PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000–000 S 0002-9939(XX)0000-0

PRIMARY DECOMPOSITION: COMPATIBILITY, INDEPENDENCE AND LINEAR GROWTH

YONGWEI YAO

ABSTRACT. For finitely generated modules $N \subsetneq M$ over a Noetherian ring R, we study the following properties about primary decomposition: (1) The Compatibility property, which says that if $Ass(M/N) = \{P_1, P_2, \ldots, P_s\}$ and Q_i is a P_i-primary component of $N \subsetneq M$ for each $i = 1, 2, ..., s$, then $N =$ $Q_1 \cap Q_2 \cap \cdots \cap Q_s$; (2) For a given subset $X = \{P_1, P_2, \ldots, P_r\} \subseteq \text{Ass}(M/N)$, X is an open subset of Ass (M/N) if and only if the intersections $Q_1 \cap Q_2 \cap$ $\cdots \cap Q_r = Q'_1 \cap Q'_2 \cap \cdots \cap Q'_r$ for all possible P_i -primary components Q_i and Q'_i of $N \subseteq M$; (3) A new proof of the 'Linear Growth' property, which says that for any fixed ideals I_1, I_2, \ldots, I_t of R, there exists a $k \in \mathbb{N}$ such that for any $n_1, n_2, \ldots, n_t \in \mathbb{N}$ there exists a primary decomposition of $I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M \subset$ M such that every P -primary component Q of that primary decomposition contains $P^{k(n_1+n_2+\cdots+n_t)}M$.

0. INTRODUCTION

Throughout this paper R is a Noetherian ring and $M \neq 0$ is a finitely generated R-module unless stated otherwise explicitly. Let $N \subsetneq M$ be a proper R-submodule of M. By primary decomposition $N = Q_1 \cap Q_2 \cap \cdots \cap Q_s$ of N in M, we always mean an irredundant and minimal primary decomposition, where Q_i is a P_i -primary submodule of M, i.e. $\text{Ass}(M/Q_i) = \{P_i\}$, for each $i = 1, 2, \ldots, s$, unless mentioned otherwise explicitly. Then $\text{Ass}(M/N) = \{P_1, P_2, \ldots, P_s\}$ and we say that Q_i is a P_i -primary component of N in M. As a subset of $Spec(R)$ with the Zariski topology, Ass (M/N) inherits a topology structure. For an ideal I in R, we use $(N : M I^{\infty})$ to denote $\cup_i (N : M I^i)$.

Notation 0.1. Let $N \subsetneq M$ be finitely generated R-modules. For every $P \in$ Ass (M/N) , we use $\Lambda_P (N \subsetneq M)$, or Λ_P if the R-modules $N \subsetneq M$ are clear from the context, to denote the set of all possible P -primary components of N in M .

We know that if $P \in \text{Ass}(M/N)$ is an embedded prime ideal, then $\Lambda_P(N \subseteq M)$ contains more than one element. (Also see the passage following Theorem 2.2 and the reference to [\[HRS](#page-8-0)].) Suppose that $N = Q_1 \cap Q_2 \cap \cdots \cap Q_s$ is a primary decomposition of $N \subsetneq M$ such that $Q_i \in \Lambda_{P_i}$ for $i = 1, 2, ..., s$. Then if we choose a P_i -primary submodule Q'_i of M such that $N \subseteq Q'_i \subseteq Q_i$ for each $i = 1, 2, ..., s$, we get a primary decomposition $N = Q'_1 \cap Q'_2 \cap \cdots \cap Q'_s$ of $N \subsetneq M$. For example we may choose $Q_i' = \ker(M \to (M/(P_i^{n_i}M + N))_{P_i})$ for all $n_i \gg 0$ to get primary decompositions $N = \bigcap_{1 \leq i \leq s} \ker(M \to (M/(P_i^{n_i}M + N))_{P_i})$ for all $n_i \gg 0$. But given an arbitrary $Q''_i \in \Lambda_{P_i}$ for each $i = 1, 2, ..., s$, we do not know a priori if

c 2000 American Mathematical Society

²⁰⁰⁰ Mathematics Subject Classification. Primary 13E05; Secondary 13C99, 13H99.

Key words and phrases. Primary decomposition, Linear Growth, Artin-Rees number.

 $N = Q_1'' \cap Q_2'' \cap \cdots \cap Q_s''$. This compatibility question is answered positively in Theorem 1.1:

Theorem 1.1 (Compatibility). Let $N \subseteq M$ be finitely generated R-modules and Ass $(M/N) = {P_1, P_2, \ldots, P_s}$. Suppose that for each $i = 1, 2, \ldots, s$, Q_i is a P_i -primary component of N in M, i.e. $Q_i \in \Lambda_{P_i}$. Then $N = Q_1 \cap Q_2 \cap \cdots \cap Q_s$, which is necessarily an irredundant and minimal primary decomposition.

Definition 0.2. Let $N \subsetneq M$ be finitely generated R-modules and X a subset of Ass (M/N) , say $X = \{P_1, P_2, \ldots, P_r\} \subseteq \text{Ass}(M/N) = \{P_1, \ldots, P_r, P_{r+1}, \ldots, P_s\}.$ We say that the primary decompositions of N in M are independent over X , or X independent, if for any two primary decompositions, say, $N = Q_1 \cap Q_2 \cap \cdots \cap Q_s =$ $Q'_1 \cap Q'_2 \cap \cdots \cap Q'_s$, of $N \subset M$ such that $\{Q_i, Q'_i\} \subseteq \Lambda_{P_i}(N \subset M)$ for $i = 1, 2, \ldots, s$, we have $Q_1 \cap Q_2 \cap \cdots \cap Q_r = Q'_1 \cap Q'_2 \cap \cdots \cap Q'_r$. In this case, we denote the invariant intersection by $Q_X(N\subset M)$, or Q_X if $N\subset M$ is clear from the context.

It is well-known that primary decompositions are independent over open subsets of Ass (M/N) . (See Observations 0.3 below.) Actually it turns out that independence property characterizes open subsets of $\text{Ass}(M/N)$:

Theorem 2.2. Let $N \subsetneq M$ be finitely generated R-modules and $X \subseteq \text{Ass}(M/N)$ be a subset of $\text{Ass}(M/N)$. Then the primary decompositions of N in M are independent over X if and only if X is an open subset of $Ass(M/N)$.

In Section 3 we use *Artin-Rees numbers* to prove the following:

Theorem 3.3. Let R be a Noetherian ring, M a finitely generated R-module and I_1, I_2, \ldots, I_t ideals of R. Then there exists a $k \in \mathbb{N}$ such that for all $n_1, n_2, \ldots, n_t \in$ N and for all ideals $J \subset R$, $(J^{k|\underline{n}|}M + I_1^{n_1}I_2^{n_2} \cdots I_t^{n_t}M) \cap (I_1^{n_1}I_2^{n_2} \cdots I_t^{n_t}M)$:_M $J^{\infty}) = I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M$, where $|\underline{n}| := n_1 + n_2 + \cdots + n_t$.

As a corollary of Theorem 3.3, we have a new proof of the 'Linear Growth' property, which was first proved by I. Swanson [\[Sw](#page-8-1)] and then by R. Y. Sharp using different methods and in a more general situation [\[Sh2](#page-8-2)]:

Corollary 3.4 (Linear Growth;[[Sw\]](#page-8-1) and[[Sh2\]](#page-8-2)). Let R be a Noetherian ring, M a finitely generated R-module and I_1, I_2, \ldots, I_t ideals of R. Then there exists a $k \in \mathbb{N}$ such that for any $n_1, n_2, \ldots, n_t \in \mathbb{N}$, there exists a primary decomposition of $I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M \subseteq M$

$$
I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M = Q_{\underline{n}_1} \cap Q_{\underline{n}_2} \cap \cdots \cap Q_{\underline{n}_{r_n}},
$$

where the $Q_{\underline{n}_i}$'s are $P_{\underline{n}_i}$ -primary components of the primary decomposition such that $P_{\underline{n}_i}^{k|\underline{n}|}M \subseteq Q_{\underline{n}_i}$ for all $i = 1, 2, \ldots, r_{\underline{n}}$, where $\underline{n} = (n_1, n_2, \cdots, n_t)$ and $|\underline{n}| =$ $n_1 + n_2 + \cdots + n_t$.

Before ending this introduction section, we make the following well-known observations, which is to the effect of saying that primary decompositions are independent over open subsets.

Observations on independence 0.3. Suppose $N = Q_1 \cap Q_2 \cap \cdots \cap Q_s$ is a primary decomposition of N in a finitely generated R-module M such that Q_i is P_i -primary for each $i = 1, 2, \ldots, s$.

PRIMARY DECOMPOSITION 3

- (1) For any ideal $I \subseteq R$, the intersection $\bigcap_{I \nsubseteq P_i} Q_i = (N : M I^{\infty})$ is independent of the particular primary decomposition of N in M . (cf. D. Eisenbud [\[Ei\]](#page-8-3), page 101, Proposition 3.13.) This means that the primary decompositions of $N \subseteq M$ are independent over $X = \{P \in \text{Ass}(M/N) | I \nsubseteq P\}$ and $Q_X = (N :_M I^{\infty}).$
- (2) Alternatively, for any multiplicatively closed set $W \subset R$, the intersection $\cap_{P_i\cap W=\emptyset}Q_i = \text{ker}(M \to (M/N)_W)$ is independent of the particular primary decomposition. (cf. D. Eisenbud[[Ei](#page-8-3)], page 113, Exercise 3.12.) That is to say that the primary decompositions of $N \subsetneq M$ are independent over $Y = \{P \in \text{Ass}(M/N) \mid P \cap W = \emptyset\}$ and $Q_Y = \text{ker}(M \to (M/N)_W)$.

1. Compatibility

The main theorem in this section is to show that all the primary components of R-modules $N \subsetneq M$ are totally compatible in forming the primary decompositions of $N \subsetneq M$.

Theorem 1.1 (Compatibility). Let $N \subsetneq M$ be finitely generated R-modules and Ass $(M/N) = \{P_1, P_2, \ldots, P_s\}$. Suppose that for each $i = 1, 2, \ldots, s$, Q_i is a P_i -primary component of N in M, i.e. $Q_i \in \Lambda_{P_i}(N \subsetneq M)$. Then $N = Q_1 \cap Q_2 \cap$ $\cdots \cap Q_s$, which is necessarily an irredundant and minimal primary decomposition.

Proof. We induct on s, the cardinality of $\text{Ass}(M/N)$.

If $s = 1$, then $N = Q_1$ and the claim is trivially true.

Suppose $s \geq 2$. By rearranging the order of P_1, P_2, \ldots, P_s , we may assume that P_s is a maximal prime ideal in Ass (M/N) . Since $Q_i \in \Lambda_{P_i}$ for $i = 1, 2, \ldots, s$, we can find s specific primary decompositions

$$
N = Q_{(i,1)} \cap Q_{(i,2)} \cap \cdots \cap Q_{(i,i)} \cap \cdots \cap Q_{(i,s)}, \quad \text{for } i = 1,2,\ldots,s,
$$

where $Q_{(i,j)} \in \Lambda_{P_j}$ and $Q_{(i,i)} = Q_i$ for all $i, j = 1, 2, \ldots, s$. Let $W = R \setminus \cup_{1 \leq i \leq s-1} P_i$. By Observation 0.3(2) and our assumption on P_s , we know that the primary decompositions of $N \subsetneq M$ is independent over $X = \{P \in \text{Ass}(M/N) | P \cap W = \emptyset\}$ $\{P_1, P_2, \ldots, P_{s-1}\}\$ with $Q_X = \text{ker}(M \to (M/N)_W)$. That is to say that

$$
Q_X = \ker(M \to (M/N)_W) = Q_{(i,1)} \cap Q_{(i,2)} \cap \dots \cap Q_{(i,s-1)}, \quad \text{for } i = 1,2,\dots,s,
$$

are all primary decompositions of $Q_X \subsetneq M$ and in particular $Q_i = Q_{(i,i)} \in$ $\Lambda_{P_i}(Q_X \subset M)$ for $i = 1, 2, ..., s - 1$. Since the cardinality of $\text{Ass}(M/Q_X)$ is $s - 1$, we use the induction hypothesis to see that

$$
Q_X = Q_1 \cap Q_2 \cap \cdots \cap Q_{s-1}.
$$

But we already know that $Q_X = Q_{(s,1)} \cap Q_{(s,2)} \cap \cdots \cap Q_{(s,s-1)}$ by the X-independence of primary decompositions of $N \subsetneq M$. Hence we have

$$
N = Q_{(s,1)} \cap Q_{(s,2)} \cap \cdots \cap Q_{(s,s-1)} \cap Q_{(s,s)}
$$

= $Q_X \cap Q_s$
= $Q_1 \cap Q_2 \cap \cdots \cap Q_{s-1} \cap Q_s$.

Remark 1.2. In[[Bo,](#page-8-4) Chapter IV], the notion of primary decomposition is generalized to not necessarily finitely generated modules over not necessarily Noetherian rings. Let R be a (not necessarily Noetherian) ring and M be a (not necessarily

finitely generated) R -module. A prime ideal P of R is said to be *weakly associated* with M if there exists an $x \in M$ such that P is minimal over the ideal Ann (x) and wedenote by $\operatorname{Ass}_f(M)$ the set of prime ideals weakly associated with M (cf. [[Bo,](#page-8-4) page 289, Chapter IV, § 1, Exercise 17. We say that an element $r \in R$ is nearly nilpotent on M if for any $x \in M$, there exists an $n(x) \in \mathbb{N}$, such that $r^{n(x)}x = 0$ (cf. [\[Bo](#page-8-4), page 267, Chapter IV, \S 1.4, Definition 2].) Then for any R-submodule N of M, we define $r_M(N) := \{r \in R \mid r \text{ is nearly nilpotent on } M/N \}$ (cf. [\[Bo](#page-8-4), page 292, Chapter IV, $\S 2$, Exercise 11. A R-submodule Q of M is said to be P-primary in M if $\text{Ass}_{f}(M/Q) = \{P\}$, which is equivalent to the statement that every $r \in R$ is either a non-zerodivisor or nearly nilpotent on M/Q , and in this case we have $r_M(Q) = P$ $r_M(Q) = P$ $r_M(Q) = P$) (cf. [[Bo,](#page-8-4) page 292, Chapter IV, § 2, Exercise 12(a)].) Then we say that a R-submodule N has a primary decomposition in M if there exist P_i -primary submodules $Q_i \subset M$, $i = 1, 2, \ldots, s$, such that $N = Q_1 \cap Q_2 \cap \cdots \cap Q_s$ (cf. [[Bo,](#page-8-4) page 294, Chapter IV, § 2, Exercise 20].) Again we always assume primary decompositions to be irredundant and minimal (i.e. reduced) if they exist. If N has primary decompositions in M, then Observation 0.3(2) still holds (replace $\text{Ass}(M/N)$ by $\operatorname{Ass}_f(M/N)$.) Therefore the proof of compatibility, i.e. Theorem 1.1, also applies to the the case where $N \subset M$ are not necessarily finitely generated R-modules over a not necessarily Noetherian ring R as long as the primary decompositions exist.

2. INDEPENDENCE OVER OPEN SUBSETS OF $\text{Ass}(M/N)$

Because of the compatibility property, i.e. Theorem 1.1, we have an equivalent statement to the definition of X-independence.

Lemma 2.1. Let $N \subsetneq M$ be finitely generated R-modules and $X = \{P_1, P_2, \ldots, P_r\}$ \subseteq Ass $(M/N) = \{P_1, P_2, \ldots, P_r, P_{r+1}, \ldots, P_s\}$. Then the following are equivalent:

- (1) The primary decompositions of N in M are independent over X ;
- (2) For any Q_i and Q'_i in Λ_{P_i} , where $i = 1, 2, \ldots, r$, the equality $Q_1 \cap Q_2 \cap \cdots \cap Q_r = Q'_1 \cap Q'_2 \cap \cdots \cap Q'_r$ holds.

It turns out that the independence observed in Observations 0.3 actually exhausts all the possibilities.

Theorem 2.2. Let $N \subsetneq M$ be finitely generated R-modules and $X \subseteq \text{Ass}(M/N)$ be a subset of Ass (M/N) . Then the primary decompositions of N in M are independent over X if and only if X is an open subset of $Ass(M/N)$.

Proof. Without loss of generality we assume $N = 0$.

The "if" part is just Observation $0.3(1)$. To prove the "only if" part, it suffices to show X is stable under specialization since $\text{Ass}(M/N) = \text{Ass}(M)$ is finite. Let P be an arbitrary prime ideal in $X \subseteq \text{Ass}(M/N)$. All we need to show is that for any $P' \in \text{Ass}(M)$ such that $P' \subset P$, we have $P' \in X$.

Say $X = \{P = P_1, P_2, \ldots, P_t, P_{t+1}, \ldots, P_r\}$ such that $P_i \subseteq P$ for $i = 1, 2, \ldots, t$ and $P_i \nsubseteq P$ for $i = t + 1, ..., r$. Let $X_P := X \cap \text{Ass}(M_P) = \{P_P = (P_1)_P, (P_2)_P,$ \ldots , $(P_t)_P$. We first show that the primary decompositions of $0 \subsetneq M_P$ are independent over X_P : For any $L_i \in \Lambda_{(P_i)_P} (0 \subsetneq M_P), i = 1, 2, \ldots, t$, let Q_i be the the full pre-image of L_i under the map $M \to M_P$. Then choose $Q_i \in \Lambda_{P_i} (0 \subsetneq M)$ for $i = t + 1, \ldots, r$. Then it is easy to see that $(Q_1 \cap Q_2 \cap \cdots \cap Q_r)P = L_1 \cap L_2 \cap \cdots \cap L_t$. Then the X-independence assumption implies that the primary decompositions of $0 \subsetneq M_P$ are independent over $X_P = X \cap \text{Ass}(M_P)$.

Hence by replacing M with M_P we may assume that (R, P) is local with the maximal ideal P and $P \in X = \{P = P_1, P_2, \ldots, P_t\} \subseteq \text{Ass}(M)$. In this case to prove that X is stable under specialization is simply to prove that $X = \text{Ass}(M)$. For each $i = 1, 2, ..., t$, choose a P_i -primary component Q_i of $0 \subsetneq M$. There exists a $k \in \mathbb{N}$ such that $P^k M \subseteq Q_1$ and therefore $P^n M \in \Lambda_P$ for all $n \geq k$. Set $L = Q_2 \cap Q_3 \cap \cdots \cap Q_t$. Then by Lemma 2.1 the assumption that the primary decompositions of 0 in M are independent over X simply means that $Q_1 \cap L =$ $P^n M \cap L$ for all $n \geq k$, which implies $Q_1 \cap L = 0$ by Krull Intersection Theorem. This forces $0 = Q_1 \cap Q_2 \cap \cdots \cap Q_t$ to be a primary decomposition of 0 in M. In particular it means that $\text{Ass}(M) = \{P = P_1, P_2, \ldots, P_t\} = X.$

In particular, if $P \in \text{Ass}(M/N)$ is not minimal over Ann (M/N) , then the P-primarycomponents of N in M are not unique. In fact, in [[HRS\]](#page-8-0), W. Heinzer, L. J. Ratliff, Jr. and K. Shah showed that if $P \in \text{Ass}(M/N)$ is an embedded prime ideal, then there are infinitely many maximal P-primary components of N in M with respect to containment. See [\[HRS](#page-8-0)] and their following papers for more information about the embedded primary components.

3. 'Linear Growth' property

In this section we give a new proof of 'Linear Growth' property using Artin-Rees numbers and compatibility. 'Linear Growth' property was first proved by I. Swanson[[Sw](#page-8-1)] and then by R. Y. Sharp using different methods and in a more general situation [\[Sh2](#page-8-2)].

We first give a definition of Artin-Rees numbers, $AR(J, N \subseteq M)$, of a pair of finitely generated R-modules $N \subseteq M$ with respect to an ideal J of R. These numbers have been studied in [\[Hu](#page-8-5)], where a set of ideals is considered instead of one single ideal.

Definition 3.1. Let $N \subseteq M$ be finitely generated R-modules over a Noetherian ring R and J an ideal of R. We define $AR(J, N \subseteq M) := min\{k | J^n M \cap N \subseteq$ $J^{n-k}N$ for all $n \geq k$ }.

Remark 3.2. If $K \subseteq L \subseteq M$, then $AR(J, K \subseteq M) \le AR(J, K \subseteq L) + AR(J, L \subseteq$ M). If $J^nM \subseteq N$ for some n, then $AR(J, N \subseteq M) \leq n$.

Theorem 3.3. Let R be a Noetherian ring, M a finitely generated R-module and I_1, I_2, \ldots, I_t ideals of R. Then there exists a $k \in \mathbb{N}$ such that for all $n_1, n_2, \ldots, n_t \in$ $\mathbb N$ and for all ideals $J \subset R$,

$$
I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M \supseteq J^{k|n|} M \cap (I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M :_M J^{\infty}), \qquad i.e.
$$

\n
$$
I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M = (J^{k|n|} M + I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M) \cap (I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M :_M J^{\infty}),
$$

where $|n| := n_1 + n_2 + \cdots + n_t$.

Proof. It is enough to prove the Theorem for

$$
\mathcal{R} = R[I_1T_1, I_2T_2, \dots, I_tT_t, T_1^{-1}, T_2^{-1}, \dots, T_t^{-1}],
$$

\n
$$
\mathcal{M} = \bigoplus_{n_1, n_2, \dots, n_t \in \mathbb{Z}} I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M T_1^{n_1} T_2^{n_2} \cdots T_t^{n_t},
$$

\n
$$
\mathcal{I}_i = T_i^{-1} \mathcal{R} \text{ for each } i = 1, 2, \dots, t, \text{ and }
$$

\n
$$
\mathcal{J} = J\mathcal{R}.
$$

That is because if we contract the result for R back to R , we get the desired result. Hence without loss of generality we assume $I_i = (x_i)$ is generated by a M-regular element $x_i \in R$ for each $i = 1, 2, \ldots, t$. The same technique is also used in [[Sw\]](#page-8-1) and [\[Sh2](#page-8-2)].

And it also suffices to prove the Theorem for one fixed ideal J. The reason is for every J in R , we have

$$
J \subseteq J' := \bigcap_{\substack{P \in Y \\ J \subseteq P}} P, \quad \text{where} \quad Y = \bigcup_{(n_1, n_2, \dots, n_t) \in \mathbb{Z}^t} \text{Ass}(M / I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M)
$$

and, furthermore, there are only finitely many such J' to deal with since the set $Y = \bigcup_{(n_1, n_2, \dots, n_t)} \text{Ass}(M/I_1^{n_1}I_2^{n_2} \cdots I_t^{n_t}M)$ $Y = \bigcup_{(n_1, n_2, \dots, n_t)} \text{Ass}(M/I_1^{n_1}I_2^{n_2} \cdots I_t^{n_t}M)$ $Y = \bigcup_{(n_1, n_2, \dots, n_t)} \text{Ass}(M/I_1^{n_1}I_2^{n_2} \cdots I_t^{n_t}M)$ is finite. (cf. [[Mc](#page-8-6), page 125, Lemma 13.1])

For each $i = 1, 2, \ldots, t$, let $N_i = x_i M :_M J^{\infty} \subseteq M$, $k'_i = AR(J, N_i \subseteq M)$ and k''_i be such that $J^{k''_i} N_i \subseteq x_i M$. Then $AR(J, x_i M \subseteq N_i) \leq k''_i$.

Let $k' = \max\{k'_i | 1 \le i \le t\}$, $k'' = \max\{k''_i | 1 \le i \le t\}$ and $k = k' + k''$. It is easy to see by the Remark 3.2 $AR(J, x_iM \subseteq M) \leq k'_i + k''_i \leq k$ for all $i = 1, ..., t$. Since each x_i is regular on M, we have $AR(J, x_1^{m_1} x_2^{m_2} \cdots x_{i-1}^{m_{i-1}} x_i^{m_{i+1}} x_{i+1}^{m_{i+1}} \cdots x_t^{m_t} M \subseteq$ $x_1^{m_1}x_2^{m_2}\cdots x_t^{m_t}M$ = AR(*J*, $x_iM \subseteq M$) $\leq k$ because of the *R*-linear isomorphism $M \cong x_1^{m_1} x_2^{m_2} \cdots x_t^{m_t} M$ induced by multiplication by $x_1^{m_1} x_2^{m_2} \cdots x_t^{m_t}$. Therefore we have $AR(J, x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}M\subseteq M) \leq k(n_1+n_2+\cdots+n_t)=k|\underline{n}|$ by the same Remark 3.2 applied to the filtration

$$
x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}M \subseteq x_1^{n_1-1}x_2^{n_2}\cdots x_t^{n_t}M \subseteq \cdots \subseteq x_t^2M \subseteq x_tM \subseteq M
$$

of $x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}M\subseteq M$ so that each quotient is isomorphic to M/x_iM for some $i = 1, 2, \ldots, t.$

We prove the Theorem by induction on $|\underline{n}| = n_1 + n_2 + \cdots + n_t$. If $|\underline{n}| = 0$, the claim is trivially true.

Now suppose $|n| \geq 1$. By symmetry we assume $n_1 \geq 1$. Notice, by induction hypothesis,

(*)

$$
J^{k|\underline{n}|}M \cap (x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}M :_M J^{\infty})
$$

$$
\subseteq J^{k(|\underline{n}|-1)}M \cap (x_1^{n_1-1}x_2^{n_2}\cdots x_t^{n_t}M :_M J^{\infty})
$$

$$
\subseteq x_1^{n_1-1}x_2^{n_2}\cdots x_t^{n_t}M.
$$

Therefore, using the definition of integers k, k', k'' and the fact that

AR
$$
\left(J, (x_1^{n_1} x_2^{n_2} \cdots x_t^{n_t} M :_{x_1^{n_1-1} x_2^{n_2} \cdots x_t^{n_t} M} J^{\infty}) \subseteq x_1^{n_1-1} x_2^{n_2} \cdots x_t^{n_t} M \right)
$$

\n $= AR(J, x_1 M :_M J^{\infty} \subseteq M)$ and
\n $(x_1^{n_1} x_2^{n_2} \cdots x_t^{n_t} M :_{x_1^{n_1-1} x_2^{n_2} \cdots x_t^{n_t} M} J^{\infty})/x_1^{n_1} x_2^{n_2} \cdots x_t^{n_t} M \supseteq (x_1 M :_M J^{\infty})/x_1 M,$

we have,

$$
J^{k|\underline{n}|}M\cap(x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}M :_M J^{\infty})
$$

\n
$$
=(x_1^{n_1-1}x_2^{n_2}\cdots x_t^{n_t}M)\cap J^{k|\underline{n}|}M\cap (x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}M :_M J^{\infty})
$$
 by (*)
\n
$$
=(x_1^{n_1-1}x_2^{n_2}\cdots x_t^{n_t}M)\cap J^{k|\underline{n}|}M\cap (x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}M :_{x_1^{n_1-1}x_2^{n_2}\cdots x_t^{n_t}M} J^{\infty})
$$

\n
$$
=(J^{k|\underline{n}|}M\cap (x_1^{n_1-1}x_2^{n_2}\cdots x_t^{n_t}M))\cap (x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}M :_{x_1^{n_1-1}x_2^{n_2}\cdots x_t^{n_t}M} J^{\infty})
$$

\n
$$
\subseteq (J^{k}(x_1^{n_1-1}x_2^{n_2}\cdots x_t^{n_t}M))\cap (x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}M :_{x_1^{n_1-1}x_2^{n_2}\cdots x_t^{n_t}M} J^{\infty})
$$

\n
$$
\subseteq J^{k''}(x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}M :_{x_1^{n_1-1}x_2^{n_2}\cdots x_t^{n_t}M} J^{\infty})
$$

\n
$$
\subseteq x_1^{n_1}x_2^{n_2}\cdots x_t^{n_t}M.
$$

Corollary 3.4 (Linear Growth;[[Sw\]](#page-8-1) and[[Sh2\]](#page-8-2)). Let R be a Noetherian ring, M a finitely generated R-module and I_1, I_2, \ldots, I_t ideals of R. Then there exists a $k \in \mathbb{N}$ such that for any $n_1, n_2, \ldots, n_t \in \mathbb{N}$, there exists a primary decomposition of $I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M \subseteq M$

$$
I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M = Q_{\underline{n}_1} \cap Q_{\underline{n}_2} \cap \cdots \cap Q_{\underline{n}_{r_n}},
$$

where the $Q_{\underline{n}_i}$'s are $P_{\underline{n}_i}$ -primary components of the primary decomposition such that $P_{\underline{n}_i}^{k|\underline{n}|}M \subseteq Q_{\underline{n}_i}$ for all $i=1,2,\ldots,r_{\underline{n}}$, where $\underline{n}=(n_1,n_2,\cdots,n_t)$ and $|\underline{n}|=$ $n_1 + n_2 + \cdots + n_t$.

Proof. Let k be as in the Theorem 3.3. By Theorem 1.1 (Compatibility), it suffices to show that for each $\underline{n} \in \mathbb{N}^t$ and each $P \in \text{Ass}(M/I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t}M)$, there is a P-primary component Q of $I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t}M \subset M$ such that $P^{k[n]}M \subseteq Q$. So we fix \underline{n} and $P \in \text{Ass}(M/I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t}M)$. Let

$$
(P^{k|\underline{n}|}M + I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t}M) = Q_1 \cap Q_2 \cap \cdots \cap Q_r \text{ and}
$$

$$
(I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t}M :_M P^{\infty}) = Q_{r+1} \cap Q_{r+2} \cap \cdots \cap Q_s
$$

be irredundant and minimal primary decompositions of the corresponding submodules of M, where Q_i is a P_i -primary submodule of M for each $i = 1, 2, \ldots, s$. As $P \notin \text{Ass}(M/(I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t}M :_M P^{\infty}))$, we may assume that $P_1 = P$. By Theorem 3.3, $(P^{k|{\underline{n}}|}M + I_1^{{\overline{n}}_1}I_2^{n_2}\cdots I_t^{n_t}M) \cap (I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t}M :_M P^{\infty}) = I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t}M.$ Hence

$$
I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t}M=Q_1\cap Q_2\cap\cdots\cap Q_r\cap Q_{r+1}\cap Q_{r+2}\cap\cdots\cap Q_s.
$$

Although the above intersection may not necessarily be irredundant and minimal, we know that Q_1 is a $P_1 = P$ -primary component of $I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t} M \subset M$ since $P \in \text{Ass}(M/I_1^{n_1}I_2^{n_2} \cdots I_t^{n_t}M)$ and Q_1 is the only P-primary submodule in the above intersection. Evidently $P^{k|\underline{n}|}M \subseteq Q_1$.

Actually Theorem 3.3 can be stated in a more general situation: The filtration $\{I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t}M\,|\,(n_1,n_2,\ldots,n_t)\in\mathbb{Z}^t\}$ may be replaced by a 'multi-graded' filtration $\{M_{(n_1,n_2,...,n_t)} | (n_1,n_2,...,n_t) \in \mathbb{Z}^t\}$ of M such that

$$
\mathcal{M} = \bigoplus_{(n_1, n_2, \dots, n_t) \in \mathbb{Z}^t} M_{(n_1, n_2, \dots, n_t)} T_1^{n_1} T_2^{n_2} \cdots T_t^{n_t}
$$

naturally forms a multi-graded Noetherian module over a multi-graded sub-ring $\mathcal R$ in $R[T_1, T_2, \ldots, T_t, T_1^{-1}, T_2^{-1}, \ldots, T_t^{-1}]$ with the usual grading such that $T_1^{-1}, T_2^{-1},$ \ldots, T_t^{-1} are all contained in R and the $(0, 0, \ldots, 0)$ part of R is R. We call such a filtration 'Noetherian'. To simplify notation, we use \underline{n} to denote (n_1, n_2, \ldots, n_t) and use $|n|$ to denote $n_1 + n_2 + \cdots + n_t$. And $\mathbb{N}^t := \{(n_1, n_2, \ldots, n_t) | n_i \geq 0, i =$ $1, 2, \ldots, t$.

The next theorem and its corollary look apparently more general than Theorem 3.3 and Corollary 3.4, although in essence they are the same.

Theorem 3.5. Let R be a Noetherian ring, M a finitely generated R -module and ${M_{(n_1 n_2...n_t)} | (n_1, n_2,...,n_t) \in \mathbb{Z}^t}$ a Noetherian filtration of M. Then

- (1) There exists a $k \in \mathbb{N}$ such that for all $\underline{m} \in \mathbb{Z}^t$, for all $\underline{n} \in \mathbb{N}^t$ and for all ideals $J \subset R$, $J^{k|\underline{n}|} M_{\underline{m}} \cap (M_{\underline{m}+\underline{n}} :_{M_{\underline{m}}} \overline{J^{\infty}}) \subseteq M_{\underline{m}+\underline{n}}$, i.e. $(J^{k|\underline{n}|} M_{\underline{m}} +$ $M_{\underline{m+n}}\big)\cap\big(M_{\underline{m+n}}:_{{M_{\underline{m}}}}J^{\infty}\big)=\overline{M_{\underline{m+n}}^-};$
- (2) The set $\cup_{m\in\mathbb{Z}^t,n\in\mathbb{N}^t}$ Ass (M_m/M_{m+n}) is finite.

Proof. The proof of (1) may be carried out in almost the same way as in the proof of Theorem 3.3. But here we choose to use Theorem 3.3 and provide a sketch of the proof: Simply apply Theorem 3.3 to the Noetherian $\mathcal{R}\text{-module }\mathcal{M}$ and ideals $\mathcal{I}_i = T_i^{-1} \mathcal{R}$ and then restrict the results to each of the homogeneous pieces. Theorem 3.3 gives results for all the ideals of \mathcal{R} , but here we are only interested in the ideals JR, the ideals extended from ideals $J \subset R$.

To prove (2), we notice that the set

$$
\bigcup_{n\in\mathbb{N}^t} \mathrm{Ass}_{\mathcal{R}}(\mathcal{M}/T_1^{-n_1}T_2^{-n_2}\cdots T_t^{-n_t}\mathcal{M})
$$

is finite. Then (2) follows by contracting to each of the homogeneous pieces. \Box

Corollary 3.6. Let R be a Noetherian ring, M a finitely generated R-module and ${M_{(n_1 n_2...n_t)} | (n_1, n_2,...,n_t) \in \mathbb{Z}^t}$ a Noetherian filtration of M. Then there exists $a \ k \in \mathbb{N}$ such that for any $\underline{m} \in \mathbb{Z}^t$, $\underline{n} \in \mathbb{N}^t$ and $P \in \text{Ass}(M_m/M_{m+n})$, there exists $a Q \in \Lambda_P(M_{m+n} \subseteq M_m)$ such that $P^{k|\underline{n}|} M_{m} \subseteq Q$.

Example 3.7 (Compare with $[Sh1]$). Assume that R is Nagata (e.g. R is excellent) and M is a finitely generated R-module and I_1, I_2, \ldots, I_t ideals of R. Then we have a multi-graded filtration $\{\overline{I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t}} M | \underline{n} \in \mathbb{Z}^t\}$. In order to see if the filtration satisfies the Linear Growth property, we may mod out the nil-radical and hence assume that R is reduced. Then it is straightforward to see that the associated graded module is finite over $\mathcal{R} = R[I_1T_1, I_2T_2, \ldots, I_tT_t, T_1^{-1}, T_2^{-1}, \ldots, T_t^{-1}]$. Hence the filtration satisfies the Linear Growth property. Similarly we can show the Linear Growth property of the filtration $\{\overline{I_1^{n_1}} \cdot \overline{I_2^{n_2}} \cdots \overline{I_t^{n_t}}M \mid \underline{n} \in \mathbb{Z}^t\}$ provided R is reduced and Nagata.

In[[Sh1](#page-8-7)] R. Y. Sharp proved the Linear Growth property of the filtration $\{\overline{I^n}\,|\,n\in\mathbb{Z}\}$ \mathbb{Z} of Noetherian ring R without the Nagata assumption. The argument there also works for the filtration $\{\overline{I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t}} \mid n \in \mathbb{Z}^t\}$ of any Noetherian ring R. That is because the set $\cup_{n\in\mathbb{Z}^t}$ Ass $(R/\overline{I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t}})$ is finite (cf. [\[Ra\]](#page-8-8)) and hence we can localize and then complete. In fact, if we know in advance the set $\cup_{n\in\mathbb{Z}^t}$ Ass $(M/\overline{I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t}}M)$ is finite for a finitely generated faithful R-module M, we can localize and then complete and then contract the result of Example 3.7

for \hat{M} back to M to deduce that the filtration $\{\overline{I_1^{n_1} I_2^{n_2} \cdots I_t^{n_t}} M | \underline{n} \in \mathbb{Z}^t\}$ satisfies the Linear Growth property. We need M to be faithful so that the process of contraction works.

Example 3.8. Assume R is Nagata and has characteristic p, where p is a prime number and M is a finitely generated R -module. Then for any ideal I in R , tight numberand M is a finitely generated R-module. Then for any ideal I in R, tight closure of I, denoted by I^* , is defined [[HH\]](#page-8-9). It is shown that $\sqrt{0} \subseteq I^* \subseteq \overline{I}$ for any ideal I in R [[HH\]](#page-8-9). By the same argument as in Example 3.7 we can deduce that the filtration $\{(I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t})^*M | n \in \mathbb{Z}^t\}$ is Noetherian and hence has the Linear Growth property. If, furthermore, R is reduced, then the filtration ${I_1^{n_1*}I_2^{n_2*}\cdots I_t^{n_t*}M \mid n \in \mathbb{Z}^t}$ satisfies the Linear Growth property.

In [\[Ra\]](#page-8-8) it is shown that $\text{Ass}(R/\overline{I^n})$ is non-decreasing and eventually stabilizes for any ideal I in a Noetherian ring R. For any finitely generated R-module M , a result of $[Br]$ $[Br]$ says that $Ass(M/I^nM)$ also stabilizes for large n. If R is Nagata and of characteristic $p > 0$, then it follows from Example 3.8 and Theorem 3.5 that the set $\cup_{n\in\mathbb{Z}^t} \operatorname{Ass}(M/(I_1^{n_1}I_2^{n_2}\cdots I_t^{n_t})^*M)$ is finite. In case of $t=1$, we would like to study the stability of $\operatorname{Ass}(M/(I^{n*}M))$. Since $\oplus_{n\in\mathbb{Z}}I^{n*}MT^n$ is finite over $R[IT, T^{-1}]$ (see Example 3.8), we know the filtration $\{I^{n*}M \mid n \in \mathbb{N}\}\$ of M is eventually stable, i.e. $I^{n+1*}M = II^{n*}M$ for all large n. Hence the argument in [\[Br](#page-8-10)] can be applied to show that $\text{Ass}(M/I^{n*}M)$ stabilizes for large *n*.

ACKNOWLEDGMENT

I would like to thank Craig Huneke for the helpful conversations and valuable inspiration, which made this paper possible.

REFERENCES

- [Bo] N. Bourbaki, Commutative algebra (Elements of mathematics), Translated from the French, Addison-Wesley Publishing Co. Hermann, Paris, 1972. MR 50#12997
- [Br] M. Brodmann, Asymptotic stability of Ass (M/I^nM) , Proc. Amer. Math. Soc. 74 (1979), no. 1, 16–18. MR 80c:13012
- [Ei] D. Eisenbud, Commutative Algebra. With a view towards algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995. MR 97a:13001
- [HH] M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31-116. MR 91g:13010
- [Hu] C. Huneke, Uniform bounds in Noetherian rings, Invent. Math. 107 (1992), 203–223. MR 93b:13027
- [HRS] W. Heinzer, L. J. Ratliff, Jr. and K. Shah, On the embedded primary components of ideals. I, J. Algebra 167 (1994) no. 3, 724–744. MR 95f:13023
- [Mc] S. McAdam, Primes associated to an ideal, Contemporary Mathematics, 102, American Mathematical Society, Providence, RI, 1989, ISBN: 0-8218-5108-X. MR 90m:13004
- [Ra] L. J. Ratliff, Jr., On asymptotic prime divisors, Pacific J. Math. 111 (1984) no. 2, 395–413. MR 85c:13003
- [Sh1] R. Y. Sharp, Linear growth of primary decompositions of integral closures, J. Algebra 207 (1998) no. 1, 276–284. MR 99g:13008
- [Sh2] R. Y. Sharp, Injective modules and linear growth of primary decompositions, Proc. Amer. Math. Soc. 128 2000 no. 3, 717–722. MR 2000e:13004
- [Sw] I. Swanson, Powers of Ideals: Primary Decompositions, Artin-Rees Lemma and Regularity, Math Ann. 307 (1997) no. 2, 299-313. MR 97j:13005

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045 E-mail address: yyao@math.ukans.edu