[Preliminary Version]

AN EMBEDDING THEOREM FOR MODULES OF FINITE
(G-)PROJECTIVE DIMENSION

MELVIN HOCHSTER AND YONGWEI YAO

ABSTRACT. Let M be any finitely generated module of finite projective dimension
(respectively, finite G-dimension) over a commutative Noetherian ring R. Then M
embeds into a finite direct sum Z of cyclic R-modules each of which is the quotient
of R by an ideal generated by an R-regular sequence. This can be done so that both
Z /M and hence Z have projective dimension (respectively, G-dimension) no more
than the projective dimension (respectively, G-dimension) of M. Consequently, we
also get a similar embedding theorem for finitely generated modules of finite injective
dimension over any Cohen-Macaulay ring that has a global canonical module.

0. INTRODUCTION

Throughout this paper R is a commutative Noetherian ring with 1. It is well-known
that any quotient module of R modulo an ideal generated by an R-regular sequence
has finite projective dimension.

The main theorem of the paper is to embed any finitely generated R-module with
finite projective dimension (or finite G-dimension) into a module that obviously has
finite projective dimension.

Theorem Let R be a Noetherian ring and M a finitely generated R-module with
projective dimension (respectively, G-dimension) =1r < oco. Then there exist a proper
R-reqular sequence z = zy,...,%z., non-negative integers ng,ni,...,n,, and a short
exact sequence

0O— M —7—N—0

with Z = &]_, (R/ Z;Il sz)m and N having projective dimension (respectively, G-
dimension) < r.

As an immediate corollary, we generalize a result by I. Aberbach that, for any F-
rational ring R (of prime characteristic p) and any finitely generated R-module M of
finite projective dimension (more generally, of finite G-dimension), 0 is tightly closed
in M. See Theorem 3.2

We also observe that Theorem can be applied to show the existence of uniform
test exponents for tight closure and Frobenius closure for finitely generated R-modules
of finite projective dimension. See Theorem [3.3] and Theorem [3.6]
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Then, using a theorem of R. Y. Sharp ([Shl], ¢f. Theorem |4.1]), we obtain a similar
result for embedding modules with locally finite injective dimension over any Cohen-
Macaulay ring with a global canonical module w. See Theorem

We set up notations that will be used throughout this paper.

Notation 0.1. Let R be a Noetherian ring, M an R-module, I an ideal of R and
xr = xq,...,2; asequence in R.

(1) For any integer i with 0 < i <[, we denote by xp, the subsequence zy, ..., z;
of z. Then we write (z};)) = (v1,..., ;)R = )_;_, 7;R, the ideal generated by
zy- If i =0, we agree that 2y is empty and (z()) = 0, the zero ideal.

(2) We say that an element = € R is regular on M (or a non-zero-divisor on M,
or M-regular) if z6 # 0 for any 0 # 6 € M. We agree that any x € R is
regular on 0, the zero module.

(3) We say z is a (possibly improper) M-regular sequence if x; is regular on
M/(zy_q))M for all i = 1,...,1. If, furthermore, (z)M C M, then we call
x a proper regular sequence on M. We agree that any empty sequence (that
is, any sequence of length 0, for example g[o]) is a proper regular sequence on

any R-module.
(4) The depth of I on M, denoted by depth(I, M), is defined as follows

depth(I, M) = sup{n |3 a proper M-regular sequence y1,...,y, € I}.
(5) Furthermore, the depth of M, denoted by depth(M), is defined as
depth(M) = sup{n | 3 a proper M-regular sequence yi,...,y, € R}.

When (R, m) is local, it is obvious that depth(M) = depth(m, M). In general,
if M is finitely generated over R, then

depth(M) = sup{depth(mRy,, M,,) | m is a maximal ideal in R}.

(6) We denote by pdz(M) and idg(M) the projective dimension and injective
dimension of M respectively. When R is clearly understood, we simply denote
them by pd(M) and id(M) respectively.

(7) We say that M is of locally finite injective dimension if, for any maximal ideal
(or, equivalently, for any prime ideal) m of R, idg,, (M) < co. Then denote by
Z(R) the category of finitely generated R-modules with locally finite injective
dimension. (In case depth(R) < oo and M is finitely generated over R, we
have M € Z(R) <= idr(M) < c0.)

(8) Let P(R) denote the category of finitely generated R-modules with finite
projective dimension. (One may similarly define the notion of locally finite
projective dimension. However, a finitely generated R-module has locally
finite projective dimension if and only if it has finite projective dimension.)

1. PRELIMINARIES

We first state a (refined) version of Prime Avoidance. See [Kal Theorem 124] or
[Ei, Exercise 3.18].
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Theorem 1.1 (Prime Avoidance). Let R be a commutative ring, g, f1,...,fi € R
and Py, ..., P, € Spec(R). If (g, f1,..-, fi) € P; for all 1 <1 < k, then there ezists
g €g+(fi,..., fi) (thatis, g = g+ f for some f € (f1,..., f1)) such that g’ ¢ UE_| P;.

Proof. This is a classic result. See |[Kal, Theorem 124] for details. O
Theorem 1.2. Let R be a Noetherian ring, I C R an ideal and M an R-module.
Suppose x = x1,...,x4 1S any M-reqular sequence in I.

(1) Suppose x is also R-regular. Then, for any R-module N such that Anng(N) 2
I, there is a natural isomorphism

O - Extip(N, M) = Exti (N, M/(z)M)  for every i € Z.

In particular, this shows Ext'y(N, M) = 0 for all i < d — 1 and there is a
natural R-isomorphism ¢% : Exth(N, M) = Homp, () (N, M/(z)M), the latter
of which may be naturally identified with Hompg(N, M /(x)M).

(1’) More generally, for any R-module N such that Anng(N) D I, there is a
natural isomorphism

¢y« Extly (N, M) = Ext Y (N, M/(z)M)  for every i < d.

In particular, this shows Ext'y(N, M) = 0 for all i < d — 1 and there is a
natural R-isomorphism ¢% : ExtG(N, M) = Homg(N, M/(z)M).

(2) Suppose M 1is finitely generated over R, Anng(M) + I # R and x is a maz-
imal M -regular sequence in I. Then, for any finitely generated R-module N
with Anng(N) = I, we have Exth(N, M) = Hompg(N, M/(z)M) # 0, which
mmplies

d = min{i | Exti(N, M) # 0}.
Thus every maximal M -reqular sequence in I has length d, which implies that

depth(I, M) = d.

Proof. See [Rees| for details. A proof for part (2) may also be found in [Ei, Proposi-
tion 18.4]. O

Next, we state some results concerning regular sequences. We make repeated use
of these facts in the sequel. Lacking convenient references, we have included proofs in
the lemma that follows. For part (4), which is more subtle, we have given complete
details.

Lemma 1.3. Let x = z1,...,2, and y = y1,...,ys be R-reqular sequences.

(1) Suppose r = s and there is an element u € R that is reqular on R/(z). Then
there exists u' € u+ (z) such that u' is reqular on both R/(y) and R/(z).

(2) If r > s, then any R-homomorphism h : R/(z) — R/(y) vanishes (in other
words, Homg(R/(z), R/(y)) =0). B

(3) There exists an R-reqular sequence z = 21, ...,z with | = max{r, s} such that
(zp1) € (z) and (z5) C (gm) foralll<i<randl<j<s.

(4) Assume that r = s and (z) 2 (y). Say y; = Y ,_jaz; for j = 1,...,7.
Let A = (ay) be the resulted v x v matriz and denote by § = det(A) the
determinant of A. Then
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(a) (y) :r (z) = (y,0).

0 = (z), which implies the following short exact sequence

0 — R/(z) = R/(y) — R/(y,5) — 0,

in which & denotes the (well-defined) R-linear map sending 1 + (z) €
R/(z) to 6 + (y) € R/(y). Consequently, any element that is reqular on
R/(y) is automatically reqular on R/(z).

(¢) Moreover, pd(R/(y,8)) < r.

(d) Suppose, for some u € R, that u is regular on R/(y) (and hence on
R/(x)). Then (y,ud) = (y,u) N (y,0), which gives the following short
exact sequence B B B

0 — R/(y,ud) — R/(y,u) © R/(y,6) — R/(y,u,0) — 0,
with pd(R/(y,9)) < r and pd(R/(y,u,8)) <r +1.

Proof. (1). If y is improper, then this is trivially true. Assume y is proper. Then
(z,u) € P for any P € Ass(R/(y)). (Otherwise, suppose (z,u) C P for some
P € Ass(R/(y)). Then y,/1,...,y,/1 form a maximal proper Rp-regular sequence
(of length s). But, on the other hand, x;/1,...,2,/1,u/1 would form a proper Rp-
regular sequence of length r+1 = s+1, a contradiction to Theorem (2)) By prime
avoidance (cf. Theorem , there exists v’ € u + () such that u' € Upcass(r/(y)P-
In other words, u’ is regular on R/(y). Obviously, «’ remains regular on R/(x).

(2). By part (1), there exists 2/, |, € w41 + (z(y) C (2) such that x,, is regular
on R/(y). Then, for any R-homomorphism h : R/(z) — R/(y) and any w € R/(z),
we have @/, h(w) = h(z),,w) = h(0) = 0, which forces h(w) = 0, which shows that
h is a zero map.

(3). First observe that if r # s, say r > s, then we may extend yi,...,ys to
an R-regular sequence yi,...,Ys, Ysi1,---,Yr With ys11 = --- =y, = 1. Therefore,
without loss of generality, we assume r = s. We inductively construct the desired
21, ..., % as follows: Let z; = x1y;, which is evidently R-regular and satisfying (z1) C
(x1) N (y1). Suppose that, for some integer k£ with 1 < k < r, we have constructed
an R-regular sequence 21, ...,z such that (z1,...,2) C (z1,...,2;) N (y1,...,y;) for
all i = 1,...,k as desired. Then, by Part (1) above, there exist 2, € zp1 + ()
and Y, € Yps1 + (g[k]) such that both z}_, and ¥, ,, are regular on R/(z1,. .., %)
Let 2p+1 = @) 1Ypyq- Then, clearly, z1,. .., 2, 2141 form an R-regular sequence such
that (z1,...,2) C (z1,...,2) N (y1,...,y;) forall i = 1,... k,k+ 1 as desired. In
particular, when £ = r = s, we are able to construct an R-regular sequence z1, ..., 2,
such that (z1,...,2;) C (21,...,2) N (y1,...,y;) foralli=1,... r = s as desired.

It remains to prove (4). First of all, the fact that (zq,...,2,)A = (y1,.-., )
implies that (z)d C (y). Thus, if z is improper (i.e. (z) = R), then 0 € (y) and all
the claims in (4) are trivial. So we assume R D (z) D (y) from now on.

Let K,(z, R) and K,(y, R) be the Koszul complexes of z and y respectively. As z
and y are R-regular sequences, we see that K,(z, R) and K,(y, ) are free resolutions
of R/(x) and R/(y) respectively. This implies that pd(R/(z)) = pd(R/(y)) = r,
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which implies that pd((xz)/(y)) < 7 because of the short exact sequence
0 — (z)/(y) — R/(y) — R/(z) — 0,

in which ¢ and 7 denote the natural inclusion and surjection homomorphisms re-
spectively The matrix A induces an R-linear map he : Ko(y, R) — Ko(z, R) lifting

R/(y) — R/(z) so that hy : R — R and h, : R — R are multiplications
by 1 and § = det(A) respectively. As Ann((z)/(y)) 2 (y), Theorem [1.2| implies that
Ext%((z)/(y), R) = 0for alli = 0,...,r—1. Therefore there is a short exact sequence

0 — Extp(R/(x), R) = Exty(R/(y), R) - Extj((2)/(y), R) — 0,

in which * = ExtR(¢, R) and 7% = Exty(m, R) are the R-linear homomorphisms
naturally induced by (z)/(y) — R/(y) and R/(y) = R/(x).
Consider the following diagram (with all the unlabeled maps being natural)

00— ((») : (2))/(y) R/(y) R/((y) : () —0

1%
IR
1%

id

0—— HOIHR( ) (y)) —— Hompg (%, %) —— Homp (—), %) S—

El=

1%

(%) R/(2) Pr/y) | = @/ | = ;

El=
|
S

1%

W o | 2 ™

0 - R/ (x) R/(y) R/(y,9)

in which ¢ .y, O /) and ¢{, J(y) ATe the natural isomorphisms as in Theorem (1)
while the isomorphisms ; (for i = 1,2) are simply realizations of Ext,(R/(z), R) and
Exth(R/(y), R) as H"(Hom(K.(z, R), R)) and H"(Hom(K,.(y, R), R)) respectively.
As all the maps are natural, we see that (%) is a commutative diagram. As a result,
all the rows in (x) are short exact sequences and all the dotted vertical arrows in ()
are isomorphismes.

(4)(a). This follows from the isomorphism R/((y) : (x)) = R/(y,9).

(4)(b). This is forced by the fact that 0 : R/(z) — R/(y) is injective.

(4)(c). Fix a resolution F, of (z)/(y) by finitely generated projective R-modules
and assume the length of F, is pd((g)_/(g)) < r. Then, making use of the fact that
Ext%((z)/(y),R) = 0 for all i = 0,...,7 — 1 (cf. Theorem , we conclude that
Homp(F,, R) constitutes a projective resolution of Exth((z)/(y),R) = R/(y,d) of
length < r. B

(4)(d). Let A" = (49). Then det(A’) = det(A) = ¢ and (xl,...
(Y1, -, Yk, u). Forany v € (y,u)N(y,d), write v = y+cyu = y'+c90 for y, an
¢1,¢2 € R. Thus ¢y6 = y—y'+ciu € (y,u), which implies that ¢, € (y,u) : 6 = (y, u)
det(A’) = (z,u) by the above part (b)_ applied to the regular sequences z, u and y, u.
Therefore cy6 € (z,u)d C (y,ud) by part (a) above and, hence, v =y + ¢, € (y, ud).

0

yu) A’
(y)

mZ'T‘
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This proves that (y,u) N (y,d) € (y,ud). As the reverse inclusion is obvious, we
conclude that (y,ud) = (y,u) N (y,6). Then the claimed exact sequence simply
follows from the more general exact sequence

0— R/(INJ)— R/I®R/J — R/(I+J) — 0

for any ideals I,.J C R. Finally, the claim that pd(R/(y,u,d)) < r + 1 follows from
the part (c) above applied to the regular sequences z,u and y, u, both of length r +1,
while the claim pd(R/(y,d)) < r has been proved in part (c) already. O

Lemma 1.4. Let X, Y] and Yy be R-modules and ¢; : X — Y; be R-homomorphisms
fori=1,2. Let Z' .= {(¢1(x), p2(x)) |z € X} CY1 B Y2 and let Z == (Y1 ® Ya2)/Z'.
Then there are naturally induced R-linear maps v; : Y; — Z for i = 1,2. The

R-module Z is called the push-out of the maps X Yy for i = 1,2. There is a
commutative diagram

X Y, N, 0
b2 U1 id

Y, ™ A Ny 0
Ny == N;

0 0

in which N; := Coker(¢;) for i = 1,2, all the unlabeled maps are naturally induced
R-homomorphisms and the following properties hold:

(1) All the rows and columns are ezact.
(2) Furthermore, ¢1(Ker(¢q)) = Ker(¢) and ¢o(Ker(¢1)) = Ker()q).

Proof. This is well-known and straightforward. OJ

Lemma 1.5. Let My, My and M;z be R-modules, ¢ € Hompg(M, My) and ¢ €
Hompg(Ms, M3) such that Ker(i)) = 0. Then there exists a short exact sequence

0 — Coker(¢) — Coker(¢) o ¢) — Coker(y)) — 0.
Proof. This is simply the short exact sequence
0 — Ma/p(My) — Ms/¢(p(My)) — Ms/ip(Mz) — 0,
which should follow immediately from the injectivity of . 0

Next we review the notion of G-dimension, which was first introduced by Auslander
and Bridger in [AB]. For a modern treatment of this subject, see [Ch]. For any R-
module M, denote M* := Hompg(M, R).

Definition 1.6 (JAB]). Let R be a Noetherian ring and M a finitely generated R-
module.
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(1) We say M is totally reflexive if M = M** under the natural map and Ext’, (M@
M*,R) =0 for all i > 1.

(2) The G-dimension of M, denoted G-dimg(M) (or G-dim(M) if R is under-
stood), is the minimal n such that there is an exact sequence

0O—M, — M,y — - — M —My—M-—0
in which M; is totally reflexive for all : = 0,1,... n.

Remark 1.7. (1) It is clear that G-dim(M) = 0 if and only if M is totally reflexive.
If this is the case, then from the definition we see that M* is also totally
reflexive (as M*™* = M*).

(2) The G-dimension behaves in a very similar way as the projective dimension.
Let 0 — M; — My — M3 — 0 be a short exact sequence of finitely generated
R-modules. Then

(a) G-dim(M;) < max{G-dim(Ms), G-dim(M3) — 1},
(b) G-dim(Ms;) < max{G-dim(M,), G-dim(M3)} and
(¢) G-dim(M;) < max{G-dim(M;) + 1, G-dim(M)}.

(3) For any finitely generated R-module M with pd(M) < oo, it is forced that
G-dim(M) = pd(M). (This may follow from the fact that, if M # 0 and
G-dim(M) < oo, then G-dim(M) = max{n| Ext"(R, M) # 0}. See [CL,
1.2.7].)

2. EMBEDDING MODULES OF FINITE PROJECTIVE DIMENSION OR FINITE
G-DIMENSION

Notation 2.1. Let R be a Noetherian ring and M a finitely generated R-module with
G-dim(M) < oo. We say that a finitely generated R-module M; is a permissible
extension of M if there exists a short exact sequence

0 — M—M; — N —0
such that G-dim(N) < G-dim(M).
Lemma 2.2. Let R be a Noetherian ring and M a finitely generated R-module with
G-dim(M) < oo.
(1) If M is a permissible extension of M, then G-dim(M;) = G-dim(M).

(2) Therefore, a permissible extension of a permissible extension of M is again a
permissible extension of M.

(3) Suppose we have an exact sequence X LY 5 M—0 (i.e. M = Coker(¢))
and Y — Y' is an injective map such that G-dim(Coker(v))) < G-dim(M).
Then Coker(X vos, Y’) is a permissible extension of M.

Proof. All the claims are straightforward. See Remark [L.7(2). In particular, (3)
follows immediately from Lemma [I.5] O

Now we are ready to state and prove the embedding theorem for finitely generated
modules of finite projective dimension (or finite G-dimension).
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Theorem 2.3. Let R be a Noetherian ring and M a finitely generated R-module.
Then
(1) If G-dim(M) = r < oo, then there exist an R-reqular sequence z = zy, ..., 2y,
integers ng,ny,...,n,. > 0, and a short exact sequence

0O—M—27—N—70

with Z = ©j_o(R/(z))™ and G-dim(N) <.
(2) If pd(M) = r < oo, then there exist an R-regular sequence z = zi,..., 2%,
integers ng,nq,...,n,. > 0, and a short exact sequence

0O0— M —27—N—70

with Z = &}_o(R/(z))" and pd(N) <.
(3) In (1) and (2) above, it is forced that z is a proper R-reqular sequence and, in
case M # 0, n, > 0.

Proof. First, we notice that (2) is an immediate consequence of (1). Indeed, if
pd(M) = r, then G-dim(M) = r by Remark [L.7(3) and the claim in (1) would give
an embedding as stated in (1) with G-dim(N) < r. Then, as pd(M) + pd(Z) < oo,
we see that pd(N) < oo, which forces pd(N) = G-dim(N) < r.

Once (1) and (2) are proved, we observe that (3) always holds. (To show this, we
assume that (1) holds without loss of generality (cf. Remark|1.7|(3)). Evidently, claim
(3) holds when G-dim(M) = r = 0. Assume that G-dim(M) = r > 0 and, on the
contrary, suppose that claim (1) occurs with (z) = R or n, = 0. Then we have the
following short exact sequence

0O— M —7—N—0

with Z = @;;&(R/(gm))”" and G-dim(/N) < r. But, then, the above short exact
sequence would force G-dim(M) < r (cf. Remark [1.7)(2)), a contradiction.)

Therefore, it remains to prove (1). Before starting the proof, we make some easy
observations.

Observation 2.3.1. In order to prove claim (1) for M with G-dim(M) = r, it suffices
to prove the same claim for a single permissible extension of M. Indeed, suppose that
claim (1) is proved for a permissible extension M; of M. That is, we have short exact
sequences

0—M-LM —N—0 and 0—M 2 Z— N, —0,

for some R-regular sequence z = z1, ..., 2., non-negative integers ng,ny, ..., n, such
that Z = @]_o(R/(z))™, G-dim(N) < r and G-dim(N;) < 7. Then, denoting
N’ = Coker(g o f), we have short exact sequences

0—M»L 7 N 0 and 0 — N—N' — N, — 0,
the latter of which follows from Lemma [1.5] and implies that G-dim(N’) < r.

Observation 2.3.2. Suppose M = M’ & M". In order to prove claim (1) for M, it

suffices to prove the same claim for both M’ and M". Say G-dim(M') = G-dim(M) =

r and G-dim(M") = s < r. Suppose there exist R-regular sequences 2z’ = z|,..., 2]
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and 2" = 27,...,2!, non-negative integers mg, my,...,m,,ng,n1,...,ns, and short
exact sequences (with 2" = @®j_(R/(z};))™ and Z" = &;_o(R/(z};))")
f/

0— MLz —N—0 and 0— M 27— N —0
such that G-dim(N’) < r and G-dim(N”) < s < r. Then, by Lemma [1.3(3), there
exists an R-regular sequence z = z1,..., 2 such that (zy;) € (z};) and (z;)) C (2])))
forall 1 <i<rand1<j<s. Applying Lemma [1.3[4)(b), we get exact sequences

0 — @_o(R/ ()™ > o(R/(z))™ — L' — 0 and

0 — B (R/(2)" L @(R/(z))™ — L' — 0
with pd(L') <r and pd(L”) < s. Thus there are short exact sequences

0 — M 2L &7 (R/(2y))™ — K'— 0 and

0 — M" L5 @7 o(R/(zy))" — K" — 0

with K’ := Coker(¢' o f’) and K" := Coker(g” o f”). From Lemma [L.5 we see that
G-dim(K’) < r and G-dim(K") < s. Consequently, we get a short exact sequence

0 —s M @ M (g'of")®(g"of") @;:O(R/(g[i]))mﬁ-ni K @ K" O,

in which we agree that n; = 0 for all ¢ > s. This verifies the desired claim (1) for
M=M &M as G-dim(K' & K") <r = G-dim(M).

Now we proceed to prove (1) by induction on G-dim(M). If G-dim(M) = 0, then
both M and M* are totally reflexive (cf. Remark [1.7(1). Fix a short exact sequence
00— M, — F — M"—0,
in which F' is a free R-module of finite rank. Then G-dim(M;) = 0 and hence

G-dim(M;) = 0. Applying Hom(_, R) to the above short exact sequence and noting
the fact that Extp(M* R) = 0, we get a short exact sequence

0— M — F* — M;{ — 0,

which proves claim (1) (and hence claim (2)). (In fact, when pd(M) = 0, claim (2)
is clear.)

Now, we assume that, for some r > 0, the claim (1) holds when the G-dimension
is < r. For any finitely generated R-module M with G-dim(M) = r + 1, it suffices to
verify claim (1) on M in order to complete the induction step.

There is a short exact sequence

0—V, 5% F—M-—0,

in which F is a finitely generated projective (e.g., free) R-module. Thus G-dim(V;) =
r, V1 # 0 and, by the induction hypothesis, there exists a proper R-regular sequence
r = x1,...,T,, non-negative integers my, ..., m, with m, > 0, and a short exact
sequence

0—W BULI ' GEN W, —0

such that X = @]_o(R/(z};))™ and G-dim(W;) <r.
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Let V5 be the push-out of V; I F oand Vi X By Lemma u, there are short
exact sequences

0—X -2V, —M—0 and 0 — F—V, — W, — 0,

the latter of which implies that G-dim(V3) < r. Denote X' = (R/(z))" and X" =
@:;&(R/@[i]))mi so that X = X’ @ X”. Also denote V = Coker(¢|x») where ¢|x» :
X" — V5 is the restriction of ¢ to X”. Then there are short exact sequences

0—x" My, "oy 0 and 0— X Zy Ly

As G-dim(X”) < r — 1 and G-dim(V3) < r, we see that G-dim(V) < r. Say
G-dim(V) = s. (We will see shortly that s = r.) By the induction hypothesis, there
exists a proper R-regular sequence y = yi,...,Ys, non-negative integers n, ..., ns,
and a short exact sequence B

0—>VL>Y—>W2—>0

such that YV = fZO(R/(gm))”i and G-dim(W,) < s < G-dim(M). Hence, by

Lemma [2.2{3), Coker(y o 7 o ¢|x/) is a permissible extension of M. Therefore, by
Observation [2.3.1, we may, without loss of generality, assume that M appears in a
short exact sequence of the following form

0 — (R/(@))™ 5 &iy(R/(y,))" — M —0,

in which ¢ = ¥ o7 o ¢|y, while z, y, m,, > 0 and n; (0 < ¢ < s) are as described
above. Notice that, by Lemma (5), Hom((R/(z))™, (R/(gm))”i) =0 for all i =
0,1,...,min{r—1, s}. At this point, it is easy to see that r = s. (Otherwise, we would
have r > s, which would mean ¢ = 0, a contradiction to the fact that ¢ is injective
and (R/(z))™ # 0.) Moreover, we may think of ¢ as an injective R-linear map in
Hom((R/(z))™, (R/(y))") and, consequently, we have the following isomorphism

M = @723 (R/(y,,))" € Coker ((R/(2))™ % (R/(y)™)

As the desired claim obviously holds for ®/—;(R/ (gm))ni7 it suffices to prove it for

Coker (R/(z))™ 5 (R/(y))™). Moreover, by replacing y with a suitable R-regular
sequence of length r, we may further assume that (y) C (x) without loss of generality
(cf. Lemmall.3|(3) Lemma- )(b,c), Lemmal[2.2|(3) and Observation[2.3.1] etcetera;
details omitted). Therefore Wlthout loss of generality, we may simply assume that
M occurs in a short exact sequence of the following form

(%) 0 — (R/(x))" == (R/(y)" — M — 0,

in which m = m, > 0, n = n,. > 0 while both z = z1,..., 2z, and y = yy,...,y, are
proper R-regular sequences of length r such that (y) C (z). -

Next, we will set up some notations that we will use throughout the remainder of
the proof.
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Notation 2.3.3. From now on, we let z and y be as in (x). In particular, we assume
(y) C (z). Sayy; = > i axiforj=1,... randlet § = det(a;;) be the determinant
of the r x r matrix (a;;). By Lemma 1.3(4), (y) : (z) = (y,6) and (y) : § = (z). Also,
we refresh our notations and denote (R/(z))™ = X and (R/(y))" =Y. Thus, for any
¢ € Hom(X,Y), Image(p) C §Y. In fact, it is easy to see that §Y = (R/(z))" in light
of Lemma[l.3(4)(b). Choose b= by,...,b, € X ande =ey,...,e, € Y such that they
form bases for X and Y over R/(z) and R/(y) respectively. Given ¢ € Hom(X,Y),
we may write @(b;) = .1, 0fi;e; in which fi; € R for all i = 1,...,n and all

7 =1,...,m. This produces a n X m matrix

Ji1 Jiz o Jime Jim

J21 Joz oo foamt Jom

0 : : : : = 0(fi;) = (6fi ),
fn—l,l fn—l,? cee fn—l,m—l fn—Lm

fn,l fn,2 cee fn,,mfl fn,m
which we will use to represent ¢. Evidently, the entries f;; depend on the choices
of b ="0y,...,b, € X and ¢ = e4,...,¢e, € Y. However, once b = by,...,b,, and
e =eq,...,e, are given, then the entries f;;, modulo (z), are uniquely determined

by ¢ and vice versa.

Here we make another observation. We remark that this kind of observation had
been made and utilized in, for example, [Du] and [Sml].

Observation 2.3.4. Let M = Coker ((R/(z))™ —= (R/(y))") be as in (x) and keep
the notations as in Notation [2.3.3] Suppose that ui, ..., u, are non-zero-divisors over
R/(y)). Let £ : Y — Y be an R-linear map defined by e; — ue; for i = 1,...,n.
Then £ is injective and pd(Coker(§)) = pd(®j, R/(y,u:)) < r+1. Hence Coker({o¢p)
is a permissible extension of M by Lemma [2.2{3). Therefore, to prove the claim (1)
for M, it suffices to prove the same claim for Coker(§ o ¢). Finally, we observe that
€ op € Hom(X,Y') is represented by the following matrix

U1f1,1 U1f1,2 ce Ulfl,m—l U1f1,m
U2f2,1 U2f2,2 ce U2f2,m—1 u2f2,m
0 : : : : = (0ugfi ).
unflfnfl,l unflfnfl,Q cee unflfnfl,mfl Un—lfn—l,m
unfn,l unfn,2 v unfn,,mfl unfn,m

We continue to prove Theorem for M by induction. For our module M =
Coker(X 2 Y) as in (%) and Notation , our next goal is to prove the following
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Claim 2.3.5. For each k = 1,...,m, there exists an injective R-linear map p; €
Hom(X,Y) such that My := Coker(py) is a permissible extension of M and, more-
over, @i can be represented by a n X m matrixz of the following form

up 0 ... 0 0  fizgyr  Srikee - Sfime1 Jim
0 w ... 0 0 forr1  Jorr2 - fom—1  fom
0 0 ur 0 fecipsr fe—tkr2 o0 freimer fr-im
) 5 0 O 0 wr  frp+ frk+2 o frm—a frm
0 0 0 0 fetiprr Srorihs2 - Sorim—1 Jrorim |
0 0 0 0 fisor+1 fer2k+2 oo Jrorom—1  frtom
0 0 fnfl,kJrl fnfl,k+2 s fnfl,mfl fnfl,m
0 0 fn,k+1 fn,k+2 cee fn,mfl fn,m
in which f; ; = 0 whenever i # j < k and, moreover, fi1 = -+ = frr = ug s reqular

on both R/(z) and R/(y). (When k = m, the result also implies m < n.)

We are going to prove Claim by induction on k. Here we think of £k = 0 as
the initial case, which is deemed trivially true. Now assume Claim [2.3.5|is proved for
certain k > 0. We need to prove the claim for k& + 1. (The induction step from k = 0
to k = 1 indeed produces a proof of Claim [2.3.5|in the case of £ = 1. So what we are
doing is a valid induction after all.)

The induction hypothesis gives an injective R-linear map ¢y, represented by a ma-
trix as in () with all the desired properties. Let I := (fis1441s fot2ht1s - s frnkt1)-
First, we show that I € P for any P € Ass(R/(z)). Suppose, on the contrary, that
I C P for some P € Ass(R/(z)). Then there exists 0 # 6 € Rby,1 = R/(z) such that
Anng(f) = P. This forces ¢ (0) € ®F_,5Re; and hence oy (uph) € BF_ updRe;. Say
or(urd) = Zle ciupde; where ¢; € R for 1 < i < k. Then it is straightforward to see
that g (upd — Zle ¢;b;) = 0. This forces ugf — Zle cibi =0 € @ | Rb; = X since gy,
is injective. This in turn forces uf = 0 since uf = Zle cib; € Rbpi1 N @leRbi =0.
As uy, is regular on R/(z) = Rby1, we conclude that § = 0 € Rby1, a contradiction.

Therefore I = (fr1h+1s fer2kits-- s forr) € P for any P € Ass(R/(z). By
Prime Avoidance (cf. Theorem , there exist cxy9,...,c, € R such that

U= frot k1 + Chrafrr2 it s Cafnkrt € Ureass(r/ () -

That is, u is regular on R/(x). Then, after a suitable change of basis for ¥V =
(R/(y))" over R/(y) and refreshing the matrix entries accordingly, ¢ : X — Y can
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be represented by a matrix of the following form

up, 0 ... 0 0  fizs Jieez oo fimer Jim
0 w ... 0 0 forp forre - fom—t fom
0 0 ur 0 feciksr Se—tkr2 o0 Si—tm-1 Sr-1m
5 0 0 0 wy froprr  Srrr2e o Sem—1 Jem
0 0 0 0 u fotrk+2 - ferim—1 Jrerim
0 0 0 0 frropsr Jerokr2 - Jerzmo1 Jrrom
0 0o ... 0 0 fn—l,k+1 fn—l,k+2 s fn—l,m—l fn—l,m
0 0 cee 0 0 fn,k—f—l fn,k+2 cee fn,m—l fn,m

Moreover, by Notation [2.3.3] we may replace u by any element in the coset u + (z)
without affecting . Therefore, we may further assume that u is regular on both
R/(z) and R/(y) (cf. Lemma|1.3(1)).

Now, let &; : Y — Y be an R-linear (injective) map defined by & (ex11) = exy1 and
&1(e;) = ue; for all i # k + 1. Then, according to Observation 2.3.4 & o, : X =Y
is an injective R-homomorphism such that M, := Coker({; o @) is a permissible
extension of My and, furthermore, & o yy is represented by the following matrix

wvur, 0 ... 0 0  ufigrr  ufigre oo Ufime1 Ufim
0 uug ... 0 0 uf27k+1 uf27k+2 e uf27m_1 uf27m
0 0 vur, 0 ufpciprr W—ikte oo UWfk—tm—1 USfi—1m
5 0 0 0 wur  Ufpptr Ufkkr2 -0 Ufpm—t Ufrm
0 0 0 0 u fk+1,k+2 ce karl,mfl fk+1,m
0 0 0 0 uf k+2,k+1 uf k+2k4+2 - - uf k+2,m—1 uf k+2,m
0 0O ... 0 0 ufn—1p+1 Ufn—ikt2 - Ufn—1m—1 Ufn—1m
0 o ... 0 0 Ufn k1 Ufnk+2 - Ufpm—1 Ufnm

Then, after a suitable change of its basis for Y = (R/(y))" over R/(y) and after
refreshing the matrix entries, & o ¢ : X — Y can be represented by a matrix of the
form

uUg 0 ce 0 0 0 fl,k+2 e fl,m—l fLm
0 uuy 0 0 0 fore2e -0 fom— fom
0 0 vup, 0 0 fecipre - Je—im—1 fi-im
5 0 0 0 wur 0 froreor o Sfom—  Jem
0 0 0 0 u frsire2 - Srrrm—t fk+1,m
0 0 0 0 0 fegorre - Jret2om-1 frtom
0 0 0 fnfl,k+2 s fnfl,mfl fnfl,m
0 0 fn,k+2 cee fn,m—l fn,m
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Finally, let & : Y — Y be an R-linear (injective) map defined by &s(epy1) = ureri1
and &(e;) = e; for all i # k + 1. Denote ¢gyq = & 0& o ¢ € Hom(X,Y) and
Mj.11 = Coker(pgy1). Then, according to Observation again, ppi1 : X — Y
is an injective R-homomorphism such that My, = Coker(pgy1) is a permissible
extension of M and, furthermore, @1 is represented by a matrix (whose entries
have been refreshed) of the form

uper 0 .00 0 0 fiet2 fim—1 fim
0 Uk+1 - - - 0 0 0 f2,k+2 f2,m—1 f2,m
0 0 Ugyr 0O 0 fr1k42 fe—1m—1 fe—1m
5 0 0 0 wupyr O Jret2 Jem—1 fem
0 0 0 0 Ukt1  fre1pt2 frvim—1 Jerim |’
0 0 0 0 0 frtokto frt2m-1 frrom
0 0 0 0 fn—l,k+2 fn—l,m—l fn—l,m
O O 0 O fn,k—i—? fn,m—l fn,m

in which f1; = -+ = fit14+1 = W1 = wuy is regular on both R/(z) and R/(y)
while the (i, j)-th entries are 0 whenever i # j < k + 1. By Lemma [2.2)2), M, is
a permissible extension of M. This concludes the induction step and Claim is
proved.

Now that Claim is proved, we are going to use it to complete the induction
step in the course of our proof of Theorem [2.3] Indeed, Claim states that, when
k = m, there is a permissible extension M, of M such that M, = Coker(y,,) for
some @, € Hom(X,Y) represented by an n x m matrix of the following form

U, 0 Oy, ... 0 U0 . 0
5 0 Um | 0 Oum, | 0 Uyp, O
0 0| 0 0 o 0 0 |’
0 0 0 0 0 0

in which the (7,j)-th entries are 0 whenever i # j while the (i,4)-th entries are
equal to u,,0 with u,, regular on (both R/(x) and) R/(y). Consequently, M,, =
(R/(y,umd))™ @ (R/(y))"~™. Relabeling u,, with u and applying Observation ,
we see that it suffices to prove Theorem 2.3/ assuming M = (R/(y,ud))"®(R/(y))"™™
with u regular on (both R/(z) and) R/(y). As pd((R/(y))"™) < r, the induction
hypothesis gives the desired result for (R/ @))”*m By Observation , we only need
to prove it for R/(y,ud) assuming pd(R/(y,ud)) = r + 1. From Lemma (4)(d),
there is a short exact sequence

0 — R/(y,ud) — R/(y.w) & R/(y,8) — R/(y,u,6) — 0
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with pd(R/(y,u,0)) < r+ 1 so that R/(y,u) & R/(y,d) is a permissible extension
of R/(y, ud). Now, by Observation @ and Observation again, it remains to
prove the assertion for R/(y,u) and R/(y,0) only. The case for R/(y,u) is trivially
true (as y,u form an R-regular sequence of length r + 1) while the case for R/(y, )
follows from the induction hypothesis since pd(R/ (y,6)) <r (cf. Lemma (4)(_(:))
This finishes the desired induction step.

The proof of Theorem is now complete. U

Remark 2.4. In the above proof of Theorem [2.3] the case when pd(M) < oo follows
as a consequence of the case when G-dim(M) < oco. However, we remark that the
embedding theorem for the case when pd(M) < oo (i.e., Theorem [2.3(2)) can be
proved by simply replacing G-dim with pd in the above proof of Theorem (1)

Remark 2.5. Let R be Gorenstein. Then the embedding theorem (i.e., Theorem [2.3)
applies to any finitely generated R-module M as G-dim(M) < oco. (When R is
Gorenstein, a similar embedding may be achieved by means of primary decomposition,
although this approach does not seem to give a way to control the G-dimension of
the cokernel.)

3. APPLICATIONS OF THE EMBEDDING THEOREM TO RINGS OF PRIME
CHARACTERISTIC p

Throughout this section, we assume that R is a commutative Noetherian ring of
prime characteristic p. We always use ¢ = p¢,Q = p¥,q¢ = p®, etcetera, to denote
varying powers of p with e, E, ¢/ € N.

For any R-module M and e € N, there is a new R-module F'¢(M) otained by
scalar extension via the iterated Frobenius map F°¢ : R — R defined by r +— ri.
For any R-modules M, N and h € Hompg(M, N), we correspondingly have F¢(h) €
Hompg(F¢(M), F¢(N)).

If NC M and say ¢ : N <— M is the inclusion map, then, for any e > 0, we denote

N][&] := Image (F*(N) ), Fe(M)). For any € M and any e > 0, we denote the

natural image of x in F¢(M) by 2%, € F¢(M). (See [HHI] for details.)

A very important concept in studying rings of characteristic p is tight closure.
Tight closure was first studied and developed by Hochster and Huneke in the 1980’s.
Here we denote R° := R\ Upemin(r) P, the complement of the union of all minimal
primes of the ring R.

Definition 3.1 ([HHI]). Let R be a Noetherian ring of prime characteristic p and
N C M be R-modules. The tight closure of N in M, denoted by N}, is defined as
follows: An element x € M is said to be in N}, if there exists an element ¢ € R° such

that cz? € N9 C Fe(M) for all e > 0.

Now let us apply Theorem to rings of prime characteristic p. First, we re-
cover a result about F-rational rings (without any Cohen-Macaulay assumption) by
I. Aberbach in [Ab]. Recall that R is said to be F-rational if I}, = I for any ideal
I = (f1,..., fn) C R such that height(]) = h.
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Theorem 3.2 (Compare with [Ab]). Let R be a Noetherian ring of prime charac-
teristic p. Assume that every ideal of R generated by an R-reqular sequence is tightly
closed (e.g., R is F-rational). Then 0%, = 0 for any finitely generated R-module with
G-dim(M) < oo.

Proof. There exists a short exact sequence

0—>ML>Z—>N—>O

as in Theorem By the tight closure theory, h(0%,) € 0%. However, by the
assumption of R and the condition on Z imposed by Theorem [2.3] we have 03 = 0.
Thus h(03,) = 0, which implies 0%, = 0 as h is injective. O

Theorem allows us to show the existence of a uniform test exponent for all
R-modules in P(R). Recall that @ = p is said to be a test exponent for some ¢ € R

and R-modules N C M if, for any x € M, the occurrence of cx? € N J[\Z] for any single
q > @ implies x € Nj,;. See [HH2|, [Sh2] and [HYT] for details.

Theorem 3.3. Let R be a Noetherian ring of prime characteristic p and ¢ € R.

(1) Assume there exists a (uniform) test exponent Q for ¢ and 0 C R/(z) for all
(proper) R-regular sequences z = z1,...,z. Then Q is a test exponent for ¢
and 0 C M for all finitely generated R-module with pd(M) < oc.

(2) In particular, if (R, m) is an excellent equidimensional local ring and ¢ € R°,
then there exists a test exponent Q) for ¢ and 0 C M for all finitely generated
R-module with pd(M) < oo.

Proof. (1). For any M € P(R), there exists a short exact sequence (we may as well
assume M C Z with the inclusion map denoted by h)

O—>ML>Z—>N—>0

as in Theorem Then, because pd(N) < oo, we get a short exact sequence

0 — Fe(M) 2 pe(z) — FE(N) — 0 for every e € N.
Suppose cx? = 0 € F¢(M) for some x € M and for some ¢ > ). Then cz? =0 €
Fe¢(Z), which implies x € 0%, by the assumption on ). Therefore, there exists ¢ € R°
such that dx? =0 € F¢(Z) for all ¢ > 1. As F(h) is injective for all ¢’ € N, we
get dx? =0 € F(M) for all ¢ > 1, which implies that 2 € 0%, by the definition of
tight closure.

(2). This follows from part (1) as, under the assumption of (R, m), there is a
uniform test exponent ) for ¢ and 0 C R/(z) for all partial systems of parameters
z = z1,...,2; of R. (This is a result first proved by R. Y. Sharp in [Sh2]. An
alternative proof was then given in [HY1].) Also notice that, evidently, every proper
R-regular sequence is part of a system of parameters. 0

Remark 3.4. In fact, given any excellent equidimensional local ring (R, m) and any
¢ € R°, we are able to prove the existence of a uniform text exponent for cand 0 C M
for all finitely generated R-modules with finite phantom projective dimension. This
will be done in [HY?2].
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In a somewhat similar manner, Theorem also allows us to study the Frobenius
closure and show the existence of a uniform Frobenius test exponent for (all) R-
modules in P(R). Recall that, given R-modules N C M, the Frobenius closure of
N in M, denoted by N{;, is defined as N}, := {z € M |24, € NJ[\Z] for some ¢}. We
say @ is a Frobenius test exponent for N C M (or, equivalently, for 0 C M/N)
if (NAZ)E\C}] =N ][\?]. Moreover, a local ring (R, m) is said to be generalized Cohen-
Macaulay if H! (R) has finite length for every i < dim(R).

Theorem 3.5. Let R be a Noetherian ring of prime characteristic p. Assume that
every ideal of R generated by an R-reqular sequence is Frobenius closed (e.g., R is
F-injective). Then 0F, = 0 for any finitely generated R-module with G-dim(M) < oo.

Proof. This is parallel to the proof of Theorem (3.2l Fix a short exact sequence
0—M>7 N_—0

as in Theorem 2.3 Then, it is clear that h(0%;) C 0%. However, by the assumption of
R and the condition on Z imposed by Theorem [2.3] we have 05 = 0. Thus h(0%;) =0,
which implies 0§, = 0 as h is injective. O

Theorem 3.6. Let R be a Noetherian ring of prime characteristic p and ¢ € R.

(1) Assume there exists a (uniform) Frobenius test exponent Q) for 0 C R/(z) for
all (proper) R-regular sequences z = 21, ..., 2. Then Q is a uniform Frobenius
test exponent for 0 C M for all finitely generated R-module with pd(M) < oo.

(2) In particular, if (R, m) is a generalized Cohen-Macaulay local ring, then there
exists a uniform Frobenius test exponent QQ for 0 C M for all finitely generated
R-module with pd(M) < co.

Proof. (1). For any M € P(R), we only need to show (05,))® =0 C FF(M). As in
the proof of Theorem [3.3], there exist Z and N as in Theorem and, consequently,
a short exact sequence

0 — F(M) e, F(Z) — F¢(N) — 0 for every e € N.
Evidently, 05, C 05. However, by the assumption of @, we have (05))?} = 0 C
FE(Z). Thus, by the injectivity of F¥(h), we have (05,))? = 0 C FF(M), the
desired result.
(2). A result in [HKSY] shows that, when (R, m) is generalized Cohen-Macaulay,
there is a uniform Frobenius test exponent @) for 0 C R/(z) for all partial systems of
parameters £ = xq,...,x; of R. Now the desired claim follows from (1). 0

Theorem 3.7 ([KS, Corollary 4.3]). Let R be a Noetherian ring of prime character-

istic p and z = z1,...,2; form an R-reqular sequence. Then there exists a Frobenius
test exponent Q for (2)l9 C R for all q, that is, (Og/(é)[p])gg(é)[p] =0 for all q.

Theorem 3.8. Let R be a Noetherian ring of prime characteristic p and M a finitely
generated R-module with pd(M) < oco. Then there exists a Frobenius test exponent

Q for 0 C F¢(M) for all e € N. In other words, (O?e(M))E?J(M) =0 for all q.
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Proof. Say pd(M) = r. As in the proof of Theorem there exist Z and N as in
Theorem and, consequently, a short exact sequence

0 — Fe(M) 2 pe(z) — FE(N) — 0 for every e € N,
For each i = 0,1,...,r, Theorem implies that there is a Frobenius test exponent
Q; for 0 C R/(z,)1 for all q. Let Q = max{Q;|0 < i <r}. Then Q is a Frobenius
test exponent for 0 C F¢(M) for all e € N. Now the desired claim follows from the
injectiveness of F°(h) for all e as in the above short exact sequence. O

4. EMBEDDING MODULES OF LOCALLY FINITE INJECTIVE DIMENSION OVER
COHEN-MACAULAY RINGS

In this section, we assume that R is a Cohen-Macaulay ring that has a global
canonical module, which is denoted by w. (We no longer assume R has prime charac-
teristic p in this section.) The purpose is to prove a dual version of Theorem for
modules of locally finite injective dimension. The key point is a result by R. Y. Sharp
connecting P(R) and Z(R) (see Notation [0.1]).

Theorem 4.1 (Sharp, [Shl]). Let R be a Noetherian Cohen-Macaulay ring with a
global canonical module w. Then

(1) The functor P(R) =R Z(R) is well-defined and exact.

(2) The functor P(R) Lomale.) Z(R) is well-defined and exact.

(8) The above two functors establish an equivalence between P(R) and Z(R).
Now, the dual version of Theorem [2.3]is immediate in light of Theorem

Theorem 4.2. Let R be a Noetherian Cohen-Macaulay ring with a global canonical
module w. Then, for any finitely generated R-module M with locally finite injective
dimension (i.e., M € I(R)), there exist an integer r = pd(Hompg(w, M)), a proper
R-reqular sequence z = zi,..., 2., non-negative integers ng,ny,...,n,, and a short
exact sequence
0O— M —7—N-—70

with Z = &]_o(w/(z;7)w)", N € Z(R) and pd(Homg(w, N)) < r. It is automatically
true that n, > 0 unless M = 0.

Proof. Let M' = Hompg(w, M). Then pd(M’') < co by Theorem .1} Thus, from
Theorem [2.3 there exist r = pd(M’), an R-regular sequence z = 21, ..., 2., integers
ng, N1, -..,n, > 0, and a short exact sequence

(1) 0— M —272 — N —0
such that Z' = @]_o(R/(2};)))" and pd(N) < 7.

Now let Z = &]_o(w/(zp)w)™ & Z' ®pw and N = N' ®p w. Also notice that
M = M’ ®gw. Thus, applying the exact functor _ ®rw to (1), we have a short exact

sequence

0O0— M —27—N—70

as desired. All the remaining claims follow immediately. U
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If, moreover, (R, m) is local with maximal ideal m, then, for any finitely generated
R-modules M and M’ with id(M) < oo and pd(M') < oo, we have

depth(Hompg(w, M)) = depth(M) and  depth(M’' ®g w) = depth(M").
(Indeed, by Theorem [4.1|(1,2), we have inequalities depth(Homp(w, M)) > depth(M)
and depth(M' @p w) > depth(M’). Then, in light of Theorem [£.1|(3), we get the

desired equalities.) Thus we can say more about the cokernel of the embedding of M
in the following corollary.

Corollary 4.3. Let (R,m) be a Noetherian Cohen-Macaulay local ring that has a
canonical module w. Then, for any finitely generated R-module M # 0 with id(M) <

oo and dim(R)—depth(M) = r, there exist a proper R-reqular sequence z = 21, . .., 2,
non-negative integers ng,nq, ..., n, (with n, > 0 automatically), and a short exact
sequence

0O—M —2—N—70
with Z = ®j_o(w/(z))w)™, id(N) < 0o and, if N # 0, depth(N) > depth(M).

Proof. Let M, Z' N, Z, N be as in the proof of Theorem[4.2] Then, by the Auslander-
Buchsbaum formula, we have pd(M’) = dim(R) — depth(M’) = dim(R) — depth(M),
which gives depth(M) = dim(R) — pd(M’). Thus, if N # 0, we have depth(N) =
depth(N') = dim(R) — pd(N’) > dim(R) — pd(M') = depth(M), as desired. O
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