-Macaulay as-
sumption on R or M .

Theorem 2.5. Suppose that (R,m, k) is a Noetherian local ring of characteristic p
and M is a finitely generated R-module. Say dim(R) = d. Assume R is an equidi-

mensional homomorphic image of a Cohen-Macaulay ring or R̂ is equidimensional
(e.g., R is excellent and equidimensional). Then for any fixed system of parameters
x = x1, x2, . . . , xd, we always have

rR(M) = inf{eHK((x),M)− eHK((x, u),M) | ((x) :R u) = m}
= inf{eHK((x),M)− eHK((x, v),M) | v /∈ (x)}
= inf{eHK((x),M)− eHK(J,M) | (x) ⊊ J},

Proof. As the claim is unaffected if we pass to R̂ and M̂ , the m-adic completions of
R and M , we may assume that R is an equidimensional homomorphic image of a
Cohen-Macaulay ring without loss of generality.

If (x) ⊊ (x)∗, then there exists u ∈ (x)∗ ∩ ((x) :R m) \ (x) giving eHK((x),M) −
eHK((x, u),M) = 0. Thus, r(M) = 0 and the claim holds.
Assume (x) = (x)∗, which implies that R is F-rational and, hence, a Cohen-

Macaulay normal domain; cf. Theorem 1.4. Say that M has torsion-free rank n over
R. Then r(M) = n r(R) (cf. Observation 2.2(3)). Now apply Theorem 2.4(2) and we
get r(R) = inf{eHK((x), R)− eHK((x, u), R) |u ∈ ((x) :R m) \ (x)}. Consequently,

r(M) = n r(R) = inf{n eHK((x), R)− n eHK((x, u), R) |u ∈ ((x) :R m) \ (x)}
= inf{eHK((x),M)− eHK((x, u),M) | ((x) :R u) = m}

and the proof is complete. □

3. Drops in the Hilbert-Kunz multiplicity

By the definition of the Hilbert-Kunz multiplicity, eHK(I,M) ⩾ eHK(J,M) for any
m-primary ideals I ⊆ J . The following result shows how the Hilbert-Kunz multiplicity
decreases when the ideal increases from I to J .

Theorem 3.1. Let (R,m, k) be a Noetherian local ring of characteristic p and let
N ⊆ L be R-modules such that λ(L/N) <∞. Then

(1) There exists a positive real number δ such that, for any R-submodule K with
N ⊆ K ⊆ L and for any finitely generated R-module M , eHK(L/N,M) −
eHK(L/K,M) is either 0 or ⩾ δ.

(2) In case L = R and N = I is an m-primary ideal of R, there exists a positive
real number δ such that, for any ideal J ⊇ I and for any finitely generated
R-module M , eHK(I,M)− eHK(J,M) is either 0 or ⩾ δ.

Proof. It is enough to prove part (1), and we may assume that R is complete without
loss of generality. Say min(R) = {P1, P2, . . . , Pn} and say dim(R/Pi) = dim(R)
exactly when 1 ⩽ i ⩽ s, for some s ⩽ n. Since Hilbert-Kunz multiplicity is additive
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with respect to short exact sequences (see [Se]), the associativity formula holds. Thus,
for any R-submodule K ⊆ L and for any finitely generated R-module M ,

eHK(L/N,M)− eHK(L/K,M)

=
s∑
i=1

λRPi
(MPi

)
(
eHK(L/N,R/Pi)− eHK(L/K,R/Pi)

)
=

s∑
i=1

λRPi
(MPi

)
(
eHK(L/(N + PiL), R/Pi)− eHK(L/(K + PiL), R/Pi)

)
.

Therefore it suffices to prove the desired result under the assumption that R is a
complete local domain and M = R. Now the proof follows immediately from the
following Theorem 3.2. □

Theorem 3.2. Let (R,m, k) be a Noetherian local ring of characteristic p such that its

m-adic completion R̂ is a domain. Assume that there is a common (weak) test element

for R and R̂ (e.g., R is excellent). Let N ⊆ L be R-modules such that λ(L/N) <∞.
Then there exists a positive real number δ such that, for any R-submodule K with
N ⊆ K ⊆ L, exactly one of the following happens:

(1) If K ⊆ N∗
L, then eHK(L/N,R)− eHK(L/K,R) = 0.

(2) If K ̸⊆ N∗
L, then eHK(L/N,R)− eHK(L/K,R) ⩾ δ.

Proof. (1). This was proved in [HH1, Theorem 8.17] (cf. Theorem 1.11) without any
assumption on R at all.

(2) This part is mostly implicit in the proof of [HH1, Theorem 8.17] in light of
the existence of a test exponent by [HH4]. Nevertheless, we present a proof here for

completeness. As R and R̂ share a common (weak) test element, we see that K ̸⊆ N∗
L

over R if and only if K ⊗ R̂ ̸⊆ (N ⊗ R̂)∗
L⊗R̂ over R̂. Therefore, we may assume that

R = R̂ is complete (hence a complete domain) without loss of generality. We may
further assume N = 0.
Our complete local domain (R,m, k) is a module-finite and torsion-free extension

of a complete regular local domain A with the same coefficient field. For every q,
we can form R[A1/q] ⊆ R1/q. Moreover, there exists q′ such that S = R[A1/q′ ] is
generically smooth over A1/q′ (meaning the fraction field of S is separable over the
fraction field of A1/q′ , given that S is module-finite over A1/q′)1. By [HH1, Section 6],
S[A1/qq′ ] ∼= S ⊗A1/q′ A1/qq′ is flat over S = R[A1/q′ ] and there exists c ∈ A◦ such that
cS1/q ⊆ S[A1/qq′ ] for all q. The fact that R ⊆ S ⊆ R1/q′ shows that S is integral over
R and hence integral over A, which implies (IS)∩A ⊆ I∗A = I for every ideal I of A.2

For easy identification, we denote the maximal ideals of the complete local domains
A and S by mA and mS respectively. Since S is integral over A (and S is local), there

exists q′′ such that m
[q′′]
S ⊆ mAS.

1By the Cohen-Gabber theorem, one can choose A such that R is generically smooth over A. Also
see [KS].

2For every a ∈ (IS) ∩ A, there exists a module-finite extension S′ of A such that S′ ⊆ S and
a ∈ (IS′) ∩A. By [HH3, Corollary 5.23], (IS′) ∩A ⊆ I∗A.
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Pick c′ ∈ A◦ to be a locally stable test element for R (which exists by Theorem 1.6).
Then cc′ ∈ A◦ is also a locally stable test element for R. By [HH4] (see Theorem 1.8
and observe the fact that λ(L) <∞), there exists a test exponent, say q′′′ = pe

′′′
, for

cc′ and N = 0 ⊆ L. (More generally, by a result in [HoY], there exists a test exponent
for cc′ and N ⊆ L as long as L/N is Artinian over R.)

Let δ = (1/q′′q′′′)d > 0, in which d = dim(R) = dim(A), and let K be an arbitrary
R-submodule of L such that K ̸⊆ 0∗L. We need to show eHK(L,R)−eHK(L/K,R) ⩾ δ.
Choose x ∈ K\0∗L. By our choice of test exponent q′′′, we have 0 ̸= x⊗c ∈ L⊗R

e′′′S.
Indeed, on the contrary, suppose that 0 = x ⊗ c ∈ L ⊗R

e′′′S. Then 0 = x ⊗ c ∈
L⊗R

e′′′
(
R1/q′

) ∼= L⊗R
e′′′R ⊗R R

1/q′ , which would imply x⊗ c ∈ 0F
F e′′′
R (L)

⊆ 0∗
F e′′′
R (L)

.

Consequently, 0 = x⊗ cc′ ∈ F e′′′
R (L), and, therefore, x ∈ 0∗L, a contradiction.

At this point, the desired result that eHK(L,R)− eHK(L/K,R) ⩾ δ follows imme-
diately from Theorem 3.3 below with M = R, and the proof of Theorem 3.2 will be
complete once Theorem 3.3 is proved. □

Theorem 3.3. Let (R,m, k) be a Noetherian complete local domain of prime charac-
teristic p with dim(R) = d and let A, q′, S, c ∈ A◦ ⊆ R◦, c′ ∈ A◦ ⊆ R◦ and q′′ be as in
the proof of the above Theorem 3.2. Let M be any finitely generated R-module with
torsion-free rank n. Then, for any R-module N ⊂ K ⊆ L with λ(L/N) < ∞ such
that the natural image of (K/N) ⊗ c in (L/N) ⊗R

e′′′S is not 0 (which is the case if
q′′′ = pe

′′′
is a test exponent for cc′ and N ⊆ L, while K ̸⊆ N∗

L as seen in the proof of
Theorem 3.2), we have eHK(L/N,M)− eHK(L/K,M) ⩾ n

(q′′q′′′)d
.

Proof. Without loss of generality, we assume that N = 0 and M = R, so that
n = 1. The assumption on e′′′ and K says that there is an element x ∈ K such that
0 ̸= x⊗ c ∈ L⊗R

e′′′S. Hence AnnS(x⊗ c ∈ L⊗R
e′′′S) ⊆ mS.

For any Q = pE (with E ∈ N), let JQ := {a ∈ A | 0 = x ⊗ a ∈ L ⊗R
ER}, which

is an ideal of A. We first note that A/JQ embeds into K
[Q]
L via the A-linear map

sending the class of b ∈ A to x⊗ b ∈ L⊗R
ER. Thus λA(A/JQ) ⩽ λR(K

[Q]
L ) for every

Q. For any Q = pE ⩾ q′′q′′′, writing Q = qq′′q′′′ with q = pe, we have

a ∈ JQ =⇒ 0 = x⊗ a ∈ L⊗R
ER

=⇒ 0 = x⊗ a1/qq
′′ ∈ L⊗R

e′′′
(
R1/qq′′

)
=⇒ 0 = x⊗ a1/qq

′′ ∈ L⊗R
e′′′
(
S1/qq′′

)
=⇒ 0 = x⊗ a1/qq

′′
c ∈ L⊗R

e′′′
(
S1/qq′′c

)
= L⊗R

e′′′
(
cS1/qq′′

)
=⇒ 0 = x⊗ ca1/qq

′′ ∈ L⊗R
e′′′
(
S[A1/qq′q′′ ]

) ∼= L⊗R
e′′′S ⊗S S[A

1/qq′q′′ ]

=⇒ a1/qq
′′ ∈ AnnS[A1/qq′q′′ ]

(
x⊗ c ∈ L⊗R

e′′′
(
S[A1/qq′q′′ ]

))
=⇒ a1/qq

′′ ∈ AnnS(x⊗ c ∈ L⊗R
e′′′S)S[A1/qq′q′′ ] (by flatness)

=⇒ a1/qq
′′ ∈ mSS[A

1/qq′q′′ ]

=⇒ a ∈ m
[qq′′]
S Sqq

′′
[A1/q′ ] ⊆ m

[qq′′]
S S ⊆ m

[q]
A S

=⇒ a ∈ (m
[q]
A S) ∩ A ⊆

(
m

[q]
A

)∗
A
= m

[q]
A (cf. the proof of Theorem 3.2),
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which implies JQ ⊆ m
[q]
A = m

[Q/q′′q′′′]
A . Consequently,

λA(A/JQ) ⩾ λA(A/m
[Q/q′′q′′′]
A ) = (Q/q′′q′′′)d for all Q ⩾ q′′q′′′.

(The last equation holds because A is regular; see [HuY, Proposition 1.5], for exam-
ple.) Putting things together, we have (with Q = pE)

eHK(L/N,R)− eHK(L/K,R) = lim
Q→∞

λr(FE(L))

Qd
− lim

Q→∞

λr(FE(L)/K
[Q]
L )

Qd

= lim
Q→∞

λR(K
[Q]
L )

Qd
⩾ lim

Q→∞

λA(A/JQ)

Qd

⩾ lim
Q→∞

(
Q

q′′q′′′

)d
Qd

=

(
1

q′′q′′′

)d
,

which finishes the proof. □

The proofs of Theorem 3.2 and of Theorem 3.3 actually produce the following
result, which may be viewed as a refined version of [HH1, Theorem 8.17].

Corollary 3.4. Let (R,m, k) be a Noetherian complete local domain of prime char-
acteristic p with dim(R) = d and let A, q′, S, c ∈ A◦ ⊆ R◦ and q′′ be as in the
proof of Theorem 3.2. Let c′ ∈ A◦ ⊆ R◦ be such that c′ is a test element for all
(not necessarily finitely generated) R-modules (cf. Remark 3.5(1) below). Then, for
any R-modules N ⊂ K ⊆ L with λ(K/N) < ∞ such that the natural image of
(K/N)⊗ c in (L/N)⊗R

e′′′S is not 0 (which is the case if q′′′ = pe
′′′
is a test exponent

for cc′ and N ⊆ L while K ̸⊆ N∗
L, as seen in the proof of Theorem 3.2), we have

λ(K
[Q]
L /N

[Q]
L ) ⩾

(
Q

q′′q′′′

)d
for all Q = pE ⩾ q′′q′′′.

Concerning the assumptions in Corollary 3.4, see the following remark on the exis-
tence of test elements that work for all (not necessarily finitely generated) R-modules
and the existence of a test exponent for any given Artinian R-module.

Remark 3.5. Let (R,m, k) be an excellent local ring of prime characteristic p.

(1) If R is reduced, there exists a completely stable test element that works for
all (not necessarily finitely generated) R-modules. (This was proved in [El]
by H. Elitzur under the assumption that R is F-finite. The general case then

follows from the F-finite case via a faithfully flat extension R → R̂ → R̂Γ,

where R̂ is the m-adic completion of R and R̂Γ is a suitable (F-finite) Γ-

extension of R̂. See [HH2] for details about Γ-extensions.)
(2) For any d ∈ R◦ and any R-modules N ⊆ L such that L/N is Artinian, it has

been shown in [HoY] that there exists a test exponent for d and N ⊆ L.

Finally, we end this section by pointing out an alternate proof of Theorem 1.14(2)
without the F-finite assumption.

Remark 3.6. Let (R,m, k) be an excellent local ring of prime characteristic p and let
E = ER(k) be the injective hull of the residue field k = R/m. Denote by K the socle
of E (so that E ⊇ K ∼= R/m). Recall that a local ring (R,m, k) is strongly F-regular
if and only if 0 = 0∗E, i.e., K ̸⊆ 0∗E (cf. [Sm1, 7.1.2] or [LS, Proposition 2.9]).
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(1) Suppose that R is complete and strongly F-regular (hence, a domain). Let
A, S, c ∈ A◦ ⊆ R◦, and q′′ be as in the proof of Theorem 3.3. As R is strongly
F-regular, there exists q′′′ = pe

′′′
such that the natural image of K ⊗ c in

E ⊗R
e′′′S is not 0. (See the proof of Theorem 3.2 for the existence of such

q′′′.) Then by Corollary 3.4, we get λ(K
[q]
E ) ⩾

(
q

q′′q′′′

)d
for all q = pe. Also

observe that λ(K
[q]
E ) = #( eR) for any e ∈ N (cf. Definition 1.13). Thus

R is strongly F-regular =⇒ s(R) > 0 =⇒ R is strongly F-regular.

(2) In general, assume that R is excellent. Then R is strongly F-regular if and only

if R̂ is strongly F-regular. (For example, this is immediate via the existence of
a completely stable test element for 0 ⊂ E; see Remark 3.5(1).) Also observe

that s(R) = s(R̂), see [Yao, Remark 2.3(3)]. In light of (1) above, this sketches
an alternate proof of the equivalence

R is strongly F-regular ⇐⇒ s(R) > 0

without assuming that R is F-finite. See Theorem 1.14(2).

4. Basic results on F-rational signature

The next theorem explains why r(R) is called the F-rational signature of R. Its
proof depends on Theorem 3.1 and Theorem 2.5.

Theorem 4.1. Let (R,m, k) be a Noetherian local ring of characteristic p. Consider
the conditions:

(1) r(R) > 0;
(2) r(M) > 0 for all finitely generated R-modules M with dim(M) = dim(R);
(3) r(M) > 0 for some finitely generated R-module M ;

(4) R̂ is F-rational;
(5) R is F-rational.

Then (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇒ (5). If, moreover, R is excellent or there exists a

common parameter (weak) test element for R and R̂, then (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔
(5).

Proof. The implications (2) ⇒ (1) ⇒ (3) and (4) ⇒ (5) are always true. The
implication (4) ⇐ (5) holds if there exists a common parameter (weak) test element

for R and R̂ (the proof of [Sm2, Lemma 1.4] still works with the existence of a

common parameter weak test element for R and R̂). This is the case when R is
excellent (as completely stable weak test elements exist; cf. Theorem 1.6). It remains

to show (3) ⇒ (4) ⇒ (2). To do this, we assume R = R̂ without loss of generality
(cf. Observation 2.2(1)).

If R = R̂ is not F-rational, then there exist a system of parameters x and an
element u ∈ (x)∗ \ (x), which will force r(M) = 0 for all M . This proves (3) ⇒ (4).
(Also see Observation 2.2(4).)

For (4) ⇒ (2), we assume that R = R̂ is F-rational and, hence, a complete domain.
For any finitely generated R-module M with dim(M) = dim(R), its torsion-free
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rank, say n, is positive and we have r(M) = n r(R) by Observation 2.2(3). So it is
enough to prove (1). Pick a system of parameters, say x. By Theorem 2.5, rR(R) =
inf{eHK((x), R) − eHK((x, v), R) | v /∈ (x)}. Moreover, by Theorem 3.1, there exists
0 < δ ∈ R such that, for any J ⊇ (x), eHK((x),M) − eHK(J,M) is either 0 or ⩾ δ.
Finally, [HH1] (cf. Theorem 1.11) yields eHK((x), R) − eHK((x, v), R) > 0 for every
v /∈ (x)∗; thus, eHK((x), R) − eHK((x, v), R) ⩾ δ for every v /∈ (x) = (x)∗. Therefore,
rR(R) ⩾ δ > 0. □

We next prove some relations among the invariants r(M), s(M), e(M) = e(m,M)
and eHK(M) = eHK(m, R).

Lemma 4.2. If (R,m, k) is a Noetherian local ring (R,m, k) of characteristic p and
M is a finitely generated R-module, then

(1) s(M) ⩽ r(M) ⩽ eHK(M).
(2) s(M) ⩽ r(M) ⩽ min{eHK(M), e(M) − eHK(M)} if |k| = ∞ and R is not

regular.

Proof. (1). The first inequality follows from Definition 2.1 and [Yao, Lemma 2.5(2)],
while the second follows from (the proof of) [HuY, Lemma 2.1]3.
(2). The assumption |k| = ∞ ensures the existence of a system of parameters x such

that the ideal (x) is a reduction of m and hence e(M) = e((x),M) = eHK((x),M)4.
The assumption that R is not regular guarantees (x) ⊊ m. Thus eHK((x),M) −
eHK((x, u),M) = e((x),M) − eHK((x, u),M) ⩽ e((x),M) − eHK(m,M) for any u ∈
((x) :R m) \ (x). This implies r(M) ⩽ e(M)− eHK(M). □

In the case where (R,m) is a regular local ring, one easily sees that r(R) = 1, since
eHK(I, R) = λ(R/I) for any m-primary ideal [HuY, Proposition 1.5]. Thus, for any
R-module M , r(M) equals the torsion-free rank of M . We have a very easy lemma
about r(R) when R is Gorenstein.

Lemma 4.3. If (R,m, k) is a Gorenstein Noetherian local ring of characteristic p,
then r(M) = s(M) for any finitely generated maximal Cohen-Macaulay R-module M .
In particular, r(R) = s(R).

Proof. This follows from Definition 1.13 and Theorem 2.4(1). □

5. Deformation, flat extension, and localization

Given a local ring homomorphism (R,m, k) → (S, n, l) of Noetherian local rings of
prime characteristic p, a finitely generated module M over R and P ∈ Spec(R), we
get an S-module M ⊗R S by scalar extension and an RP -module MP by localization.
To avoid cumbersome subscripts, we sometimes simply write r(M ⊗R S), r(S/mS)
and r(MP ) etc. instead of rS(M ⊗R S), rS/mS(S/mS) and rSP

(MP ) etc. respectively.
As long as no confusion arises, we identify u ∈ R with its image in S, even though
the local ring homomorphism (R,m, k) → (S, n, l) is not necessarily injective.

3The proof method of [HuY, Lemma 2.1] also works for module M . Alternatively, we may use
the associativity formula to reduce it to the situation of rings.

4Lech’s lemma says e((x),M) = limn→∞
λ(M/(xn

1 ,...,x
n
dim(R))M)

ndim(R) , which agrees with eHK((x),M).
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Let us first consider deformation. We know that if (R,m) is a homomorphic image
of a Cohen-Macaulay ring and if, for some non-zero-divisor x, R/xR is F-rational,
then so is R (cf. Theorem 1.4). This result can be described in terms of F-rational
signature.

Theorem 5.1. Let (R,m, k) be a Noetherian local ring of characteristic p and x =
x1, . . . , xh an R-regular sequence. Denote R̄ = R/(x)R. Then

(1) rR(R) ⩾ rR̄(R̄);
(2) rR(M) ⩾ rR̄(M/(x)M) for any finitely generated maximal Cohen-Macaulay

R-module M .

Proof. If rR̄(R̄) = 0, then we also have rR̄(M/(x)M) = 0 (cf. Theorem 4.1) and both
(1) and (2) are trivial. Therefore, we assume rR̄(R̄) > 0, which forces R̄ = R/(x)R
to be Cohen-Macaulay. Consequently, we assume that R is Cohen-Macaulay and, as
a result, it suffices to prove (2).

By induction on h, it suffices to prove rR(M) ⩾ rR̄(M/xM) whenever x ∈ m is a
non-zero-divisor on R (and, hence, on M).

Extend x to a (full) system of parameters x, y2, . . . , ydim(R) of R and denote y =

y2, . . . , ydim(R). Also, for any q, denote y
[q] = yq2, . . . , y

q
dim(R).

By the result of Theorem 2.5, it suffices to prove

inf{eHK((x, y),M)− eHK((x, y, u),M) |u /∈ (x, y)}
⩾ inf{eHK((y),M/xM)− eHK((y, u),M/xM) |u /∈ (x, y)}.

Hence, it is enough to show

lim
e→∞

λ
(

(xq ,y[q],uq)M

(xq ,y[q])M

)
qdim(R)

⩾ lim
e→∞

λ
(

(x,y[q],uq)M

(x,y[q])M

)
qdim(R)−1

for any u /∈ (x, y).

Therefore, it suffices to prove, for any given u /∈ (x, y) and q,

λ
((xq, y[q], uq)M

(xq, y[q])M

)
⩾ qλ

((x, y[q], uq)M
(x, y[q])M

)
.

Thus, we may consider both u and q first as arbitrarily chosen and then as fixed ele-
ments. Moreover, to simplify notation, we denote S = R/(y[q])R and N =M/(y[q])M ,
which are a one-dimensional Cohen-Macaulay local ring and an S-module, respec-
tively. The classes of x and u are still denoted by x and u. Denote uq by v. Now, to
finish the proof, it remains only to establish the inequality

(∗) λS

((xq, v)N
(xq)N

)
⩾ qλS

((x, v)N
(x)N

)
.

Since N is Cohen-Macaulay and x is a non-zero-divisor, there is an injective S-linear
map ϕ : N/(x)N → N/(xq)N sending the class of z to the class of xq−1z for every
z ∈ N . It is easy to see that (since ϕ is injective)

λ
((x, v)N

(x)N

)
= λ

(
ϕ
((x, v)N

(x)N

))
= λ

((xq, xq−1v)N

(xq)N

)
.
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The inclusion (xq)N ⊆ (xq, v)N may be filtered in the following way:

(xq)N ⊆ (xq, xq−1v)N ⊆ · · · ⊆ (xq, xiv)N ⊆ (xq, xi−1v)N ⊆ · · · ⊆ (xq, v)N.

There is a surjective S-map fi :
(xq ,xi−1v)N
(xq ,xiv)N

→ (xq ,xq−1v)N
(xq)N

induced by multiplication

by xq−i, implying λ
(

(xq ,xi−1v)N
(xq ,xiv)N

)
⩾ λ

(
(xq ,xq−1v)N

(xq)N

)
for every i = 1, 2, . . . , q − 1. As a

result, we have

λ
((xq, v)N

(xq)N

)
=

q∑
i=1

λ
((xq, xi−1v)N

(xq, xiv)N

)
⩾ qλ

((xq, xq−1v)N

(xq)N

)
,

which is inequality (∗), and our proof is complete. □

We next want to study the behavior of F-rational signature under a local homo-
morphism R → S. Recall that an ideal I of R is contracted from S if I = {r ∈
R | rS ⊆ IS}. We start with the special case of a local extension.

Lemma 5.2. Let (R,m, k)→(S, n, l) be a local ring homomorphism of Noetherian local
rings of prime characteristic p. Denote S̄ = S/mS. Assume that dim(R)+dim(S̄) =
dim(S) and that y = y1, y2, . . . , ydim(S̄) in S is such that the images of y form a

(full) system of parameters of S̄ and (x)R is contracted from S/(y)S for all systems

of parameters x = x1, . . . , xdim(R) of R. Then r(M ⊗R S) ⩽ r(M) e((y), S̄) for any
finitely generated R-module M .

If R is an equidimensional homomorphic image of a Cohen-Macaulay ring, then
the same conclusion still holds under the assumption that (x)R is contracted from
S/(y)S for one system of parameters x = x1, . . . , xdim(R) of R.

Proof. The hypothesis implies that the images of x and y form a system of parameters
of S. Denote MS = M ⊗R S (as an S-module). For any u ∈ ((x)R :R m) \ (x)R, we
know that u /∈ (x, y)S (since (x)R is contracted from S/(y)S) and, moreover, there
is an inequality as follows:

λS

((x, y, u)[q](M ⊗R S)

(x, y)[q](M ⊗R S)

)
⩽ λS

((x, u)[q]M
(x)[q]M

⊗R
S

(y)[q]S

)
⩽ λR

((x, u)[q]M
(x)[q]M

)
λS̄

( S̄

(y)[q]S̄

)
.

By the definition of Hilbert-Kunz multiplicity, we have

lim
e→∞

λS

(
(x,y,u)[q]MS

(x,y)[q]MS

)
qdim(S)

= eHK((x, y),MS)− eHK((x, y, u),MS),

lim
e→∞

λS

(
(x,u)[q]M

(x)[q]M

)
qdim(R)

= eHK((x),M)− eHK((x, u),M),

lim
e→∞

λS̄

(
S̄

(y)[q]S̄

)
qdim(S̄)

= eHK((y), S̄) = e((y), S̄).



18 MELVIN HOCHSTER AND YONGWEI YAO

Thus r(M⊗RS) ⩽ r(M) eHK((y), S̄) = r(M) e((y), S̄), once we run through all system
of parameters x of R and all u ∈ ((x)R :R m) \ (x)R.

In the case whereR is an equidimensional homomorphic image of a Cohen-Macaulay
ring, the claim follows easily from the argument above and Theorem 2.5. □

The above lemma applies when (R,m, k)→(S, n, l) is local and flat. In fact, the
flatness gives a sharper upper bound for r(S). As a preparatory step, we first study
certain special filtrations of an Artinian local ring.

Notation 5.3. Let (S, n, l) be a Noetherian local ring and N a finitely generated S-
module.

(1) The type of N , denoted by t(N), is defined as rankl(Ext
h
S(l, N)), where h =

depth(N). It can be shown that t(H) = rankl((0 :N/(y)N n)) for any maximal
N -regular sequence y = y1, . . . , yh ∈ n.

(2) Suppose that S is Artinian. For any ideal I of R, denote I♯ = (0 :S I) =
AnnS(I), I

♯♯ = (I♯)♯ and I♯♯♯ = (I♯)♯♯. It is straightforward to check that
I♯♯♯ = I♯. Also, we denote by n(S) the maximum n ∈ N such that there is a
filtration

0 = I0 ⊊ I1 ⊊ · · · ⊊ Ii−1 ⊊ Ii ⊊ · · · ⊊ In−1 ⊊ In = S

with Ii = I♯♯i (or, equivalently, Ii = J ♯i for some ideal Ji) for all 0 ⩽ i ⩽ n.

For example, if (S, n, l) is Artinian, one may choose 0 ̸= w1 ∈ (0 :S n) and let

J1 = w1S and I1 = J ♯♯1 = (0 :S n). As a recursive step, suppose we have chosen Ii−1.

Then choose any wi ∈ (Ii−1 :S n) \ Ii−1 and let Ji = Ii−1 + wiS and Ii = J ♯♯i .

Lemma 5.4. Let (S, n, l) be an Artinian local ring which is equicharacteristic and let

0 = I0 ⊊ J1 ⊆ I1 ⊊ · · · ⊆ Ii−1 ⊊ Ji ⊆ Ii ⊊ Ji+1 ⊆ · · · ⊆ In−1 ⊊ Jn ⊆ In = S

be any filtration (of ideals) of S such that Ji = Ii−1 + wiS with (Ii−1 :S wi) =

n and Ii = J ♯♯i for all 1 ⩽ i ⩽ n. Then n ⩾ ⌈λ(n)/ t(S)⌉ + 1 ⩾ ⌈λ(S)/ t(S)⌉.
Consequently, n(S) ⩾ ⌈λ(n)/ t(S)⌉+ 1 ⩾ ⌈λ(S)/ t(S)⌉. In particular, n(S) = λ(S) if
S is Gorenstein.

Proof. It suffices to prove that n ⩾ ⌈λ(n)/ t(S)⌉+1. As S is complete, we may assume
that l ⊆ S, by the existence of a coefficient field. Therefore, every ideal of S is an
l-vector subspace of S. For every 0 ⩽ i ⩽ n, let Vi = I♯i . Then we have

S = V0 ⊋ V1 ⊋ · · · ⊋ Vi−1 ⊋ Vi ⊋ · · · ⊋ Vn−1 ⊋ Vn = 0.

(Indeed, if Vi−1 = Vi for some 0 ⩽ i ⩽ n, then Ii−1 = V ♯
i−1 = V ♯

i = Ii, a contradiction.)
By construction, I1 = (0 :S n), In−1 = n and, hence, V1 = n, Vn−1 = (0 :S n). For
every 1 ⩽ i ⩽ n, there exists an l-vector subspace V ′

i ⊆ Vi−1 such that Vi⊕V ′
i = Vi−1.

Now, as rankl(V
′
1) = 1, we only need to prove rankl(V

′
i ) ⩽ t(S) for all 2 ⩽ i ⩽ n.

For any i = 1, 2, . . . , n, we have wiVi−1 ⊆ (0 :S n), which gives rise to an l-linear map
hi : V

′
i → (0 :S n) defined by hi(x) = wix. For any i = 1, 2, . . . , n and any x ∈ V ′

i , if

hi(x) = wix = 0, then x ∈ AnnS(Ji) = J ♯i = J ♯♯♯i = (J ♯♯i )
♯ = I♯i = Vi, which implies

that x ∈ Vi ∩ V ′
i = 0. Therefore, for every 1 ⩽ i ⩽ n, hi is an injective l-linear map.

Hence, rankl(V
′
i ) ⩽ rankl(0 :S n) = t(S). □
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Remark 5.5. Let S = k[T,X, Y ]/(T n, X2, XY, Y 2), J = (x) and I = (x, yzn−1). Then
t(S) = 2 but λ(J ♯♯/J) = n and λ(I♯♯/I) = n− 1 as J ♯♯ = I♯♯ = (x, y)♯ = (x, y)R.

Theorem 5.6. Let (R,m, k) → (S, n, l) be a local flat ring homomorphism of Noe-
therian local rings of prime characteristic p. Denote S̄ = S/mS. Then, for any
finitely generated R-module M , we have

(#) r(M ⊗R S) ⩽ r(M)min
{ e((y)S̄, S̄)

n(S̄/(y)S̄)

∣∣∣ y is a system of parameters of S̄
}
.

In particular, we have that r(M ⊗R S) ⩽ r(M) t(S̄). When S̄ is Gorenstein, we have
that r(M ⊗R S) ⩽ r(M).

Proof. If S is not Cohen-Macaulay, then r(M ⊗RS) = 0 (cf. Observation 2.2) and the
claims all become trivial. Therefore, we assume that S is Cohen-Macaulay without
loss of generality and, hence, R and S̄ are Cohen-Macaulay.

Clearly, dim(S) = dim(R) + dim(S̄). Fix any system of parameters x of R. For
any elements y = y1, y2, . . . , ydim(S̄) ∈ S such that their images form a system of

parameters for S̄, we know that S/(y)[q]S is faithfully flat over R for every q = pe

(cf. Theorem 1.16), which implies that, for any u ∈ R\(x)R, we have that u /∈ (x, y)S,

i.e., (x)R is contracted from S/(y)S. Also, as S̄ is Cohen-Macaulay, we have that

e((y)S̄, S̄)/n(S̄/(y)S̄) = λ(S̄/(y)S̄)/n(S̄/(y)S̄) ⩽ t(S̄/(y)S̄) = t(S̄) by Lemma 5.4.
Consequently, we only need to prove (#). Fix any sequence y whose image is a

system of parameters for S̄. Denote S̃ = S/(m, y)S = S̄/(y)S̄ and ñ = n/(m, y)S.

Then (S̃, ñ) is a 0-dimensional (i.e., Artinian) local ring. Say n(S̃) = n. Then there
exists a filtration

0 = I0 ⊊ I1 ⊊ · · · ⊊ Ii−1 ⊊ Ii ⊊ · · · ⊊ In−1 ⊊ In = S̃

such that Ii = I♯♯i for all 0 ⩽ i ⩽ n. For every i = 1, . . . , n, choose wi ∈ Ii such that

(Ii−1 :S wi) = ñ and, hence, there exists si ∈ I♯i−1 such that 0 ̸= siwi = vi ∈ (0 : ñ).
Now fix a lifting of si, wi, vi, Ii up to S for every 1 ⩽ i ⩽ n. For convenience, we

continue to denote their liftings by si, wi, vi, Ii, that is, from now on, si, wi, vi ∈ S
and Ii are ideals of S for 1 ⩽ i ⩽ n. Set I0 = 0.
For any u ∈ (x)R :R m) \ (x)R, we see that (as S/(y)S is flat over R)

(x, y, u)S

(x, y)S
∼=

(x, u)R

(x)R
⊗R

S

(y)S
∼= S̃,

which implies that uvi /∈ (x, y)S (actually uvi ∈ ((x, y)S :S n) \ (x, y)S) for every
1 ⩽ i ⩽ n.

For any q = pe, we now have (recall that n = n(S̃))
n∑
i=1

λS

((x, y, uIi−1, uwi)
[q](M ⊗R S)

(x, y, uIi−1)[q](M ⊗R S)

)
⩽

n∑
i=1

λS

( (x, y, uIi)
[q](M ⊗R S)

(x, y, uIi−1)[q](M ⊗R S)

)
= λS

((x, y, u)[q](M ⊗R S)

(x, y)[q](M ⊗R S)

)
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Also notice that, for every q and every 1 ⩽ i ⩽ n, there is an S-linear map

ϕq,i :
(x, y, uIi−1, uwi)

[q](M ⊗R S)

(x, y, uIi−1)[q](M ⊗R S)
−→

(x, y, uvi)
[q](M ⊗R S)

(x, y)[q](M ⊗R S)

defined by sending a class [z] to [sqi z], which is well-defined by our choice of si, wi, vi.
In particular, ϕq,i([(uwi)

q]) = [(siuwi)
q] = [(uvi)

q], which means that ϕq,i is surjective

for every q and every 1 ⩽ i ⩽ n = n(S̃) = n(S̄/(y)S̄).
Thus, for every q = pe, there is an inequality

n(S̃)∑
i=1

λS

((x, y, uvi)[q](M ⊗R S)

(x, y)[q](M ⊗R S)

)
⩽ λS

((x, y, u)[q](M ⊗R S)

(x, y)[q](M ⊗R S)

)
= λS

((x, u)[q]M
(x)[q]M

⊗R
S

(y)[q]S

)
= λR

((x, u)[q]M
(x)[q]M

)
λS̄

( S̄

(y)[q]S̄

)
,

which, after we divide by qdim(S) = qdim(R)qdim(S̄) with q → ∞, implies

n(S̃)∑
i=1

(
eHK((x, y),M ⊗R S)− eHK((x, y, uvi),M ⊗R S)

)
⩽ (eHK((x),M)− eHK((x, u),M)) e((y)S̄, S̄).

This gives n(S̃) r(M ⊗R S) ⩽ r(M) e((y)S̄, S̄), as u is arbitrary in ((x)R :R m) \ (x)R.
That is, r(M ⊗R S) ⩽ r(M) e((y)S̄, S̄)/n(S̄/(y)S̄).
The inequality (#) now follows as we run through all y whose image is a system of

parameters for S̄. □

Under the assumptions of Theorem 5.6, if S̄ is furthermore Gorenstein and the
induced map R/m → S/n is an isomorphism, then we can bound r(S) below.

Theorem 5.7. Let (R,m, k) → (S, n, l) be a local flat ring homomorphism of Noether-
ian local rings of prime characteristic p. Denote S̄ = S/mS. Let M be an arbitrary
finitely generated R-module.

(1) If R is Gorenstein, then r(M ⊗R S) ⩾ r(M) r(S̄). In particular, r(S) ⩾
r(R) r(S̄);

(2) If S̄ is Gorenstein and the induced map R/m → S/n is an isomorphism, then
r(M ⊗R S) ⩾ r(M) r(S̄). In particular, r(S) ⩾ r(R) r(S̄);

(3) If S̄ is regular and the induced map R/m → S/n is an isomorphism, then
r(M ⊗R S) = r(M). In particular, r(S) = r(R).

Proof. It suffices to prove (1) and (2) because (2) and Theorem 5.6(1) imply (3).
However, all of (1), (2) and (3) will be proved from scratch in this proof. Notice that
we may assume that R and S̄ are both Cohen-Macaulay (so is S) without loss of
generality (otherwise r(M) = 0 or r(S̄) = 0 and all the claims become trivial).
Choose a system of parameters x for R. Also choose y ∈ S whose image is a system

of parameters for S̄. (In case S̄ is regular, make sure the image of y is a regular system

of parameters for S̄.)
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Say ((x)R :R m)/(x)R ∼= k⊕r ∼=
(
R
m

)⊕r
as k-vector spaces for some 1 ⩽ r ∈ N.

Similarly, say ((y)S̄ :S̄ n)/(y)S̄ ∼= l⊕s ∼=
(
S
n

)⊕s
for some 1 ⩽ s ∈ N.

Since S/(y)S is flat over R (cf. Theorem 1.16) and, hence, S/(x, y)S is flat over
R/(x)R, we have

(
0 : S

(x,y)S
n
)
=

0 :(
0: S

(x,y)S
m

) n

 =

(
0 :(

0: R
(x)R

m

)
S

(x,y)S

n

)
∼=
(
0 :(

k⊕r⊗ S
(y)S

) n
)

∼=
(
0 :(

R
m
⊗ S

(y)S

)⊕r n

)
∼=
(
0 :(R

m
⊗ S

(y)S

) n
)⊕r

∼=
(
0 : S̄

(y)S̄

n

)⊕r
∼=
(
S

n

)⊕rs

,

which has the following implications:

(1) Under the assumption (1), we have r = 1. Say
(
0 : R

(x)R
m
)
∼= k is generated by

the image of u ∈ R. Then there is an isomorphism
(
0 : S̄

(y)S̄

n
)
∼=
(
0 : S

(x,y)S
n
)

as l-vector spaces sending any class [z] 7→ [uz]. Consequently, for any w ∈
((x, y) :S n) \ (x, y), there exists v ∈ S whose image is in ((y)S̄ :S̄ n) \ (y)S̄
such that (x, y, uv)S = (x, y, w)S.

(2, 3) If S̄ is Gorenstein (or regular), then s = 1. Say
(
0 : S̄

(y)S̄

n
)
is generated by

the image of v ∈ S. (In the case S̄ is regular, we choose v = 1.) Then, given
the assumption that the induced map R/m → S/n is an isomorphism, there

is an isomorphism
(
0 : R

(x)R
m
)
∼=
(
0 : S

(x,y)S
n
)
as k-vector spaces sending any

class [z] 7→ [zv]. Consequently, for any w ∈ ((x, y) :S n) \ (x, y), there exists
u ∈ ((x)R :R m) \ (x)R such that (x, y, uv)S = (x, y, w)S (and vice versa,
which is needed in proving (3)).

Therefore, in all the cases (1), (2) or (3) above, we have the following inequality
(equality if S̄ is regular). For convenience, we write M ⊗R S =MS.

λS

(
(x, y, uv)[q]MS

(x, y)[q]MS

)
= λS

(
(x, y, u)[q]MS

(x, y)[q]MS

)
− λS

(
(x, y, u)[q]MS

(x, y, uv)[q]MS

)

= λS

(
(x, u)[q]M

(x)[q]M
⊗R

S

(y)[q]S

)
− λS

(
MS(

(x, y, uv)[q]MS :MS
uq
))

= λR

(
(x, u)[q]M

(x)[q]M

)
λS̄

(
S̄

(y)[q]S̄

)
− λS

(
MS(

(x, y)[q]MS :MS
uq
)
+ vqMS

)

= λR

(
(x, u)[q]M

(x)[q]M

)
λS̄

(
S̄

(y)[q]S̄

)
− λS

(
MS

((x)[q]MS :MS
uq) + (y)[q]MS + vqMS

)

= λR

(
(x, u)[q]M

(x)[q]M

)
λS̄

(
S̄

(y)[q]S̄

)
− λS

(
MS

((x)[q]MS :MS
uq)

⊗S
S

(y, v)[q]S

)
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= λR

(
(x, u)[q]M

(x)[q]M

)
λS̄

(
S̄

(y)[q]S̄

)
− λS

(
M

((x)[q]M :M uq)
⊗R

S

(y, v)[q]S

)

⩾ λR

(
(x, u)[q]M

(x)[q]M

)
λS̄

(
S̄

(y)[q]S̄

)
− λR

(
M

((x)[q]M :M uq)

)
λS̄

(
S̄

(y, v)[q]S̄

)

= λR

(
(x, u)[q]M

(x)[q]M

)
λS̄

(
S̄

(y)[q]S̄

)
− λR

(
(x, u)[q]M

(x)[q]M

)
λS̄

(
S̄

(y, v)[q]S̄

)

= λR

(
(x, u)[q]M

(x)[q]M

)
λS̄

(
(y, v)[q]S̄

(y)[q]S̄

)
.

(In the case where S̄ is regular, equality holds throughout, as v = 1.) Dividing both
sides by qdim(S) = qdim(R)qdim(S̄) and letting q → ∞, we get

eHK((x, y),M ⊗ S)− eHK((x, y, w),M ⊗ S)

⩾ (eHK((x),M)− eHK((x, u),M))(eHK((y)S̄, S̄)− eHK((y, v)S̄, S̄)).

(Equality holds if S̄ is regular.) As w exhausts all elements in ((x, y) :S n) \ (x, y)

we have r(M ⊗R S) ⩾ r(M) r(S̄). (If S̄ is regular, u will also exhaust all elements in
((x) :R m) \ (x), implying r(M ⊗R S) ⩽ r(M) r(S̄) = r(M).) Now (1), (2) and (3) are
proved. □

In particular, under the assumption of Theorem 5.7, if R and S̄ are both excellent
and F-rational, then S is also F-rational. This result is proved in [En, Proposition 3.1],
with a different proof.

Proposition 5.8. Let (R,m, k) be a local Noetherian ring of characteristic p, P ∈
Spec(R) a prime ideal such that dim(R/P ) = 1 and M a finitely generated R-module.
Then r(M) ⩽ r(MP )α(P ), where α(P ) := min

{
e(x,R/P ) = λR

(
R

(P,x)R

)
|x ∈ m \P

}
.

If |k| = ∞, then r(M) ⩽ r(MP ) e(R/P ), where e(R/P ) = e(m, R/P ) denotes the
Hilbert multiplicity of R/P considered as a one-dimensional ring.

Proof. In case |k| = ∞, there exists y ∈ m \ P such that e(R/P ) = e(y,R/P ). Thus,
it is enough to prove the first claim. If R is not a Cohen-Macaulay domain, then
r(M) = 0 and the claim is trivially true. Consequently, we may assume that R is a
Cohen-Macaulay domain. Say dim(R) = d and therefore dim(RP ) = d−1. It suffices
to prove r(M) ⩽ r(MP ) e(x,R/P ) for any x ∈ m \ P .

Fix an arbitrary x ∈ m \ P . There exists x = x1, . . . , xd−1 ∈ P such that x, x form
a full system of parameters of R. Denote I = (x)R, so that IRP is an ideal generated
by a full system of parameters of RP .

By Theorem 2.5, it is enough to show

r(M) ⩽
(
eHK(IRP ,MP )− eHK((I, u)RP ,MP )

)
e(x,R/P )

for all u ∈ R such that (I :R u)RP = PRP . By replacing u with wu for some suitable
w /∈ P , we assume (I :R u) = P without loss of generality. We may further assume
u /∈ (x, x)R. (Indeed, if u ∈ (x, x)R, then write u = v + u′xt with v ∈ I, u′ ∈ R
such that t ∈ N is the largest possible exponent among all such equations. Then
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u′ /∈ (x, x)R, (I, u)RP = (I, u′)RP and, as x is regular on R/(x)R, we still have
(I :R u

′) = P . Replace u with u′ and rename it as u.) We have

λR

( R

(I, x)[q]

)
− λR

( R

(I, u, x)[q]

)
⩽ e

(
xq,

R

I [q]

)
− e

(
xq,

R

(I, u)[q]

)
= e

(
xq,

(I, u)[q]

I [q]

)
= q · e

(
x,

(I, u)[q]

I [q]

)
= q ·

∑
Q∈min(R/I)

λRQ

((I, u)[q]RQ

I [q]RQ

)
e(x,R/Q) (by the associativity formula)

= q · λRP

((I, u)[q]RP

I [q]RP

)
e(x,R/P ) (as (I :R u) = P ).

(Also note that, in the above, if u /∈ P , then e
(
xq, R

(I,u)[q]

)
= 0.) Dividing the above

inequality by qd and letting q → ∞, we have

eHK((I, x), R)− eHK((I, u, x), R) ⩽
(
eHK(IRP , RP )− eHK((I, u)RP , RP )

)
e(x,R/P ).

Finally, let n be the torsion-free rank of M over R. Then by Observation 2.2(3),

r(M) ⩽ eHK((I, x),M)− eHK((I, u, x),M)

= n ·
(
eHK((I, x), R)− eHK((I, u, x), R)

)
⩽ n ·

(
eHK(IRP , RP )− eHK((I, u)RP , RP )

)
e(x,R/P )

=
(
eHK(IRP ,MP )− eHK((I, u)RP ,MP )

)
e(x,R/P ).

This completes the proof. □

Theorem 5.9. Let (R,m, k) be a Noetherian ring of characteristic p, with P, Q ∈
Spec(R) such that P ⊊ Q, and M a finitely generated R-module. Then r(MQ) ⩽
r(MP )α(P,Q), where α(P,Q) := min

{
e(x, (R/P )Q)

}
, with x running through all sys-

tems of parameters of (R/P )Q. If |k| = ∞ or Q ⊊ m, then r(MQ) ⩽ r(MP ) e((R/P )Q)
where e((R/P )Q) = e((Q/P )Q, (R/P )Q) denotes the Hilbert multiplicity of (R/P )Q
considered as a local ring.

Proof. If |k| = ∞ or Q ⊊ m, then the residue field of (R/P )Q is infinite and hence
there exists a system of parameters x of (R/P )Q such that e(x, (R/P )Q) = e((R/P )Q).
Thus is suffices to prove the first claim. Without loss of generality, we may assume
that Q = m. Then it suffices to prove that r(M) ⩽ r(MP ) e(x,R/P ) for any system
of parameters x of R/P , which we proceed to do by induction on dim(R/P ).
If dim(R/P ) = 1, the claim is proved in Proposition 5.8. Suppose that the claim

is true for dim(R/P ) < c. Now let dim(R/P ) = c ⩾ 2 and write x = x1, x2, . . . , xc.
Also write x′ = x2, . . . , xc and Γ = {Q |Q ∈ min(R/(P, x′)R), height(Q/P ) = c− 1}.
Fix a prime P ′ ∈ Γ. Then x1 and x

′ are systems of parameters of R/P ′ and (R/P )P ′

respectively, which implies that

r(M) ⩽ r(MP ′) e(x1, R/P
′) ⩽ r(MP ) e(x

′, (R/P )P ′) e(x1, R/P
′)
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by the induction hypothesis. It suffices to prove that e(x1, R/P
′) e(x′, (R/P )P ′) ⩽

e(x,R/P ). By [Mat2, Exercise 14.6], we have

e(x1, R/P
′) e(x′, (R/P )P ′) ⩽

∑
Q∈Γ

e(x1, R/Q) e(x
′, (R/P )Q) = e(x,R/P ),

which completes the proof. □

Remark 5.10. Keep the notation as in Theorem 5.9.

(1) As can be seen from the proof of Theorem 5.9, we see that

r(MQ) ⩽ r(MP )
c∏
i=1

α(Pi, Pi−1) = r(MP )α(Q,P1)
c∏
i=2

e((R/Pi)Pi−1
)

for any saturated chain of prime ideals Q = P0 ⊋ P1 ⊋ · · · ⊋ Pc−1 ⊋ Pc = P .
In the case |k| = ∞ or Q ⊊ m, we have r(MQ) ⩽ r(MP )

∏c
i=1 e((R/Pi)Pi−1

).
(2) Suppose that R is a domain (e.g., r(R) > 0), Q = m and P = 0. Then

Theorem 5.9 states that r(R) ⩽ r(RP )α(0,m) = α(0,m), which is not as
sharp as Lemma 4.2 since α(0,m) ⩾ eHK(R).

The next example shows that the inequality formulated in Remark 5.10(1) is
sharper than both Theorem 5.9 and Lemma 4.2.

Example 5.11. Let k be an infinite field of prime characteristic p ̸= 3 and let R =
k[[x, y, z]]/(x3+y3+z3). Then R is a 2-dimensional local domain (since it is normal)
with maximal ideal m = (x, y, z)/(x3 + y3 + z3). Let P1 = (x+ y, z)/(x3 + y3 + z3)
and P2 = 0. The fact that R/P1

∼= k[[x]] implies that P1 is a prime ideal of R with
height 1, which further implies that RP1 is regular. Considering the saturated chain
of prime ideals m ⊋ P1 ⊋ P2, in light of Remark 5.10(1), we see that

r(R) ⩽ r(RP2) e(R/P1) e(RP1) = 1,

with 1 < eHK(R) ⩽ e(R) because R is not regular. Note that Theorem 5.9 and
Lemma 4.2 only yield r(R) ⩽ eHK(R) and r(R) ⩽ e(R) respectively.

6. An alternative F-rational signature

In this section, we define an alternative F-rational signature, which we call the
phantom F-rational signature of a local ring (R,m). Using a result from [HoY], we
prove that the phantom F-rational signature is positive if and only if R is F-rational.
We refer the reader to [AHH] for the basic facts about phantom projective dimension
of an R-module M , denoted ppdR(M) or simply ppd(M).

Definition 6.1. Let (R,m) be a local ring of prime characteristic p and M a finitely
generated R-module.

(1) In case (R,m) is such that ppd(R/(x)) <∞ for every system of parameters x
of R (e.g., R is an equidimensional homomorphic image of a Cohen-Macaulay
ring or R is an equidimensional excellent ring), we define

r′R(M) = inf{eHK(L,M)− eHK(L/K,M) | ppd(L) <∞, λ(L) <∞, 0 ̸= K ⊆ L}.
(2) Otherwise, we define r′R(M) = 0.
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We call r′R(R) the phantom F-rational signature of R.

Remark 6.2. First, from the definition, it is immediate to see that r(M) ⩾ r′(M) ⩾ 0
for every finitely generated R-module M .

Second, suppose that ppd(R/(x)) < ∞ for every system of parameters x of R.

Then we observe that r′
R̂
(M ⊗R R̂) ⩽ r′R(M) for any finitely generated R-module M .

The reason is that any R-module of finite length and of finite phantom projective

dimension remains so when considered as an R̂-module.

It turns out that r(M) and r′(M) behave quite similarly. In particular, the positivity
of r′(R) characterizes F-rationality, in the following sense.

Theorem 6.3. Let (R,m) be a Noetherian local ring of prime characteristic p. Let
M be a finitely generated R-module. Consider the conditions:

(1) r(R) > 0;
(1 ′) r′(R) > 0;
(2) r(M) > 0 for some M ;
(2 ′) r′(M) > 0 for some M ;
(3) r(M) > 0 for every M with dim(M) = dim(R);
(3 ′) r′(M) > 0 for every M with dim(M) = dim(R);

(4) R̂ is F-rational;
(5) R is F-rational.

Then (1) ⇔ (1′) ⇔ (2) ⇔ (2′) ⇔ (3) ⇔ (3′) ⇔ (4) ⇒ (5). If, moreover, R is

excellent or there exists a common weak parameter test element for R and R̂, then
(1) ⇔ (1′) ⇔ (2) ⇔ (2′) ⇔ (3) ⇔ (3′) ⇔ (4) ⇔ (5).

Proof. The implication (4) ⇒ (5) is always true. And (4) ⇐ (5) holds if there exists

a common parameter test element for R and R̂, which is the case when R is excellent.
It remains to show (1) ⇔ (1′) ⇔ (2) ⇔ (2′) ⇔ (3) ⇔ (3′) ⇔ (4).

If R̂ is not F-rational then rR(M) = 0, which forces r′R(M) = 0 for every finitely
generated R-module M (see Theorem 4.1 and Remark 6.2). Thus, any single one of
(1), (1′), (2), (2′), (3), or (3′) will imply (4).
It is straightforward to see (3′) ⇒ (3) ⇒ (2), (3′) ⇒ (2′) and (3′) ⇒ (1′) ⇒ (1);

cf. Remark 6.2. So it remains to prove (4) ⇒ (3′) in order to complete the proof. For

this, we assume that R̂ is F-rational. Thus, R is Cohen-Macaulay and, by Remark 6.2,

r′
R̂
(M ⊗R R̂) ⩽ r′R(M) for any finitely generated R-module M . As a result, we may

assume that R is a complete F-rational domain (hence Cohen-Macaulay). But now it
is enough to show r′(R) > 0 since r′(M) = rankR(M) r′(R), where rankR(M) denotes
the torsion-free rank of M over R.
Choose c, c′ ∈ R◦ and q′′ = pe

′′
to be as in Theorem 3.3. In [Ab], it is shown that

0∗L = 0 for every R-module L such that ppdR(L) < ∞. From [HoY, Corollary 3.3],
there is a test exponent, say q′′′, for cc′ and all R-modules L such that ppdR(L) <∞
and λ(L) < ∞. By Theorem 3.3, eHK(L,R) − eHK(L/K,R) ⩾ 1/(q′′q′′′)dim(R) for all
R-modules L with ppdR(L) < ∞ and λ(L) < ∞ and for all K with 0 ̸= K ⊆ L. By
Definition 6.1, we see r′(R) ⩾ 1/(q′′q′′′)dim(R) > 0, completing the proof. □
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7. Some examples

In this section, we compute some examples, starting with a lemma.

Lemma 7.1. Let S = K[x1, . . . , xd], a polynomial ring over a field K, graded over Nd,
such that deg(xn1

1 · · ·xnd
d ) = (n1, . . . , nd). Let R be a K-subalgebra of S generated by

finitely many monomials. Let H denote a Zd-graded R-module such that each graded
component of H is either 0 or isomorphic to K as a K-vector space. Let v1, . . . , vk
be finitely many homogeneous elements of H each of which is annihilated by a power
of the homogeneous maximal ideal m of R. For any a = (a1, . . . , ak) ∈ Kk, denote
v(a) := a1v1 + · · ·+ akvk. Then the minimum value of dimK Rv(a), for v(a) ̸= 0, can
be achieved when a = (0, . . . , 0, aλ, 0, . . . , 0) for some 0 ⩽ λ ⩽ k.

Proof. Suppose that the minimum dimension is achieved on Rv(a). Any vi with
coefficient ai = 0 may be omitted from consideration, and so we may suppose that all
the ai are non-zero. We may further assume that the vi are in distinct homogeneous
components: otherwise, one is a K-scalar multiple of another and may be omitted.

Linearly order Zd lexicographically. We may renumber the vi so that deg(v1) >
deg(v2) > · · · > deg(vk). Let µ1, . . . , µh be the monomials in R that do not kill
v1. Similarly, we may renumber the µi so that deg(µ1) < deg(µ2) < · · · < deg(µh).
Then the µiv1 are in distinct homogeneous components of H and are non-zero. It
follows that they are linearly independent, and that dimK Rv1 = h. To complete the
proof, it will suffice to show that the dimK Rv(a) ⩾ h. For this it is enough to show
that the elements µiv(a) are linearly independent over K for 1 ⩽ i ⩽ h. In µiv(a)
the highest degree component corresponds to a1µiv1, as the other terms have strictly
lower degree. But this implies linear independence: otherwise, one of the µiv(a) is a
linear combination of its predecessors µjv(a) for j < i, which is impossible, since µiv1
has strictly higher degree than any term in any µjv(a) for j < i. □

Corollary 7.2. Let R, m, H, v1, . . . , vk, a ∈ Kk and v(a) be as in the lemma above,
and let d be an integer (d is the Krull dimension of R in the applications). Let
H have an action of Frobenius, denoted F , such that for homogeneous elements u,
deg(F (u)) = p deg(u). Note that if u is killed by mN , then F (u) is killed by (mN)[p] and

so is also killed by a power of m. Suppose that L(a) := lim
e→∞

dimK(RF
e(v(a)))

qd
exists

for every a. Then inf{L(a) | v(a) ̸= 0} can be achieved at a = (0, . . . , 0, aλ, 0, . . . , 0),
or equivalently at a = eλ = (0, . . . , 0, 1, 0, . . . , 0), for some 0 ⩽ λ ⩽ k.

Proof. For every choice of e, the least value of dimK(RF
e(v(a))) is assumed when a =

(0, . . . , 0, aλe , 0, . . . , 0) for some 0 ⩽ λe ⩽ k, since F e(v(a)) = aq1F
e(v1)+· · ·+aqkF e(vk)

and hence Lemma 7.1 applies. Some λ occurs as the value of λe for infinitely many
e. This choice of λ clearly gives the infimum. □

First, we consider Segre products. In the sequel, if θ is a tuple of non-negative real
numbers, we write |θ| for the sum of its entries.

Example 7.3. LetK be a field and consider the Segre product R of a polynomial ring
in r variables x = x1, . . . , xr overK and a polynomial ring in s variables y = y1, . . . , ys
over K, where 2 ⩽ r ⩽ s. The dimension of this ring is r + s − 1. Let S = K[x, y].
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Let m be the homogeneous maximal ideal of R, which becomes PQ = P ∩ Q when
expanded to S, where P = (x)S and Q = (y)S. From the Mayer-Vietoris sequence
for local cohomology, Hr+s−1

m (S) = Hr+s−1
P∩Q (S) ∼= Hr+s

P+Q(S) =: H, which we view as the
K-span of the monomials in x, y with strictly negative exponents. Every monomial
element of H can be written x−iy−j where i is an r-tuple of positive integers, and j
is an s-tuple of positive integers. Because of the Reynolds operator ρ : S → R, which
fixes the monomials xiyj such |i| = |j| and kills the monomials such that |i| ≠ |j|, we
may view Hr+s−1

m (R) ⊆ Hr+s−1
m (S) ∼= Hr+s

P+Q(S) as the K-span of those x−iy−j such
that |i| = |j|.

The socle of Hr+s−1
m (R) has a K-basis consisting of all monomials µi of the form

x−iy−1
1 · · · y−1

s where the entries of i are positive and |i| = s. Decreasing each entry
of i by 1 gives a bijection with all non-negative monomials of degree s− r in x.

Consider the lattice group L := {(a, b) ∈ Zr × Zs : |a| = |b|}. We see that

b1 = (1, 0, . . . , 0, 1, 0, . . . , 0),

b2 = (0, 1, . . . , 0, 1, 0, . . . , 0),

. . . ,

br = (0, 0, . . . , 1, 1, 0, . . . , 0),

br+1 = (0, 0, . . . , 1, 0, 1, . . . , 0),

. . . ,

br+s−1 = (0, 0, . . . , 1, 0, 0, . . . , 1)

form a basis of L over Z. The (r + s − 1)-volume (in the usual sense) of the paral-
lelepiped spanned by the vectors above is

√
r + s.

Let i = (i1, . . . , ir), where |i| = s. We want to compute

(∗) ti := lim
q→∞

λ(Rµqi )

qr+s−1
.

The length λ(Rµqi ) is the number of monomials that are strictly negative and are
R-multiples of µqi . Then the length is the number of lattice points (a, b) ∈ Nr × Ns

such that 1 ⩽ ah ⩽ ihq for 1 ⩽ h ⩽ r, 1 ⩽ bk ⩽ q for 1 ⩽ k ⩽ s, and such that
|a| = |b|. For the purpose of computing the limit (∗) we may replace the length by
the (r+ s− 1)-dimensional volume of the region in Rr+s described by the restrictions
above divided by

√
r + s. If we scale the region down by a factor of 1/q, its volume

is divided by qr+s−1.
Therefore, we need to calculate the (r+s−1)-dimensional volumeWi of the regionD

in Rr+s consisting of points (u, v) that satisfy 0 ⩽ uh ⩽ ih for all h, 0 ⩽ vk ⩽ 1 for all k,
and that satisfy the linear equation |u| = |v|; then ti = Wi/

√
r + s. By Corollary 7.2,

the F-rational signature r(Rm) of R localized at its maximal homogeneous ideal m is
the least such value ti for choices of positive i = (i1, . . . , ir) with |i| = s.

We shall show that F-rational signature in the case where r = 2 ⩽ s is

r(Rm) = 1− 2

(s+ 1)!
.
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We need to minimize the value of Wi. Note that, by symmetry, we only need to
calculate Wi for i = (a, b) ∈ N2 with b = s − a when a ⩽ b. Hence, we may

assume that 1 ⩽ a ⩽

⌊
s

2

⌋
. We are going to compute the volume Wi as an integral

over C := [0, 1]s. Let {e1, . . . , es} be the standard basis of Rs and, in the spirit of
Riemann integral, let

dej := (dvj)ej = (0, . . . , 0, dvj, 0, . . . , 0), with dvj > 0.

The vectors de1, . . . , des form an infinitesimal rectangular parallelepiped dC of vol-
ume dV =

∏s
j=1 dvj. Let v = (v1, . . . , vs) ∈ C. If we translate dC to the point v,

we get v + dC. Note that |v + dej| = |v| + dvj. To compute the volume Wi, we
need to determine the infinitesimal volume dWi of the region D restricted to v+ dC.
Let (u11(v), u21(v)) and (u12(v), u22(v)) be the two end points of the line segment in
the (u1, u2)-plane defined by the conditions u1 ∈ [0, a], u2 ∈ [0, b] (which give a rec-
tangle) and u1 + u2 = |v|. Note that |v| ∈ [0, s]. Let u1(v) := u12(v) − u11(v),
u2(v) := u22(v) − u21(v), dj(u11(v)) := u11(v + dej) − u11(v) and dj(u21(v)) :=
u21(v + dej) − u21(v). Let La(v) be the length of the line segment. It is easy to

check that La(v) =
√
(u1(v))2 + (u2(v))2 and

La(v) =


|v|

√
2 if 0 ⩽ |v| ⩽ a,

a
√
2 if a ⩽ |v| ⩽ b,

(s− |v|)
√
2 if b ⩽ |v| ⩽ s.

It is routine to see that dWi is the (s + 1)-dimensional volume of the parallelepiped
determined by the rows of the following matrix

A =


u1(v) u2(v) 0 0 · · · 0

d1(u11(v)) d1(u21(v)) dv1 0 · · · 0
d2(u11(v)) d2(u21(v)) 0 dv2 · · · 0

...
...

...
...

. . .
...

ds(u11(v)) ds(u21(v)) 0 0 · · · dvs

 .

For each j ∈ {1, . . . , s}, the absolute value of det
(

u1(v) u2(v)
dj(u11(v)) dj(u21(v))

)
is La(v)dvj/

√
2,

because the distance between the parallel lines u1 + u2 = |v| and u1 + u2 = |v + dej|
is dvj/

√
2. Let Ak be the (s+ 1)× (s+ 1) minor of A obtained by deleting the k-th

column. Then

dWi =
√
A2

1 + A2
2 + A2

3 + · · ·+ A2
s+2

=
√

(u2(v)dV )2 + (u1(v)dV )2 + (La(v)dV )2/2 + · · ·+ (La(v)dV )2/2

=
√

(La(v)dV )2 + (La(v)dV )2/2 + · · ·+ (La(v)dV )2/2

=
√

(2 + s)/2La(v)dV.

The required volume is then Wi = W(a,s−a) =
∫
C

√
(2 + s)/2La(v) dV . Now, since

L1(v) ⩽ La(v) for all a ∈
[
1,

⌊
s

2

⌋]
and for all v ∈ C, the minimal value of Wi is
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W(1,s−1) =
√

(2 + s)/2
∫
C
L1(v) dV . Thus r(Rm) = W(1,s−1)/

√
2 + s =

∫
C
L(v) dV ,

where

L(v) := L1(v)/
√
2 =


|v| if 0 ⩽ |v| ⩽ 1,

1 if 1 ⩽ |v| ⩽ s− 1,

s− |v| if s− 1 ⩽ |v| ⩽ s.

The integral
∫
C
L(v) dV can be evaluated by breaking up the cube into three regions

Ck, k ∈ {1, 2, 3}, obtained by imposing the additional condition that 0 ⩽ |v| ⩽ 1 if
k = 1, that 1 ⩽ |v| ⩽ s− 1 if k = 2, and that s− 1 ⩽ |v| ⩽ s if k = 3.
For k = 1, we get

∫
C1

|v| dV . This is the sum of s integrals where the integrand
is vj, 1 ⩽ j ⩽ s. These s integrals are equal by symmetry, and so their sum is
s
∫
C1
v1 dV . Let A(v1) denote the (s − 1)-dimensional volume of the intersection of

C1 with the linear space obtained by requiring that the first coordinate be v1. Then
s
∫
C1
v1 dV = s

∫ 1

0
A(v1)v1 dv1. Since A(v1) is the volume of an (s − 1)-simplex with

s − 1 mutually orthogonal legs of length 1 − v1, its (s − 1)-dimensional volume is
1

(s− 1)!
(1 − v1)

s−1, so that the integral becomes
s

(s− 1)!

∫ 1

0

(1 − v1)
s−1v1 dv1. The

substitution w = 1− v1 yields

s

(s− 1)!

∫ 1

0

ws−1(1− w)dw =
s

(s− 1)!

(
1

s
− 1

s+ 1

)
=

s

(s+ 1)!
.

The second integral is the s-dimensional volume of the part of the cube where
1 ⩽ |v| ⩽ s − 1. We can get this volume by subtracting the volumes of the part of
the cube where |v| ⩽ 1 and the part of the cube where |v| ⩾ s− 1. The latter can be
described as the part where

∑s
j=1(1 − vj) ⩽ 1, so these are both s-simplices with s

mutually orthogonal legs of length 1, and both have s-dimensional volume
1

s!
. Thus,

the volume of C2 is 1− 2

s!
.

Finally, if we make the substitution wj = 1 − vj for 1 ⩽ j ⩽ s we see that the
integral over C3 is the same as the integral over C1. As the total integral, we get

r(Rm) =

∫
C

L(v) dV =
2s

(s+ 1)!
+ 1− 2

s!
= 1− 2

(s+ 1)!
.

Next, we consider Veronese subrings.

Example 7.4. Let S denote the polynomial ring in variables x1, . . . , xd over a field
K of characteristic p > 0, with d ⩾ 1. Let n ⩾ 1 and let R denote the n-Veronese
subring of S spanned by all monomials whose degree is a multiple of n. (Note that
R is regular when d = 1 or n = 1; therefore, the non-trivial case is when d ⩾ 2
and n ⩾ 2.) Consider the system of parameters xn1 , . . . , x

n
d for R. We first want to

describe the socle in R/I, with I = (xn1 , . . . , x
n
d)R. For any monomial µ ∈ S, it is

routine to see that µ represents a non-zero element of the socle of R/I if and only if
the following three conditions hold:

µ | (x1 · · ·xd)n−1 in S, d(n− 1)− deg(µ) < n, n | deg(µ).
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This equivalently says that µ = (x1 · · · xd)n−1/(xa11 · · ·xadd ) for some a = (a1, . . . , ad) ∈
Nd with |a| ⩽ n − 1 and d(n − 1) ≡ |a| mod n. Let r be the least positive integer
such that d ≡ r mod n. Now d(n− 1) ≡ |a| mod n if and only if |a| = n− r. Thus,
the dimension of the socle of R/I (as a vector space over K) will be the number of
monomials in S of degree n − r. Note that, when d ⩾ 2, the ring R is Gorenstein
precisely when r = n, which simply means n | d.

Given any a = (a1, . . . , ad) ∈ Nd with |a| = n − r, we consider the monomial
µ := µa = (x1 · · ·xd)n−1/(xa11 · · ·xadd ) and calculate

lim
q→∞

λ((I [q] :R µ
q)/I [q])/qd = lim

q→∞
λ(R/(I [q] :R µ

q))/qd.

Note that (I [q] :R µ
q) = (I [q]S :S µ

q) ∩ R, for if s ∈ R is such that sµq ∈ I [q]S, then
sµq ∈ I [q]S ∩ R = I [q], since R is a direct summand of S as an R-module; the other
inclusion is obvious. But the flatness of the Frobenius endomorphism of S implies
that

(I [q]S :S µ
q) = (I :S µ)

[q] = (xa1+1
1 , . . . , xad+1

d )[q]S = (x
q(a1+1)
1 , . . . , x

q(ad+1)
d )S.

Consequently (I [q] :R µ
q) = (I [q]S :S µ

q)∩R is spanned by all monomials whose degree
is a multiple of n such that for some i, the exponent on xi is at least q(ai+1). Thus,
R/(I [q] :R µ

q) is spanned by all monomials such that the exponents of xi are at most
q(ai + 1) − 1 for all i and the total degree is congruent to 0 modulo n. If we ignore
the congruence condition on the degree modulo n, we get

Va := lim
q→∞

λ(S/(I [q]S :S µ
q))/qd =

d∏
i=1

(ai + 1).

With the congruence condition that the total degree be divisible by n, we get

lim
q→∞

λ(R/(I [q] :R µ
q))/qd = Va/n =

(
d∏
i=1

(ai + 1)

)
/n.

By (an equivalent version of) Corollary 7.2, the F-rational signature r(Rm) of R
localized at its maximal homogeneous ideal m is the smallest value of Va/n as a varies
through all d-tuples of non-negative integers with |a| = n− r, which is

r(Rm) = (n− r + 1)/n,

achieved at a = (0, . . . , 0, n − r, 0, . . . , 0). For example, r(Rm) = 1 when r = 1 (e.g.,
d = 3 and n = 2). When r = n (i.e., when R is Gorenstein), r(Rm) = 1/n = s(Rm).
When d ⩽ n, we have r = d and, hence, r(Rm) = (n− d+ 1)/n.
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