
PRIMARY DECOMPOSITION II:
PRIMARY COMPONENTS AND LINEAR GROWTH

YONGWEI YAO

Abstract. We study the following properties about primary decomposition

over a Noetherian ring R: (1) For finitely generated modules N ⊆ M and
a given subset X = {P1, P2, . . . , Pr} ⊆ Ass(M/N), we define an X-primary

component of N ( M to be an intersection Q1 ∩ Q2 ∩ · · · ∩ Qr for some

Pi-primary components Qi of N ⊆ M and we study the maximal X-primary
components of N ⊆ M ; (2) We give a proof of the ‘linear growth’ prop-

erty of Ext and Tor, which says that for finitely generated modules N and

M , any fixed ideals I1, I2, . . . , It of R and any fixed integer i ∈ N, there
exists a k ∈ N such that for any n = (n1, n2, . . . , nt) ∈ Nt there exists

a primary decomposition of 0 in En = Exti
R(N, M/In1

1 In2
2 · · · Int

t M) (or 0

in Tn = TorR
i (N, M/In1

1 In2
2 · · · Int

t M)) such that every P -primary compo-

nent Q of that primary decomposition contains P k|n|En (or P k|n|Tn), where

|n| = n1 + n2 + · · · + nt.

0. Introduction

Throughout this paper R is a Noetherian ring and every R-module is assumed
to be finitely generated unless stated otherwise explicitly. Let N ( M be a proper
R-submodule of M . By a primary decomposition N = Q1∩Q2∩· · ·∩Qs of N in M ,
we always mean a minimal (hence irredundant) primary decomposition, where Qi
is a Pi-primary submodule of M , i.e. Ass(M/Qi) = {Pi}, for each i = 1, 2, . . . , s,
unless mentioned otherwise explicitly. Then Ass(M/N) = {P1, P2, . . . , Ps} and
we say that Qi is a Pi-primary component of N in M . As a subset of Spec(R)
with the Zariski topology, Ass(M/N) inherits the subspace topology. It is easy
to see that if N = M , then Ass(M/N) = ∅ and everything becomes trivial. For
an ideal I in R, we use (N :M I∞) to denote ∪∞i=1(N :M Ii). If U ⊂ R is a
multiplicatively closed subset of R, we use R[U−1] to denote the localized ring at U
and use M [U−1] ∼= M ⊗R[U−1] to denote and localized R[U−1]-module for any R-
module M . We also use N [U−1]∩M to denote the pre-image of N [U−1] under the
natural mapM →M [U−1]. Since Ass(M/N) is finite, every subset X ⊆ Ass(M/N)
has a unique minimal open superset in Ass(M/N), which we denote by o(X). For
any P ∈ Ass(M/N), we may simply write o({P}) as o(P ). In fact it is easy to see
that o(X) = {P ∈ Ass(M/N) |P ⊆ ∪P ′∈XP

′}. We use N to denote the set of all
non-negative integers.

Notation 0.1. Let N ⊆ M be finitely generated R-modules and X ⊆ Ass(M/N) a
subset of Ass(M/N). Say X = {P1, P2, . . . , Pr} ⊆ {P1, P2, . . . , Pr, Pr+1, . . . , Ps} =
Ass(M/N).
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(1) If N = Q1 ∩Q2 ∩ · · · ∩Qs is a primary decomposition of N in M with Qi
being Pi-primary, then we say Q = Q1 ∩ Q2 ∩ · · · ∩ Qr is an X-primary
component (or a primary component over X) of N ⊆ M . If X = ∅, then
we agree that M is the only X-primary component of N ⊆M .

(2) We call an X-primary component of N ⊆ M maximal if it is not properly
contained in any X-primary component of N ⊆M .

(3) We use ΛX(N ⊆ M), or ΛX if the R-modules N ⊆ M are clear from the
context, to denote the set of all possible X-primary components of N in
M .

(4) We use
◦
ΛX(N ⊆ M), or

◦
ΛX if the R-modules N ⊆ M are clear from the

context, to denote the set of all maximal X-primary components of N in
M .

(5) In the above notations, if X = {P} ⊆ Ass(M/N), i.e. P ∈ Ass(M/N), we

may simply write ΛP or
◦
ΛP instead of Λ{P} or

◦
Λ{P}.

Remark 0.2. Let N ⊆M and X be as in Notation 0.1.
(1) Due to the compatibility property of primary decomposition (c.f. [Yao,

Theorem 1.1]), we can equivalently say that Q is an X-primary component
of N ⊆M if Q = Q1∩Q2∩· · ·∩Qr, where Qi is a Pi-primary component of
N ⊆M . But we shall stick to the definition as in Notation 0.1(1) and avoid
using the compatibility property until after we have given a new proof of
the compatibility property in Corollary 1.2.

(2) Using the notion of X-primary component, we may equivalently agree to
say that the primary decompositions of N ⊆M are independent over X if
ΛX(N ⊆M) contains a unique X-primary component (c.f. [Yao, Definition
0.2]). It is well-known that ΛX(N ⊆ M) contains a unique X-primary
component if X is an open subset of Ass(M/N) (see, for example, [Ei,
page 101, Proposition 3.13]). Conversely, the uniqueness of X-primary
component implies X is open in Ass(M/N) (c.f. [Yao, Theorem 2.2]). A
slightly stronger version of this result will be proved in Corollary 1.5.

(3) Recall that X = {P1, P2, . . . , Pr} ⊆ Ass(M/N). It is easy to see that the
unique o(X)-primary component in Λo(X)(N ⊆M) is equal to N [U−1]∩M
where U = R \ ∪ri=1Pi (see, for example, [Ei, page 113, Exercise 3.12]).
Recall that o(X) = {P ∈ Ass(M/N) |P ⊆ ∪ri=1Pi} is the minimal open
superset of X.

Let N ⊆ M be finitely generated R-modules and P ∈ Ass(M/N). Then the P -
primary component of N ⊆ M is unique if and only if P ∈ Ass(M/N) is minimal.
That is to say that the embedded primary components are not unique, which is
an easy consequence of [HRS]. In fact W. Heinzer, L. J. Ratliff, Jr. and K. Shah
proved stronger results regarding the (maximal) embedded primary components in
[HRS]:

Theorem 0.3 (Heinzer, Ratliff and Shah). Let (R,m) be a Noetherian local ring
and I ⊆ R an ideal of R. Assume that m ∈ Ass(R/I).

(1) The intersection of all maximal m-primary components of I in R, which is
equal to the intersection of all m-primary components of I in R by part (2)
below, is equal to I, which implies that there are infinitely many maximal
m-primary components of I ⊆ R if m is embedded (c.f. [HRS, Theorem
2.8]).
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(2) For every m-primary component Q of I ⊆ R, Q is a finite intersection of
maximal m-primary components of I ⊆ R. (c.f. [HRS, Theorem 2.13]).

The above results of [HRS] can be translated to the following statement in a
more general situation:

Theorem 0.4 (Heinzer, Ratliff and Shah). Let R be a Noetherian ring and N ⊆M
finitely generated R-modules. Assume that P ∈ Ass(M/N).

(1) Every Q ∈ ΛP (N ⊆ M) can be written as an intersection of finitely many

Q′ ∈
◦
ΛP (N ⊆M) (c.f. [HRS, Theorem 2.13]).

(2) The intersection ∩{Q |Q ∈
◦
ΛP (N ⊆ M)} = ∩{Q |Q ∈ ΛP (N ⊆ M)} is

equal to NP ∩ M , which implies that there are infinitely many maximal
P -primary components of N ⊆ M if P is embedded (c.f. [HRS, Theorem
2.8]).

Remark 0.5. (1) For example, we can translate the results in Theorem 0.3 from
the I ⊆ R situation to the R-modules N ⊆ M by using Nagata’s Idealiza-
tion technique.

(2) The claims in the case where P ∈ Ass(M/N) is minimal over Ann(M/N)
are trivially true.

In section 1, inspired by the results of [HRS], we are going to prove the following
results regarding theX-primary component of N ⊆M for a subsetX of Ass(M/N).
Namely,

Theorem 1.3. Let R be a Noetherian ring and N ⊆ M finitely generated R-
modules. Assume that X ⊂ Ass(M/N). Say X = {P1, P2, . . . , Pr}. Set U =
R \ ∪{P |P ∈ X}. Then,

(1)
◦
ΛX(N ⊆M) = {∩ri=1Qi |Qi ∈

◦
ΛPi

(N ⊆M), 1 ≤ i ≤ r}.
Consequently, we also have the following.

(2) For every Q′ ∈ ΛX(N ⊆ M), Q′ = ∩{Q |Q ∈
◦
ΛX(N ⊆ M), Q′ ⊆ Q}.

Actually every Q′ ∈ ΛX(N ⊆ M) is an intersection of finite members of

Q ∈
◦
ΛX(N ⊆M).

(3) The intersection ∩{Q |Q ∈
◦
ΛX(N ⊆ M)} = ∩{Q |Q ∈ ΛX(N ⊆ M)} is

equal to N [U−1] ∩M . This result implies that there are infinitely many
maximal X-primary components of N ⊆M if X is not open in Ass(M/N).

From section 2 onwards, we study the ‘linear growth’ property of the primary
decompositions of a family of R-modules. The linear growth property measures the
‘sizes’ of the primary components. Roughly speaking, it says that the primary com-
ponents are big enough in some specific primary decompositions (see Definition 0.6
below for its precise meaning). We give a tentative definition of the linear growth
property as we are going to study the linear growth property abstractly.

Definition 0.6. Given a family F = {Mn |n = (n1, n2, . . . , nt) ∈ Nt} of finitely
generated R-modules, we say F satisfies the linear growth property (of primary
decomposition) if there exist k, b ∈ N such that, for any n = (n1, n2, . . . , nt) ∈ Nt,
there exists a primary decomposition of 0 in Mn

0 = Qn1
∩Qn2

∩ · · · ∩Qnsn
,
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where the Qni
’s are Pni

-primary components of the primary decomposition such
that P k|n|+bni

Mn ⊆ Qni
for all i = 1, 2, . . . , sn, where |n| = n1 + n2 + · · ·+ nt.

Notice that if M(0,0,...,0) = 0, then we can always additionally require b = 0.
The first family of R-modules proved to satisfy the linear growth property is

{Mn = M
I

n1
1 I

n2
2 ···Int

t M
|n = (n1, n2, . . . , nt) ∈ Nt}. We state the result as follows,

Theorem 0.7 (Linear growth; [Sw, Theorem 3.4] and [Sh2, Theorem 2.1]). Let R
be a Noetherian ring, M a finitely generated R-module and I1, I2, . . . , It ideals of
R. Then there exists an integer k ∈ N such that for any n = (n1, n2, . . . , nt) ∈ Nt,
there exists a primary decomposition of 0 in Mn := M

I
n1
1 I

n2
2 ···Int

t M

0 = Qn1
∩Qn2

∩ · · · ∩Qnsn
,

where the Qni
’s are Pni

-primary components of the primary decomposition such
that P k|n|ni

Mn ⊆ Qni
for all i = 1, 2, . . . , sn, where |n| = n1 + n2 + · · ·+ nt.

The essential case (i.e. M = R) of the above linear growth property was first
proved in [Sw] by I. Swanson. Then R. Y. Sharp, by using injective modules, proved
the linear growth property in the general situation as stated in the above theorem
(see [Sh2]). Recently the author gave another (short) proof of the above linear
growth property by using Artin-Rees numbers (c.f. [Yao]).

The second family of R-modules that satisfies the linear growth property is the
family {Rn = R/In1

1 In2
2 · · · Int

t |n = (n1, n2, . . . , nt) ∈ Nt}, which was proved by
R. Y. Sharp, as stated below:

Theorem 0.8 (Linear growth; [Sh1, Theorem 4.1]). Let R be a Noetherian ring
and I1, I2, . . . , It ideals of R. Then there exists an integer k ∈ N such that for any
n ∈ Nt, there exists a primary decomposition of 0 in Rn := R/In1

1 In2
2 · · · Int

t

0 = Qn1
∩Qn2

∩ · · · ∩Qnsn
,

where the Qni
’s are Pni

-primary components of the primary decomposition such
that P k|n|ni

Rn ⊆ Qni
for all i = 1, 2, . . . , sn, where |n| = n1 + n2 + · · ·+ nt.

Remark 0.9. In [Sh1], the linear growth property was only proved on the family
{R/In |n ∈ N}. It seems that the same technique and method can be readily
used to proved the linear growth property of the family {M/In1

1 In2
2 · · · Int

t M |n =
(n1, n2, . . . , nt) ∈ Nt} where M is any faithful R-module, provided that the set
∪n∈Nt Ass(M/In1

1 In2
2 · · · Int

t M) is finite.

It seems that the linear growth property in the above two cases is related to the
fact that certain graded modules are Noetherian. See [Yao, Section 3].

In Section 2, we study the linear growth property theoretically and show how
certain kinds of Artin-Rees numbers can be used to prove the linear growth property.

Then we prove the linear growth property of a specific family consisting of
(co)homology modules in Section 3, which is then used in Section 4 to prove that
the family {En = ExtcR(N, M

I
n1
1 I

n2
2 ···Int

t M
) |n = (n1, n2, . . . , nt) ∈ Nt} and the family

{Tn = TorRc (N, M
I

n1
1 I

n2
2 ···Int

t M
) |n = (n1, n2, . . . , nt) ∈ Nt} satisfy the linear growth

property for any finitely generated R-modules N , M and any fixed c ∈ N. In fact,
the general form of the result in Section 4 is the following:



PRIMARY DECOMPOSITION II 5

Theorem 4.1. Let A be a Noetherian ring, N a finitely generated A-module, R a
Noetherian A-algebra, M a finitely generated R-module, I1, I2, . . . , It fixed ideals of
R and c ∈ N. Then there exists a k ∈ N such that for any n = (n1, n2, . . . , nt) ∈ Nt
there exists a primary decomposition of 0 in En = ExtcA(N, M

I
n1
1 I

n2
2 ···Int

t M
), (0 in

Tn = TorAc (N, M
I

n1
1 I

n2
2 ···Int

t M
), respectively,) all regarded as R-modules,

0 = Qn1
∩Qn2

∩ · · · ∩Qnsn
,

where the Qni
are Pni

-primary components of the primary decomposition such that
P
k|n|
ni

En ⊆ Qni
(P k|n|ni

Tn ⊆ Qni
, respectively) for all i = 1, 2, . . . , sn, where |n| =

n1 + n2 + · · ·+ nt.

1. Primary components over subsets

Lemma 1.1. Let N ⊆ M be finitely generated R-modules and X ⊆ Ass(M/N) a
subset of Ass(M/N). For an R-module Q such that N ⊆ Q ⊆M , the following are
equivalent:

(1) Q is an X-primary component of N ⊆M , i.e. Q ∈ ΛX(N ⊆M).
(2) Ass(M/Q) ⊆ X and Ass(Q/N) ⊆ Ass(M/N) \X.
(3) Ass(M/Q) = X and Ass(Q/N) = Ass(M/N) \X.

Proof. Without loss of generality, we assume N = 0. Say X = {P1, P2, . . . , Pr} ⊆
{P1, P2, . . . , Pr, Pr+1, . . . , Ps} = Ass(M/N).

(1) ⇒ (2): Condition (1) means there is a primary decomposition 0 = Q1 ∩Q2 ∩
· · · ∩ Qs of 0 in M with Qi being Pi-primary such that Q = Q1 ∩ Q2 ∩ · · · ∩ Qr.
Then there is an injective R-homomorphism

M

Q
=

M

∩ri=1Qi
→

r⊕
i=1

M

Qi
,

which implies that Ass(M/Q) ⊆ Ass(⊕ri=1M/Qi) = X. Also we have an injective
R-homomorphism

Q =
Q

Q ∩ (∩si=r+1Qi)
∼=
Q+ (∩si=r+1Qi)
∩si=r+1Qi

⊆ M

∩si=r+1Qi
,

which implies that Ass(Q) ⊆ {Pr+1, . . . , Ps} = Ass(M) \X.
(2) ⇒ (3): This is evident since Ass(M) ⊆ Ass(M/Q) ∪Ass(Q).
(3) ⇒ (1): As Ass(M/Q) = {P1, P2, . . . , Pr}, we choose an arbitrary primary

decomposition Q = Q′1 ∩ Q′2 ∩ · · · ∩ Q′r of Q ⊂ M where Q′i is the Pi-primary
component for i = 1, 2, . . . , r. Next we choose an arbitrary primary decomposition
0 = Q1 ∩Q2 ∩ · · · ∩Qs of 0 in M with Qi being Pi-primary and let Q′ = ∩si=r+1Qi,
i.e. Q′ ∈ ΛAss(M)\X(0 ⊆M). Therefore, by the argument (1) ⇒ (2), Ass(Q′) ⊆ X.
Finally we know that Q∩Q′ = 0 since Ass(Q∩Q′) ⊆ Ass(Q)∩Ass(Q′) = ∅. Hence
we know that

0 = Q ∩Q′ = Q′1 ∩Q′2 ∩ · · · ∩Q′r ∩Qr+1 ∩ · · ·Qs
is a primary decomposition of 0 ⊆ M , which implies that Q = Q′1 ∩Q′2 ∩ · · · ∩Q′r
is an X-primary component of N ⊆M , i.e. Q ∈ ΛX(N ⊆M). �

As a corollary, we give an alternative proof of the compatibility property of
primary decomposition (c.f. [Yao, Theorem 1.1]).
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Corollary 1.2 (Compatibility). Let N ⊆M be finitely generated R-modules. Then
(1) Let X1, X2, . . . , Xn be subsets of Ass(M/N) and QXi ∈ ΛXi(N ⊆ M) for

1 ≤ i ≤ n. Then ∩ni=1QXi ∈ ΛX(N ⊆M), where X = ∪ni=1Xi.
(2) In particular, suppose Ass(M/N) = {P1, P2, . . . , Ps} and Qi is a Pi-primary

component of N in M , i.e. Qi ∈ ΛPi
for each i = 1, 2, . . . , s. Then

N = Q1 ∩Q2 ∩ · · · ∩Qs, which is necessarily a minimal primary decompo-
sition of N ⊆M .

Proof. (1) : By the above lemma, we know Ass(M/QXi) = Xi and Ass(QXi/N) =
Ass(M/N)\Xi for 1 ≤ i ≤ n. Therefore Ass(M/(∩ni=1QXi

)) ⊆ ∪ni=1 Ass(M/QXi
) =

∪ni=1Xi = X as there is an embedding of M/(∩ni=1QXi
) into ⊕ni=1M/QXi

. Also
Ass((∩ni=1QXi

)/N) ⊆ ∩ni=1 Ass(QXi
/N) = Ass(M/N) \X. The result follows from

Lemma 1.1.
(2) : This is just a special case of (1) as N is the only Ass(M/N)-primary

component of N ⊆M . �

In [HRS], quoted as Theorem 0.4, it was shown that, for any R-modules N ⊆M
and any P ∈ Ass(M/N), the intersection of all maximal P -primary components of
N ⊆M is equal to M ∩NP , the pre-image of NP under the natural map M →MP .
Notice that M ∩NP is exactly the unique o(P )-primary component in Λo(P )(M/N)
(see Remark 0.2(3)). It was also shown that every P -primary component is a finite
intersection of maximal P -primary components of N ⊆ M . We are going to show
similar results for maximal X-primary components:

Theorem 1.3. Let R be a Noetherian ring and N ⊆ M finitely generated R-
modules. Let X ⊂ Ass(M/N). Say X = {P1, P2, . . . , Pr} and set U = R\∪{P |P ∈
X}. Recall that o(X) = {P ∈ Ass(M/N) |P ⊆ ∪ri=1Pi}.

(1)
◦
ΛX(N ⊆M) = {∩ri=1Qi |Qi ∈

◦
ΛPi(N ⊆M), 1 ≤ i ≤ r}.

Consequently, we also have the following.

(2) For every Q ∈ ΛX(N ⊆ M), Q = ∩{Q′ |Q′ ∈
◦
ΛX(N ⊆ M), Q ⊆ Q′}.

Actually every Q ∈ ΛX(N ⊆ M) is an intersection of finitely many Q′ ∈
◦
ΛX(N ⊆M).

(3) The intersection ∩{Q |Q ∈
◦
ΛX(N ⊆ M)} = ∩{Q |Q ∈ ΛX(N ⊆ M)} is

equal to N [U−1]∩M , i.e. the only o(X)-primary component in Λo(X)(N ⊆
M).

Proof. (1): It is easy to show
◦
ΛX(N ⊆M) ⊆ {∩ri=1Qi |Qi ∈

◦
ΛPi

(N ⊆M), 1 ≤ i ≤
r}: For any Q ∈

◦
ΛX(N ⊆ M), write Q = Q′1 ∩Q′2 ∩ · · · ∩Q′r, where Q′i ∈ ΛPi

for

each 1 ≤ i ≤ r. Then we choose Qi ∈
◦
ΛPi

such that Q′i ⊆ Qi for each 1 ≤ i ≤ r so
that Q = Q′1 ∩Q′2 ∩ · · · ∩Q′r ⊆ Q1 ∩Q2 ∩ · · · ∩Qr. But Q1 ∩Q2 ∩ · · · ∩Qr ∈ ΛX
by compatibility property (Corollary 1.2), which forces Q = Q1 ∩Q2 ∩ · · · ∩Qr.

To show
◦
ΛX(N ⊆ M) ⊇ {∩ri=1Qi |Qi ∈

◦
ΛPi(N ⊆ M), 1 ≤ i ≤ r} we use

induction on |X|, the cardinality of X. If |X| = 1, there is nothing to prove.
Assuming the containment is true for |X| = r−1, we show the containment for X =
{P1, P2, . . . , Pr}. After rearrangement if necessary, we may assume that Pr 6⊆ Pi for

1 ≤ i ≤ r − 1. Set U = R \ ∪r−1
i=1Pi. Let Q = ∩ri=1Qi such that Qi ∈

◦
ΛPi

(N ⊆ M)
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for 1 ≤ i ≤ r. For any Q′ ∈ ΛX such that Q ⊆ Q′, we need to show Q = Q′. Write
Q′ = ∩ri=1Q

′
i such that Q′i ∈ ΛPi for 1 ≤ i ≤ r. Then we have

∩r−1
i=1Qi = M ∩Q[U−1] ⊆M ∩Q′[U−1] = ∩r−1

i=1Q
′
i,

which forces ∩r−1
i=1Qi = ∩r−1

i=1Q
′
i by the induction hypothesis. Therefore(

∩r−1
i=1Qi

)
∩ (Q′ +Qr)

= Q′ + ∩ri=1Qi = Q′ (since ∩r−1
i=1 Qi = ∩r−1

i=1Q
′
i ⊃ Q′).

Hence we can derive a primary decomposition Q′ = ∩ri=1Q
′′
i of Q′ ⊆ M from any

particular primary decompositions of ∩r−1
i=1Qi ⊆ M and of (Q′ + Qr) ⊆ M . In

this particular primary decomposition Q′ = ∩ri=1Q
′′
i of Q′ ⊆ M , the Pr-primary

component, Q′′r , must come from the Pr-primary component of (Q′ + Qr) ⊆ M ,
hence must contain Q′ + Qr. But Q′′r ∈ ΛPr

(Q′ ⊆ M) and Q′ ∈ ΛX(N ⊆ M),
in light of Corollary 1.2, imply that Q′′r ∈ ΛPr

(N ⊆ M), which forces Q′′r = Qr.
Therefore Q′ ⊆ Q′′r = Qr, which implies

Q = ∩ri=1Qi =
(
∩r−1
i=1Qi

)
∩Qr =

(
∩r−1
i=1Q

′
i

)
∩Qr ⊇ Q′.

Consequently, we conclude that Q = Q′.
(2): For any Q ∈ ΛX(N ⊆M), write

Q = Q1 ∩Q2 ∩ · · · ∩Qr.
By Theorem 0.4(1), each Qi is a finite intersection of maximal Pi-primary compo-
nents, i.e. there is an n ∈ N such that

Qi = Qi1 ∩Qi2 ∩ · · · ∩Qin,

where Qij ∈
◦
ΛPi

(N ⊆ M) for every i = 1, 2, . . . , r and j = 1, 2, . . . , n. Let Q′j =

Q1j ∩Q2j ∩ · · · ∩Qrj for each j = 1, 2, . . . , n. Then Q′j ∈
◦
ΛX(N ⊆M) by part (1)

and
Q = Q′1 ∩Q′2 ∩ · · · ∩Q′n.

(3): The equality ∩{Q |Q ∈
◦
ΛX(N ⊆ M)} = ∩{Q |Q ∈ ΛX(N ⊆ M)} follows

directly from part (2). By part (1), we have

∩{Q |Q ∈
◦
ΛX(N ⊆M)} = ∩ri=1Q

′′
i ,

where Q′′i = ∩{Q |Q ∈
◦
ΛPi(N ⊂ M)} for each i = 1, 2, . . . , r. But then, by

Theorem 0.4(2), Q′′i is equal to the only o(Pi)-primary component in Λo(Pi)(N ⊂

M). Therefore ∩{Q |Q ∈
◦
ΛX} = ∩ri=1Q

′′
i is the unique o(X)-primary component

in Λo(X)(N ⊆ M) by Corollary 1.2 and the fact that ∪ri=1 o(Pi) = o(∪ri=1Pi) =
o(X). �

Remark 1.4. If X is open in Ass(M/N), then ΛX(N ⊆ M) contains a unique
X-component and the above theorem becomes trivial.

As promised in Remark 0.2(2), here is a result recovering and generalizing [Yao,
Theorem 2.2].

Corollary 1.5. The following are equivalent:
(1) X is open in Ass(M/N).
(2) ΛX(N ⊆M) consists of only one X-primary component.



8 YONGWEI YAO

(3) ΛX(N ⊆M) is finite.

(4)
◦
ΛX(N ⊆M) is finite.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are evident.

(4) ⇒ (1): Say
◦
ΛX(N ⊆ M) = {Q′1, Q′2 . . . , Q′t} and let Q = ∩ti=1Q

′
i. By

Corollary 1.2, Q ∈ ΛX(N ⊆ M). On the other hand, by Theorem 1.3(3), Q ∈
Λo(X)(N ⊆M). Therefore, by Lemma 1.1, X = o(X) is open in Ass(M/N). �

2. The linear growth property and Artin-Rees numbers

In this section, we are going to study the linear growth property of the primary
decompositions of families of R-modules (see definition 0.6). Let F = {Mn |n =
(n1, n2, . . . , nt) ∈ Nt} be a family of finitely generated R-modules. By the com-
patibility property (see Corollary 1.2), we may equivalently say that the family
F satisfies the linear growth property if there exist k, b ∈ N such that for any
n = (n1, n2, . . . , nt) ∈ Nt and any P ∈ Ass(Mn), there exists a P -primary compo-
nent, say Q, of 0 ⊆ Mn such that P k|n|+bMn ⊆ Q. Notice that if M(0,0,...,0) = 0,
then we can always additionally require b = 0.

Notation 2.1. Let R be a Noetherian ring, M a finitely generated module over R
and J an ideal of R. We write G(J,M) = min{n ∈ N | JnM ∩ (0 :M J∞) = 0}.

Lemma 2.2. Let F = {Mn |n = (n1, n2, . . . , nt) ∈ Nt} be a family of finitely
generated R-modules. Then the following are equivalent:

(1) The family F satisfies the linear growth property.
(2) There exist integers k, b ∈ N such that Jk|n|+bMn ∩ (0 :Mn

J∞) = 0, that is
G(J,Mn) ≤ k|n|+ b for all n ∈ Nt and all ideals J of R.

(3) There exist integers k, b ∈ N such that P k|n|+bMn ∩ (0 :Mn P∞) = 0, that
is G(P,Mn) ≤ k|n|+ b for all n ∈ Nt and all prime ideals P ∈ Ass(Mn).

If Ass(F) := ∪n∈Nt Ass(Mn) is finite, then the above conditions (1), (2) and (3)
are also equivalent to the following.

(4) For any prime ideal P ∈ Ass(F), there exist integers k, b ∈ N, which may
depend on P , such that P k|n|+bMn ∩ (0 :Mn

P∞) = 0, i.e. G(P,Mn) ≤
k|n|+ b for all n ∈ Nt such that P ∈ Ass(Mn).

Proof. (1) ⇒ (2): By the meaning of the linear growth property, there exist integers
k, b ∈ N such that, for any n ∈ Nt, there exists a primary decomposition of 0 in Mn

0 = Qn1
∩Qn2

∩ · · · ∩Qnsn
,

where the Qni
are Pni

-primary components of the primary decomposition with
P
k|n|+b
ni

Mn ⊆ Qni
for all i = 1, 2, . . . , sn. Let J be an arbitrary ideal of R and n an

arbitrary vector in Nt. By possibly rearranging the primary components, we may
assume that J ⊆ Pni

for 1 ≤ i ≤ r and J 6⊆ Pni
for r + 1 ≤ i ≤ sn. Then

Jk|n|+bMn ⊆ Qn1
∩Qn2

∩ · · · ∩Qnr
and

(0 :Mn
J∞) = Qnr+1

∩ · · · ∩Qnsn
.

Therefore Jk|n|+bMn ∩ (0 :Mn
J∞) = 0.

(2) ⇒ (3): This is evident.
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(3) ⇒ (1): Because of the compatibility property of primary components, it
suffices to prove that, for an arbitrary n in Nt and an arbitrary P ∈ Ass(Mn), there
exists a P -primary component, say Q, of 0 ⊆Mn such that P k|n|+bMn ⊆ Q. Since
P k|n|+bMn ∩ (0 :Mn P∞) = 0, we can derive a primary decomposition of 0 ⊂ Mn

from any primary decompositions of P k|n|+bMn ⊂ Mn and of (0 :Mn
P∞) ⊂ Mn.

As P /∈ Ass(Mn/(0 :Mn
P∞)) it is easy to see that the P -primary component

Q in this derived primary decomposition has to be a P -primary component of
P k|n|+bMn ⊂Mn, which forces P k|n|+bMn ⊆ Q.

(3) ⇔ (4): This is evident under the assumption that Ass(F) = ∪n∈Nt Ass(Mn)
is finite. �

Lemma 2.3. Let R,S be Noetherian rings and φ : R→ S be a ring homomorphism.
(1) Suppose that M ′ is a finitely generated R-module, M ′′ is a finitely generated

S-module such that there is an injective R-homomorphism ψ : M ′ → M ′′.
Then G(J,M ′) ≤ G(JS,M ′′) for any ideal J of R.

(2) Suppose there are two families, F1 = {M ′
n |n = (n1, n2, . . . , nt) ∈ Nt} of

finitely generated R-modules and F2 = {M ′′
n |n ∈ Nt} of finitely generated

S-modules, such that there is an injective R-homomorphism ψn : M ′
n →M ′′

n

for every n ∈ Nt. If the family F2 satisfies the linear growth property, then
so does the family F1.

Proof. It is enough to prove (1) as (2) follows from (1) immediately by Lemma 2.2.
Without loss of generality, we assume that M ′ ⊆ M ′′. Say G(JS,M ′′) = n, which
implies that (JS)nM ′′ ∩ (0 :M ′′ (JS)∞ = 0. Then

JnM ′ ∩ (0 :M ′ J∞) ⊆ (JS)nM ′′ ∩ (0 :M ′′ (JS)∞) = 0,

which proves that G(J,M ′) ≤ n = G(JS,M ′′). �

Various kinds of Artin-Rees numbers play important roles in studying the linear
growth property. These numbers have been studied by Huneke in [Hu].

Definition 2.4. Let M0 ⊆M1 be finitely generated R-modules over a Noetherian
ring R and J an ideal of R. We denote AR(J,M0 ⊆M1) := min{ k | JnM1 ∩M0 ⊆
Jn−kM0 for all n ≥ k }. For a set Γ of ideals of R, we denote AR(Γ,M0 ⊆M1) :=
sup{AR(J,M0 ⊆M1) | J ∈ Γ}, which could be infinity.

Lemma 2.5 ([Hu, Proposition 2.2]). Let M0 ⊆M1 ⊆ · · · ⊆Mr be finitely generated
R-modules over a Noetherian ring R and J an ideal of R. Then

(1) AR(J,M0 ⊆Mr) ≤
∑r
i=1 AR(J,Mi−1 ⊆Mi).

(2) If furthermore Mi/Mi−1
∼= R/Ii are cyclic modules for all i = 1, 2, . . . , r,

where Ii are ideals of R, then AR(J,M0 ⊆Mr) ≤
∑r
i=1 AR(J, Ii ⊆ R).

Proof. This can be proved by use of arguments in the proof of [Hu, Proposition 2.2].
�

Definition 2.6. Let M be a finitely generated R-module over a Noetherian ring R
and J an ideal of R. We define AR(J,M) to be the maximum of AR(J,M ′ ⊆M ′′)
over all finitely generated R-modules M ′ ⊆ M ′′ such that M ′′/M ′ ∼= M , which
is well-defined and finite by the above Lemma 2.5(2). For a set Γ of ideals of R,
we denote AR(Γ,M) := sup{AR(J,M) | J ∈ Γ}, which could be infinity. Also
AR(M) := sup{AR(J,M) | J is an ideal of R}.
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Remark 2.7. (1) For M0 ⊆M1 as in Definition 2.4, if JnM1 ⊆M0 for some n,
then AR(J,M0 ⊆M1) ≤ n.

(2) If 0 → K →M → L→ 0 is exact, then AR(J,M) ≤ AR(J,K) + AR(J, L).
Or equivalently, we have AR(J,M2/M0) ≤ AR(J,M1/M0)+AR(J,M2/M1)
if M0 ⊆M1 ⊆M2.

(3) If the ring R has the uniform Artin-Rees property (see [Hu]), then AR(M)
is finite for every finitely generated R-module M .

(4) Actually, it is not hard to see that AR(J,M) = AR(J,N ⊆ Rn) whenever
M ∼= Rn/N .

Lemma 2.8. Let R be a Noetherian ring and 0 → M ′ ψ→ M ′′ → M → 0 an exact
sequence of finitely generated R-modules. Then, for any ideal J of R,

G(J,M ′′) ≤ max{G(J,M),G(J,M ′) + AR(J, ψ(M ′) ⊆M ′′)}
≤ max{G(J,M),G(J,M ′) + AR(J,M)}.

Proof. Without loss of generality, we may assume M ′ = ψ(M ′) ⊆ M ′′ so that
M ′′/M ′ ∼= M . Say G(J,M ′) = m′,G(J,M) = m and AR(J,M ′ ⊆ M ′′) = k. That
is to say that Jm

′
M ′ ∩ (0 :M ′ J∞) = 0, JmM ∩ (0 :M J∞) = 0 and M ′ ∩ JnM ′′ ⊆

Jn−kM ′ for all n ≥ k. Then we have

Jmax{m,m′+k}M ′′ ∩ (0 :M ′′ J∞)

= (Jmax{m,m′+k}M ′′ ∩ (0 :M ′′ J∞)) ∩M ′ (by the meaning of m)

⊆ (Jm
′+kM ′′ ∩M ′) ∩ (0 :M ′ J∞)

⊆ Jm
′
M ′ ∩ (0 :M ′ J∞) (by the meaning of k)

= 0 (by the meaning of m′),

which gives the desired result. �

As an immediate consequence, we have the following lemma concerning the linear
growth property and short exact sequences, which is used in the proof of the linear
growth property on the two families of Ext and Tor R-modules in Section 4.

Lemma 2.9. Let R be a Noetherian ring. Suppose there are three families, F1 =
{M ′

n |n = (n1, n2, . . . , nt) ∈ Nt}, F2 = {M ′′
n |n ∈ Nt} and F = {Mn |n ∈ Nt}, of

finitely generated R-modules such that there is an exact sequence

0 −→M ′
n

ψn−→M ′′
n −→Mn −→ 0

for every n ∈ Nt. Assume that the families F1 and F both satisfy the linear growth
property. Then the family F2 satisfies the linear growth property if one of the
following conditions holds:

(1) The numbers AR(Ass(M ′′
n ), ψn(M ′

n) ⊆ M ′′
n ) are finite for all n ∈ Nt and

the function defined by n 7→ AR(Ass(M ′′
n ), ψn(M ′

n) ⊆M ′′
n ) is bounded above

by a linear function of |n|.
(2) The numbers AR(Ass(M ′′

n ),Mn) are finite for all n ∈ Nt and the function
defined by n 7→ AR(Ass(M ′′

n ),Mn) is bounded above by a linear function of
|n|.

(3) The set Ass(F2) := ∪n∈Nt Ass(M ′′
n ) is finite and for any prime ideal P ∈

Ass(F2), the function defined by n 7→ AR(P,Mn) is bounded above by a
linear function of |n|.
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Proof. The result follows immediately from Lemma 2.8 and Lemma 2.2. �

Remark 2.10. We would like to apply Lemma 2.8 and sketch a proof of The-
orem 0.7: Without loss of generality, we assume Ii = (xi) and each xi ∈ R
is M -regular (c.f. the proof of [Sw, Theorem 3.4] or [Yao, Theorem 3.3]). So
F = {Mn := M

xnM |n ∈ Nt}, in which n := (n1, n2, . . . , nt) and xn := xn1
1 · · · , xnt

t .
Then Ass(F) is a finite set. Hence both k1 := max{G(P, M

xiM
) |P ∈ Ass(F), 1 ≤

i ≤ t} and k2 := max{AR(P, M
xiM

) |P ∈ Ass(F), 1 ≤ i ≤ t} are finite. Set
k := max{k1, k2} < ∞. For any n 6= (0, . . . , 0), say n1 6= 0, there is an exact
sequence 0 → M(n1−1,n2,...,nt) → Mn → M

x1M
→ 0. Then, by induction on |n| and

Lemma 2.8, we get G(P,Mn) ≤ k|n| for all P ∈ Ass(F) and all n ∈ Nt (the case
n = (0, . . . , 0) is trivial), which proves the linear growth property of family F by
Lemma 2.2. Actually this sketch is very similar to the proof of [Yao, Theorem 3.3].

3. The linear growth property of families of (co)homology modules

In this section, we are going to study the linear growth property of the primary
decompositions of certain families of (co)homology modules. The main result, The-
orem 3.2, will be used in the next section to prove the linear growth property of
the primary decompositions of certain families of Ext and Tor R-modules.

The next lemma, which is needed in our proof of Theorem 3.2, is probably
well-known. It is about a property of Noetherian partially ordered sets and we
include a proof nonetheless for completeness. Recall that a partially ordered set
D with partial order “≤” is called Noetherian if every ascending chain x1 ≤ x2 ≤
· · · ≤ xn ≤ · · · eventually stabilizes. For example, if M is a Noetherian R module,
then the set of all R-submodules of M , partially ordered by containment, is a
Noetherian partially ordered set. Also recall that Nt is a partially ordered set
in which (n1, n2, . . . , nt) ≤ (m1,m2, . . . ,mt) if and only if ni ≤ mi for all i =
1, 2, . . . , t.

Lemma 3.1. Let (D,≤) be a Noetherian partially ordered set and f : Nt → D
an order-preserving map. Then there exists m ∈ Nt such that f(n) = f(m) for all
n ∈ Nt satisfying m ≤ n. Moreover, the image f(Nt) is a finite subset of D.

Proof. We prove the lemma by induction on t, the number of components in n ∈ Nt.
We interpret N0 as a set consisting of one element. Therefore the lemma is trivially
true in the case where t = 0. Assuming the lemma is true for t − 1, we prove the
lemma for t.

For any r ∈ N, write (r) = (r, r, . . . , r) ∈ Nt. Since D is Noetherian, there
is a c ∈ N such that f((c)) = f((c′)) for all c ≤ c′ ∈ N. It is easy to see that
f((c)) = f(n) for all n ∈ Nt satisfying (c) ≤ n.

It remains to prove the set {f(n1, n2, . . . , nt) |ni ≤ c − 1 for some 1 ≤ i ≤ t}
is finite. For any integers i and b such that 1 ≤ i ≤ t and 0 ≤ b ≤ c − 1, set
Ntni=b

= {(n1, n2, . . . , nt) |ni = b}. It is easy to see that Ntni=b
is isomorphic to

Nt−1 as partially ordered sets and therefore f(Ntni=b
) is finite for every 1 ≤ i ≤

t and 0 ≤ b ≤ c − 1 by the induction hypothesis. So {f(n1, n2, . . . , nt) |ni ≤
c − 1 for some 1 ≤ i ≤ t} = ∪ 1≤i≤t

0≤b≤c−1

f(Ntni=b
)) is finite, which completes the

proof. �
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Theorem 3.2. Let A be a Noetherian ring and R a Noetherian A-algebra. Fix a
complex

F• : · · · → Fn → Fn−1 → · · · → F1 → F0 → F−1 → · · ·

of finitely generated projective A-modules. Let M be a finitely generated R-module,
I1, I2, . . . , It fixed ideals of R and c ∈ Z. For any n = (n1, n2, . . . , nt) ∈ Nt, set
En = Hc(HomA(F•, M

I
n1
1 I

n2
2 ···Int

t M
)) and Tn = Hc(F• ⊗A M

I
n1
1 I

n2
2 ···Int

t M
), the c-th

cohomology and homology R-modules of the respective complexes. Then the family
{En |n ∈ Nt} and the family {Tn |n ∈ Nt}, both of which consist of finitely generated
R-modules, satisfy the linear growth property.

Proof. First let us construct

RI = R[I1X−1
1 , I2X

−1
2 , . . . , ItX

−1
t , X1, X2, . . . , Xt] and

M =
⊕

n1,n2,...,nt∈Z
In1
1 In2

2 · · · Int
t MX−n1

1 X−n2
2 · · ·X−nt

t .

Here, by convention, we agree that Ini
i = R whenever ni ≤ 0. To shorten our

notations, we write Xn = Xn1
1 Xn2

2 · · ·Xnt
t and In = In1

1 In2
2 · · · Int

t for every n =
(n1, n2, . . . , nt) ∈ Nt.

We know that RI is a naturally Zt-graded Noetherian ring and M is a finitely
generated Zt-graded RI -module. For any given n ∈ Nt, we denote by M[−n] the
‘shift’ ofM such that the m-th degree component ofM[−n] is the (m−n)-th degree
component of M for every m. Notice that Xi is M-regular for every i = 1, 2, . . . , t
so that there is an exact sequence of graded RI -modules (with homogeneous RI -
homomorphisms of degree (0, 0, . . . , 0))

(3.2.1) 0 −→M[−n] Xn

−→M −→ M
XnM

−→ 0

for every n = (n1, n2, . . . , nt) ∈ Nt. In particular M
XnM is Zt-graded and, evidently,

its (0, 0, . . . , 0)-degree component is exactly M
InM for every n ∈ Nt. Moreover, it is

easy to see that the cohomology modules of HomA(F•,M),HomA(F•, M
XnM ) and

the homology modules of F•⊗AM, F•⊗A M
XnM are all finitely generated Zt-graded

RI -modules and the (0, 0, . . . , 0)-degree components of Hc(HomA(F•, M
XnM )) and

Hc(F•⊗A M
XnM ) are exactly En = Hc(HomA(F•, M

InM )) and Tn = Hc(F•⊗A M
XnM )

respectively for every n ∈ Nt.
Because the modules in (3.2.1) are finitely generated over RI , we have long exact

sequences of finitely generated RI -modules

Hc(HomA(F•,M[−n])) Xn

−→ Hc(HomA(F•,M)) −→ En

−→ Hc+1(HomA(F•,M)) Xn

−→ Hc+1(HomA(F•,M))

and Hc(F• ⊗AM[−n]) Xn

−→ Hc(F• ⊗AM) −→ Tn

−→ Hc−1(F• ⊗AM) Xn

−→ Hc−1(F• ⊗AM),
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where En = Hc(HomA(F•, M
XnM )) and Tn = Hc(F• ⊗A M

XnM ), which are graded
RI -modules. That is to say that there are short exact sequences of RI -modules

0 −→ Hc(HomA(F•,M))
Xn Hc(HomA(F•,M))

−→ En −→ (0 :Hc+1(HomA(F•,M)) X
n) −→ 0

and 0 −→ Hc(F• ⊗AM)
Xn Hc(F• ⊗AM)

−→ Tn −→ (0 :Hc−1(F•⊗AM) X
n) −→ 0.

The families { Hc(HomA(F•,M))
Xn Hc(HomA(F•,M)) |n ∈ Nt} and { Hc(F•⊗AM)

Xn Hc(F•⊗AM) |n ∈ Nt} satisfy
the linear growth property by Theorem 0.7 (also see Remark 2.10). The sets
∪n∈Nt AssRI

( Hc(HomA(F•,M))
Xn Hc(HomA(F•,M)) ) and ∪n∈Nt AssRI

( Hc(F•⊗AM)
Xn Hc(F•⊗AM) ) are both finite

by [Mc] (see also [Br, Ra]). As a result, ∪n∈Nt AssRI
(En) and ∪n∈Nt AssRI

(Tn) are
both finite by the above exact sequences. We see that n 7→ (0 :Hc+1(HomA(F•,M))

Xn) and n 7→ (0 :Hc−1(F•⊗AM) X
n) define order-preserving maps from Nt to the

Noetherian partially ordered sets that consist of RI -submodules of the finitely gen-
erated RI -modules Hc+1(HomA(F•,M)) and Hc−1(F• ⊗AM) respectively. Hence
both {(0 :Hc+1(HomA(F•,M)) X

n) |n ∈ Nt} and {(0 :Hc−1(F•⊗AM) X
n) |n ∈ Nt}

are finite sets by Lemma 3.1. As a result, both of them, considered as fami-
lies of RI -modules, satisfy the linear growth property and, for any fixed ideal
J ⊆ RI , the functions defined by n 7→ AR(J , (0 :Hc+1(HomA(F•,M)) Xn)) and
by n 7→ AR(J , (0 :Hc−1(F•⊗AM) X

n)) are both bounded above by linear (actually
constant) functions of |n|.

Therefore by Lemma 2.9(3), the families {En = Hc(HomA(F•, M
XnM )) |n ∈ Nt}

and {Tn = Hc(F• ⊗A M
XnM ) |n ∈ Nt} all satisfy the linear growth property.

Finally, by Lemma 2.3, if we contract the linear growth property back to the
(0, 0, . . . , 0)-degree components of the members of {En = Hc(HomA(F•, M

XnM )) |n ∈
Nt} and {Tn = Hc(F•⊗A M

XnM ) |n ∈ Nt}, we get the linear growth property of the
family {En = Hc(HomA(F•, M

InM )) |n ∈ Nt} and of the family {Tn = Hc(F• ⊗A
M
InM ) |n ∈ Nt} of R-modules. �

4. The linear growth property of Tor and Ext

In this section, we are going to study the linear growth property of the primary
decompositions of certain families of Ext and Tor R-modules.

We first prove the linear growth property of the two families {ExtcA(N, M
InM )}

and {TorAc (N, M
InM )}.

Theorem 4.1. Let A be a Noetherian ring, N a finitely generated A-module, R a
Noetherian A-algebra, M a finitely generated R-module, I1, I2, . . . , It fixed ideals of
R and c ∈ N. For any n = (n1, n2, . . . , nt) ∈ Nt, set En = ExtcA(N, M

I
n1
1 I

n2
2 ···Int

t M
)

and Tn = TorAc (N, M
I

n1
1 I

n2
2 ···Int

t M
). Then both the family {En |n ∈ Nt} and the

family {Tn |n ∈ Nt} of R-modules satisfy the linear growth property. That is to say
that there exists an integer k ∈ N such that for any n ∈ Nt there exists a primary
decomposition of 0 in En (0 in Tn, respectively)

0 = Qn1
∩Qn2

∩ · · · ∩Qnsn
,

where the Qni
are Pni

-primary components of the primary decomposition such that
P
k|n|
ni

En ⊆ Qni
(P k|n|ni

Tn ⊆ Qni
, respectively) for all i = 1, 2, . . . , sn, where |n| =

n1 + n2 + · · ·+ nt.
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Proof. To shorten our notations, we write In = In1
1 In2

2 · · · Int
t for every n =

(n1, n2, . . . , nt) ∈ Nt.
Choose an arbitrary free resolution

F• : · · · → Fn → Fn−1 → · · · → F1 → F0 → (N) → 0

of the A-module N by finitely generated free A-modules. Then for every n ∈ Nt, we
can compute ExtcA(N, M

InM ) as Hc(HomA(F•, M
InM )) and compute TorAc (N, M

InM ) as
Hc(F•⊗A M

InM ). Now the desired linear growth property of {ExtcA(N, M
InM ) |n ∈ Nt}

and {TorAc (N, M
InM ) |n ∈ Nt} follows from an easy application of Theorem 3.2. �

In the same spirit as in [Yao], Theorem 4.1 can be stated in a more general
situation: The modules { M

I
n1
1 I

n2
2 ···Int

t M
|n = (n1, n2, . . . , nt) ∈ Zt} may be replaced

by {M0
Mn

|n ∈ Zt}, where {Mn |n ∈ Zt} is a ‘Zt-graded’ filtration of M such that

M =
⊕

(n1,n2,...,nt)∈Zt

M(n1,n2,...,nt)X
−n1
1 X−n2

2 · · ·X−nt
t

naturally forms a Zt-graded Noetherian module over a Zt-graded sub-ring R of the
graded ring R[X1, X2, . . . , Xt, X

−1
1 , X−1

2 , . . . , X−1
t ] such that X1, X2, . . . , Xt are all

contained inR and the (0, 0, . . . , 0)-th component ofR is R. We call such a filtration
‘Noetherian’. Then we have the following theorem

Theorem 4.2. Let A be a Noetherian ring, N an finitely generated A-module,
R a Noetherian A-algebra, M a finitely generated R-module and {Mn |n ∈ Zt} a
Noetherian filtration of M . For any n ∈ Nt, set En = ExtcA(N, MMn

) and Tn =

TorAc (N, MMn
). Then both the family {En |n ∈ Nt} and the family {Tn |n ∈ Nt}

satisfy the linear growth property.

Proof. The proof goes exactly as the proof of the last theorem. �

Question 4.3. Let R be a Noetherian ring, N and M finitely generated R-
modules, I1, I2, . . . , It, J1, J2, . . . , Js fixed ideals of R and c ∈ N. For any n =
(n1, n2, . . . , nt) ∈ Nt, m = (m1,m2, . . . ,ms) ∈ Ns, set E(m,n) = ExtcR( N

JmN ,
M
InM )

and T(m,n) = TorRc ( N
JmN ,

M
InM ), where (m,n) = (m1,m2, . . . ,ms, n1, n2, . . . , nt) ∈

Ns+t. Do {E(m,n) | (m,n) ∈ Ns+t} and {T(m,n) | (m,n) ∈ Ns+t} satisfy the linear
growth property?

It seems unlikely that an easy proof will be found that establishes the linear
growth property for the family {E(m,n) | (m,n) ∈ Ns+t}; it might not even hold.
Even the family {ExtcR( N

JmN ,M) |m ∈ Ns} seems difficult to handle. However, in
the case where c = 0, the linear growth property of {E(m,n)} can be proved very
easily. For general c, the linear growth property of the family {T(m,n) | (m,n) ∈
Ns+t} seems more likely to be tractable.
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