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SECOND COEFFICIENTS OF
HILBERT-KUNZ FUNCTIONS FOR DOMAINS

MELVIN HOCHSTER AND YONGWEI YAO

ABSTRACT. Let (R, m, k) be an excellent (e.g., F-finite) equidimensional local Noe-
therian ring of prime characteristic p with dim(R) = d, I an ideal of R such that
MR/I) < oo and M a finitely generated R-module. We study the existence of
B(M) € R such that A(M/IUM) = egr (I, M)q® + B(M)q? + O(¢?2). We re-
fer to S(M) as the second coefficient of the Hilbert-Kunz function. In particular, we
show the existence of such (M) when the defining ideal of the singular locus of R has
height at least 2.

0. INTRODUCTION

Throughout this paper R is a Noetherian commutative ring of prime characteristic p
with dim(R) = d and I is an arbitrarily given ideal of R such that Agr(R/I) < co. We
write ¢ = p™ where n is a varying non-negative integer. For any ¢, we denote by 14 the
ideal generated by {r?|r € I}.

We use Ag(—) (or A(—) if R is understood) to denote the length of an R-module.
Given any finitely generated R-module M, there is the Hilbert-Kunz function e, (1, M) =
A(M/I9 M), which is considered as a map from N to N. To simplify notation, we often
write e, (I, M) as e, (M) if no confusion arises.

Remark 0.1. Let R, I, M be as above. It is enough to understand the Hilbert-Kunz
functions over local rings: Indeed, let V(I) = {m|m € Spec(R),I C m}, which is
a finite set consists of maximal ideals of R. Then we have e,(M) = \(M/IWM) =

> mev () Arn (M / TUM ) =37y en(1 Ry Mi).

For this reason, we assume R is local most of the time. By the notation (R, m, k),
we indicate that R is local with its maximal ideal being m and its residue field being
k= R/m.

By a result of [Md], e, (I, M) = a(M)q? + O(g*!) for some a(M) € R. This a(M)
is usually called the Hilbert-Kunz multiplicity of M with respect to I and is denoted
by ey (I, M). (Recall that, given functions f, g : N — R, we write f(n) = O(g(n)) if
there exists C' € R such that |f(n)| < |Cg(n)| for all n € N, while we say f(n) = o(g(n))
if lim, o f(n)/g(n) =0.)

The above result of [Mo] has been pushed further in [HMM].
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Theorem 0.2 ([HMM]). Let (R, m, k) be an excellent local normal ring of prime char-
acteristic p with a perfect residue field and dim(R) = d. Then e,(M) = egr (I, M)q® +
Bgt + O(q*2) for some 3 € R.

We are going to study the issue more generally. Let Cj(R) be the quotient of the
Grothendieck group Go(R) by its subgroup spanned by {[R/P]| € Go(R) | dim(R/P) <
d — 1} (see Notation (6)). Our result generalizes [HMM] as follows.

Theorem (Corollary 2.5)). Let (R, m, k) be an excellent equidimensional reduced local
Noetherian ring of prime characteristic p such that the singular locus of R is defined by
an ideal of height at least 2. Then there exists a group homomorphism (5 : C1(R) — R
such that, for any finitely generated torsion free R-module M, we have

en(M) = enrc(I, M)q" + B(cr(M))g"™" + O(¢"?).

In general, for any finitely generated R-module M (not necessarily torsion free), there
exists b(M) € R such that

(1) en(M) = egr (I, M)g® +b(M)q?* + O(¢?72).
(2) N(Tor{'(R/119, M)) = (b(M) — B(er(M)))g*~" + O(¢™?).

In proving the above result, we reduce to the F-finite case by the I'-construction as in
[HH]. Recall that R is defined to be F-finite if R is module-finite over R? := {r?|r € R}
for all ¢ (or equivalently, for ¢ = p). If R is F-finite, then R is excellent by [Kul. In
particular, its singular locus is a closed subset V' (J) C Spec(R) defined by an ideal J.

Observe that the above result fails to hold in the following example, in which R is not
a domain.

Example 0.3 ([Mo]). Let R = k[[X,Y]]/(X® — Y®) where k is any field of prime
characteristic p = 2 or 3 mod 5. Then e,(R) = 5¢ + ¢, with ¢, = —4 when n is even,
while ¢, = —6 when n is odd.

For any R-module M and for any n > 0, we can derive an R-module structure on the
set M by r-m = r?"m for any r € R and m € M. We denote the derived R-module by
"M. In this terminology, we see that R is F-finite if and only if 'R (equivalently, "R for
every n € N) is a finitely generated R-module.

Remark 0.4. If (R, m, k) is local and [k : kP] = p®, then it is easy to see that e, (I, ‘M) =
A("M /119 M) = peaN(M /TP IM) = pe, (I, M) for any n,e € N. If we choose e
such that \/ﬁ[p] = 0, then °M may be considered as a module over R/\/6 Thus, to
study the behavior of e, (M) when n — oo, we may assume R is reduced without loss
of generality.

1. SUFFICIENT AND NECESSARY CONDITIONS FOR THE EXISTENCE OF (M)

Notation 1.1. Keep the default assumptions on R, I and d.
(1) Denote Spec(R,i) = {P € Spec(R) | dim(R/P) =d — i} for any 0 < i < d.
(2) Denote f(M) = @pespec(R,o)(R/P)ARP(MP) for any given finitely generated R-
module M.
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(3) We say that an F-finite ring R satisfies condition () if

* r(Tor : = O(¢* or all sufficiently large e € N.
Ar(Tor®(R/T9 {(f(R O(q*%) for all sufficiently 1 N
(4) We say that an F-finite local ring (R, m, k) satisfies condition (k) if, setting
a = log, [k : kP],
(%) Ar(Tory (R/1, "(f(R)))) = O(q"q"™) as n — oo

(5) Denote W = R\ (Upespec(r,0)P). We say an R-module M is W-torsion-free
if every element of W is a non-zero-divisor on M. Similarly, we say M is W-
torsion if W N Anng(M) # @), which is equivalent to dim(M) < d. Notice that if
R is a domain then W-torsion-free (or W-torsion) is the same as torsion-free (or
torsion).

(6) Let Go(R) be the Grothendieck group of R. For any 0 < i < d, we denote by
C;(R) the quotient of Go(R) by the subgroup spanned by {[R/P] € Go(R) | P €
Ujs; Spec(R, j) i.e., dim(R/P) < d — i}. Moreover, for any finitely generated
R-module M, we denote by ¢;(M) the image of [M] in C;(R). We also denote
by C(R) the kernel of the natural map C}(R) — Cy(R) and, moreover, we write
c(M)=c1(M)—c1(f(M)) € C(R) for any finitely generated R-module M.

(7) Given finitely generated W-torsion R-modules M and N, we write M ~ N
if there exists an exact sequence 0 - K — M — N — (' — 0 such that

dim(K @ C) <d - 2.

Discussion 1.2. (1). Recall that R is called equidimensional if min(R) = Spec(R,0). If
R is catenary (e.g., F-finite) and equidimensional, then Spec(R,7) consists of all prime
ideals P such that height(P) = i.

(2). The natural group homomorphism Go(R) — Cy(R), which factors through C(R),
splits. Hence the natural group homomorphism C;(R) — Cy(R) also splits.

(3). Consequently, C1(R) = C(R) ® Co(R). And it is easy to see that, for any finitely
generated R-module M, ¢(M) is exactly the projection of ¢;(M) to C'(R). For any
W-torsion R-module T, we see that ¢, (T") = 0 if and only if ¢(T") = 0.

(4). If R is normal catenary, then C(R) is the class group of R.

(5). f(M) = f(N) if and only if ¢o(M) = ¢o(V).

(6). Given finitely generated W-torsion R-module M and N, we see that M ~ N if
and only if Mp = Np for all P € Spec(R, 1) N (Supp(M) U Supp(N)).

(7). Suppose M ~ N. Say we have exact sequences 0 — K — M — L — 0 and
0 — L — N — C — 0 such that dim(K @& C) < d — 2. From these two exact sequences
we see that

| (en(M) — A(Tor{{(R/11, M))) — (e,(N) — A(Torf (R/1, N)))|
< 0(¢"*) + A(Torg (R/1', C)),

which relies on the fact that e, (7) 4+ A(Torf(R/I14 T)) = O(¢™™) for any finitely
generated R-module T', which is proved in [HMM, Lemma 1.1]. Assume, moreover,
that R satisfies S;. Then choose an R-regular sequence z = x1,z5 € Ann(C'). Since

pdg(R/(z)R) = 2, we have
M(Torg (R/1Y, R/(2)R)) = M(Tor{(R/I, R/(z)R)) — eu(R/(2)R),
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which equal to O(q?2) by [HMM)| Lemma 1.1]. Then, as there exists an exact sequence
0 — D — (R/(z)R)" — C — 0, the long exact sequence forces \(TorZ(R/I9,C)) =
O(q%7?). Consequently, we have (under the Sy assumption)

en(M) — MTor®(R/IW M) = e, (N) — \(Tor®(R/I19, N)) 4+ O(¢?2).

(8). Suppose M ~ N and (R, m, k) is local and F-finite with [k : k?] = p®. Then we
also have that

en(M) — g~ N(Tor(R/1, "M)) = en(N) — q“A(Tor)'(R/I, "N)) + O(¢" %),

which relies on the fact that e,(T) 4+ ¢ *N(Tor{"(R/I, "T)) + ¢~ *N(Torf(R/I, "T)) =
O(q™ ™) for any finitely generated R-module T, which is proved in [Se, Page 278,
Theorem].

(9). Suppose R is catenary (e.g., F-finite) and equidimensional. For any finitely
generated R-module M, we can write ¢; (M) = Y'_, e1(R/Q;) with Q; € Spec(R). For
each Q;, choose a prime ideal P; C Q; such that P; € Spec(R,0). Let K = &!_,Q;/P;.
Then ¢ (M) +ei(K) = Y0, ei(R/Qi)+ 3, (cl(R/P) —ei(R/Qi)) = Yoo, er(R/Py) =
ci(f(M)) + e1(f(K)), that is (M & K) = ¢e1(f(M @ K)) € C1(R). Notice that K is
W -torsion-free.

(10). Suppose R is catenary (e.g., F-finite) and equidimensional and = € C1(R), say
r=> 1 ,c(R/Qi)—> i, 1 a(R/Q;) with Q; € Spec(R). For each @, choose a prime
ideal P; C @; such that P; € Spec(R,0). Let M = (&/_R/P;) ® (®;_,,,Q:/P;)) and
N = (®_,Qi/P) ® (@i, R/P;)). It is easy to check that & = ¢;(M) — ¢;(N) and
M, N are both W-torsion-free.

Many of the implications in the next Proposition are implicit in [HMM].

Proposition 1.3. Let (R, m, k) be a reduced F-finite equidimensional Noetherian local
ring of prime characteristic p with dim(R) = d. Consider the following statements (with
q=p"):

(1) R satisfies (x) and, moreover, for any finitely generated W -torsion R-module T
such that c1(T) = c1(f(T)) =0 (i.e., ¢(T) = c1(T) = 0) and all sufficiently large
e €N, e,(T) — NTorf(R/I9, T)) = O(¢*?).

(2) en(M) — e, (f(M)) = O(q*2) for all finitely generated W -torsion-free R-module
M such that c;(M) = c1(f(M)) (i.e., ¢c(M)=0).

(3) en(M) —e,(N) = O(q?2) for all finitely generated W -torsion-free R-modules M
and N such that ¢;(M) = ¢1(N).

(4) There exists a group homomorphism 7 : C(R) — R such that e, (M) — e,(N) =
T(cr(M) — 1 (N))g?t + O(¢*2) for all finitely generated W -torsion-free R-
modules M and N satisfying co(M) = co(N).

(5) There exists a group homomorphism (3 : C1(R) — R such that

en(M) = ep (I, M)q® + B(cr (M))g*" + O(¢*?)

for every finitely generated W -torsion-free R-module M .
(6) For any finitely generated W -torsion-free R-module M and for any e € N,
A(TorR(R/11, M) = O(¢?).
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(7) For any finitely generated W -torsion-free R-module M, there exists ey such that
M Torf(R/I9, eM)) = O(¢*2) for all ey < e € N.
(8) R satisfies (x).
Then (1) = (2) & (3) & (4) < (5) = (6) = (7) = (8). If, moreover, R satisfies S,
then (8) = (1) and, hence, all the above statements are equivalent.
Proof. Denote a = log,[k : kP]. The assumption implies that W consists of non-zero-
divisors of R.

(1) = (2). There exists an exact sequence 0 — M — f(M) — T — 0 so that T is
W-torsion and ¢;(T) = 0. Choose e >> 0 such that A\(Torf(R/I4, {(f(M))) = O(¢??)
and A(Torf(R/I9, T) — e, (T) = O(¢*?) by (1). Then there is a long exact sequence

R R
R € R
Torf! (. D)) — Torft (7. T)
M (M) T
—_— —_— —
Jld . epf Ila] . qf(M)) Jld . e

Thus pe, oo (M) — p@ense(f(M)) = A(Torf(R/ 11, T)) — e,(T) — O(¢2) = O(¢?),
which implies e, (M) — e, (f(M)) = O(¢*2).

(2) = (3). By Discussion [1.2|9), there exists a finitely generated W-torsion-free R-
module K such that ¢;(M & K) = ¢1(f(M @& K)) € C1(R). Notice that ¢;(M) = ¢1(N)
implies that f(M) = f(N) and hence ¢;(N @ K) = ¢;(f(N @ K)) € C;(R). Now the
claim follows from (2) applied to M & K and N & K. (3) = (2) is trivial.

(3) = (4). As ("M @ N*""™) = ¢, ('N @ M?"""™"), we apply (3) to 'M @& N?
and 'N @ M?"""" which gives that

d—14+a

d—1+a

en('M @ NP7 — e (N @ MP) = 0(¢4?) that is
(en("M) = ea('N)) = p*" 1 (en(M) — en(N)) = O(¢"?) that is
(ens1(M) = ens1(N)) —pd* (en(M) = en(N)) = O(¢"?) which gives

en(M) — e, (N) = t(M,N)¢" + O(¢*?)

for some t(M,N) € R, in which ¢ is viewed as a map. For every element xz € C(R), we
define 7(z) = t(M, N) provided & = ¢;(M)—cy(N) with M and N W-torsion-free finitely
generated over R (cf. Discussion [1.2[(10)). To check well-definedness, say x = ¢;(M') —
c1(N') with M’ and N” W-torsion-free. Then ¢;(M @& N') = ¢;(M’ & N), which implies
en(MON') = e,(M'®&N)+0(q?2), that is, e, (M) —e,(N) = e, (M) —e,(N")+O0(q?2?)
by (4), which forces t(M, N) = t(M’, N'). Now that we have showed that 7 : C(R) — R
is well-defined, it is straightforward to verify that 7 is a group homomorphism.

(4) = (5). As co(*M) = ¢o(MP"™™), we apply (4) to M and M*""", which gives that
(with 7(cy("M) — ¢y (MP*™)) = ¥/ (M) = p*b"(M) € R)

) €
en(*M) —en(Mp‘““) =(M)g™ " + O(¢*?) that is
en('M) — en(M) =V (M)¢* + O(¢*?) that is
en+1(M) plen(M) =b"(M)q*™" + O(¢*?) which gives
en(M) = egr (I, M)q® + b(M)q*™ + O(¢*?) (cf. [HMM, Theorem 1.11])
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with b(M) = V'(M)/(p* — p?) = 7(ci(*M) — e (MP*™))/(p?=1+e — pd+a) in which
b is considered as a map. For every element x € C}(R), set f(z) = b(M) — b(N) if
x = (M) — ¢ (N) with M and N finitely generated W-torsion-free R-modules (cf.
Discussion [1.2(9)). It is straightforward to check that 8 : C;(R) — R is a well-defined
group homomorphism.

(5) = (3). This is trivial as ¢;(M) — egx (I, M) is well-defined and determines a
group homomorphism from C;(R) to R.

(5) = (6). It suffice to prove A\(Torf(R/I9), M)) = O(q?2) as the assumption of M
being W-torsion-free implies °M being W-torsion-free for all e € N. Choose an exact
sequence 0 — M’ — G — M — 0 such that G is free of finite rank over R. Then G and
hence M’ are W-torsion-free. Now A(Torf(R/I4 M)) = e,(M') — e, (G) + e, (M) =
(enx(I, M) — enr(I,G) + enx (I, M))q* + (B(cr (M) — B(c1(G)) + Bler(M))) g +
O(¢"*) = O(¢"™?).

(6) = (7). This is obvious.

(7) = (8). This follows immediately as R is W-torsion-free.

(8) = (1) in case R satisfies Sa. Let A be the free abelian group generated by the set
of all isomorphic classes {[R/Q] | @ € Spec(R,1)}. Then C'(R) is a quotient of A modulo
a subgroup generated by {3 ocqpec(r1) Arg (B/ (P +2R))o)[R/Q]| P € Spec(R,0),z €
R\ P}.

The assumption ¢;(7) = ¢(T') = 0 implies that there exist r < s, P, € Spec(R,0),
x; ¢ P, for 1 <1 < s such that

S @RQI+Y S Ao (R(P+ miR)QIR/Q)

QESpec(R,1) i=1 Q€Spec(R,1)
=Y Y rl(BIP A+ wR)QIR/Q)
i=r+1 Q€eSpec(R,1)

as elements in the (free abelian) group A.
Choose e such that the statement of (x) always holds for e > ey and such that

VAMR(T & (@, B/ + 2iR)" | € Amnp(T @ (&5, R/(P, + m:R))).

Then for all e > ey, we have T @® (®_; (R/(P + x;R)) ~ @, (R/(P + = R)).
Therefore, to prove the claim of (1), it suffices to prove that, for any P € Spec(R,0),z ¢
P ey < e €N, we always have

en( (R/(P +aR))) = NTor (R/I'), (R/(P + zR)))) = O(¢"?).

Indeed, there is an exact sequence 0 — (R/P) — {R/P) — (R/(P+zR)) — 0, which
gives a long exact sequence

Torf (1, (RIP)) — Torf (A (R/(P.+ wiR)))
WB/P) | RP) | (R/(P4 )
T (R[P) T (RP) T AR](E+ )

_>0,
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which implies e,({R/(P + zR))) — M(Tor®(R/I14, {(R/(P + xR)))) = e,((R/P)) —
ea((R/P)) + O(q"?) = O(¢*?).
Now the proof is complete. 0

Example 1.4. Suppose (R, m, k) is normal. Then statement (2) of Proposition is
verified in [HMM|, Theorem 1.4]. Therefore statements (1) through (8) of Proposition
all hold.

Proposition 1.5. Let (R, m, k) be a reduced F-finite equidimensional local Noetherian
ring of prime characteristic p. Denote [k : kP] = p*. Consider the following statements
(with ¢ = p"):

(1) R satisfies (xx).

(2) R satisfies (xx) and, moreover, for any finitely generated W -torsion R-module T
such that c(T) = 0, e, (T) — ¢ *MN(Tor®(R/I, "T)) = O(q?).

(3) en(M) — e, (f(M)) = O(¢*2) for all finitely generated W -torsion-free R-module
M such that ¢;(M) = ¢1(f(M)) (i-e., ¢(M)=0).

(4) en(M) —e,(N) = O(q?=2) for all finitely generated W -torsion-free R-modules M
and N such that ¢;(M) = ¢1(N).

(5) There exists a group homomorphism 7 : C(R) — R such that e, (M) — e,(N) =
T(cr(M) — ¢ (N))g?t + O(¢*2) for all finitely generated W -torsion-free R-
modules M and N satisfying co(M) = co(N).

(6) There exists a group homomorphism (3 : C1(R) — R such that

en(M) = enrc (I, M)g" + (e (M))g"™" + O(¢"?)
for every finitely generated W -torsion-free R-module M .
(7) ¢ *NTorf(R/I, "M)) = O(q*2) for any finitely generated W -torsion-free R-
module M.
Then (7)< (1) = (2) = (3) & (4) & (5) < (6).
Proof. The proof is very similar to (and actually simpler than) the proof of Proposi-
tion [L3l

(1) = (2). Let A be the free abelian group generated by the set of all isomorphic
classes {[R/Q]|Q € Spec(R,1)}. Then C(R) is a quotient of A modulo a subgroup

generated by {3_ocspec(r1) Aro (B/ (P +2R))qQ)[R/Q]| P € Spec(R,0),x € R\ P}.
The assumption ¢;(T) = ¢(T) = 0 implies that there exist r < s, P; € Spec(R,0),
x; ¢ P; for 1 <i < s such that

Yo Mm(TR/QI+DY . DY Arg((R/(Pi+x:R))Q)R/Q)

QeSpec(R,1) =1 Q€Spec(R,1)

=3 > M ((R/(P+3R))Q)[R/Q)

i=r+1 Q€eSpec(R,1)

as elements in the (free abelian) group A.
Choose ng such that

VAmg(T @ (95, R/(P; + 33iR)))[p

(e

" C Aung(T @ (&2, R/(P, + 2.R))).
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Then for all n > ng, we have "I" @ (®]_, (R/(P; + ©;R)) ~ @i, "(R/(P;, + z;R)).
Therefore, to prove the claim of (2), it sufﬁces to prove that, for any P € Spec(R,0)
and = ¢ P, we always have

MR/I® "(R/(P + xR))) — NTor{'(R/I, "(R/(P + zR)))) = O(¢"*q").

Indeed, there is an exact sequence 0 — "(R/P) — "(R/P) — "(R/(P + zR)) — 0,
which gives a long exact sequence

Tor? (? ”(R/P)) — Tory! (? R/ (P + xim))
"(R/P) _ "(R/P)  (B/(Pi+wiR)
I-AR/P) 1-%R/P)  I-%R/(P+uR))

— 0,
which implies
MR/I® "(R/(P+ xR))) — M(Torf(R/I, (R/(P + zR))))

= MR/I® "(R/P)) = X(R/I® "(R/P)) + O(¢"*¢") = O(¢"*q").

(2) = (3). There exists an exact sequence 0 — M — f(M) — T — 0 so that T is
W-torsion and ¢;(T) = 0. Then, as n — oo, A(Tor®(R/I, "(f(M))) = O(¢*2¢q*) and
MNTorf(R/I, "T) = AN(R/I® "T) = O(q%2¢q%) by (1). Also there is a long exact sequence

Torl (?, "(f(M))) — Torf (?, ”T)

A 1101 N A
o

r-rMo I-(f(M) T
Thus ¢en(M) — gen(F(M)) = A(Tor(R/1, "T)) — gen(T) — O(¢*) = O(¢~2¢"),
which implies e, (M) — e, (f(M)) = O(¢?7?).

(3) < (4) & (5) < (6). This is proved in Proposition [1.3]

(7) = (1). This follows immediately as R is W-torsion-free.

(1) = (7). By Discussion [1.2)8), there exists a finitely generated W-torsion-free R-
module K such that ¢;(M @& K) = ¢;(f(M & K)) € C1(R). Thus, as it suffices to prove
the claim for M & K, we may assume c¢;(M) = ¢;(f(M)) without loss of generality.
There exists an exact sequence 0 — f(M) — M — T — 0 so that ¢,(7) = 0 and T is
W-torsion. Then, for any n € N, there is a long exact sequence

Tork (?, ”(f(M))) — Torf <?, ”M) — Torf (?, ”T)
won) T

I-7fM))  I-M I-7T

which gives the desired conclusion
M Torf{(R/I, "M))
= q*(en(M) = ex((f(M))) + (¢"en(T) = M(Tory'(R/1, 'T))) — O(¢"¢"™?)
=q'0(¢"*) +¢"0(¢"?) — O(q"¢"?)
— O( a d— 2)
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by (xx) applied to f(M), (3) applied to M, and by (2) applied to T O

2. APPLICATIONS

Theorem 2.1 (See [HMM]| Theorem 1.12]). Let (R, m, k) be an F-finite reduced equidi-
mensional Noetherian local ring of prime characteristic p satisfying condition (5) of
Proposition[1.5 or condition (xx). Then there exists a group homomorphism 3 : C1(R) —
R and, for any finitely generated R-module M, there exists b(M) € R such that
(1) en(M) = enx (I, M)q* +b(M)q™ " + O(¢?).
(2) M(Tort'(R/11, M) = (b(M) — B(e1(M))) g™ +O(¢**); and
g N(Tor{'(R/1,"™M)) = (b(M) — B(c1(M))) g + O(¢*?) in case of (+x).

Proof. As condition (x*) implies Proposition [1.5(6), which is the same as Proposi-
tion [1.3|(5), we may simply assume Proposition [1.3|(5).

Let T = {x € M|z/1 =0 € W~ 'M} be the W-torsion submodule of M. Then
M’ = M/T is W-torsion-free and there is an exact sequence 0 - 7' — M — M’ — 0.
Observe that egg (I, M) = egx (I, M’). There also exists an exact sequence 0 — N —
G — M — 0 such that G is free of finite rank over R. Then G and hence M’ are
W -torsion-free.

Let 5 : Ci(R) — R be as in Proposition (5) Then apply R/I9M®k to 0 — T —
M — M'" — 0 and the same argument as in the proof of [HMM, Theorem 1.12] shows
part (1), that is e, (M) = egr (I, M)q® + b(M)g*' + O(g??) for some b(M) eR.

To prove (2), notice that the long exact sequence of Tor gives /\(Tor1 (R/ 14 M)
en(N) — en(G) + en(M) = (eux(I,N) — enx(I,G) + enx(I, M)) (ﬂ(cl(N)) -
Ber(G)) +b(M))q*™t + O(q?) = (b(M) — B(er(M)))g"" + O(¢"7?). In case of (xx),
notice that the long exact sequence of Tor also gives A\(Torf(R/I, "M)) = ¢%e,(N) —
q“en(G)+qen(M)+0(q"q"?) = (eHK(I N)—enx (I, G)+enr(I, M))q*q"+(B(c1(N))~
B(en(G)) 4 B! + Ol = (b(M) — Bl (M) a1 + O™ 2), hat i
g~ “MTory (R/1, "M)) = (b(M) — Bles(M)))g** + O(¢?). O
Corollary 2.2. Let (R,m, k) be an F-finite equidimensional Noetherian local ring of
prime characteristic p such that R/\/0 satisfies condition (5) of Proposition or con-

dition (xx). Then, for any finitely generated R-module M, there exists b(M) € R such
that e, (M) = egr (I, M)q® + b(M)q? + O(¢%7?).

Proof. There exists e such that \/ﬁ[pe] = 0. Then °M may be considered as a finitely
generated module over R/ V0. As it suffices to prove the claim for M/, we assume R is
reduced and satisfies condition (5) of Proposition or condition (%) without loss of
generality. Now the claim follow immediately from Theorem . (See Remark )

Theorem 2.3. Let (R,m, k) be an F-finite Noetherian local equidimensional reduced
ring of prime characteristic p. Suppose there is an module-finite extension ring R’ of R
in the total fraction ring of R such that (a) R}, satisfies condition (2) of Proposition[1.
or condition (xx) for everyn € V(IR') C Spec(R'), and (b) Anng(R'/R) has height at
least 2. Then there exists a group homomorphism (3 : C1(R) — R such that, for any
finitely generated torsion free R-module M, we have

en(M) = enxc (I, M)q" + B(cr(M))g"™" + O(¢"?).
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In general, for any finitely generated R-module M (not necessarily torsion free), there
exists b(M) € R such that

(1) en(M) = egr (I, M)g? + b(M)q?* + O(¢??).
(2) M(Tor{'(R/119, M)) = (b(M) — B(cr(M))) g~ + O(¢™?).

Proof. As condition (**) implies Proposition [1.5(3), which is the same as Proposi-
tion [1.3|(2), we may simply assume Proposition [1.3(2)(3).

Throughout this proof, we will denote M ®g R’ by M’ and denote the torsion sub-
module of M" by T'(M') for any given R-module M. Thus M'/T(M') is a torsion-
free R'-module. As an R'-module, e,(IR',M') = Ag/(M'/IP"IM"). As an R-module,
en(I, M) = Ag(M'/IP"IN").

For any exact sequence 0 — M; — M — My — 0 of finitely generated R-modules,
there is an induced exact sequence 0 — K — M| — M’ — M} — 0 for some finitely
generated R’-module K. As (R')p = Rp (and hence Kp = 0) for any P € Spec(R,0) U
Spec(R, 1), we see that dimg/(K) = dimg(K) < d — 1. This implies that ¢;(M) —
c1(M ®g R') defines a group homomorphism C;(R) — C;(R').

For any finitely generated torsion-free R-module M, we have an induced long exact se-
quence Tor® (M, R'/R) — M — M’ — M ®grR'/R — 0, which actually implies an exact
sequence 0 — M — M' — M ®gR'/R — 0 since M is torsion-free while Tor{*(M, R'/R)
is torsion. This implies that e, (I, M) — e, (I, M’) = O(q??) by [HMM, Lemma 1.1].
Moreover, for any P € Spec(R,0) U Spec(R, 1), we see that (M’)p = Mp is torsion-free,
meaning (T'(M’))p = 0. Hence dimpg/(T(M’)) = dimg(T(M’)) < d — 1. Also, notice
that, any n € V(IR'), dim(R,) = dim(R) by the dimension formula. Consequently,
cl(My) = er(My/T(M')s) € C1(Ry) and e, (IR, My) = e, (IR, My/T(M')) + O(q"?)
for every n € V(IR'). It is easy to see that M| /T'(M'), is a torsion-free module over R,.

By Proposition and Theorem 2.1} it suffices to show that e, (I, M) — e, (I, N) =
O(q%72) for all finitely generated torsion-free R-modules M and N provided that ¢; (M) =
¢1(N). For any such M and N, we have ¢;(M') = ¢;(N') € C1(R’) and hence, by the
paragraph above, ¢ (M /T(M'),) = c1(N}/T(N"),) € C1(R)) for every n € V(IR'). By
the assumption on R., we have e, (IR, M/ /T(M'),) = e, (IR, N!/T(N'),) + O(q?2?)
for every n € V(IR'), which implies e, (IR, M!) = e, (IR, N.) + O(q?~?) for every n €
V(IR') by last paragraph. By Remark (0.1} we get e,(IR', M') = e,(IR', N') + O(q*?),
which implies the desired result that e, (I, M) = e,(I, N) + O(¢*"?) from what have
been shown in the last paragraph. 0

As a corollary, we conclude that it suffices to consider the S, rings as far as the current
issue is concerned. Recall that the Ss-ification of an F-finite local Noetherian reduced
ring always exists.

Corollary 2.4. Let (R,m,k) be an F-finite equidimensional local Noetherian reduced
ring of prime characteristic p and R’ be the Ss-ification of R. Suppose R’ satisfies con-
dition (%) or (xx) locally at everyn € V(IR'). Then there exists a group homomorphism
B : C1(R) — R such that, for any finitely generated torsion free R-module M, we have

en(M) = egr (I, M)q* + B(cr(M))g*" + O(¢"?).

In general, for any finitely generated R-module M (not necessarily torsion free), there
exists b(M) € R such that
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(1) en(M) = eqr (I, M)q® + b(M)q* " + O(¢*?).
(2) MTor{'(R/119, M)) = (b(M) — B(c1(M)))g* ! + O(¢*2).

Proof. Since R’ has S,, Proposition [1.3(2) is satisfied over R'. By construction of R/,
Anng(R'/R), as an ideal of R, has height at least 2. Now apply Theorem O

A special case of the above corollary is the following.

Corollary 2.5. Let (R, m, k) be an excellent equidimensional Noetherian reduced ring
of prime characteristic p such that the singular locus of R is defined by an ideal of height
at least 2. Then there exists a group homomorphism 3 : C1(R) — R such that, for any
finitely generated torsion free R-module M, we have

en(M) = enx (I, M)q* + B(cr(M))g™" + O(¢"7?).

In general, for any finitely generated R-module M (not necessarily torsion free), there
exists b(M) € R such that

(1) en(M) = epr (I, M)g? + b(M)q?* + O(¢??).
(2) MTor{(R/119, M)) = (b(M) — B(c1(M))) g + O(¢*72).

Proof. By the I'-construction, we may assume R is F-finite without loss of generality.
(First, notice that R remains equidimensional and reduced with its singular locus defined
by an ideal of height at least 2. Then, by the ['-construction (see [HH, Section 6]), there
exists a faithfully flat local and purely inseparable extension (R", mR') of (R, mR) such
that R' is an F -finite, reduced and equidimensional local ring. Moreover, by choosing
I' small enough, one can make sure that R and R' have the same singular locus under
the natural homeomorphism Spec(R) 2 Spec(RF). Thus, the singular locus of R is
defined by an ideal of height at least 2. It is easy to see that there is a well-defined
group homomorphism C;(R) — Cy(R") induced by [M] — [M ®x R']. Moreover,
as mR' is the maximal ideal of R, the Hilbert-Kunz functions en(I, M) over R and
en(l RY M ®pg EF) over B! are the same for any finitely generated R-module M.)

Let R’ be the integral closure of R in its total fraction ring. Then Anng(R’'/R) is an
ideal of R with height at least 2. (Therefore R’ is the Sp-ification of R.) By [HMM], R’
satisfies Proposition [1.3|2). Now apply Theorem or Corollary O

Remark 2.6. Let R’ be as in the above proof and let 2 := (R :g R') = Anng(R'/R).
Then 2AM is an R-submodule of M and dim(M/AM) < dim(R) — 2 since dim(R/2) <
dim(R) — 2. But, as 2 is also an ideal of R, AM is an R'-module and the result of
[HMM)] applies. This should give an alternate proof to Corollary [2.5]

Example 2.7. Let S = k[X, X, ..., X4] where k is a field of characteristic p and d > 2,
and £ C R C S such that X{" X3?--- X4 € R for all ny +ny +--- 4+ ng > 0. Then
height z(S/R) = d and the above result applies. Notice that R is not normal unless
R=2S5.

Similarly, let S = k[[ X1, Xs, ..., X,]] where k is a field of characteristic p and d > 2,
and k£ C R C S such that X{" X5?--- XS C R for all ny +ns + -+ 4+ ng > 0. Then
height ,(S/R) = d and the above result applies. Notice that R is not normal unless
R=2S5.
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