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AN EMBEDDING THEOREM FOR MODULES OF FINITE
(G-)PROJECTIVE DIMENSION

MELVIN HOCHSTER AND YONGWEI YAO

Abstract. Let M be any finitely generated module of finite projective dimension
(respectively, finite G-dimension) over a commutative Noetherian ring R. Then M
embeds into a finite direct sum Z of cyclic R-modules each of which is the quotient
of R by an ideal generated by an R-regular sequence. This can be done so that both
Z/M and hence Z have projective dimension (respectively, G-dimension) no more
than the projective dimension (respectively, G-dimension) of M . Consequently, we
also get a similar embedding theorem for finitely generated modules of finite injective
dimension over any Cohen-Macaulay ring that has a global canonical module.

0. Introduction

Throughout this paper R is a commutative Noetherian ring with 1. It is well-known
that any quotient module of R modulo an ideal generated by an R-regular sequence
has finite projective dimension.

The main theorem of the paper is to embed any finitely generated R-module with
finite projective dimension (or finite G-dimension) into a module that obviously has
finite projective dimension.

Theorem 2.3. Let R be a Noetherian ring and M a finitely generated R-module with
projective dimension (respectively, G-dimension) = r <∞. Then there exist a proper
R-regular sequence z = z1, . . . , zr, non-negative integers n0, n1, . . . , nr, and a short
exact sequence

0 −→M −→ Z −→ N −→ 0

with Z = ⊕ri=0

(
R/

∑i
j=1 zjR

)ni and N having projective dimension (respectively, G-

dimension) ≤ r.

As an immediate corollary, we generalize a result by I. Aberbach that, for any F -
rational ring R (of prime characteristic p) and any finitely generated R-module M of
finite projective dimension (more generally, of finite G-dimension), 0 is tightly closed
in M . See Theorem 3.2.

We also observe that Theorem 2.3 can be applied to show the existence of uniform
test exponents for tight closure and Frobenius closure for finitely generated R-modules
of finite projective dimension. See Theorem 3.3 and Theorem 3.6.
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Then, using a theorem of R. Y. Sharp ([Sh1], cf. Theorem 4.1), we obtain a similar
result for embedding modules with locally finite injective dimension over any Cohen-
Macaulay ring with a global canonical module ω. See Theorem 4.2.

We set up notations that will be used throughout this paper.

Notation 0.1. Let R be a Noetherian ring, M an R-module, I an ideal of R and
x = x1, . . . , xl a sequence in R.

(1) For any integer i with 0 ≤ i ≤ l, we denote by x[i] the subsequence x1, . . . , xi

of x. Then we write (x[i]) = (x1, . . . , xi)R =
∑i

j=1 xiR, the ideal generated by

x[i]. If i = 0, we agree that x[0] is empty and (x[0]) = 0, the zero ideal.
(2) We say that an element x ∈ R is regular on M (or a non-zero-divisor on M ,

or M -regular) if xθ 6= 0 for any 0 6= θ ∈ M . We agree that any x ∈ R is
regular on 0, the zero module.

(3) We say x is a (possibly improper) M -regular sequence if xi is regular on
M/(x[i−1])M for all i = 1, . . . , l. If, furthermore, (x)M ( M , then we call
x a proper regular sequence on M . We agree that any empty sequence (that
is, any sequence of length 0, for example x[0]) is a proper regular sequence on
any R-module.

(4) The depth of I on M , denoted by depth(I,M), is defined as follows

depth(I,M) = sup{n | ∃ a proper M -regular sequence y1, . . . , yn ∈ I}.

(5) Furthermore, the depth of M , denoted by depth(M), is defined as

depth(M) = sup{n | ∃ a proper M -regular sequence y1, . . . , yn ∈ R}.

When (R,m) is local, it is obvious that depth(M) = depth(m,M). In general,
if M is finitely generated over R, then

depth(M) = sup{depth(mRm,Mm) |m is a maximal ideal in R}.

(6) We denote by pdR(M) and idR(M) the projective dimension and injective
dimension of M respectively. When R is clearly understood, we simply denote
them by pd(M) and id(M) respectively.

(7) We say that M is of locally finite injective dimension if, for any maximal ideal
(or, equivalently, for any prime ideal) m of R, idRm(Mm) <∞. Then denote by
I(R) the category of finitely generated R-modules with locally finite injective
dimension. (In case depth(R) < ∞ and M is finitely generated over R, we
have M ∈ I(R) ⇐⇒ idR(M) <∞.)

(8) Let P(R) denote the category of finitely generated R-modules with finite
projective dimension. (One may similarly define the notion of locally finite
projective dimension. However, a finitely generated R-module has locally
finite projective dimension if and only if it has finite projective dimension.)

1. Preliminaries

We first state a (refined) version of Prime Avoidance. See [Ka, Theorem 124] or
[Ei, Exercise 3.18].
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Theorem 1.1 (Prime Avoidance). Let R be a commutative ring, g, f1, . . . , fl ∈ R
and P1, . . . , Pk ∈ Spec(R). If (g, f1, . . . , fl) 6⊆ Pi for all 1 ≤ i ≤ k, then there exists
g′ ∈ g+(f1, . . . , fl) (that is, g′ = g+f for some f ∈ (f1, . . . , fl)) such that g′ /∈ ∪ki=1Pi.

Proof. This is a classic result. See [Ka, Theorem 124] for details. �

Theorem 1.2. Let R be a Noetherian ring, I ⊆ R an ideal and M an R-module.
Suppose x = x1, . . . , xd is any M-regular sequence in I.

(1) Suppose x is also R-regular. Then, for any R-module N such that AnnR(N) ⊇
I, there is a natural isomorphism

φiN : ExtiR(N,M) ∼= Exti−dR/(x)(N,M/(x)M) for every i ∈ Z.

In particular, this shows ExtiR(N,M) = 0 for all i ≤ d − 1 and there is a
natural R-isomorphism φdN : ExtdR(N,M) ∼= HomR/(x)(N,M/(x)M), the latter
of which may be naturally identified with HomR(N,M/(x)M).

(1’) More generally, for any R-module N such that AnnR(N) ⊇ I, there is a
natural isomorphism

φiN : ExtiR(N,M) ∼= Exti−dR (N,M/(x)M) for every i ≤ d.

In particular, this shows ExtiR(N,M) = 0 for all i ≤ d − 1 and there is a
natural R-isomorphism φdN : ExtdR(N,M) ∼= HomR(N,M/(x)M).

(2) Suppose M is finitely generated over R, AnnR(M) + I 6= R and x is a max-
imal M-regular sequence in I. Then, for any finitely generated R-module N
with AnnR(N) = I, we have ExtdR(N,M) ∼= HomR(N,M/(x)M) 6= 0, which
implies

d = min{i | ExtiR(N,M) 6= 0}.
Thus every maximal M-regular sequence in I has length d, which implies that
depth(I,M) = d.

Proof. See [Rees] for details. A proof for part (2) may also be found in [Ei, Proposi-
tion 18.4]. �

Next, we state some results concerning regular sequences. We make repeated use
of these facts in the sequel. Lacking convenient references, we have included proofs in
the lemma that follows. For part (4), which is more subtle, we have given complete
details.

Lemma 1.3. Let x = x1, . . . , xr and y = y1, . . . , ys be R-regular sequences.

(1) Suppose r = s and there is an element u ∈ R that is regular on R/(x). Then
there exists u′ ∈ u+ (x) such that u′ is regular on both R/(y) and R/(x).

(2) If r > s, then any R-homomorphism h : R/(x) → R/(y) vanishes (in other
words, HomR(R/(x), R/(y)) = 0).

(3) There exists an R-regular sequence z = z1, . . . , zl with l = max{r, s} such that
(z[i]) ⊆ (x[i]) and (z[j]) ⊆ (y

[j]
) for all 1 ≤ i ≤ r and 1 ≤ j ≤ s.

(4) Assume that r = s and (x) ⊇ (y). Say yj =
∑r

i=1 aijxi for j = 1, . . . , r.
Let A = (aij) be the resulted r × r matrix and denote by δ = det(A) the
determinant of A. Then
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(a) (y) :R (x) = (y, δ).
(b) (y) :R δ = (x), which implies the following short exact sequence

0 −→ R/(x)
δ−→ R/(y) −→ R/(y, δ) −→ 0,

in which δ denotes the (well-defined) R-linear map sending 1 + (x) ∈
R/(x) to δ + (y) ∈ R/(y). Consequently, any element that is regular on
R/(y) is automatically regular on R/(x).

(c) Moreover, pd(R/(y, δ)) ≤ r.
(d) Suppose, for some u ∈ R, that u is regular on R/(y) (and hence on

R/(x)). Then (y, uδ) = (y, u) ∩ (y, δ), which gives the following short
exact sequence

0 −→ R/(y, uδ) −→ R/(y, u)⊕R/(y, δ) −→ R/(y, u, δ) −→ 0,

with pd(R/(y, δ)) ≤ r and pd(R/(y, u, δ)) ≤ r + 1.

Proof. (1). If y is improper, then this is trivially true. Assume y is proper. Then
(x, u) 6⊆ P for any P ∈ Ass(R/(y)). (Otherwise, suppose (x, u) ⊆ P for some
P ∈ Ass(R/(y)). Then y1/1, . . . , ys/1 form a maximal proper RP -regular sequence
(of length s). But, on the other hand, x1/1, . . . , xr/1, u/1 would form a proper RP -
regular sequence of length r+1 = s+1, a contradiction to Theorem 1.2(2).) By prime
avoidance (cf. Theorem 1.1), there exists u′ ∈ u + (x) such that u′ /∈ ∪P∈Ass(R/(y))P .

In other words, u′ is regular on R/(y). Obviously, u′ remains regular on R/(x).
(2). By part (1), there exists x′s+1 ∈ xs+1 + (x[s]) ⊆ (x) such that x′s+1 is regular

on R/(y). Then, for any R-homomorphism h : R/(x) → R/(y) and any w ∈ R/(x),
we have x′s+1h(w) = h(x′s+1w) = h(0) = 0, which forces h(w) = 0, which shows that
h is a zero map.

(3). First observe that if r 6= s, say r > s, then we may extend y1, . . . , ys to
an R-regular sequence y1, . . . , ys, ys+1, . . . , yr with ys+1 = · · · = yr = 1. Therefore,
without loss of generality, we assume r = s. We inductively construct the desired
z1, . . . , zr as follows: Let z1 = x1y1, which is evidently R-regular and satisfying (z1) ⊆
(x1) ∩ (y1). Suppose that, for some integer k with 1 ≤ k < r, we have constructed
an R-regular sequence z1, . . . , zk such that (z1, . . . , zi) ⊆ (x1, . . . , xi) ∩ (y1, . . . , yi) for
all i = 1, . . . , k as desired. Then, by Part (1) above, there exist x′k+1 ∈ xk+1 + (x[k])
and y′k+1 ∈ yk+1 + (y

[k]
) such that both x′k+1 and y′k+1 are regular on R/(z1, . . . , zk).

Let zk+1 = x′k+1y
′
k+1. Then, clearly, z1, . . . , zk, zk+1 form an R-regular sequence such

that (z1, . . . , zi) ⊆ (x1, . . . , xi) ∩ (y1, . . . , yi) for all i = 1, . . . , k, k + 1 as desired. In
particular, when k = r = s, we are able to construct an R-regular sequence z1, . . . , zr
such that (z1, . . . , zi) ⊆ (x1, . . . , xi) ∩ (y1, . . . , yi) for all i = 1, . . . , r = s as desired.

It remains to prove (4). First of all, the fact that (x1, . . . , xr)A = (y1, . . . , yr)
implies that (x)δ ⊆ (y). Thus, if x is improper (i.e. (x) = R), then δ ∈ (y) and all
the claims in (4) are trivial. So we assume R ) (x) ⊇ (y) from now on.

Let K•(x,R) and K•(y,R) be the Koszul complexes of x and y respectively. As x
and y are R-regular sequences, we see that K•(x,R) and K•(y,R) are free resolutions
of R/(x) and R/(y) respectively. This implies that pd(R/(x)) = pd(R/(y)) = r,



EMBEDDING MODULES OF FINITE (G-)PROJECTIVE DIMENSION 5

which implies that pd((x)/(y)) ≤ r because of the short exact sequence

0 −→ (x)/(y)
ι−→ R/(y)

π−→ R/(x) −→ 0,

in which ι and π denote the natural inclusion and surjection homomorphisms re-
spectively. The matrix A induces an R-linear map h• : K•(y,R) → K•(x,R) lifting
π : R/(y) → R/(x) so that h0 : R → R and hr : R → R are multiplications
by 1 and δ = det(A) respectively. As Ann((x)/(y)) ⊇ (y), Theorem 1.2 implies that

ExtiR((x)/(y), R) = 0 for all i = 0, . . . , r−1. Therefore there is a short exact sequence

0 −→ ExtrR(R/(x), R)
π∗
−→ ExtrR(R/(y), R)

ι∗−→ ExtrR((x)/(y), R) −→ 0,

in which ι∗ = ExtrR(ι, R) and π∗ = ExtrR(π,R) are the R-linear homomorphisms

naturally induced by (x)/(y)
ι−→ R/(y) and R/(y)

π−→ R/(x).
Consider the following diagram (with all the unlabeled maps being natural)

0 // ((y) : (x))/(y) // R/(y) // R/((y) : (x)) // 0

0 // HomR

(
R
(x)
, R

(y)

)
//

∼=

OO

HomR

(
R
(y)
, R

(y)

)
//

∼=

OO

HomR

( (x)
(y)
, R

(y)

)
//

∼=

OO

0

0 // ExtrR
(
R
(x)
, R

)
π∗

//

∼=φr
R/(x)

OO

∼=ψ1

��

ExtrR
(
R
(y)
, R

)
ι∗ //

∼=φr
R/(y)

OO

∼=ψ2

��

ExtrR
( (x)

(y)
, R

)
//

∼=φr
(x)/(y)

OO

∼=
��

0

0 // R/(x)
δ // R/(y) // R/(y, δ) // 0

,(?)

in which φrR/(x), φ
r
R/(y) and φr(x)/(y) are the natural isomorphisms as in Theorem 1.2(1)

while the isomorphisms ψi (for i = 1, 2) are simply realizations of ExtrR(R/(x), R) and
ExtrR(R/(y), R) as Hr(Hom(K•(x,R), R)) and Hr(Hom(K•(y,R), R)) respectively.
As all the maps are natural, we see that (?) is a commutative diagram. As a result,
all the rows in (?) are short exact sequences and all the dotted vertical arrows in (?)
are isomorphisms.

(4)(a). This follows from the isomorphism R/((y) : (x))
∼=−→ R/(y, δ).

(4)(b). This is forced by the fact that δ : R/(x)→ R/(y) is injective.
(4)(c). Fix a resolution F• of (x)/(y) by finitely generated projective R-modules

and assume the length of F• is pd((x)/(y)) ≤ r. Then, making use of the fact that

ExtiR((x)/(y), R) = 0 for all i = 0, . . . , r − 1 (cf. Theorem 1.2), we conclude that
HomR(F•, R) constitutes a projective resolution of ExtrR((x)/(y), R) ∼= R/(y, δ) of
length ≤ r.

(4)(d). Let A′ = ( A 0
0 1 ). Then det(A′) = det(A) = δ and (x1, . . . , xk, u)A

′ =
(y1, . . . , yk, u). For any v ∈ (y, u)∩(y, δ), write v = y+c1u = y′+c2δ for y, y′ ∈ (y) and
c1, c2 ∈ R. Thus c2δ = y−y′+c1u ∈ (y, u), which implies that c2 ∈ (y, u) : δ = (y, u) :
det(A′) = (x, u) by the above part (b) applied to the regular sequences x, u and y, u.
Therefore c2δ ∈ (x, u)δ ⊆ (y, uδ) by part (a) above and, hence, v = y′ + c2 ∈ (y, uδ).
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This proves that (y, u) ∩ (y, δ) ⊆ (y, uδ). As the reverse inclusion is obvious, we
conclude that (y, uδ) = (y, u) ∩ (y, δ). Then the claimed exact sequence simply
follows from the more general exact sequence

0 −→ R/(I ∩ J) −→ R/I ⊕R/J −→ R/(I + J) −→ 0

for any ideals I, J ⊆ R. Finally, the claim that pd(R/(y, u, δ)) ≤ r + 1 follows from
the part (c) above applied to the regular sequences x, u and y, u, both of length r+1,
while the claim pd(R/(y, δ)) ≤ r has been proved in part (c) already. �

Lemma 1.4. Let X, Y1 and Y2 be R-modules and φi : X → Yi be R-homomorphisms
for i = 1, 2. Let Z ′ := {(φ1(x), φ2(x)) |x ∈ X} ⊆ Y1 ⊕ Y2 and let Z := (Y1 ⊕ Y2)/Z

′.
Then there are naturally induced R-linear maps ψi : Yi → Z for i = 1, 2. The

R-module Z is called the push-out of the maps X
φi−→ Y for i = 1, 2. There is a

commutative diagram

X
φ1 //

φ2

��

Y1
//

ψ1

��

N1
//

id

0

Y2
ψ2

//

��

Z //

��

N1
// 0

N2
id

��

N2

��
0 0

in which Ni := Coker(φi) for i = 1, 2, all the unlabeled maps are naturally induced
R-homomorphisms and the following properties hold:

(1) All the rows and columns are exact.
(2) Furthermore, φ1(Ker(φ2)) = Ker(ψ1) and φ2(Ker(φ1)) = Ker(ψ2).

Proof. This is well-known and straightforward. �

Lemma 1.5. Let M1, M2 and M3 be R-modules, φ ∈ HomR(M1,M2) and ψ ∈
HomR(M2,M3) such that Ker(ψ) = 0. Then there exists a short exact sequence

0 −→ Coker(φ) −→ Coker(ψ ◦ φ) −→ Coker(ψ) −→ 0.

Proof. This is simply the short exact sequence

0 −→M2/φ(M1) −→M3/ψ(φ(M1)) −→M3/ψ(M2) −→ 0,

which should follow immediately from the injectivity of ψ. �

Next we review the notion of G-dimension, which was first introduced by Auslander
and Bridger in [AB]. For a modern treatment of this subject, see [Ch]. For any R-
module M , denote M∗ := HomR(M,R).

Definition 1.6 ([AB]). Let R be a Noetherian ring and M a finitely generated R-
module.
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(1) We sayM is totally reflexive ifM ∼= M∗∗ under the natural map and ExtiR(M⊕
M∗, R) = 0 for all i ≥ 1.

(2) The G-dimension of M , denoted G-dimR(M) (or G-dim(M) if R is under-
stood), is the minimal n such that there is an exact sequence

0 −→Mn −→Mn−1 −→ · · · −→M1 −→M0 −→M −→ 0

in which Mi is totally reflexive for all i = 0, 1, . . . , n.

Remark 1.7. (1) It is clear that G-dim(M) = 0 if and only if M is totally reflexive.
If this is the case, then from the definition we see that M∗ is also totally
reflexive (as M∗∗∗ ∼= M∗).

(2) The G-dimension behaves in a very similar way as the projective dimension.
Let 0→M1 →M2 →M3 → 0 be a short exact sequence of finitely generated
R-modules. Then
(a) G-dim(M1) ≤ max{G-dim(M2),G-dim(M3)− 1},
(b) G-dim(M2) ≤ max{G-dim(M1),G-dim(M3)} and
(c) G-dim(M3) ≤ max{G-dim(M1) + 1,G-dim(M2)}.

(3) For any finitely generated R-module M with pd(M) < ∞, it is forced that
G-dim(M) = pd(M). (This may follow from the fact that, if M 6= 0 and
G-dim(M) < ∞, then G-dim(M) = max{n | Extn(R,M) 6= 0}. See [Ch,
1.2.7].)

2. Embedding modules of finite projective dimension or finite
G-dimension

Notation 2.1. Let R be a Noetherian ring and M a finitely generated R-module with
G-dim(M) < ∞. We say that a finitely generated R-module M1 is a permissible
extension of M if there exists a short exact sequence

0 −→M−→M1 −→ N −→ 0

such that G-dim(N) ≤ G-dim(M).

Lemma 2.2. Let R be a Noetherian ring and M a finitely generated R-module with
G-dim(M) <∞.

(1) If M1 is a permissible extension of M , then G-dim(M1) = G-dim(M).
(2) Therefore, a permissible extension of a permissible extension of M is again a

permissible extension of M .

(3) Suppose we have an exact sequence X
φ→ Y → M → 0 (i.e. M = Coker(φ))

and ψ : Y ↪→ Y ′ is an injective map such that G-dim(Coker(ψ)) ≤ G-dim(M).

Then Coker(X
ψ◦φ−→ Y ′) is a permissible extension of M .

Proof. All the claims are straightforward. See Remark 1.7(2). In particular, (3)
follows immediately from Lemma 1.5. �

Now we are ready to state and prove the embedding theorem for finitely generated
modules of finite projective dimension (or finite G-dimension).



8 MELVIN HOCHSTER AND YONGWEI YAO

Theorem 2.3. Let R be a Noetherian ring and M a finitely generated R-module.
Then

(1) If G-dim(M) = r <∞, then there exist an R-regular sequence z = z1, . . . , zr,
integers n0, n1, . . . , nr ≥ 0, and a short exact sequence

0 −→M −→ Z −→ N −→ 0

with Z = ⊕ri=0(R/(z[i]))
ni and G-dim(N) ≤ r.

(2) If pd(M) = r < ∞, then there exist an R-regular sequence z = z1, . . . , zr,
integers n0, n1, . . . , nr ≥ 0, and a short exact sequence

0 −→M −→ Z −→ N −→ 0

with Z = ⊕ri=0(R/(z[i]))
ni and pd(N) ≤ r.

(3) In (1) and (2) above, it is forced that z is a proper R-regular sequence and, in
case M 6= 0, nr > 0.

Proof. First, we notice that (2) is an immediate consequence of (1). Indeed, if
pd(M) = r, then G-dim(M) = r by Remark 1.7(3) and the claim in (1) would give
an embedding as stated in (1) with G-dim(N) ≤ r. Then, as pd(M) + pd(Z) < ∞,
we see that pd(N) <∞, which forces pd(N) = G-dim(N) ≤ r.

Once (1) and (2) are proved, we observe that (3) always holds. (To show this, we
assume that (1) holds without loss of generality (cf. Remark 1.7(3)). Evidently, claim
(3) holds when G-dim(M) = r = 0. Assume that G-dim(M) = r > 0 and, on the
contrary, suppose that claim (1) occurs with (z) = R or nr = 0. Then we have the
following short exact sequence

0 −→M −→ Z −→ N −→ 0

with Z = ⊕r−1
i=0 (R/(z[i]))

ni and G-dim(N) ≤ r. But, then, the above short exact
sequence would force G-dim(M) < r (cf. Remark 1.7(2)), a contradiction.)

Therefore, it remains to prove (1). Before starting the proof, we make some easy
observations.

Observation 2.3.1. In order to prove claim (1) for M with G-dim(M) = r, it suffices
to prove the same claim for a single permissible extension of M . Indeed, suppose that
claim (1) is proved for a permissible extension M1 of M . That is, we have short exact
sequences

0 −→M
f−→M1 −→ N −→ 0 and 0 −→M1

g−→ Z −→ N1 −→ 0,

for some R-regular sequence z = z1, . . . , zr, non-negative integers n0, n1, . . . , nr such
that Z = ⊕ri=0(R/(z[i]))

ni , G-dim(N) ≤ r and G-dim(N1) ≤ r. Then, denoting
N ′ = Coker(g ◦ f), we have short exact sequences

0 −→M
g◦f−→ Z −→ N ′ −→ 0 and 0 −→ N−→N ′ −→ N1 −→ 0,

the latter of which follows from Lemma 1.5 and implies that G-dim(N ′) ≤ r.

Observation 2.3.2. Suppose M ∼= M ′ ⊕M ′′. In order to prove claim (1) for M , it
suffices to prove the same claim for both M ′ and M ′′. Say G-dim(M ′) = G-dim(M) =
r and G-dim(M ′′) = s ≤ r. Suppose there exist R-regular sequences z′ = z′1, . . . , z

′
r
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and z′′ = z′′1 , . . . , z
′′
s , non-negative integers m0,m1, . . . ,mr, n0, n1, . . . , ns, and short

exact sequences (with Z ′ = ⊕ri=0(R/(z
′
[i]))

mi and Z ′′ = ⊕si=0(R/(z
′′
[i]))

ni)

0 −→M ′ f ′−→ Z ′ −→ N ′ −→ 0 and 0 −→M ′′ f ′′−→ Z ′′ −→ N ′′ −→ 0

such that G-dim(N ′) ≤ r and G-dim(N ′′) ≤ s ≤ r. Then, by Lemma 1.3(3), there
exists an R-regular sequence z = z1, . . . , zr such that (z[i]) ⊆ (z′[i]) and (z[j]) ⊆ (z′′[j])

for all 1 ≤ i ≤ r and 1 ≤ j ≤ s. Applying Lemma 1.3(4)(b), we get exact sequences

0 −→ ⊕ri=0(R/(z
′
[i]))

mi
g′−→ ⊕ri=0(R/(z[i]))

mi −→ L′ −→ 0 and

0 −→ ⊕si=0(R/(z
′′
[i]))

ni
g′′−→ ⊕si=0(R/(z[i]))

ni −→ L′′ −→ 0

with pd(L′) ≤ r and pd(L′′) ≤ s. Thus there are short exact sequences

0 −→M ′ g′◦f ′−−−→ ⊕ri=0(R/(z[i]))
mi −→ K ′ −→ 0 and

0 −→M ′′ g′′◦f ′′−−−→ ⊕si=0(R/(z[i]))
ni −→ K ′′ −→ 0

with K ′ := Coker(g′ ◦ f ′) and K ′′ := Coker(g′′ ◦ f ′′). From Lemma 1.5, we see that
G-dim(K ′) ≤ r and G-dim(K ′′) ≤ s. Consequently, we get a short exact sequence

0 −→M ′ ⊕M ′′ (g′◦f ′)⊕(g′′◦f ′′)−−−−−−−−−→ ⊕ri=0(R/(z[i]))
mi+ni −→ K ′ ⊕K ′′ −→ 0,

in which we agree that ni = 0 for all i > s. This verifies the desired claim (1) for
M ∼= M ′ ⊕M ′′ as G-dim(K ′ ⊕K ′′) ≤ r = G-dim(M).

Now we proceed to prove (1) by induction on G-dim(M). If G-dim(M) = 0, then
both M and M∗ are totally reflexive (cf. Remark 1.7(1). Fix a short exact sequence

0 −→M1 −→ F −→M∗ −→ 0,

in which F is a free R-module of finite rank. Then G-dim(M1) = 0 and hence
G-dim(M∗

1 ) = 0. Applying Hom( , R) to the above short exact sequence and noting
the fact that Ext1

R(M∗, R) = 0, we get a short exact sequence

0 −→M −→ F ∗ −→M∗
1 −→ 0,

which proves claim (1) (and hence claim (2)). (In fact, when pd(M) = 0, claim (2)
is clear.)

Now, we assume that, for some r ≥ 0, the claim (1) holds when the G-dimension
is ≤ r. For any finitely generated R-module M with G-dim(M) = r+ 1, it suffices to
verify claim (1) on M in order to complete the induction step.

There is a short exact sequence

0 −→ V1
η1−→ F −→M −→ 0,

in which F is a finitely generated projective (e.g., free) R-module. Thus G-dim(V1) =
r, V1 6= 0 and, by the induction hypothesis, there exists a proper R-regular sequence
x = x1, . . . , xr, non-negative integers m0, . . . ,mr with mr > 0, and a short exact
sequence

0 −→ V1
η2−→ X −→ W1 −→ 0

such that X = ⊕ri=0(R/(x[i]))
mi and G-dim(W1) ≤ r.
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Let V2 be the push-out of V1

η1
↪→ F and V1

η2
↪→ X. By Lemma 1.4, there are short

exact sequences

0 −→ X
φ−→ V2 −→M −→ 0 and 0 −→ F−→V2 −→ W1 −→ 0,

the latter of which implies that G-dim(V2) ≤ r. Denote X ′ = (R/(x))mr and X ′′ =
⊕r−1
i=0 (R/(x[i]))

mi so that X = X ′ ⊕X ′′. Also denote V = Coker(φ|X′′) where φ|X′′ :
X ′′ → V2 is the restriction of φ to X ′′. Then there are short exact sequences

0 −→ X ′′ φ|X′′−−−→ V2
π−→ V −→ 0 and 0 −→ X ′ π◦φ|X′−−−−→ V −→M −→ 0.

As G-dim(X ′′) ≤ r − 1 and G-dim(V2) ≤ r, we see that G-dim(V ) ≤ r. Say
G-dim(V ) = s. (We will see shortly that s = r.) By the induction hypothesis, there
exists a proper R-regular sequence y = y1, . . . , ys, non-negative integers n0, . . . , ns,
and a short exact sequence

0 −→ V
ψ−→ Y −→ W2 −→ 0

such that Y = ⊕si=0(R/(y[i]
))ni and G-dim(W2) ≤ s < G-dim(M). Hence, by

Lemma 2.2(3), Coker(ψ ◦ π ◦ φ|X′) is a permissible extension of M . Therefore, by
Observation 2.3.1, we may, without loss of generality, assume that M appears in a
short exact sequence of the following form

0 −→ (R/(x))mr
ϕ−→ ⊕si=0(R/(y[i]

))ni −→M −→ 0,

in which ϕ = ψ ◦ π ◦ φ|X′ while x, y, mr > 0 and ni (0 ≤ i ≤ s) are as described
above. Notice that, by Lemma 1.3(2), Hom((R/(x))mr , (R/(y

[i]
))ni) = 0 for all i =

0, 1, . . . ,min{r−1, s}. At this point, it is easy to see that r = s. (Otherwise, we would
have r > s, which would mean ϕ = 0, a contradiction to the fact that ϕ is injective
and (R/(x))mr 6= 0.) Moreover, we may think of ϕ as an injective R-linear map in
Hom((R/(x))mr , (R/(y))nr) and, consequently, we have the following isomorphism

M ∼= ⊕r−1
i=0 (R/(y

[i]
))ni

⊕
Coker

(
(R/(x))mr

ϕ→ (R/(y))nr

)
.

As the desired claim obviously holds for ⊕r−1
i=0 (R/(y

[i]
))ni , it suffices to prove it for

Coker
(
(R/(x))mr

ϕ→ (R/(y))nr
)
. Moreover, by replacing y with a suitable R-regular

sequence of length r, we may further assume that (y) ⊆ (x) without loss of generality
(cf. Lemma 1.3(3), Lemma 1.3(4)(b,c), Lemma 2.2(3) and Observation 2.3.1, etcetera;
details omitted). Therefore, without loss of generality, we may simply assume that
M occurs in a short exact sequence of the following form

(∗) 0 −→ (R/(x))m
ϕ−→ (R/(y))n −→M −→ 0,

in which m = mr > 0, n = nr > 0 while both x = x1, . . . , xr and y = y1, . . . , yr are
proper R-regular sequences of length r such that (y) ⊆ (x).

Next, we will set up some notations that we will use throughout the remainder of
the proof.
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Notation 2.3.3. From now on, we let x and y be as in (∗). In particular, we assume
(y) ⊆ (x). Say yj =

∑r
i=1 aijxi for j = 1, . . . , r and let δ = det(aij) be the determinant

of the r× r matrix (aij). By Lemma 1.3(4), (y) : (x) = (y, δ) and (y) : δ = (x). Also,
we refresh our notations and denote (R/(x))m = X and (R/(y))n = Y . Thus, for any
ϕ ∈ Hom(X, Y ), Image(ϕ) ⊆ δY . In fact, it is easy to see that δY ∼= (R/(x))n in light
of Lemma 1.3(4)(b). Choose b = b1, . . . , bm ∈ X and e = e1, . . . , en ∈ Y such that they
form bases for X and Y over R/(x) and R/(y) respectively. Given ϕ ∈ Hom(X, Y ),
we may write ϕ(bj) =

∑n
i=1 δfi,jei in which fi,j ∈ R for all i = 1, . . . , n and all

j = 1, . . . ,m. This produces a n×m matrix

δ


f1,1 f1,2 . . . f1,m−1 f1,m

f2,1 f2,2 . . . f2,m−1 f2,m
...

...
. . .

...
...

fn−1,1 fn−1,2 . . . fn−1,m−1 fn−1,m

fn,1 fn,2 . . . fn,,m−1 fn,m

 = δ(fi,j) = (δfi,j),

which we will use to represent ϕ. Evidently, the entries fi,j depend on the choices
of b = b1, . . . , bm ∈ X and e = e1, . . . , en ∈ Y . However, once b = b1, . . . , bm and
e = e1, . . . , en are given, then the entries fi,j, modulo (x), are uniquely determined
by ϕ and vice versa.

Here we make another observation. We remark that this kind of observation had
been made and utilized in, for example, [Du] and [Sm].

Observation 2.3.4. Let M = Coker
(
(R/(x))m

ϕ−→ (R/(y))n
)

be as in (∗) and keep
the notations as in Notation 2.3.3. Suppose that u1, . . . , un are non-zero-divisors over
R/(y)). Let ξ : Y → Y be an R-linear map defined by ei 7→ uiei for i = 1, . . . , n.
Then ξ is injective and pd(Coker(ξ)) = pd(⊕ni=1R/(y, ui)) ≤ r+1. Hence Coker(ξ◦ϕ)
is a permissible extension of M by Lemma 2.2(3). Therefore, to prove the claim (1)
for M , it suffices to prove the same claim for Coker(ξ ◦ ϕ). Finally, we observe that
ξ ◦ ϕ ∈ Hom(X, Y ) is represented by the following matrix

δ


u1f1,1 u1f1,2 . . . u1f1,m−1 u1f1,m

u2f2,1 u2f2,2 . . . u2f2,m−1 u2f2,m
...

...
. . .

...
...

un−1fn−1,1 un−1fn−1,2 . . . un−1fn−1,m−1 un−1fn−1,m

unfn,1 unfn,2 . . . unfn,,m−1 unfn,m

 = (δuifi,j).

We continue to prove Theorem 2.3 for M by induction. For our module M =

Coker(X
ϕ→ Y ) as in (∗) and Notation 2.3.3, our next goal is to prove the following
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Claim 2.3.5. For each k = 1, . . . ,m, there exists an injective R-linear map ϕk ∈
Hom(X,Y ) such that Mk := Coker(ϕk) is a permissible extension of M and, more-
over, ϕk can be represented by a n×m matrix of the following form

(†) δ



uk 0 . . . 0 0 f1,k+1 f1,k+2 . . . f1,m−1 f1,m

0 uk . . . 0 0 f2,k+1 f2,k+2 . . . f2,m−1 f2,m
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . uk 0 fk−1,k+1 fk−1,k+2 . . . fk−1,m−1 fk−1,m

0 0 . . . 0 uk fk,k+1 fk,k+2 . . . fk,m−1 fk,m
0 0 . . . 0 0 fk+1,k+1 fk+1,k+2 . . . fk+1,m−1 fk+1,m

0 0 . . . 0 0 fk+2,k+1 fk+2,k+2 . . . fk+2,m−1 fk+2,m
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 fn−1,k+1 fn−1,k+2 . . . fn−1,m−1 fn−1,m

0 0 . . . 0 0 fn,k+1 fn,k+2 . . . fn,m−1 fn,m


,

in which fi,j = 0 whenever i 6= j ≤ k and, moreover, f1,1 = · · · = fk,k = uk is regular
on both R/(x) and R/(y). (When k = m, the result also implies m ≤ n.)

We are going to prove Claim 2.3.5 by induction on k. Here we think of k = 0 as
the initial case, which is deemed trivially true. Now assume Claim 2.3.5 is proved for
certain k ≥ 0. We need to prove the claim for k+ 1. (The induction step from k = 0
to k = 1 indeed produces a proof of Claim 2.3.5 in the case of k = 1. So what we are
doing is a valid induction after all.)

The induction hypothesis gives an injective R-linear map ϕk represented by a ma-
trix as in (†) with all the desired properties. Let I := (fk+1,k+1, fk+2,k+1, . . . , fn,k+1).
First, we show that I 6⊆ P for any P ∈ Ass(R/(x)). Suppose, on the contrary, that
I ⊆ P for some P ∈ Ass(R/(x)). Then there exists 0 6= θ ∈ Rbk+1

∼= R/(x) such that
AnnR(θ) = P . This forces ϕk(θ) ∈ ⊕ki=1δRei and hence ϕk(ukθ) ∈ ⊕ki=1ukδRei. Say

ϕk(ukθ) =
∑k

i=1 ciukδei where ci ∈ R for 1 ≤ i ≤ k. Then it is straightforward to see

that ϕk(ukθ−
∑k

i=1 cibi) = 0. This forces ukθ−
∑k

i=1 cibi = 0 ∈ ⊕ni=1Rbi = X since ϕk
is injective. This in turn forces ukθ = 0 since ukθ =

∑k
i=1 cibi ∈ Rbk+1∩⊕ki=1Rbi = 0.

As uk is regular on R/(x) ∼= Rbk+1, we conclude that θ = 0 ∈ Rbk+1, a contradiction.
Therefore I = (fk+1,k+1, fk+2,k+1, . . . , fn,k+1) 6⊆ P for any P ∈ Ass(R/(x). By

Prime Avoidance (cf. Theorem 1.1), there exist ck+2, . . . , cn ∈ R such that

u = fk+1,k+1 + ck+2fk+2,k+1 . . . , cnfn,k+1 /∈ ∪P∈Ass(R/(x))P.

That is, u is regular on R/(x). Then, after a suitable change of basis for Y ∼=
(R/(y))n over R/(y) and refreshing the matrix entries accordingly, ϕk : X → Y can
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be represented by a matrix of the following form

δ



uk 0 . . . 0 0 f1,k+1 f1,k+2 . . . f1,m−1 f1,m

0 uk . . . 0 0 f2,k+1 f2,k+2 . . . f2,m−1 f2,m
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . uk 0 fk−1,k+1 fk−1,k+2 . . . fk−1,m−1 fk−1,m

0 0 . . . 0 uk fk,k+1 fk,k+2 . . . fk,m−1 fk,m
0 0 . . . 0 0 u fk+1,k+2 . . . fk+1,m−1 fk+1,m

0 0 . . . 0 0 fk+2,k+1 fk+2,k+2 . . . fk+2,m−1 fk+2,m
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 fn−1,k+1 fn−1,k+2 . . . fn−1,m−1 fn−1,m

0 0 . . . 0 0 fn,k+1 fn,k+2 . . . fn,m−1 fn,m


.

Moreover, by Notation 2.3.3, we may replace u by any element in the coset u + (x)
without affecting ϕk. Therefore, we may further assume that u is regular on both
R/(x) and R/(y) (cf. Lemma 1.3(1)).

Now, let ξ1 : Y → Y be an R-linear (injective) map defined by ξ1(ek+1) = ek+1 and
ξ1(ei) = uei for all i 6= k + 1. Then, according to Observation 2.3.4, ξ1 ◦ ϕk : X → Y
is an injective R-homomorphism such that M ′

k := Coker(ξ1 ◦ ϕk) is a permissible
extension of Mk and, furthermore, ξ1 ◦ ϕk is represented by the following matrix

δ



uuk 0 . . . 0 0 uf1,k+1 uf1,k+2 . . . uf1,m−1 uf1,m

0 uuk . . . 0 0 uf2,k+1 uf2,k+2 . . . uf2,m−1 uf2,m
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . uuk 0 ufk−1,k+1 ufk−1,k+2 . . . ufk−1,m−1 ufk−1,m

0 0 . . . 0 uuk ufk,k+1 ufk,k+2 . . . ufk,m−1 ufk,m
0 0 . . . 0 0 u fk+1,k+2 . . . fk+1,m−1 fk+1,m

0 0 . . . 0 0 ufk+2,k+1 ufk+2,k+2 . . . ufk+2,m−1 ufk+2,m
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 ufn−1,k+1 ufn−1,k+2 . . . ufn−1,m−1 ufn−1,m

0 0 . . . 0 0 ufn,k+1 ufn,k+2 . . . ufn,m−1 ufn,m


.

Then, after a suitable change of its basis for Y ∼= (R/(y))n over R/(y) and after
refreshing the matrix entries, ξ1 ◦ ϕk : X → Y can be represented by a matrix of the
form

δ



uuk 0 . . . 0 0 0 f1,k+2 . . . f1,m−1 f1,m

0 uuk . . . 0 0 0 f2,k+2 . . . f2,m−1 f2,m
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . uuk 0 0 fk−1,k+2 . . . fk−1,m−1 fk−1,m

0 0 . . . 0 uuk 0 fk,k+2 . . . fk,m−1 fk,m
0 0 . . . 0 0 u fk+1,k+2 . . . fk+1,m−1 fk+1,m

0 0 . . . 0 0 0 fk+2,k+2 . . . fk+2,m−1 fk+2,m
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 fn−1,k+2 . . . fn−1,m−1 fn−1,m

0 0 . . . 0 0 0 fn,k+2 . . . fn,m−1 fn,m


.
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Finally, let ξ2 : Y → Y be an R-linear (injective) map defined by ξ2(ek+1) = ukek+1

and ξ2(ei) = ei for all i 6= k + 1. Denote ϕk+1 := ξ2 ◦ ξ1 ◦ ϕk ∈ Hom(X, Y ) and
Mk+1 := Coker(ϕk+1). Then, according to Observation 2.3.4 again, ϕk+1 : X → Y
is an injective R-homomorphism such that Mk+1 = Coker(ϕk+1) is a permissible
extension of M ′

k and, furthermore, ϕk+1 is represented by a matrix (whose entries
have been refreshed) of the form

δ



uk+1 0 . . . 0 0 0 f1,k+2 . . . f1,m−1 f1,m

0 uk+1 . . . 0 0 0 f2,k+2 . . . f2,m−1 f2,m
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . uk+1 0 0 fk−1,k+2 . . . fk−1,m−1 fk−1,m

0 0 . . . 0 uk+1 0 fk,k+2 . . . fk,m−1 fk,m
0 0 . . . 0 0 uk+1 fk+1,k+2 . . . fk+1,m−1 fk+1,m

0 0 . . . 0 0 0 fk+2,k+2 . . . fk+2,m−1 fk+2,m
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 fn−1,k+2 . . . fn−1,m−1 fn−1,m

0 0 . . . 0 0 0 fn,k+2 . . . fn,m−1 fn,m


,

in which f1,1 = · · · = fk+1,k+1 = uk+1 := uuk is regular on both R/(x) and R/(y)
while the (i, j)-th entries are 0 whenever i 6= j ≤ k + 1. By Lemma 2.2(2), Mk+1 is
a permissible extension of M . This concludes the induction step and Claim 2.3.5 is
proved.

Now that Claim 2.3.5 is proved, we are going to use it to complete the induction
step in the course of our proof of Theorem 2.3. Indeed, Claim 2.3.5 states that, when
k = m, there is a permissible extension Mm of M such that Mm = Coker(ϕm) for
some ϕm ∈ Hom(X, Y ) represented by an n×m matrix of the following form

δ



um . . . 0
...

. . .
...

0 . . . um
0 . . . 0
...

. . .
...

0 . . . 0


=



δum . . . 0
...

. . .
...

0 . . . δum
0 . . . 0
...

. . .
...

0 . . . 0


=



umδ . . . 0
...

. . .
...

0 . . . umδ
0 . . . 0
...

. . .
...

0 . . . 0


,

in which the (i, j)-th entries are 0 whenever i 6= j while the (i, i)-th entries are
equal to umδ with um regular on (both R/(x) and) R/(y). Consequently, Mm

∼=
(R/(y, umδ))

m ⊕ (R/(y))n−m. Relabeling um with u and applying Observation 2.3.1,
we see that it suffices to prove Theorem 2.3 assuming M = (R/(y, uδ))m⊕(R/(y))n−m

with u regular on (both R/(x) and) R/(y). As pd((R/(y))n−m) ≤ r, the induction
hypothesis gives the desired result for (R/(y))n−m. By Observation 2.3.2, we only need
to prove it for R/(y, uδ) assuming pd(R/(y, uδ)) = r + 1. From Lemma 1.3(4)(d),
there is a short exact sequence

0 −→ R/(y, uδ) −→ R/(y, u)⊕R/(y, δ) −→ R/(y, u, δ) −→ 0
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with pd(R/(y, u, δ)) ≤ r + 1 so that R/(y, u) ⊕ R/(y, δ) is a permissible extension
of R/(y, uδ). Now, by Observation 2.3.1 and Observation 2.3.2 again, it remains to
prove the assertion for R/(y, u) and R/(y, δ) only. The case for R/(y, u) is trivially
true (as y, u form an R-regular sequence of length r + 1) while the case for R/(y, δ)
follows from the induction hypothesis since pd(R/(y, δ)) ≤ r (cf. Lemma 1.3(4)(c)).
This finishes the desired induction step.

The proof of Theorem 2.3 is now complete. �

Remark 2.4. In the above proof of Theorem 2.3, the case when pd(M) < ∞ follows
as a consequence of the case when G-dim(M) < ∞. However, we remark that the
embedding theorem for the case when pd(M) < ∞ (i.e., Theorem 2.3(2)) can be
proved by simply replacing G-dim with pd in the above proof of Theorem 2.3(1).

Remark 2.5. Let R be Gorenstein. Then the embedding theorem (i.e., Theorem 2.3)
applies to any finitely generated R-module M as G-dim(M) < ∞. (When R is
Gorenstein, a similar embedding may be achieved by means of primary decomposition,
although this approach does not seem to give a way to control the G-dimension of
the cokernel.)

3. Applications of the embedding theorem to rings of prime
characteristic p

Throughout this section, we assume that R is a commutative Noetherian ring of
prime characteristic p. We always use q = pe, Q = pE, q′ = pe

′
, etcetera, to denote

varying powers of p with e, E, e′ ∈ N.
For any R-module M and e ∈ N, there is a new R-module F e(M) otained by

scalar extension via the iterated Frobenius map F e : R → R defined by r 7→ rq.
For any R-modules M , N and h ∈ HomR(M,N), we correspondingly have F e(h) ∈
HomR(F e(M), F e(N)).

If N ⊆M and say ι : N ↪→M is the inclusion map, then, for any e ≥ 0, we denote

N
[q]
M := Image

(
F e(N)

F e(ι)−−−→ F e(M)
)
. For any x ∈ M and any e ≥ 0, we denote the

natural image of x in F e(M) by xqM ∈ F e(M). (See [HH1] for details.)
A very important concept in studying rings of characteristic p is tight closure.

Tight closure was first studied and developed by Hochster and Huneke in the 1980’s.
Here we denote R◦ := R \ ∪P∈min(R)P , the complement of the union of all minimal
primes of the ring R.

Definition 3.1 ([HH1]). Let R be a Noetherian ring of prime characteristic p and
N ⊆ M be R-modules. The tight closure of N in M , denoted by N∗

M , is defined as
follows: An element x ∈M is said to be in N∗

M if there exists an element c ∈ R◦ such

that cxq ∈ N [q]
M ⊆ F e(M) for all e� 0.

Now let us apply Theorem 2.3 to rings of prime characteristic p. First, we re-
cover a result about F -rational rings (without any Cohen-Macaulay assumption) by
I. Aberbach in [Ab]. Recall that R is said to be F -rational if I∗R = I for any ideal
I = (f1, . . . , fh) ⊆ R such that height(I) = h.
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Theorem 3.2 (Compare with [Ab]). Let R be a Noetherian ring of prime charac-
teristic p. Assume that every ideal of R generated by an R-regular sequence is tightly
closed (e.g., R is F -rational). Then 0∗M = 0 for any finitely generated R-module with
G-dim(M) <∞.

Proof. There exists a short exact sequence

0 −→M
h−→ Z −→ N −→ 0

as in Theorem 2.3. By the tight closure theory, h(0∗M) ⊆ 0∗Z . However, by the
assumption of R and the condition on Z imposed by Theorem 2.3, we have 0∗Z = 0.
Thus h(0∗M) = 0, which implies 0∗M = 0 as h is injective. �

Theorem 2.3 allows us to show the existence of a uniform test exponent for all
R-modules in P(R). Recall that Q = pE is said to be a test exponent for some c ∈ R
and R-modules N ⊆M if, for any x ∈M , the occurrence of cxq ∈ N [q]

M for any single
q ≥ Q implies x ∈ N∗

M . See [HH2], [Sh2] and [HY1] for details.

Theorem 3.3. Let R be a Noetherian ring of prime characteristic p and c ∈ R.

(1) Assume there exists a (uniform) test exponent Q for c and 0 ⊆ R/(z) for all
(proper) R-regular sequences z = z1, . . . , zl. Then Q is a test exponent for c
and 0 ⊆M for all finitely generated R-module with pd(M) <∞.

(2) In particular, if (R,m) is an excellent equidimensional local ring and c ∈ R◦,
then there exists a test exponent Q for c and 0 ⊆ M for all finitely generated
R-module with pd(M) <∞.

Proof. (1). For any M ∈ P(R), there exists a short exact sequence (we may as well
assume M ⊆ Z with the inclusion map denoted by h)

0 −→M
h−→ Z −→ N −→ 0

as in Theorem 2.3. Then, because pd(N) <∞, we get a short exact sequence

0 −→ F e(M)
F e(h)−−−→ F e(Z) −→ F e(N) −→ 0 for every e ∈ N.

Suppose cxq = 0 ∈ F e(M) for some x ∈ M and for some q ≥ Q. Then cxq = 0 ∈
F e(Z), which implies x ∈ 0∗Z by the assumption on Q. Therefore, there exists c′ ∈ R◦

such that c′xq
′
= 0 ∈ F e′(Z) for all q′ � 1. As F e′(h) is injective for all e′ ∈ N, we

get c′xq
′
= 0 ∈ F e′(M) for all q′ � 1, which implies that x ∈ 0∗M by the definition of

tight closure.
(2). This follows from part (1) as, under the assumption of (R,m), there is a

uniform test exponent Q for c and 0 ⊆ R/(x) for all partial systems of parameters
x = x1, . . . , xl of R. (This is a result first proved by R. Y. Sharp in [Sh2]. An
alternative proof was then given in [HY1].) Also notice that, evidently, every proper
R-regular sequence is part of a system of parameters. �

Remark 3.4. In fact, given any excellent equidimensional local ring (R,m) and any
c ∈ R◦, we are able to prove the existence of a uniform text exponent for c and 0 ⊆M
for all finitely generated R-modules with finite phantom projective dimension. This
will be done in [HY2].
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In a somewhat similar manner, Theorem 2.3 also allows us to study the Frobenius
closure and show the existence of a uniform Frobenius test exponent for (all) R-
modules in P(R). Recall that, given R-modules N ⊆ M , the Frobenius closure of

N in M , denoted by NF
M , is defined as NF

M := {x ∈ M |xqM ∈ N
[q]
M for some q}. We

say Q is a Frobenius test exponent for N ⊆ M (or, equivalently, for 0 ⊆ M/N)

if (NF
M)

[Q]
M = N

[Q]
M . Moreover, a local ring (R,m) is said to be generalized Cohen-

Macaulay if Hi
m(R) has finite length for every i < dim(R).

Theorem 3.5. Let R be a Noetherian ring of prime characteristic p. Assume that
every ideal of R generated by an R-regular sequence is Frobenius closed (e.g., R is
F -injective). Then 0FM = 0 for any finitely generated R-module with G-dim(M) <∞.

Proof. This is parallel to the proof of Theorem 3.2. Fix a short exact sequence

0 −→M
h−→ Z −→ N −→ 0

as in Theorem 2.3. Then, it is clear that h(0FM) ⊆ 0FZ . However, by the assumption of
R and the condition on Z imposed by Theorem 2.3, we have 0FZ = 0. Thus h(0FM) = 0,
which implies 0FM = 0 as h is injective. �

Theorem 3.6. Let R be a Noetherian ring of prime characteristic p and c ∈ R.

(1) Assume there exists a (uniform) Frobenius test exponent Q for 0 ⊆ R/(z) for
all (proper) R-regular sequences z = z1, . . . , zl. Then Q is a uniform Frobenius
test exponent for 0 ⊆M for all finitely generated R-module with pd(M) <∞.

(2) In particular, if (R,m) is a generalized Cohen-Macaulay local ring, then there
exists a uniform Frobenius test exponent Q for 0 ⊆M for all finitely generated
R-module with pd(M) <∞.

Proof. (1). For any M ∈ P(R), we only need to show (0FM))[Q] = 0 ⊆ FE(M). As in
the proof of Theorem 3.3, there exist Z and N as in Theorem 2.3 and, consequently,
a short exact sequence

0 −→ F e(M)
F e(h)−−−→ F e(Z) −→ F e(N) −→ 0 for every e ∈ N.

Evidently, 0FM ⊆ 0FZ . However, by the assumption of Q, we have (0FZ))[Q] = 0 ⊆
FE(Z). Thus, by the injectivity of FE(h), we have (0FM))[Q] = 0 ⊆ FE(M), the
desired result.

(2). A result in [HKSY] shows that, when (R,m) is generalized Cohen-Macaulay,
there is a uniform Frobenius test exponent Q for 0 ⊆ R/(x) for all partial systems of
parameters x = x1, . . . , xl of R. Now the desired claim follows from (1). �

Theorem 3.7 ([KS, Corollary 4.3]). Let R be a Noetherian ring of prime character-
istic p and z = z1, . . . , zi form an R-regular sequence. Then there exists a Frobenius

test exponent Q for (z)[q] ⊆ R for all q, that is, (0F
R/(z)[p])

[Q]

R/(z)[p] = 0 for all q.

Theorem 3.8. Let R be a Noetherian ring of prime characteristic p and M a finitely
generated R-module with pd(M) < ∞. Then there exists a Frobenius test exponent

Q for 0 ⊆ F e(M) for all e ∈ N. In other words, (0FF e(M))
[Q]
F e(M) = 0 for all q.
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Proof. Say pd(M) = r. As in the proof of Theorem 3.3, there exist Z and N as in
Theorem 2.3 and, consequently, a short exact sequence

0 −→ F e(M)
F e(h)−−−→ F e(Z) −→ F e(N) −→ 0 for every e ∈ N.

For each i = 0, 1, . . . , r, Theorem 3.7 implies that there is a Frobenius test exponent
Qi for 0 ⊆ R/(zi)

[q] for all q. Let Q = max{Qi | 0 ≤ i ≤ r}. Then Q is a Frobenius
test exponent for 0 ⊆ F e(M) for all e ∈ N. Now the desired claim follows from the
injectiveness of F e(h) for all e as in the above short exact sequence. �

4. Embedding modules of locally finite injective dimension over
Cohen-Macaulay rings

In this section, we assume that R is a Cohen-Macaulay ring that has a global
canonical module, which is denoted by ω. (We no longer assume R has prime charac-
teristic p in this section.) The purpose is to prove a dual version of Theorem 2.3 for
modules of locally finite injective dimension. The key point is a result by R. Y. Sharp
connecting P(R) and I(R) (see Notation 0.1).

Theorem 4.1 (Sharp, [Sh1]). Let R be a Noetherian Cohen-Macaulay ring with a
global canonical module ω. Then

(1) The functor P(R)
⊗Rω−−−→ I(R) is well-defined and exact.

(2) The functor P(R)
HomR(ω, )←−−−−−− I(R) is well-defined and exact.

(3) The above two functors establish an equivalence between P(R) and I(R).

Now, the dual version of Theorem 2.3 is immediate in light of Theorem 4.1.

Theorem 4.2. Let R be a Noetherian Cohen-Macaulay ring with a global canonical
module ω. Then, for any finitely generated R-module M with locally finite injective
dimension (i.e., M ∈ I(R)), there exist an integer r = pd(HomR(ω,M)), a proper
R-regular sequence z = z1, . . . , zr, non-negative integers n0, n1, . . . , nr, and a short
exact sequence

0 −→M −→ Z −→ N −→ 0

with Z = ⊕ri=0(ω/(z[i])ω)ni, N ∈ I(R) and pd(HomR(ω,N)) ≤ r. It is automatically
true that nr > 0 unless M = 0.

Proof. Let M ′ = HomR(ω,M). Then pd(M ′) < ∞ by Theorem 4.1. Thus, from
Theorem 2.3, there exist r = pd(M ′), an R-regular sequence z = z1, . . . , zr, integers
n0, n1, . . . , nr ≥ 0, and a short exact sequence

(‡) 0 −→M ′ −→ Z ′ −→ N ′ −→ 0

such that Z ′ = ⊕ri=0(R/(z[i]))
ni and pd(N) ≤ r.

Now let Z = ⊕ri=0(ω/(z[i])ω)ni ∼= Z ′ ⊗R ω and N = N ′ ⊗R ω. Also notice that
M ∼= M ′⊗R ω. Thus, applying the exact functor ⊗R ω to (‡), we have a short exact
sequence

0 −→M −→ Z −→ N −→ 0

as desired. All the remaining claims follow immediately. �
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If, moreover, (R,m) is local with maximal ideal m, then, for any finitely generated
R-modules M and M ′ with id(M) <∞ and pd(M ′) <∞, we have

depth(HomR(ω,M)) = depth(M) and depth(M ′ ⊗R ω) = depth(M ′).

(Indeed, by Theorem 4.1(1,2), we have inequalities depth(HomR(ω,M)) ≥ depth(M)
and depth(M ′ ⊗R ω) ≥ depth(M ′). Then, in light of Theorem 4.1(3), we get the
desired equalities.) Thus we can say more about the cokernel of the embedding of M
in the following corollary.

Corollary 4.3. Let (R,m) be a Noetherian Cohen-Macaulay local ring that has a
canonical module ω. Then, for any finitely generated R-module M 6= 0 with id(M) <
∞ and dim(R)−depth(M) = r, there exist a proper R-regular sequence z = z1, . . . , zr,
non-negative integers n0, n1, . . . , nr (with nr > 0 automatically), and a short exact
sequence

0 −→M −→ Z −→ N −→ 0

with Z = ⊕ri=0(ω/(z[i])ω)ni, id(N) <∞ and, if N 6= 0, depth(N) ≥ depth(M).

Proof. LetM ′, Z ′, N ′, Z,N be as in the proof of Theorem 4.2. Then, by the Auslander-
Buchsbaum formula, we have pd(M ′) = dim(R)− depth(M ′) = dim(R)− depth(M),
which gives depth(M) = dim(R) − pd(M ′). Thus, if N 6= 0, we have depth(N) =
depth(N ′) = dim(R)− pd(N ′) ≥ dim(R)− pd(M ′) = depth(M), as desired. �
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