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SECOND COEFFICIENTS OF
HILBERT-KUNZ FUNCTIONS FOR DOMAINS

MELVIN HOCHSTER AND YONGWEI YAO

Abstract. Let (R,m, k) be an excellent (e.g., F -finite) equidimensional local Noe-
therian ring of prime characteristic p with dim(R) = d, I an ideal of R such that
λ(R/I) < ∞ and M a finitely generated R-module. We study the existence of
β(M) ∈ R such that λ(M/I [q]M) = eHK(I,M)qd + β(M)qd−1 + O(qd−2). We re-
fer to β(M) as the second coefficient of the Hilbert-Kunz function. In particular, we
show the existence of such β(M) when the defining ideal of the singular locus of R has
height at least 2.

0. Introduction

Throughout this paper R is a Noetherian commutative ring of prime characteristic p
with dim(R) = d and I is an arbitrarily given ideal of R such that λR(R/I) < ∞. We
write q = pn where n is a varying non-negative integer. For any q, we denote by I [q] the
ideal generated by {rq | r ∈ I}.

We use λR(−) (or λ(−) if R is understood) to denote the length of an R-module.
Given any finitely generated R-module M , there is the Hilbert-Kunz function en(I, M) =
λ(M/I [q]M), which is considered as a map from N to N. To simplify notation, we often
write en(I, M) as en(M) if no confusion arises.

Remark 0.1. Let R, I,M be as above. It is enough to understand the Hilbert-Kunz
functions over local rings: Indeed, let V (I) = {m |m ∈ Spec(R), I ⊆ m}, which is
a finite set consists of maximal ideals of R. Then we have en(M) = λ(M/I [q]M) =∑

m∈V (I) λRm(Mm/I [q]Mm) =
∑

m∈V (I) en(IRm, Mm).

For this reason, we assume R is local most of the time. By the notation (R,m, k),
we indicate that R is local with its maximal ideal being m and its residue field being
k = R/m.

By a result of [Mo], en(I, M) = α(M)qd + O(qd−1) for some α(M) ∈ R. This α(M)
is usually called the Hilbert-Kunz multiplicity of M with respect to I and is denoted
by eHK(I, M). (Recall that, given functions f, g : N → R, we write f(n) = O(g(n)) if
there exists C ∈ R such that |f(n)| ≤ |Cg(n)| for all n ∈ N, while we say f(n) = o(g(n))
if limn→∞ f(n)/g(n) = 0.)

The above result of [Mo] has been pushed further in [HMM].
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Theorem 0.2 ([HMM]). Let (R,m, k) be an excellent local normal ring of prime char-
acteristic p with a perfect residue field and dim(R) = d. Then en(M) = eHK(I, M)qd +
βqd−1 + O(qd−2) for some β ∈ R.

We are going to study the issue more generally. Let C1(R) be the quotient of the
Grothendieck group G0(R) by its subgroup spanned by {[R/P ] ∈ G0(R) | dim(R/P ) <
d− 1} (see Notation 1.1 (6)). Our result generalizes [HMM] as follows.

Theorem (Corollary 2.5). Let (R,m, k) be an excellent equidimensional reduced local
Noetherian ring of prime characteristic p such that the singular locus of R is defined by
an ideal of height at least 2. Then there exists a group homomorphism β : C1(R) → R
such that, for any finitely generated torsion free R-module M , we have

en(M) = eHK(I, M)qd + β(c1(M))qd−1 + O(qd−2).

In general, for any finitely generated R-module M (not necessarily torsion free), there
exists b(M) ∈ R such that

(1) en(M) = eHK(I, M)qd + b(M)qd−1 + O(qd−2).
(2) λ(TorR

1 (R/I [q], M)) =
(
b(M)− β(c1(M))

)
qd−1 + O(qd−2).

In proving the above result, we reduce to the F -finite case by the Γ-construction as in
[HH]. Recall that R is defined to be F -finite if R is module-finite over Rq := {rq | r ∈ R}
for all q (or equivalently, for q = p). If R is F -finite, then R is excellent by [Ku]. In
particular, its singular locus is a closed subset V (J) ⊆ Spec(R) defined by an ideal J .

Observe that the above result fails to hold in the following example, in which R is not
a domain.

Example 0.3 ([Mo]). Let R = k[[X, Y ]]/(X5 − Y 5) where k is any field of prime
characteristic p ≡ 2 or 3 mod 5. Then en(R) = 5q + cn with cn = −4 when n is even,
while cn = −6 when n is odd.

For any R-module M and for any n ≥ 0, we can derive an R-module structure on the
set M by r ·m := rpn

m for any r ∈ R and m ∈ M . We denote the derived R-module by
nM . In this terminology, we see that R is F -finite if and only if 1R (equivalently, nR for
every n ∈ N) is a finitely generated R-module.

Remark 0.4. If (R,m, k) is local and [k : kp] = pa, then it is easy to see that en(I, eM) =
λ( nM/I [q] · eM) = peaλ(M/I [qpe]M) = peaen+e(I,M) for any n, e ∈ N. If we choose e

such that
√

0
[pe]

= 0, then eM may be considered as a module over R/
√

0. Thus, to
study the behavior of en(M) when n → ∞, we may assume R is reduced without loss
of generality.

1. Sufficient and necessary conditions for the existence of β(M)

Notation 1.1. Keep the default assumptions on R, I and d.

(1) Denote Spec(R, i) = {P ∈ Spec(R) | dim(R/P ) = d− i} for any 0 ≤ i ≤ d.
(2) Denote f(M) = ⊕P∈Spec(R,0)(R/P )λRP

(MP ) for any given finitely generated R-
module M .
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(3) We say that an F -finite ring R satisfies condition (∗) if

(∗) λR(TorR
1 (R/I [q], e(f(R)))) = O(qd−2) for all sufficiently large e ∈ N.

(4) We say that an F -finite local ring (R,m, k) satisfies condition (∗∗) if, setting
a = logp[k : kp],

(∗∗) λR(TorR
1 (R/I, n(f(R)))) = O(qaqd−2) as n →∞.

(5) Denote W = R \ (∪P∈Spec(R,0)P ). We say an R-module M is W -torsion-free
if every element of W is a non-zero-divisor on M . Similarly, we say M is W -
torsion if W ∩AnnR(M) 6= ∅, which is equivalent to dim(M) < d. Notice that if
R is a domain then W -torsion-free (or W -torsion) is the same as torsion-free (or
torsion).

(6) Let G0(R) be the Grothendieck group of R. For any 0 ≤ i ≤ d, we denote by
Ci(R) the quotient of G0(R) by the subgroup spanned by {[R/P ] ∈ G0(R) |P ∈
∪j>i Spec(R, j) i.e., dim(R/P ) < d − i}. Moreover, for any finitely generated
R-module M , we denote by ci(M) the image of [M ] in Ci(R). We also denote
by C(R) the kernel of the natural map C1(R) → C0(R) and, moreover, we write
c(M) = c1(M)− c1(f(M)) ∈ C(R) for any finitely generated R-module M .

(7) Given finitely generated W -torsion R-modules M and N , we write M ∼ N
if there exists an exact sequence 0 → K → M → N → C → 0 such that
dim(K ⊕ C) ≤ d− 2.

Discussion 1.2. (1). Recall that R is called equidimensional if min(R) = Spec(R, 0). If
R is catenary (e.g., F -finite) and equidimensional, then Spec(R, i) consists of all prime
ideals P such that height(P ) = i.

(2). The natural group homomorphism G0(R) → C0(R), which factors through C1(R),
splits. Hence the natural group homomorphism C1(R) → C0(R) also splits.

(3). Consequently, C1(R) ∼= C(R)⊕C0(R). And it is easy to see that, for any finitely
generated R-module M , c(M) is exactly the projection of c1(M) to C(R). For any
W -torsion R-module T , we see that c1(T ) = 0 if and only if c(T ) = 0.

(4). If R is normal catenary, then C(R) is the class group of R.
(5). f(M) = f(N) if and only if c0(M) = c0(N).
(6). Given finitely generated W -torsion R-module M and N , we see that M ∼ N if

and only if MP
∼= NP for all P ∈ Spec(R, 1) ∩ (Supp(M) ∪ Supp(N)).

(7). Suppose M ∼ N . Say we have exact sequences 0 → K → M → L → 0 and
0 → L → N → C → 0 such that dim(K ⊕ C) ≤ d− 2. From these two exact sequences
we see that∣∣(en(M)− λ(TorR

1 (R/I [q], M))
)
−

(
en(N)− λ(TorR

1 (R/I [q], N))
)∣∣

≤ O(qd−2) + λ(TorR
2 (R/I [q], C)),

which relies on the fact that en(T ) + λ(TorR
1 (R/I [q], T )) = O(qdim(T )) for any finitely

generated R-module T , which is proved in [HMM, Lemma 1.1]. Assume, moreover,
that R satisfies S2. Then choose an R-regular sequence x = x1, x2 ∈ Ann(C). Since
pdR(R/(x)R) = 2, we have

λ(TorR
2 (R/I [q], R/(x)R)) = λ(TorR

1 (R/I [q], R/(x)R))− en(R/(x)R),
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which equal to O(qd−2) by [HMM, Lemma 1.1]. Then, as there exists an exact sequence
0 → D → (R/(x)R)r → C → 0, the long exact sequence forces λ(TorR

2 (R/I [q], C)) =
O(qd−2). Consequently, we have (under the S2 assumption)

en(M)− λ(TorR
1 (R/I [q], M)) = en(N)− λ(TorR

1 (R/I [q], N)) + O(qd−2).

(8). Suppose M ∼ N and (R,m, k) is local and F -finite with [k : kp] = pa. Then we
also have that

en(M)− q−aλ(TorR
1 (R/I, nM)) = en(N)− q−aλ(TorR

1 (R/I, nN)) + O(qd−2),

which relies on the fact that en(T ) + q−aλ(TorR
1 (R/I, nT )) + q−aλ(TorR

2 (R/I, nT )) =
O(qdim(T )) for any finitely generated R-module T , which is proved in [Se, Page 278,
Theorem].

(9). Suppose R is catenary (e.g., F -finite) and equidimensional. For any finitely
generated R-module M , we can write c1(M) =

∑t
i=1 c1(R/Qi) with Qi ∈ Spec(R). For

each Qi, choose a prime ideal Pi ⊆ Qi such that Pi ∈ Spec(R, 0). Let K = ⊕t
i=1Qi/Pi.

Then c1(M)+c1(K) =
∑t

i=1 c1(R/Qi)+
∑t

i=1(c1(R/Pi)−c1(R/Qi)) =
∑t

i=1 c1(R/Pi) =
c1(f(M)) + c1(f(K)), that is c1(M ⊕K) = c1(f(M ⊕K)) ∈ C1(R). Notice that K is
W -torsion-free.

(10). Suppose R is catenary (e.g., F -finite) and equidimensional and x ∈ C1(R), say
x =

∑r
i=1 c1(R/Qi)−

∑s
i=r+1 c1(R/Qi) with Qi ∈ Spec(R). For each Qi, choose a prime

ideal Pi ⊆ Qi such that Pi ∈ Spec(R, 0). Let M = (⊕r
i=1R/Pi) ⊕ (⊕s

i=r+1Qi/Pi)) and
N = (⊕r

i=1Qi/Pi) ⊕ (⊕s
i=r+1R/Pi)). It is easy to check that x = c1(M) − c1(N) and

M, N are both W -torsion-free.

Many of the implications in the next Proposition are implicit in [HMM].

Proposition 1.3. Let (R,m, k) be a reduced F -finite equidimensional Noetherian local
ring of prime characteristic p with dim(R) = d. Consider the following statements (with
q = pn):

(1) R satisfies (∗) and, moreover, for any finitely generated W -torsion R-module T
such that c1(T ) = c1(f(T )) = 0 (i.e., c(T ) = c1(T ) = 0) and all sufficiently large
e ∈ N, en( eT )− λ(TorR

1 (R/I [q], eT )) = O(qd−2).
(2) en(M)− en(f(M)) = O(qd−2) for all finitely generated W -torsion-free R-module

M such that c1(M) = c1(f(M)) (i.e., c(M) = 0).
(3) en(M)− en(N) = O(qd−2) for all finitely generated W -torsion-free R-modules M

and N such that c1(M) = c1(N).
(4) There exists a group homomorphism τ : C(R) → R such that en(M)− en(N) =

τ(c1(M) − c1(N))qd−1 + O(qd−2) for all finitely generated W -torsion-free R-
modules M and N satisfying c0(M) = c0(N).

(5) There exists a group homomorphism β : C1(R) → R such that

en(M) = eHK(I, M)qd + β(c1(M))qd−1 + O(qd−2)

for every finitely generated W -torsion-free R-module M .
(6) For any finitely generated W -torsion-free R-module M and for any e ∈ N,

λ(TorR
1 (R/I [q], eM)) = O(qd−2).
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(7) For any finitely generated W -torsion-free R-module M , there exists e0 such that
λ(TorR

1 (R/I [q], eM)) = O(qd−2) for all e0 ≤ e ∈ N.
(8) R satisfies (∗).

Then (1) ⇒ (2) ⇔ (3) ⇔ (4) ⇔ (5) ⇒ (6) ⇒ (7) ⇒ (8). If, moreover, R satisfies S2,
then (8) ⇒ (1) and, hence, all the above statements are equivalent.

Proof. Denote a = logp[k : kp]. The assumption implies that W consists of non-zero-
divisors of R.

(1) ⇒ (2). There exists an exact sequence 0 → M → f(M) → T → 0 so that T is
W -torsion and c1(T ) = 0. Choose e � 0 such that λ(TorR

1 (R/I [q], e(f(M))) = O(qd−2)
and λ(TorR

1 (R/I [q], eT )− en( eT ) = O(qd−2) by (1). Then there is a long exact sequence

TorR
1

( R

I [q]
, e(f(M))

)
−→ TorR

1

( R

I [q]
, eT

)
−→

eM

I [q] · eM
−→

e(f(M))

I [q] · e(f(M))
−→

eT

I [q] · eT
−→ 0.

Thus peaen+e(M)− peaen+e(f(M)) = λ(TorR
1 (R/I [q], eT ))− en( eT )−O(qd−2) = O(qd−2),

which implies en(M)− en(f(M)) = O(qd−2).
(2) ⇒ (3). By Discussion 1.2(9), there exists a finitely generated W -torsion-free R-

module K such that c1(M ⊕K) = c1(f(M ⊕K)) ∈ C1(R). Notice that c1(M) = c1(N)
implies that f(M) = f(N) and hence c1(N ⊕ K) = c1(f(N ⊕ K)) ∈ C1(R). Now the
claim follows from (2) applied to M ⊕K and N ⊕K. (3) ⇒ (2) is trivial.

(3) ⇒ (4). As c1(
1M ⊕ Npd−1+a

) = c1(
1N ⊕Mpd−1+a

), we apply (3) to 1M ⊕ Npd−1+a

and 1N ⊕Mpd−1+a
, which gives that

en(1M ⊕Npd−1+a

)− en(1N ⊕Mpd−1+a

) = O(qd−2) that is

(en(1M)− en(1N))− pd−1+a(en(M)− en(N)) = O(qd−2) that is

(en+1(M)− en+1(N))− pd−1(en(M)− en(N)) = O(qd−2) which gives

en(M)− en(N) = t(M, N)qd−1 + O(qd−2)

for some t(M, N) ∈ R, in which t is viewed as a map. For every element x ∈ C(R), we
define τ(x) = t(M, N) provided x = c1(M)−c1(N) with M and N W -torsion-free finitely
generated over R (cf. Discussion 1.2(10)). To check well-definedness, say x = c1(M

′)−
c1(N

′) with M ′ and N ′ W -torsion-free. Then c1(M ⊕N ′) = c1(M
′ ⊕N), which implies

en(M⊕N ′) = en(M ′⊕N)+O(qd−2), that is, en(M)−en(N) = en(M ′)−en(N ′)+O(qd−2)
by (4), which forces t(M, N) = t(M ′, N ′). Now that we have showed that τ : C(R) → R
is well-defined, it is straightforward to verify that τ is a group homomorphism.

(4) ⇒ (5). As c0(
1M) = c0(M

pd+a
), we apply (4) to 1M and Mpd+a

, which gives that

(with τ(c1(
1M)− c1(M

pd+a
)) = b′(M) = pab′′(M) ∈ R)

en(1M)− en(Mpd+a

) = b′(M)qd−1 + O(qd−2) that is

en(1M)− pd+aen(M) = b′(M)qd−1 + O(qd−2) that is

en+1(M)− pden(M) = b′′(M)qd−1 + O(qd−2) which gives

en(M) = eHK(I, M)qd + b(M)qd−1 + O(qd−2) (cf. [HMM, Theorem 1.11])
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with b(M) = b′′(M)/(pd−1 − pd) = τ(c1(
1M) − c1(M

pd+a
))/(pd−1+a − pd+a), in which

b is considered as a map. For every element x ∈ C1(R), set β(x) = b(M) − b(N) if
x = c1(M) − c1(N) with M and N finitely generated W -torsion-free R-modules (cf.
Discussion 1.2(9)). It is straightforward to check that β : C1(R) → R is a well-defined
group homomorphism.

(5) ⇒ (3). This is trivial as c1(M) 7→ eHK(I, M) is well-defined and determines a
group homomorphism from C1(R) to R.

(5) ⇒ (6). It suffice to prove λ(TorR
1 (R/I [q], M)) = O(qd−2) as the assumption of M

being W -torsion-free implies eM being W -torsion-free for all e ∈ N. Choose an exact
sequence 0 → M ′ → G → M → 0 such that G is free of finite rank over R. Then G and
hence M ′ are W -torsion-free. Now λ(TorR

1 (R/I [q], M)) = en(M ′) − en(G) + en(M) =(
eHK(I, M ′) − eHK(I, G) + eHK(I, M)

)
qd +

(
β(c1(M

′)) − β(c1(G)) + β(c1(M))
)
qd−1 +

O(qd−2) = O(qd−2).
(6) ⇒ (7). This is obvious.
(7) ⇒ (8). This follows immediately as R is W -torsion-free.
(8) ⇒ (1) in case R satisfies S2. Let A be the free abelian group generated by the set

of all isomorphic classes {[R/Q] |Q ∈ Spec(R, 1)}. Then C(R) is a quotient of A modulo
a subgroup generated by {

∑
Q∈Spec(R,1) λRQ

((R/(P + xR))Q)[R/Q] |P ∈ Spec(R, 0), x ∈
R \ P}.

The assumption c1(T ) = c(T ) = 0 implies that there exist r ≤ s, Pi ∈ Spec(R, 0),
xi /∈ Pi for 1 ≤ i ≤ s such that

∑
Q∈Spec(R,1)

λRQ
(TQ)[R/Q] +

r∑
i=1

∑
Q∈Spec(R,1)

λRQ
((R/(Pi + xiR))Q)[R/Q]

=
s∑

i=r+1

∑
Q∈Spec(R,1)

λRQ
((R/(Pi + xiR))Q)[R/Q]

as elements in the (free abelian) group A.
Choose e0 such that the statement of (∗) always holds for e ≥ e0 and such that√

AnnR(T ⊕ (⊕s
i=1R/(Pi + xiR)))

[pe0 ]
⊆ AnnR(T ⊕ (⊕s

i=1R/(Pi + xiR))).

Then for all e ≥ e0, we have eT ⊕ (⊕r
i=1

e(R/(Pi + xiR)) ∼ ⊕s
i=r+1

e(R/(Pi + xiR)).
Therefore, to prove the claim of (1), it suffices to prove that, for any P ∈ Spec(R, 0), x /∈
P, e0 ≤ e ∈ N, we always have

en( e(R/(P + xR)))− λ(TorR
1 (R/I [q], e(R/(P + xR)))) = O(qd−2).

Indeed, there is an exact sequence 0 → e(R/P ) → e(R/P ) → e(R/(P +xR)) → 0, which
gives a long exact sequence

TorR
1

( R

I [q]
, e(R/P )

)
−→ TorR

1

( R

I [q]
, e(R/(Pi + xiR))

)
−→

e(R/P )

I [q] · e(R/P )
−→

e(R/P )

I [q] · e(R/P )
−→

e(R/(Pi + xiR))

I [q] · e(R/(Pi + xiR))
−→ 0,
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which implies en( e(R/(P + xR))) − λ(TorR
1 (R/I [q], e(R/(P + xR)))) = en( e(R/P )) −

en( e(R/P )) + O(qd−2) = O(qd−2).
Now the proof is complete. �

Example 1.4. Suppose (R,m, k) is normal. Then statement (2) of Proposition 1.3 is
verified in [HMM, Theorem 1.4]. Therefore statements (1) through (8) of Proposition 1.3
all hold.

Proposition 1.5. Let (R,m, k) be a reduced F -finite equidimensional local Noetherian
ring of prime characteristic p. Denote [k : kp] = pa. Consider the following statements
(with q = pn):

(1) R satisfies (∗∗).
(2) R satisfies (∗∗) and, moreover, for any finitely generated W -torsion R-module T

such that c(T ) = 0, en(T )− q−aλ(TorR
1 (R/I, nT )) = O(qd−2).

(3) en(M)− en(f(M)) = O(qd−2) for all finitely generated W -torsion-free R-module
M such that c1(M) = c1(f(M)) (i.e., c(M) = 0).

(4) en(M)− en(N) = O(qd−2) for all finitely generated W -torsion-free R-modules M
and N such that c1(M) = c1(N).

(5) There exists a group homomorphism τ : C(R) → R such that en(M)− en(N) =
τ(c1(M) − c1(N))qd−1 + O(qd−2) for all finitely generated W -torsion-free R-
modules M and N satisfying c0(M) = c0(N).

(6) There exists a group homomorphism β : C1(R) → R such that

en(M) = eHK(I, M)qd + β(c1(M))qd−1 + O(qd−2)

for every finitely generated W -torsion-free R-module M .
(7) q−aλ(TorR

1 (R/I, nM)) = O(qd−2) for any finitely generated W -torsion-free R-
module M .

Then (7) ⇔ (1) ⇒ (2) ⇒ (3) ⇔ (4) ⇔ (5) ⇔ (6).

Proof. The proof is very similar to (and actually simpler than) the proof of Proposi-
tion 1.3.

(1) ⇒ (2). Let A be the free abelian group generated by the set of all isomorphic
classes {[R/Q] |Q ∈ Spec(R, 1)}. Then C(R) is a quotient of A modulo a subgroup
generated by {

∑
Q∈Spec(R,1) λRQ

((R/(P + xR))Q)[R/Q] |P ∈ Spec(R, 0), x ∈ R \ P}.
The assumption c1(T ) = c(T ) = 0 implies that there exist r ≤ s, Pi ∈ Spec(R, 0),

xi /∈ Pi for 1 ≤ i ≤ s such that∑
Q∈Spec(R,1)

λRQ
(TQ)[R/Q] +

r∑
i=1

∑
Q∈Spec(R,1)

λRQ
((R/(Pi + xiR))Q)[R/Q]

=
s∑

i=r+1

∑
Q∈Spec(R,1)

λRQ
((R/(Pi + xiR))Q)[R/Q]

as elements in the (free abelian) group A.
Choose n0 such that√

AnnR(T ⊕ (⊕s
i=1R/(Pi + xiR)))

[pn0 ]
⊆ AnnR(T ⊕ (⊕s

i=1R/(Pi + xiR))).
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Then for all n ≥ n0, we have nT ⊕ (⊕r
i=1

n(R/(Pi + xiR)) ∼ ⊕s
i=r+1

n(R/(Pi + xiR)).
Therefore, to prove the claim of (2), it suffices to prove that, for any P ∈ Spec(R, 0)
and x /∈ P , we always have

λ(R/I ⊗ n(R/(P + xR)))− λ(TorR
1 (R/I, n(R/(P + xR)))) = O(qd−2qa).

Indeed, there is an exact sequence 0 → n(R/P ) → n(R/P ) → n(R/(P + xR)) → 0,
which gives a long exact sequence

TorR
1

(R

I
, n(R/P )

)
−→ TorR

1

(R

I
, n(R/(Pi + xiR))

)
−→

n(R/P )

I · n(R/P )
−→

n(R/P )

I · n(R/P )
−→

n(R/(Pi + xiR))

I · n(R/(Pi + xiR))
−→ 0,

which implies

λ(R/I ⊗ n(R/(P + xR)))− λ(TorR
1 (R/I, n(R/(P + xR))))

= λ(R/I ⊗ n(R/P ))− λ(R/I ⊗ n(R/P )) + O(qd−2qa) = O(qd−2qa).

(2) ⇒ (3). There exists an exact sequence 0 → M → f(M) → T → 0 so that T is
W -torsion and c1(T ) = 0. Then, as n → ∞, λ(TorR

1 (R/I, n(f(M))) = O(qd−2qa) and
λ(TorR

1 (R/I, nT )−λ(R/I⊗ nT ) = O(qd−2qa) by (1). Also there is a long exact sequence

TorR
1

(R

I
, n(f(M))

)
−→ TorR

1

(R

I
, nT

)
−→

nM

I · nM
−→

n(f(M))

I · n(f(M))
−→

nT

I · nT
−→ 0.

Thus qaen(M) − qaen(f(M)) = λ(TorR
1 (R/I, nT )) − qaen(T ) − O(qd−2qa) = O(qd−2qa),

which implies en(M)− en(f(M)) = O(qd−2).
(3) ⇔ (4) ⇔ (5) ⇔ (6). This is proved in Proposition 1.3.
(7) ⇒ (1). This follows immediately as R is W -torsion-free.
(1) ⇒ (7). By Discussion 1.2(8), there exists a finitely generated W -torsion-free R-

module K such that c1(M ⊕K) = c1(f(M ⊕K)) ∈ C1(R). Thus, as it suffices to prove
the claim for M ⊕ K, we may assume c1(M) = c1(f(M)) without loss of generality.
There exists an exact sequence 0 → f(M) → M → T → 0 so that c1(T ) = 0 and T is
W -torsion. Then, for any n ∈ N, there is a long exact sequence

TorR
1

(R

I
, n(f(M))

)
−→ TorR

1

(R

I
, nM

)
−→ TorR

1

(R

I
, nT

)
−→

n(f(M))

I · n(f(M))
−→

nM

I · nM
−→

nT

I · nT
−→ 0,

which gives the desired conclusion

λ(TorR
1 (R/I, nM))

= qa
(
en(M)− en((f(M))

)
+

(
qaen(T )− λ(TorR

1 (R/I, nT ))
)
−O(qaqd−2)

= qaO(qd−2) + qaO(qd−2)−O(qaqd−2)

= O(qaqd−2),
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by (∗∗) applied to f(M), (3) applied to M , and by (2) applied to T . �

2. Applications

Theorem 2.1 (See [HMM, Theorem 1.12]). Let (R,m, k) be an F -finite reduced equidi-
mensional Noetherian local ring of prime characteristic p satisfying condition (5) of
Proposition 1.3 or condition (∗∗). Then there exists a group homomorphism β : C1(R) →
R and, for any finitely generated R-module M , there exists b(M) ∈ R such that

(1) en(M) = eHK(I, M)qd + b(M)qd−1 + O(qd−2).
(2) λ(TorR

1 (R/I [q], M)) =
(
b(M)− β(c1(M))

)
qd−1 + O(qd−2); and

q−aλ(TorR
1 (R/I, nM)) =

(
b(M)− β(c1(M))

)
qd−1 + O(qd−2) in case of (∗∗).

Proof. As condition (∗∗) implies Proposition 1.5(6), which is the same as Proposi-
tion 1.3(5), we may simply assume Proposition 1.3(5).

Let T = {x ∈ M |x/1 = 0 ∈ W−1M} be the W -torsion submodule of M . Then
M ′ = M/T is W -torsion-free and there is an exact sequence 0 → T → M → M ′ → 0.
Observe that eHK(I, M) = eHK(I, M ′). There also exists an exact sequence 0 → N →
G → M → 0 such that G is free of finite rank over R. Then G and hence M ′ are
W -torsion-free.

Let β : C1(R) → R be as in Proposition 1.3(5). Then apply R/I [q]⊗R to 0 → T →
M → M ′ → 0 and the same argument as in the proof of [HMM, Theorem 1.12] shows
part (1), that is en(M) = eHK(I, M)qd + b(M)qd−1 + O(qd−2) for some b(M) ∈ R.

To prove (2), notice that the long exact sequence of Tor gives λ(TorR
1 (R/I [q], M)) =

en(N) − en(G) + en(M) =
(
eHK(I, N) − eHK(I, G) + eHK(I, M)

)
qd +

(
β(c1(N)) −

β(c1(G)) + b(M)
)
qd−1 + O(qd−2) =

(
b(M) − β(c1(M))

)
qd−1 + O(qd−2). In case of (∗∗),

notice that the long exact sequence of Tor also gives λ(TorR
1 (R/I, nM)) = qaen(N) −

qaen(G)+qaen(M)+O(qaqd−2) =
(
eHK(I,N)−eHK(I, G)+eHK(I, M)

)
qaqd+

(
β(c1(N))−

β(c1(G)) + b(M)
)
qaqd−1 + O(qaqd−2) =

(
b(M) − β(c1(M))

)
qaqd−1 + O(qaqd−2), that is,

q−aλ(TorR
1 (R/I, nM)) =

(
b(M)− β(c1(M))

)
qd−1 + O(qd−2). �

Corollary 2.2. Let (R,m, k) be an F -finite equidimensional Noetherian local ring of
prime characteristic p such that R/

√
0 satisfies condition (5) of Proposition 1.3 or con-

dition (∗∗). Then, for any finitely generated R-module M , there exists b(M) ∈ R such
that en(M) = eHK(I, M)qd + b(M)qd−1 + O(qd−2).

Proof. There exists e such that
√

0
[pe]

= 0. Then eM may be considered as a finitely
generated module over R/

√
0. As it suffices to prove the claim for eM , we assume R is

reduced and satisfies condition (5) of Proposition 1.3 or condition (∗∗) without loss of
generality. Now the claim follow immediately from Theorem 2.1. (See Remark 0.4.) �

Theorem 2.3. Let (R,m, k) be an F -finite Noetherian local equidimensional reduced
ring of prime characteristic p. Suppose there is an module-finite extension ring R′ of R
in the total fraction ring of R such that (a) R′

n satisfies condition (2) of Proposition 1.3
or condition (∗∗) for every n ∈ V (IR′) ⊆ Spec(R′), and (b) AnnR(R′/R) has height at
least 2. Then there exists a group homomorphism β : C1(R) → R such that, for any
finitely generated torsion free R-module M , we have

en(M) = eHK(I, M)qd + β(c1(M))qd−1 + O(qd−2).
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In general, for any finitely generated R-module M (not necessarily torsion free), there
exists b(M) ∈ R such that

(1) en(M) = eHK(I, M)qd + b(M)qd−1 + O(qd−2).
(2) λ(TorR

1 (R/I [q], M)) =
(
b(M)− β(c1(M))

)
qd−1 + O(qd−2).

Proof. As condition (∗∗) implies Proposition 1.5(3), which is the same as Proposi-
tion 1.3(2), we may simply assume Proposition 1.3(2)(3).

Throughout this proof, we will denote M ⊗R R′ by M ′ and denote the torsion sub-
module of M ′ by T (M ′) for any given R-module M . Thus M ′/T (M ′) is a torsion-
free R′-module. As an R′-module, en(IR′, M ′) = λR′(M ′/I [pn]M ′). As an R-module,
en(I, M ′) = λR(M ′/I [pn]M ′).

For any exact sequence 0 → M1 → M → M2 → 0 of finitely generated R-modules,
there is an induced exact sequence 0 → K → M ′

1 → M ′ → M ′
2 → 0 for some finitely

generated R′-module K. As (R′)P = RP (and hence KP = 0) for any P ∈ Spec(R, 0) ∪
Spec(R, 1), we see that dimR′(K) = dimR(K) < d − 1. This implies that c1(M) 7→
c1(M ⊗R R′) defines a group homomorphism C1(R) → C1(R

′).
For any finitely generated torsion-free R-module M , we have an induced long exact se-

quence TorR
1 (M, R′/R) → M → M ′ → M⊗R R′/R → 0, which actually implies an exact

sequence 0 → M → M ′ → M⊗R R′/R → 0 since M is torsion-free while TorR
1 (M, R′/R)

is torsion. This implies that en(I,M) − en(I, M ′) = O(qd−2) by [HMM, Lemma 1.1].
Moreover, for any P ∈ Spec(R, 0)∪ Spec(R, 1), we see that (M ′)P

∼= MP is torsion-free,
meaning (T (M ′))P = 0. Hence dimR′(T (M ′)) = dimR(T (M ′)) < d − 1. Also, notice
that, any n ∈ V (IR′), dim(R′

n) = dim(R) by the dimension formula. Consequently,
c1(M

′
n) = c1(M

′
n/T (M ′)n) ∈ C1(R

′
n) and en(IR′

n, M
′
n) = en(IR′

n, M
′
n/T (M ′)n) + O(qd−2)

for every n ∈ V (IR′). It is easy to see that M ′
n/T (M ′)n is a torsion-free module over R′

n.
By Proposition 1.3 and Theorem 2.1, it suffices to show that en(I,M) − en(I, N) =

O(qd−2) for all finitely generated torsion-free R-modules M and N provided that c1(M) =
c1(N). For any such M and N , we have c1(M

′) = c1(N
′) ∈ C1(R

′) and hence, by the
paragraph above, c1(M

′
n/T (M ′)n) = c1(N

′
n/T (N ′)n) ∈ C1(R

′
n) for every n ∈ V (IR′). By

the assumption on R′
n, we have en(IR′

n, M
′
n/T (M ′)n) = en(IR′

n, N
′
n/T (N ′)n) + O(qd−2)

for every n ∈ V (IR′), which implies en(IR′
n, M

′
n) = en(IR′

n, N
′
n) + O(qd−2) for every n ∈

V (IR′) by last paragraph. By Remark 0.1, we get en(IR′, M ′) = en(IR′, N ′) + O(qd−2),
which implies the desired result that en(I, M) = en(I, N) + O(qd−2) from what have
been shown in the last paragraph. �

As a corollary, we conclude that it suffices to consider the S2 rings as far as the current
issue is concerned. Recall that the S2-ification of an F -finite local Noetherian reduced
ring always exists.

Corollary 2.4. Let (R,m, k) be an F -finite equidimensional local Noetherian reduced
ring of prime characteristic p and R′ be the S2-ification of R. Suppose R′ satisfies con-
dition (∗) or (∗∗) locally at every n ∈ V (IR′). Then there exists a group homomorphism
β : C1(R) → R such that, for any finitely generated torsion free R-module M , we have

en(M) = eHK(I,M)qd + β(c1(M))qd−1 + O(qd−2).

In general, for any finitely generated R-module M (not necessarily torsion free), there
exists b(M) ∈ R such that
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(1) en(M) = eHK(I, M)qd + b(M)qd−1 + O(qd−2).
(2) λ(TorR

1 (R/I [q], M)) =
(
b(M)− β(c1(M))

)
qd−1 + O(qd−2).

Proof. Since R′ has S2, Proposition 1.3(2) is satisfied over R′. By construction of R′,
AnnR(R′/R), as an ideal of R, has height at least 2. Now apply Theorem 2.3. �

A special case of the above corollary is the following.

Corollary 2.5. Let (R,m, k) be an excellent equidimensional Noetherian reduced ring
of prime characteristic p such that the singular locus of R is defined by an ideal of height
at least 2. Then there exists a group homomorphism β : C1(R) → R such that, for any
finitely generated torsion free R-module M , we have

en(M) = eHK(I, M)qd + β(c1(M))qd−1 + O(qd−2).

In general, for any finitely generated R-module M (not necessarily torsion free), there
exists b(M) ∈ R such that

(1) en(M) = eHK(I, M)qd + b(M)qd−1 + O(qd−2).
(2) λ(TorR

1 (R/I [q], M)) =
(
b(M)− β(c1(M))

)
qd−1 + O(qd−2).

Proof. By the Γ-construction, we may assume R is F -finite without loss of generality.

(First, notice that R̂ remains equidimensional and reduced with its singular locus defined
by an ideal of height at least 2. Then, by the Γ-construction (see [HH, Section 6]), there

exists a faithfully flat local and purely inseparable extension (R̂Γ, mR̂Γ) of (R̂,mR̂) such

that R̂Γ is an F -finite, reduced and equidimensional local ring. Moreover, by choosing

Γ small enough, one can make sure that R̂ and R̂Γ have the same singular locus under

the natural homeomorphism Spec(R̂) ∼= Spec(R̂Γ). Thus, the singular locus of R̂Γ is
defined by an ideal of height at least 2. It is easy to see that there is a well-defined

group homomorphism C1(R) → C1(R̂
Γ) induced by [M ] 7→ [M ⊗R R̂Γ]. Moreover,

as mR̂Γ is the maximal ideal of R̂Γ, the Hilbert-Kunz functions en(I,M) over R and

en(IR̂Γ, M ⊗R R̂Γ) over R̂Γ are the same for any finitely generated R-module M .)
Let R′ be the integral closure of R in its total fraction ring. Then AnnR(R′/R) is an

ideal of R with height at least 2. (Therefore R′ is the S2-ification of R.) By [HMM], R′

satisfies Proposition 1.3(2). Now apply Theorem 2.3 or Corollary 2.4. �

Remark 2.6. Let R′ be as in the above proof and let A := (R :R R′) = AnnR(R′/R).
Then AM is an R-submodule of M and dim(M/AM) ≤ dim(R)− 2 since dim(R/A) ≤
dim(R) − 2. But, as A is also an ideal of R′, AM is an R′-module and the result of
[HMM] applies. This should give an alternate proof to Corollary 2.5.

Example 2.7. Let S = k[X1, X2, . . . , Xd] where k is a field of characteristic p and d ≥ 2,
and k ⊆ R ⊆ S such that Xn1

1 Xn2
2 · · ·Xnd

d ∈ R for all n1 + n2 + · · · + nd � 0. Then
heightR(S/R) = d and the above result applies. Notice that R is not normal unless
R = S.

Similarly, let S = k[[X1, X2, . . . , Xd]] where k is a field of characteristic p and d ≥ 2,
and k ⊆ R ⊆ S such that Xn1

1 Xn2
2 · · ·Xnd

d S ⊂ R for all n1 + n2 + · · · + nd � 0. Then
heightR(S/R) = d and the above result applies. Notice that R is not normal unless
R = S.
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