
INFINITE RINGS WITH PLANAR ZERO-DIVISOR GRAPHS

YONGWEI YAO

Abstract. For any commutative ring R that is not a domain, there is a zero-
divisor graph, denoted Γ(R), in which the vertices are the nonzero zero-divisors of
R and two distinct vertices x and y are joined by an edge exactly when xy = 0. In
[Sm2], Smith characterized the graph structure of Γ(R) provided it is infinite and
planar. In this paper, we give a ring-theoretic characterization of R such that Γ(R)
is infinite and planar.

0. Introduction

Throughout this paper, every ring is assumed commutative with 1 6= 0. For any
such ring R, let Z(R) be the set of all zero-divisors of R and then let Z(R)∗ =
Z(R)\{0}. The zero-divisor graph, denoted Γ(R), is defined as follows: Its vertex set
is V = Z(R)∗ and, for any distinct x, y ∈ Z(R)∗, there is an undirected edge between
them exactly when xy = 0 (see [AL] and [Beck]). It is clear that Γ(R) = ∅ if and only
if R is an integral domain. For this reason, we assume R is not an integral domain
throughout this paper when studying Γ(R).

Notation 0.1. The following notations will be used throughout this paper.

(1) For any set S, we use |S| to denote its cardinality. We usually use m, n
to denote finite cardinalities (e.g., |Zn| = n) and use α, β to denote general
cardinalities. Thus, to say |S| = ∞ is the same as to say |S| ≥ |Z|.

(2) For any positive integer n and any cardinality α > 0, we use Kn,α to denote a
complete bipartite graph with a bipartition into two vertex subsets of cardi-
nalities n and α respectively. In particular, K1,α is often referred to as a star
graph.

(3) In part (2) above, if we add edges to Kn,α by joining all distinct vertices within
the vertex subset of cardinality n, the resulted graph is denoted by K[n],α. It
is clear that K1,α = K[1],α. In fact, K[n],α is simply a complete (n + 1)-partite
graph with the vertex set partitioned into subsets of cardinalities 1, 1, . . . , 1, α
respectively.
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(4) The spectrum of a ring R, i.e., the set of all prime ideals of R, is denoted by
Spec(R). The Krull dimension, dim(R), is the supremum of the lengths of all
chains of prime ideals of R.

(5) Let R be a ring and M an R-module. Then R n M stands for the ring structure
defined on the abelian group {(r, x) | r ∈ R, x ∈ M} in which the multiplica-
tion is defined by (r, x)(s, y) = (rs, ry + sx) for all r, s ∈ R and x, y ∈ M .
This is often called the idealization of M .

(6) The notation p stands for a prime (hence positive) integer. Let n ∈ Z be such
that p - n. We say n is a quadratic residue modulo p if n ≡ k2 mod p for
some k ∈ Z. Otherwise we say n is a quadratic non-residue modulo p.

One of the questions concerning Γ(R) is when is it planar. In [AFLL], Anderson
et al. have studied this question in case R = Zn1 × · · · ×Znk

(with n1, . . . , nk positive
integers) and posed the question as to when Γ(R) is planar for a general finite ring R.
This question was completely answered in [Sm1] by Smith, and was also investigated
in [AMY].

If R is an infinite ring, we see that Γ(R) is also infinite unless R is a domain.
Naturally, one would be interested in when Γ(R) is planar in case |R| = ∞. This
was studied by Smith in [Sm2], in which he showed that, for an infinite ring R (not a
domain), Γ(R) is planar if and only if Γ(R) is graph-isomorphic to either K1,α, K2,α

or K[2],α with |Z| ≤ α ≤ |R|.
In spite of the above graph-theoretic characterization of Γ(R) being planar, it

was still open (as indicated at the end of [Sm2, Section 2]) to find a ring-theoretic
characterization of an infinite ring R such that Γ(R) is graph-isomorphic to K1,α =
K[1],α, K2,α or K[2],α. We are to study this in Section 1. In fact, we study the ring
structure of R such that Γ(R) is Kp−1,α or K[p−1],α for any prime number p. Then, in
Section 2, we characterize all infinite rings R such that Γ(R) is planar. For example,
we have

Theorem (See Theorem 2.1). Let R be a ring that is not a domain. The following
statements are equivalent.

(1) R is an infinite ring such that Γ(R) is planar.
(2) |Z| ≤ |R| ≤ |R| and, moreover, R falls into exactly one of the two categories.

(I) R ∼= R1 × Zp with R1 a domain while p = 2 or p = 3.
(II) The nilradical of R is a prime ideal of order 2 or 3.

(3) |Z| ≤ |R| ≤ |R| and R has a prime ideal of order 2 or 3.

1. The ring structure of R with Γ(R) ∼= Kp−1,α or Γ(R) ∼= K[p−1],α

Throughout this section, we assume that Γ(R) ∼= Kp−1,α or Γ(R) ∼= K[p−1],α in
which p is a prime number. (Notice that K1,α = K[1],α.) In either case, there is a
bipartition of the vertex set V = Z(R)∗, say V = U ∪W , a disjoint union, such that
|U | = p− 1 while |W | = α. Let

• a := U ∪ {0}, which, a priori, is a subset of R; and
• m := (0 :R a) = {r ∈ R | ru = 0,∀u ∈ a}, an ideal of R.
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These notations and assumptions will be kept throughout this section. It is noted
that in [AL], the structure of R is studied given that Γ(R) ∼= K1,α. In this paper, we
treat the case Γ(R) ∼= Kp−1,α or Γ(R) ∼= K[p−1],α for all prime p simultaneously.

Before stating the the results, we also remark that any ring R is an algebra over
Z under the unique ring homomorphism φ : Z → R sending 1 to 1. By abuse of
notation, for any n ∈ Z, we use ‘n ∈ R’ to identify the element φ(n) in R. For
example, ‘0 6= n ∈ R’ simply means ‘0 6= φ(n) ∈ R’.

Lemma 1.1. Let R be a ring such that Γ(R) ∼= Kp−1,α or Γ(R) ∼= K[p−1],α. Moreover,
assume α ≥ 2.

(1) We have W ⊂ m and the subset a is an ideal of R. In fact, we have a = (0 :R
W ) = (0 :R w) and ww′ 6= 0 for any w, w′ ∈ W .

(2) Thus a ∼= Zp as Z-modules. Hence, a is generated by u over Z (and therefore
over R) for any u ∈ U . Consequently, we have m = (0 :R u) for every u ∈ U .

(3) We have a ∼= R/m as R-modules and R/m ∼= Zp as rings, which implies that
m is a maximal ideal of R. In particular, p ∈ m.

(4) If a 6⊆ m, then Γ(R) ∼= Kp−1,α. If a ⊆ m, then Γ(R) ∼= K[p−1],α.
(5) a ⊆ m if and only if a2 = 0 if and only if uu′ = 0 for some u, u′ ∈ U . In this

case, we have a disjoint union m = {0} ∪ U ∪W , which forces a ( m.

Proof. (1). First, it is clear that W ⊂ (0 :R a) = m from the assumption on Γ(R).
For every w ∈ W , we have a ⊆ (0 :R w) ⊆ a ∪ {w}. Thus, as |W | = α ≥ 2, we see
that a = ∩w∈W (0 :R w) = (0 :R W ), which is an ideal of R. Now, suppose w2 = 0 for
some w ∈ W . Then we get (0 :R w) = a∪ {w} ⊃ a, which produces an abelian group
of order p + 1 with a subgroup of order p, a contradiction. This shows w2 6= 0, which
implies a = (0 :R w) and hence ww′ 6= 0 for any w,w′ ∈ W ⊂ R \ a.

(2). In particular, a is an abelian group under addition. Thus, as |a| = p is a prime
number, we see that a ∼= Zp and is generated by every u ∈ U over Z (and therefore
over R). Thus m = (0 :R a) = (0 :R u) for every u ∈ U .

(3). This follows from the isomorphism R/m = R/(0 :R u) ∼= Ru = a for any u ∈ U
combined with a ∼= Zp. It is clear that p ∈ m.

(4) and (5) should follow immediately. (If a ⊆ m, then m consists of all the zero-
divisors and hence m = {0} ∪ V = {0} ∪ U ∪W = a ∪W , all as disjoint unions.) �

Now we study the ring structure of R assuming Γ(R) is Kp−1,α or K[p−1],α. We
assume α ≥ 2 most of the time so that a is an ideal of R. (See Remark 1.7 for what
happens when α = 1.)

Proposition 1.2. Assume α ≥ 2. If a 6⊆ m, then a ∩ m = 0, a ∈ Spec(R) and
R ∼= R1 × Zp with R1 an integral domain such that |R1| = α + 1.

Conversely, if R ∼= R1×Zp for any integral domain R1, we have Γ(R) ∼= Kp−1,|R1|−1.

Proof. As a 6⊆ m, we have a ∩ m ( a, which forces a ∩ m = 0 as |a| = p is a prime
number.

Next, we prove a is a prime ideal of R by contradiction. Suppose there exist
r, s ∈ R \ a such that rs ∈ a. Choose any w ∈ W . As (0 :R w) = a by Lemma 1.1(1),
we get rsw = 0 while sw 6= 0. Thus r is a nonzero zero-divisor, which then forces
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r ∈ W as r /∈ U . Now, by Lemma 1.1(1) again, we see that sw ∈ (0 :R r) = a and
sw ∈ m as w ∈ W ⊂ m. This shows 0 6= sw ∈ a ∩ m, which is a contradiction to
a ∩m = 0. Thus a ∈ Spec(R).

As m is a maximal ideal of R (cf. Lemma 1.1(3)) and a 6⊆ m, we see that a+m = R.
By Chinese Remainder Theorem, we see that

R = R/(a ∩m) ∼= (R/a)× (R/m) ∼= R1 × Zp,

in which R1 = R/a is a domain such that |R1| = α + 1.
It is clear that Γ(R1 × Zp) ∼= Kp−1,|R1|−1 for any integral domain R1. �

Now that we are done with the case where a 6⊆ m, we next study the case where
a ⊆ m. In light of Lemma 1.1(5), we see that it can not actually happen that a = m
under our assumption on Γ(R) and that α ≥ 2. Thus it remains to study the case
where a ( m only.

Proposition 1.3. Assume α ≥ 2. If a ( m and a ∈ Spec(R), then R can be
characterized as an infinite ring with a prime ideal a such that a2 = 0 and |a| = p. In
this case, we have dim(R) ≥ 1 and a =

√
0, in which

√
0 denotes the nilradical of R.

Conversely, if R is an infinite ring such that the nilradical
√

0 is a prime ideal and
|
√

0| = p, then Γ(R) ∼= K[p−1],|R|.

Proof. All the claims in the first paragraph follow immediately from the assumption
and Lemma 1.1. Concerning dim(R), we see that dim(R) ≥ 1 as there is a chain of
primes a ( m. Thus R is an infinite ring as any finite ring has Krull dimension 0.

Conversely, suppose R is an infinite ring such that b :=
√

0 is a prime ideal and
|b| = p. Let m = (0 :R b). Then, as b is a simple R-module, we see that b ∼= R/m and
m is maximal. As b =

√
0 is finitely generated, we see that bn = 0 for some integer

n ≥ 1. If b2 6= 0, then b2 = b and hence bn = b 6= 0 for all n ≥ 1, a contradiction.
So b2 = 0 and thus b ⊆ m. If b = m, then the filtration 0 ( b = m ( R would
imply that |R| = p2, a contradiction. So b ( m. Suppose rs = 0 for r, s ∈ R \ {0}.
Then, as b ∈ Spec(R), we see that r ∈ b or s ∈ b. Say r ∈ b, which implies b = (r)
and s ∈ (0 :R r) = (0 :R b) = m. This shows that m consists of all zero-divisors, in
which uu′ = 0, uw = 0 and ww′ /∈ b for all u, u′ ∈ b \ {0} and all w, w′ ∈ m \ b.
This shows Γ(R) ∼= K[p−1],|m|−p. As |R| = ∞ and |R/m| = |b| = p, we see that
|R| = |m| = |m| − p, so that Γ(R) ∼= K[p−1],|R|. �

Example 1.4. Rings as in Proposition 1.3 include idealizations of the form R1 n Zp

for any domain R1 that maps onto Zp (so that Zp is an R1-module), for example,

• Z[Xλ, Y |λ ∈ Λ]/(pY, XλY, Y 2 |λ ∈ Λ) ∼= Z[Xλ |λ ∈ Λ] n Zp and
• Z[Xλ, Y |λ ∈ Λ]/(p, XλY, Y 2 |λ ∈ Λ) ∼= Zp[Xλ |λ ∈ Λ] n Zp,

in which Λ is an index set. However, if we consider the ring

R = Z[Xλ |λ ∈ Λ]/(p2, pXλ |λ ∈ Λ) with Λ 6= ∅,

we see that it has prime ideals b = (p) =
√

0 with |b| = p and m = (p, Xλ |λ ∈ Λ)
such that R/m ∼= Zp as in Proposition 1.3. But R can not be written as R1 n Zp (nor
can it be written as R1 × Zp) for any ring R1.
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Proposition 1.5. Assume α ≥ 2, a ( m and a /∈ Spec(R). Then the following
statements hold.

(1) We have w1w2 ∈ U for all w1, w2 ∈ W . Hence we have m2 ⊆ a and m3 = 0.
(2) Fix any x ∈ W . Then px2 = 0 and every element r ∈ m can be written as

r = n2x
2 + n1x with unique ni ∈ Z such that 0 ≤ ni ≤ p− 1. Thus, |m| = p2.

(3) Consequently, any element s ∈ R can be written as s = n2x
2 + n1x + n0 with

unique ni ∈ Z such that 0 ≤ ni ≤ p − 1. Thus R is finite with |R| = p3 and,
as an algebra, R is generated by x over Z.

Proof. (1). The set of associated primes of R is

Ass(R) = {p ∈ Spec(R) | p = (0 :R r) for some r ∈ R}.

For any r ∈ R, the annihilator ideal (0 :R r) could only possibly be

(0 :R r) =


0 /∈ Spec(R) in case r is not a zero-divisor

a /∈ Spec(R) in case r ∈ W

m ∈ Spec(R) in case r ∈ U

R /∈ Spec(R) in case r = 0.

This shows Ass(R) = {m}. Moreover, by [Beck, Theorem 4.3], we have min(R) ⊆
Ass(R). Thus m is the only minimal prime and hence the nilradical of R. Then,
by the argument in the proof of [AMY, Theorem 3.2(c)(d)], we see that w1w2 ∈ U
for all w1, w2 ∈ W . Indeed, for any w ∈ W , we have min{k |wk = 0} = 3 and
hence w2 ∈ (0 :R w) \ {0} = U . Consequently, we have w1(w2)

2 = 0, which implies
w1w2 ∈ (0 :R w2) \ {0} = U . Now, as m = {0} ∪ U ∪ W , it should be clear that
m2 ⊆ a, which then implies m3 = 0.

(2). Fix any x ∈ W . By part (1) above, we have x2 ∈ U = a \ {0}. Then, as
|a| = p, we see that

a = {x2, 2x2, . . . , (p− 1)x2, px2 = 0x2 = 0} = {nx2 | 0 ≤ n ≤ p− 1}.

Let r be any element in m. As rx ∈ m2 ⊆ a, we have rx = n1x
2 for an integer n1 with

0 ≤ n1 ≤ p−1. Thus 0 = rx−n1x
2 = (r−n1x)x, which implies r−n1x ∈ (0 :R x) = a.

Hence r − n1x = n2x
2 for some integer n2 with 0 ≤ n2 ≤ p − 1, showing that

r = n2x
2 + n1x with 0 ≤ ni ≤ p − 1 as desired. Also, it is straightforward to show

that such n1, n2 are unique to r. Consequently, we have |m| = p2.
(3). As R/m ∼= Zp, there are exactly p distinct (right) cosets of m, namely, m + n

with n = 0, 1, . . . , p − 1. Thus, for any s ∈ R, there is an integer n0 with 0 ≤
n0 ≤ p − 1 and some r ∈ m such that s = r + n0. By part (2) above, we see that
s = n2x

2 + n1x + n0. And it is routine to verify that such n0, n1, n2 are unique to s.
Consequently, we see that R is a finite ring with |R| = p3. Evidently, R is generated
by x as a Z-algebra. �

The next proposition was essentially covered in [AMY, Theorem 3.4] in case p ≥ 3.
However, our result is stated in a slightly different way and it holds for all prime
number p under the assumption a ( m. Following the suggestion of the referee, we
provide a complete proof.
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Proposition 1.6 (cf. [AMY, Theorem 3.4]). Assume α ≥ 2, a ( m and a /∈ Spec(R)
as in Proposition 1.5 above. Then Γ(R) ∼= K[p−1],p(p−1) and exactly one of the follow-
ing will happen.

(1) If p /∈ a, then R ∼= Zp3.
(2) If 0 = p ∈ R, then R ∼= Z[X]/(p, X3) ∼= Zp[X]/(X3).
(3) If 0 6= p ∈ a and x2 = p ∈ R for some x ∈ W , then R ∼= Z[X]/(pX, X2− p) ∼=

Zp2 [X]/(pX, X2 − p).
(4) If 0 6= p ∈ a and w2 6= p ∈ R for any w ∈ W , then R ∼= Zp2 [X]/(pX, X2−np),

in which n is the least positive integer that is a quadratic non-residue modulo
p. This case will never happen when p = 2.

Proof. (1). Assume p /∈ a. Then p ∈ m \ a = W by Lemma 1.1(3)(5). From
Proposition 1.5(3) above, we see that R is generated by p ∈ R as a Z-algebra and
|R| = p3. As p ∈ Z, the (unique) ring homomorphism φ : Z → R is surjective, which
forces R ∼= Z/(p3) = Zp3 .

(2). Assume 0 = p ∈ R. Fix any x ∈ W . Then there is a (unique) surjective
ring homomorphism φ : Z[X] → R such that φ(X) = x and, moreover, we see that
{p, X3} ⊂ ker(φ) (cf. Proposition 1.5(1) above). Thus there is an induced surjective
ring homomorphism φ : Z[X]/(p, X3) → R. Then, as |Z[X]/(p, X3)| = p3 = |R|, we
see φ is an isomorphism and, hence, R ∼= Z[X]/(p, X3) ∼= Zp[X]/(X3).

(3). Assume 0 6= p ∈ a and x2 = p ∈ R for some x ∈ W . Again, there is a surjective
ring homomorphism φ : Z[X] → R such that φ(X) = x. And it is routine to verify
that {pX, X2 − p} ⊂ ker(φ) by assumption. Thus there is an induced surjective ring
homomorphism φ : Z[X]/(pX, X2 − p) → R. As p2 = X(pX) − p(X2 − p), we see
that Z[X]/(pX, X2 − p) = Z[X]/(p2, pX, X2 − p), in which every element can be
represented by n1X + n0 with 0 ≤ n1 ≤ p − 1 and 0 ≤ n0 ≤ p2 − 1. This shows
that |Z[X]/(pX, X2 − p)| ≤ p3 = |R|. Thus φ is forced to be an isomorphism. In
conclusion, we have R ∼= Z[X]/(pX, X2 − p) ∼= Zp2 [X]/(pX, X2 − p).

(4). Assume 0 6= p ∈ a and w2 6= p ∈ R for any w ∈ W . This situation never
happens when p = 2. Indeed, if p = 2, then p ∈ R is the only element in a \ {0} = U
as |U | = p − 1 = 1. Thus w2 = p ∈ R for all w ∈ W by Proposition 1.5(1)
above. So we assume p ≥ 3. Fix any y ∈ W and let u = y2 ∈ U . Then, by
Proposition 1.5(2) above, every element w ∈ W ⊂ m can be written as w = n2y

2+n1y
with 0 ≤ ni ≤ p− 1. Then w2 = n2

1y
2 = n2

1u (as y3 = 0 by Proposition 1.5(1)). Since
u generates a as a Z-module, we see that mu = p ∈ a for some integer m with
1 ≤ m ≤ p − 1. We claim that m is a quadratic non-residue modulo p. Indeed, if
m = l2 ∈ Zp for some integer l, then we would have (ly)2 = l2u = mu = p ∈ a,
a contradiction. Let n be the least positive integer that is a quadratic non-residue
modulo p, which exists since p ≥ 3. Then 2 ≤ n ≤ p − 1 and nm, the product of
two quadratic non-residues, is a quadratic residue modulo p, i.e., nm ≡ k2 mod p
for some k ∈ Z. Let x = ky. Then x2 = k2y2 = k2u = nmu = np ∈ a \ {0} = U
as gcd(n, p) = 1. Also notice that x = ky ∈ m (since y ∈ W ⊂ m) and x /∈ a
(because x2 = np 6= 0 ∈ R but a2 = 0). Thus x ∈ m \ a = W by Lemma 1.1(5).
As in part (3), there is a surjective ring homomorphism φ : Z[X] → R such that
φ(X) = x and we see that {p2, pX, X2 − np} ⊂ ker(φ). (We have p2 ∈ ker(φ)
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because p2 ∈ a2 = 0 by Lemma 1.1(5).) Thus there is an induced surjective ring
homomorphism φ : Z[X]/(p2, pX, X2 − np) → R. Still as in part (3) above, we see
that |Z[X]/(p2, pX, X2 − np)| ≤ p3 = |R| and hence φ is an isomorphism. Thus
R ∼= Z[X]/(p2, pX, X2 − np) ∼= Zp2 [X]/(pX, X2 − np).

Finally, in each of the four cases above, it is straightforward to verify that Γ(R) ∼=
K[p−1],p(p−1) as the ring structure of R is known. �

We conclude this section by commenting on what happens when α = 1, i.e., Γ(R) ∼=
Kp−1,1 or Γ(R) ∼= K[p−1],1. In fact, we consider cases where Γ(R) ∼= Kn,1 and Γ(R) ∼=
K[n],1 for any integer n ≥ 1.

Remark 1.7. Let R be a ring such that Γ(R) ∼= Kn,1 or Γ(R) ∼= K[n],1 for any integer
n ≥ 1. As Γ(R) is finite, we see that R is a finite ring.

(1) Assume Γ(R) ∼= Kn,1 and n ≥ 2, that is, Γ(R) ∼= K1,n and n ≥ 2. By the
propositions above, we see that either R = Fn+1×Z2 in which Fn+1 is the field
of cardinality n+1 (in case Proposition 1.2 applies and n+1 is a prime power),
or else R ∼= Z8, Z2[X]/(X3), or Z4[X]/(2X, X2 − 2) (in case Proposition 1.6
applies and n = 2). We observe that Proposition 1.3 never applies to R as R
is finite. This was also studied in [AL].

(2) Assume Γ(R) ∼= K1,1 or Γ(R) ∼= K[n],1 for any n ≥ 1. Then Γ(R) is no other
than a complete graph on 2 or more vertices. This case was studied in [AL,
Theorem 2.10].

This finishes our remark on the cases where Γ(R) ∼= Kn,1 or Γ(R) ∼= K[n],1.

As the focus of this paper is infinite rings such that Γ(R) is Kp−1,α or K[p−1],α

(with p = 2, 3), the interesting case is when α = ∞ where either Proposition 1.2 or
Proposition 1.3 (but never Proposition 1.5 or 1.6) applies.

2. The structure of an infinite ring R such that Γ(R) is planar

Based on the work in [Sm2] and our investigation in Section 1, we are ready to
characterize the structure of an infinite ring R provided that Γ(R) is planar.

Theorem 2.1. Let R be a ring that is not a domain. The following statements are
equivalent.

(1) R is an infinite ring such that Γ(R) is planar.
(2) |Z| ≤ |R| ≤ |R| and, moreover, R falls into exactly one of the two categories.

(I) R ∼= R1 × Zp with R1 a domain while p = 2 or p = 3.

(II) The nilradical of R, denoted
√

0, satisfies
√

0 ∈ Spec(R) and |
√

0| = p

with p = 2 or p = 3. If this is the case, then
√

0
2

= 0.
(3) |Z| ≤ |R| ≤ |R| and there exists a ∈ Spec(R) such that |a| = p with p = 2 or

p = 3.
(4) R ∼= T/I in which T = Z[Xλ |λ ∈ R], I is an ideal of T such that I ( p

and p/I ∼= T/n as T -modules for some p ∈ Spec(T ) satisfying |T/p| = ∞ and
n = (p, Xλ |λ ∈ R) with p = 2 or p = 3.
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(5) R ∼= T/I in which T = Z[Xλ |λ ∈ Λ] (for some index set Λ) and I is an ideal
of T such that I ( p for some p ∈ Spec(T ) satisfying |Z| ≤ |T/p| ≤ |R| and
|p/I| = p with p = 2 or p = 3.

Proof. (1) ⇒ (2). Assume Γ(R) is planar. Then, by [Sm2, Theorem 2.19], we have

Γ(R) ∼= Kp−1,α or Γ(R) ∼= K[p−1],α with |Z| ≤ α ≤ |R| while p = 2 or p = 3.

Adopt the notations (e.g., a and m) as in Section 1. Then exactly one of the following
will occur.

• If a 6⊆ m, then R falls in category (I) with |R1| − 1 = α by Proposition 1.2.
Thus |R| = |R1| = α.

• If a ( m and a ∈ Spec(R), then R falls in category (II) with |m| − |a| = α by
Proposition 1.3. Also, as |R/m| = |a| = p < ∞ (cf. Lemma 1.1(3)), we have
|R| = |m| = |m| − |a| = α.

Note that Proposition 1.5 never applies since |R| = ∞. Also, the above two cases
never overlap because the ring is reduced in (I) but not reduced in (II). Notice that
|Z| ≤ |R| ≤ |R| in both cases.

(2) ⇒ (3). This is evident.
(3) ⇒ (4). Let m = (0 :R a). As |a| = p with p = 2 or p = 3, we see that a

is principal and thus a ∼= R/m, which implies m is a maximal ideal of R such that
R/m ∼= Zp as rings with p = 2 or p = 3. In particular, we see that R can be generated
by elements in m as an algebra over Z. As |Z| ≤ |R| ≤ |R|, it is then clear that R can
be generated by at most |R| many elements in m as an algebra over Z. Thus there
is a surjective ring homomorphism h : T → R, where T = Z[Xλ |λ ∈ R] such that
h(Xλ) ∈ m for all λ ∈ R.

Letting n = h−1(m), we see that n = (p, Xλ |λ ∈ R) with p = 2 or p = 3. Let
I = ker(h) and p = h−1(a). Then it should be clear that R ∼= T/I, I ( p, p ∈ Spec(T )
and p/I ∼= T/n as T -modules. Also, as |R| = ∞ and |a| = p, we see that |R/a| = ∞,
which implies |T/p| = |R/a| = ∞.

(4) ⇒ (5). This is clear.
(5) ⇒ (3). This is evident.
(3) ⇒ (1). Let m = (0 :R a). As seen above, m is a maximal ideal of R such that

R/m ∼= Zp as rings with p = 2 or p = 3.

• Suppose a ∩ m = 0. Then by Chinese Remainder Theorem, we have R ∼=
(R/a)× (R/m) ∼= R1 × Zp with R1 = R/a a domain while p = 2 or p = 3. So
Γ(R) ∼= Kp−1,|R1|−1 with p = 2 or p = 3, which is planar as |R1| − 1 ≤ |R|.

• Otherwise, suppose a ∩ m 6= 0. Then a ⊆ m (as |a| = p is prime) and hence
a2 = 0, which implies a =

√
0. Then, by Proposition 1.3, we see that a ( m

and Γ(R) ∼= K[p−1],|m|−|a| with p = 2 or p = 3, which is planar as |m|−|a| ≤ |R|.
Now the proof is complete. �

Remark 2.2. Theorem 2.1(4) provides a way to construct all infinite rings R (up to
isomorphism) such that Γ(R) is planar. Form a polynomial ring T = Z[Xλ |λ ∈ R].
Let n = (p, Xλ |λ ∈ Λ). Choose any nonzero prime ideal p 6= 0 of T such that
|T/p| = ∞. We claim that pn ( p and, hence, p/(pn) is a nonzero vector space
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over T/n. To show the claim, suppose on the contrary that pn = p. Then we would
have p = pni for all i ≥ 1 and hence p ⊆ ∩∞i=1n

i = 0, a contradiction. To see why
∩∞i=1n

i = 0, consider any 0 6= f ∈ T . Choose any nonzero term of f , say of monomial
degree d and with coefficient n = pma such that p - a. Then we see that f /∈ nm+d+1.
Thus, there exists an ideal I of T such that pn ⊆ I ( p and p/I ∼= T/n as T -modules.
Let R = T/I and let m = n/I and b = p/I which are ideals of R. Then b is a prime
ideal of R such that |b| = |p/I| = p. By Theorem 2.1(4), we see that R is an infinite
ring and Γ(R) is planar.

Also, Theorem 2.1(2) implies that the set of all infinite rings with planar zero-
divisor graphs contains the set of rings of the form R1 × Zp or R2 n Zp where each
Ri is an integral domain with |Z| ≤ |Ri| ≤ |R|, p = 2 or 3, and R2 maps onto Zp.
However, the latter set is a proper subset of the former, as indicated in Example 1.4.

More generally (and quite similarly), we have the following theorem characterizing
the structure of infinite rings R with Γ(R) graph-isomorphic to Kp−1,α or K[p−1],α.

Theorem 2.3. Let R be a ring that is not a domain and p be a prime number. The
following statements are equivalent.

(1) R is infinite and Γ(R) is graph-isomorphic to Kp−1,α or K[p−1],α.
(2) R is an infinite ring that falls into exactly one of the two categories.

(I) R ∼= R1 × Zp with R1 a domain.

(II) The nilradical of R, denoted
√

0, satisfies
√

0 ∈ Spec(R) and |
√

0| = p.
(3) |R| = ∞ and there exists a ∈ Spec(R) such that |a| = p.
(4) R ∼= T/I in which T = Z[Xλ |λ ∈ Λ] (for some index set Λ), I is an ideal

of T such that I ( p and p/I ∼= T/n as T -modules for some p ∈ Spec(T )
satisfying |T/p| = ∞ and n = (p, Xλ |λ ∈ Λ).

(5) R ∼= T/I in which T = Z[Xλ |λ ∈ Λ] (for some index set Λ) and I is an
ideal of T such that I ( p for some p ∈ Spec(T ) satisfying |T/p| = ∞ and
|p/I| = p.

Proof. This is very similar to the proof of Theorem 2.1 above. Details omitted. �

Remark 2.4. Suppose R is as in Theorem 2.3(3), i.e., R has a prime ideal a such that
|a| = p. Then, as in the proof of Theorem 2.1 for (3) ⇒ (1), we see that

Γ(R) ∼=

{
Kp−1,α if a ∩ (0 :R a) = 0, i.e., if a2 6= 0

K[p−1],α if a ∩ (0 :R a) 6= 0, i.e., if a2 = 0.

And, in a way similar to Remark 2.2, Theorem 2.3(4) provides a way to construct all
infinite rings R (up to isomorphism) such that Γ(R) is graph-isomorphic to Kp−1,α or
K[p−1],α. In case R is constructed this way, it is routine to verify that

Γ(R) ∼=

{
Kp−1,α if p 6⊆ n

K[p−1],α if p ( n,

in which p and n are as in Theorem 2.3(4).
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