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MODULES WITH FINITE F-REPRESENTATION TYPE

YONGWEI YAO

ABSTRACT

Finitely generated modules with finite F-representation type (or FFRT for short) over Noetherian
(local) rings of prime characteristic p are studied. If a ring R has FFRT or, more generally, if a
faithful R-module has FFRT, then tight closure commutes with localizations over R. We also define
F-contributors and use them to give an effective way to characterize tight closure. Then we show

lime— o0 w always exists under that assumption that (R, m) satisfies the Krull-Schmidt

condition and M has FFRT by {Mi,Ms,..., M}, in which all the M;’s are indecomposable
R-modules belonging to distinct isomorphism classes and a = [R/m : (R/m)P].

0. Introduction

Let (R,m) be a Noetherian local ring of prime characteristic p. Let M be an
R-module. Then for any e > 0, we can derive an R-module structure on the set
M with its scalar multiplication determined by r - m := r?"m for any r € R and
m € M. We denote the derived R-module by °M.

We say that M has finite F-representation type (FFRT) by finitely generated
R-modules My, My, ..., My if, for all e > 0, the R-module °M are all isomorphic
to finite direct sums of the R-modules My, Ms,..., M,. For each i = 1,2,...,s,
we use #(°M, M;) to denote the number of copies of M; in the above direct sum
decomposition of M. We say M; is an F-contributor if lim._, ﬁ#(eM, M)
is positive or non-existent, or equivalently lim sup,_, ., ﬁ#( M, M;) > 0, where
d=dimM and a = [R/m: (R/m)?] < co.

Rings with finite F-representation type (FFRT) were first studied by K. Smith
and M. Van den Bergh in [SVdBJ. The concept of F-contributors and the impor-
tance of R being an F-contributor can be found in recent work [HL] of C. Huneke
and G. Leuschke.

First we show that F-contributors exist and are Cohen-Macaulay:

THEOREM (See Lemma and Lemma . Suppose that M # 0 is a finitely
generated R-module that has FFRT by {My, Ms,...,Ms}. Then at least one of
the M; is a non-zero F-contributor and every non-zero F-contributor is Cohen-
Macaulay of dimension = dim M.

There is a closure operation, called ‘tight closure’, defined over rings of prime
characteristic p ([HH1|]). Ever since the inception of the tight closure theory, the
question whether tight closure commutes with localizations has been resistantly
open although it has been proved to have positive answer in special cases. The next
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result shows that FFRT implies commutation of tight closure with localizations. It
also demonstrates the importance of F-contributors in computing tight closures.

THEOREM (See Theorem [2.3] Theorem and Remark . Suppose R is a

Noetherian ring of characteristic p.

(i) If there is a faithful R-module that has FFRT (e.g. R has FFRT), then tight
closure commutes with localizations over R.

(i1) Assume that (R,m) is an analytically unramified, quasi-unmized ring that has a
completely stable test element (e.g. (R, m) is a complete domain) and that M is
a faithful R-module with FFRT by My, Ms, ..., My, in which My, Ms, ..., M,
are all the F-contributors. Set N = @;_, M;. Then Kj = ker(L — L/K —
Hompg(N,L/K ®grN)) for any finitely generated R-modules K C L. (In partic-
ular, I* = (IN :g N) = Anng(N/IN) for any ideal I of R.) This also implies
that tight closure commutes with localization.

Under the assumption that (R, m) is a strongly F-regular local ring and satisfies
the Krull-Schmidt condition, K. Smith and M. Van den Bergh proved in [SVdB]
that if R has FFRT by indecomposable modueles My, Ms, ... M, that belong to
distinct isomorphism classes, then lim,_, .o % always exists for every i =
1,2,...,s.

We are to prove the existence of lim,_, % in a more general situation:

THEOREM (See Theorem [3.11)). Assume that (R, m) is a local ring that satisfies
the Krull-Schmidt condition and M has FFRT by {M1, Ms, ..., M}, in which all
the M;’s are indecomposable R-modules belonging to distinct isomorphism classes.

Then lime_, o % exists and is rational for every i, where a = [R/m : (R/m)P].

In Section 1, we will set up the notations carefully and review some known results.
In Section 2, implications of FFRT condition and the importance of F-contributors

will be studied. In Section 3, we study the existence of lim,_, ., %

1. Notations and known results

All rings are assumed to be Noetherian and have prime characteristic p unless
stated otherwise explicitly. For such a ring R, there is the Frobenius homomorphism
F: R — R defined by r + rP for any r € R. Therefore we have iterated Frobenius
homomorphism F°¢ : R — R defined by r — 7P for any r € R. Let M be an
R-module. Then for any e > 0, we can derive an R-module structure on M with its
scalar multiplication determined by r - m := r?"m for any r € R and m € M. We
denote the derived R-module by M. Notice °M = M. It is straightforward to see
that Assgp(M) = Assg(°M) and Homp (M, N) C Hompg( M, °N) for every e € N.

Let I be an ideal of R. Then for any ¢ = p¢, we use I'9 to denote the ideal
generated by {27 |z € I'}. For any R-module M, it is easy to see that & @ M =
M/(I-°M) = ¢M/I9M).

If 'R is a finitely generated R-module (or equivalently °R is a finitely generated
R-module for every e > 0), we say that R is F-finite. If we denote by k(P) the
quotient field of R/P for P € Spec(R), then by [Ku2|, Proposition 1.1, Propo-
sition 2.3 and Theorem 2.5 (also c.f. [Kul|, Proposition 3.2), we know that the
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F-finiteness of R implies that R has finite Krull dimension, that [k(P) : k(P)?] =
[k(Q) : k(Q)P]pdim Fe/PRa for any P, @Q € Spec(R) such that P C @, and that R is
excellent.

In general, if M is a finitely generated R-module, we say that M is F-finite.
Notice that this implies that the ring R/ Ann(M) is F-finite and therefore implies
that °M is a finitely generated R-module for every e > 0.

Next we define finite F-representation type (FFRT), which will be our main
interest of the following sections. Some notations are needed. For an R-module M
and an integer n > 0, we use nM to denote the direct sum of n copies of M while
we agree that OM = 0. For non-negative integers ni,ns,...,ns and R-modules
My, Ms, ..., M, we use matrix multiplication (ny,ns,...,ns)(My, Ma, ..., My)T
to denote ny My @ noMo @ -+ ®nsMy = B)_, ME™,

Rings with finite F-representation type (FFRT) were first studied by K. Smith
and M. Van den Bergh in [SVdB].

DEFINITION 1.1. Let R be a Noetherian ring of characteristic p and M a finitely
generated R-module.

(i) We say that M has finite F-representation type (FFRT) by finitely generated
R-modules M1, M, ..., M, if for every e > 0, the R-module °M is isomorphic
to a finite direct sum of the R-modules My, Ms, ..., My, i.e. there exist non-
negative integers nei, e, - - -, Nes such that

s
GM = (’I’Lel,neg, e ,nes)(Ml,Mg, .. .,MS)T = @neiMi.
=1

(ii) We say My, Ma,..., M, form a FFRT system if the R-modules M; are all
isomorphic to finite direct sums of the R-modules M, Ms, ..., My, i.e. there
exist non-negative integers a;; for 1 <14,j < s such that

W, = (air, aas - -y ais) (M, My, ..., M)T

forall 1 <7 <s.

(iii) We say that M has FFRT by a FFRT system My, M, ..., M, if the R-modules
My, Ms, ..., My form a FFRT system and there exists an integer e > 0 such
that the R-module °M is isomorphic to a finite direct sum of the R-modules
My, Ms, ..., My, i.e. there exist non-negative integers nei, Ne2, - - . , Nes such that

‘M = (nelane2a e 7nes)(Ml7 M23 ey MS)T'

REMARK 1.2. Same notations as in the Definition [[LIl Then
(i) For the sake of convenience, we allow the M; to be zero module or M; = M;
for some i # j.

(ii) If M has FFRT then M is F-finite.

(iii) Suppose that M has FFRT by indecomposable R-modules My, Ms, ..., M be-
longing to different isomorphism classes. If R satisfies the Krull-Schmidt con-
dition and every M; appears non-trivially in the direct sum decomposition of
certain °M, then M has FFRT by the FFRT system M, Ms, ..., M.

(iv) Suppose that M has FFRT by the FFRT system Mj, Ms, ..., My as in Defini-
tion iii) and let A := (a;;) be the n x n matrix. Then

€+TLM = (n617n€2; .. 7nes)An(Mla MQ; ceey MS)T
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for all n > 0.

(v) If M has FFRT or has FFRT by a FFRT system, then for any multiplicatively
closed set U in R, the localization My = U~'M also has FFRT or has FFRT
by a FFRT system. The same is true for the completions of M.

(vi) If R is F-finite and has finite Cohen-Macaulay representation type, then ev-
ery finitely generated Cohen-Macaulay R-module M has FFRT by the FFRT
system of all distinct indecomposable Cohen-Macaulay modules.

In general, if a finitely generated R-module M has FFRT by {M;, Mo, ..., M},
the number of copies of M; in decompositions of M is not uniquely determined.
But we can fix a decomposition ‘M 22 (ne1,nea, ..., Nes) (M1, Mo, ..., M)T =
@le ne;M; of M for each e > 0 in advance. So when we study an R-module
M that has FFRT, we agree on the fixed decompositions as above. To make our
notation more transparent, we use #( M, M;) to denote n.;, the number of copies
of M; in the pre-fixed decompositions of ¢M. It is in this sense that the following
notion of F-contributor is defined.

The concept of F-contributors and its importance can be found in recent work
[HL| of C. Huneke and G. Leuschke. Here we give an explicit definition:

DEFINITION 1.3. Let M be a finitely generated R-module that has FFRT by
{My,Ms,...,Ms} and P € Spec(R) be a prime ideal of R. Set d(P) = dimpg, (Mp)
and a(P) = [k(P) : k(P)?P]. We say M;, for some 1 < i < s, is an F-contributor

of M at P if limsup,_, (fz(ﬁM’Mi) > 0, or equivalently lim,_, % is

(a(P)pIP))e
either positive or non-existent. When (R, m) is local, an F-contributor of M simply

denotes an F-contributor of M at m.

REMARK 1.4. Keep the notations of the above definition. Then

(i) Our definition of F-contributor depends on the pre-fixed F-representation of
°M.

(ii) If Mp # 0 for some P € Spec(R), then at least one of the M; is an F-contributor
at P. See Lemma 271

(iii) Let P,Q € Spec(R) be two prime ideals of R such that a(P)p??) = a(Q)pH®).
Then M has the same F-contributors at P and at (). For this reason, when
a(P)p“P) is constant for all P € T' C Spec(R), we can simply say the F-
contributors of M at T'. In particular, by [Ku2], we know that a(P)p“") is
constant for all P € V(Ann(M)) C Spec(R) if Spec(R/ Ann(M)) is connected
and R/ Ann(M) is locally equidimensional.

#(°M,M;)

QUESTION 1.5. Does lim,_, ap)e

always exist for every i = 1,2,...,5s7

There is a positive answer in [SVdB]| to the above question in case R is strongly
F-regular. Recall that we say a reduced Noetherian ring R of characteristic p is
strongly F-regular if for any c in the clomplenllent of the union of all minimal primes
of the ring R, the inclusion map Rcr® C R?° splits for all e > 0 (or equivalently,
for some e > 0).

THEOREM 1.6 (K. Smith and M. Van den Bergh’s results about FFRT and
growth, [SVdBJ). Let R be a strongly F-regular ring that satisfies the Krull-
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Schmidt condition. If R has FFRT by indecomposable modules My, My, ..., Ms that

belong to distinct isomorphism classes, then lim,_, o #(RM;) always exists for ev-

(apd)e
#(°R,M;)

eryi=1,2,...,5. Andlim._, e > 0 if M; appears non-trivially as a direct

summand of °R for some e > 0.

DErFINITION 1.7 (J[HH1]). Let R be a Noetherian local ring of characteristic
p and L an R-module. The tight closure of 0 in L, denoted by 07, is defined as
follows: An element x € L is said to be in 0} if there exists an element ¢ € R°
such that 0 =z ® ¢ € L®p °R for all e > 0, where R° is the complement of the
union of all minimal primes of the ring R. Given K C L, the tight closure of K in
L, denoted by K7, is then defined as the pre-image of 07 /K under the natural map
L—L/K.

If I is an ideal of R, then I}, is usually denoted by I*. It is easy to see that an
element z € R is in I* if and only if there exists an element ¢ € R° such that
ca?” e I for all e > 0.

An open question in the tight closure theory is whether tight closure commutes
with localizations: Given R-modules K C L and a multiplicatively closed set U C R,
does (UT'K)y,_., = U '(K7}) always hold? It suffices to prove the case K = 0.
We also mention that it is straightforward to show (U™'K)f,_,, D U '(K}).

THEOREM 1.8 ([Mo|). Let (R, m,k) be a Noetherian local ring of characteristic
p and M # 0 a finitely generated R module with dim M = d. Then
(i) The limit (with k = R/m = k(m) and a = [k : kP])

(M /TPI M Ar(& ®@r M
lim —R( /d ) = lim —R(l (g;R )
e— 00 pee e— 00 (ap )‘3

ifa:[k::kp]<oo>

exists and is positive for every m-primary ideal I of R. The limit is called the
Hilbert-Kunz multiplicity of M with respect to I.

(ii) Hilbert-Kunz multiplicity is additive with respect to short exact sequence. There-
fore we have the associativity formula.

The existence of the Hilbert-Kunz multiplicity of M is generalized in [Sel]:

THEOREM 1.9 (Seibert’s results. [Sel|, page 278). Let (R,m) be an F-finite
Noetherian local ring of characteristic p, k = R/m and a = [k : kP]. Suppose that j
is an integer, that C is a family of finite R-modules with dimension < j, and that g
is a function from C to 7, such that for any short exact sequence 0 — M' — M —
M" — 0 the following holds:

(a) M €C if and only if M’ € C and M" € C;

(b) g(M) < g(M'") + g(M"), with equality if the sequence splits.
Then we have the following conclusions:

(i) If M € C, then °M € C for all e € N;

(ii) For each M € C there is a real number ¢(M) such that

a”g(“M) = c(M)p’® + O(P(jfl)e) for all meN.

Furthermore ¢(M) is an additive function of M on exact sequences.
(i) If g itself is additive on exact sequences, then for any M € C, the function
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a=%g(°M) is a polynomial in p° of the form
a=¢g(°M) = bg + bip® + bap™® + - + b;p’°,
with by, € Q, for k=10,1,2,...,7.

Some examples of possible functions g : C — Z may be defined by g(M) :=
As(Tor? (L, M)), Ag(Extis(L, M)) or Ag(Exts(M, L)) for any i > 0, any Noetherian
local ring S of characteristic p such that R = S/I for some ideal I of S and any
S-module L such that Ag(L) < oo.

NoTATION 1.10. Let (R,m) be an (F-finite) Noetherian local ring of prime
characteristic p, L and M finitely generated R-modules with Ar(L) < oo and
dim(M) = d.

(i) We denote eprgc(L, M) := lim, oo 222522 where a = [k : k] with k = R/m.
(ii) In case L = R/I with I an m-primary ideal, we usually write egx (L, M) as
eak (I, M), which is exactly the Hilbert-Kunz multiplicity of M with respect
to I in Theorem [L.8
(iii) Actually, the F-finite assumption can be avoided simply by considering the
bimodule structure of “M.

THEOREM 1.11 (|[HH1|, Theorem 8.17). Let (R, m) be a local Noetherian ring,
M and K C L R-modules such that dim(M) = dim(R) and A\(L) < oo, and I C J
m-primary ideals of R.

(i) If K C 0%, then ey (L, M) = egx(L/K,M). In particular, if J C I*, then
GHK(I,M) = eHK(J,M).

(ii) Conwersely, if R is an analytically unramified, quasi-unmized ring with a com-
pletely stable test element (e.g. (R, m) is a complete domain), then egi (L, R) =
enx(L/K,R) implies K C 0} . In particular, ek (I, R) = egx(J, R) implies
J CTI*.

Actually in [HH1], Theorem 8.17, more general results are proved.

2.  F-contributors and tight closures.

LEMMA 2.1. Let (R,m) be a Noetherian local ring of prime characteristic p and
M # 0 a finitely generated R-module that has FFRT by {My, Ms, ..., Ms}. Set

a = [k(m) : k(m)P] and d = dim(M). Then the sequence {%} ;. 1s bounded
for every i =1,2,...,s such that M; # 0 and at least one of the Mf—is a mon-zero
F-contributor.

Proof. Without loss of generality, assume that M; # 0 for all i = 1,2,...,s.
Then by [Mo],

lim yi
e—00 P €

Ae(M/mldhr)y G #(eM, M)
VP TP LUt Rl Ve
Jun D e

(ap?)
exists and is equal to ey (m, M) > 0. The existence of the limit and the fact that

Ar(M;/mM;) > 0 for all i = 1,2,...,s prove the boundedness while the fact that
enx(m, M) > 0 proves the existence of at least one F-contributor. O

Ar(M;/mM;)
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LEMMA 2.2. Let (R, m) be local and M # 0 a finitely generated R-module that
has FFRT by {M;y, Ms, ..., M}. Set a = [k(m) : k(m)?] and d = dim(M). For any
i0=1,2,...,8, if M;, # 0 and liminf._, #( f’;]‘f’io) > 0, then depth M;, > c. In

particular, every non-zero F-contributor of M 1s Cohen-Macaulay.

Proof. Without loss of generality, we assume that M is a faithful R-module. Let
Z:=I1,T2,...,2q be a system of parameters of R. Then 29 := z{, 23, ...,z is also
a system of parameters of R for every ¢ = p®. Let H} (29, M) be the j-th Koszul

cohomology. Then we have lim,_, w =0foral j=0,1,...,¢c—1by

p
a result which is implicit in [Ro] and explicitly stated in [HH2, Theorem 6.2]. On
the other hand we have
Ar(HE (2P°, M Ar(HZ (2, °M
L AR(HR@ M) An(H (e, M)

e— 00 pee e— 00 (apc)e

= lim ZWAR(HE(% M;)).

e—00 4 a,pc)e

Therefore AR(HE(g, M,;,)) = 0 for all j = 0,1,...,¢ — 1 by our assumption on
M;,. Hence depth M;, > c. In particular, every non-zero F-contributor of M is
Cohen-Macaulay. O

Next we study the localization problem under the assumption of FFRT. One way
to attack the question of whether tight closure commutes with localizations is to

study, for a given I C R, the finiteness of U.>o Ass(+) and the annihilators of

TTpe]
H&(ITI?C]) (see [HH1) and [Kal, also see [Hu| and [Vr| for results along this line)
while another is to study the ‘linear growth’ property of the primary decompositions
of I in R (see [SS| or [SN]). Our next theorem shows that rings with FFRT
satisfy nice properties one would want and consequently tight closure commutes
with localizations whenever R has FFRT. The proof of Theorem ii) below is

similar to that of [SN| Theorem 7.6(ii)] and of [AHH] Theorem 3.7].

THEOREM 2.3. Let R and S be Noetherian rings of prime characteristic p and
M a finitely generated R-module with FFRT by {My, Ms, ..., M}.
(i) For any finitely generated R-module L, the set Ueeny Ass(L®p M) is finite and
there exists an integer k € N such that (a) and (b) are satisfied:
(a) For every e € N, there exists a primary decomposition

OZQelerzm"'ﬂQesc Of OZ"fLL@)Re]M—7

where Ass(L ® °M) = {P.; |1 < j < sc} and Qe; are Pej-primary components
of 0 C L ®g °M satisfying Pekj(L Qr M) C Qe for alll < j < s¢;
(b) For all J C R and for all g = p®, we have

JH0 g p e J) =0, dce., JFHY(L ®@p M) = 0.

(ii) Consequently, tight closure commutes with localization if Anng(M) C +/(0),
the nilradical of R (e.g. M is faithful over R or M = R).
(iii) More generally, tight closure commutes with localizations over S provided that

S/4/(0) = R/\/Anng(M) as rings.

Proof. (i): For each i = 1,2, ..., s, write down a primary decomposition of 0 in
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L ®r M; (ignore the M; such that L ® g M; = 0) as following
01@%“@22“"'0@%“

where Q) jisa Pi’j—primary component of 0 C L®g M;. Naturally we get an induced
primary decomposition of 0 C L ®g °M for every e since °M is a direct sum of
the M;. Choose k € N so that PZ-’jk(L ®@r M;) C Q;; for all i =1,2,...,5 and all
j=1,2,...,t;. Then (a) is evidently true. And we also have J*(0 :1g . J>) =0
for all i and all J C R. Thus J*(0 :1g,enr J<) =0 forall J C R, e € N.

(ii): Let L be any finitely generated R-module and U any multiplicatively closed
subset of R. We need to show 07,_,, C U!(0}). We know Ueen Ass(L @p M)
is finite by part (i), say Ueen Ass(L ®g M) = {Py, P,,..., P;}. Without loss of
generality, we assume that, for some 1 < r < ¢, L,NU = 0 and P; N U # 0 for
all 1 < i <rr+1<j <t Then there exists u € U such that u € ﬂ?erPj. To
prove 07, C U’l(()z), it suffices to show that if § € 07,_,, with x € L, then
2 € U7(07). The assumption that £ € 0f,_,, implies that there exist ¢ € R° and
te € U such that 0 = u.x ® c € L®pg °R for all e > 0 (see [AHH] Lemma 3.3]).
This implies that 0 = uex ® em € L @ M for all m € M and all e > 0 (since the
R-linear map R — M defined by 1 — m € M induces an R-linear map °R — °M).
Since part (i)(a) holds for M, we adopt the notations there. In particular, for every
m € M and e > 0,

Ue(x@em) =uez @em=0€ Qe1 NQe2 N+ NQes, C LR M

as in (i)(a). Then, for each e > 0 and 1 < j < s., we have ¢ ® ecm € Q.; if
P.;NU = 0 while ukr®@em e Pij ®r ‘M C Qe if P.;NU # 0. All in all, we have

ubr@em e ([ Qe =0C L®g M for all e > 0 and all m € M.
j=1
Now, the assumption that Anng(M) C 4/(0) implies that there is an R-linear map
h: M — R/+/(0) such that h(myg) € (R/\/(O)) for some mg € M. Applying h,
we get 0 = u*x ® ch(mg) € L ®p E(R/\/(O)) for all e > 0. Notice that h(m) can

be lifted back to some d € R° under the natural ring homomorphism R — R/+/(0).
Also observe that, for any given gy = p, the Frobenius mapping r — P’ defines
an R-linear map F¢ : °R — ¢T%R for all e. Choose ¢ large enough so that

(O)[qol = 0. Then F**° factors through ¢ (R/\/(())), which means there exists an
R-linear map G : 6(R/\/(O)) — ©TeR such that G (h(mg)) = d% € ¢tTeR for

all e. Now apply G to the equation 0 = u*z ® ch(mg) € L ®r e(R/\/(O)) to

get 0 = uFr ® (cd)® € L ®@p R for all e > 0, which implies that u*z € 0% or,
equivalently, z € U~1(0%).

(iii): This follows from part (ii) as, for a general ring T of characteristic p, tight
closure commutes with localization over T if and only if it is true over T/ \/@ |

Next we see the usefulness of F-contributors in the tight closure theory.

PROPOSITION 2.4. Let (R,m,k) be a local Noetherian ring of characteristic
p, M a finitely generated R-module with dim(M) = dim(R). Assume that M
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has FFRT by {My, Ms,...,Ms} and that {M;,Ms,..., M.} is the set of all F-

contributors for some r <s. Set N = @._; M;.

(i) For any finitely generated R-modules K C L, K is contained in the kernel of
L —- L/K — Homgr(N,L/K ®r N), the composition of the natural and the
evaluation R-homomorphisms.

(i) If, furthermore, R is analytically unramified, quasi-unmized with a completely
stable test element (e.g. (R,m) is a complete domain) and M is faithful over
R, then K; =ker(L — L/K — Homg(N,L/K ®r N)).

Proof. Without loss of generality, we assume K = 0. Since 07 C (1,5 (m"L)}
and equality holds if there is a test element (by [HH1|, Proposition 8.13(b)) and
ker(L — Homp(N,L ® N)) = (,-0 ker (557 — Hompg(N, -2+ ® N)), we assume
Ar(L) < o0, still, without loss of generality. Let D be an arbitrary R-submodule of
L and denote L' := L/D. Set a = [k : kP], d = dim(R) = dim(M). Then we have

. Ar(L®pr M . Ar(L' ®@r M
GHK(L,M)SHK(L,vM)EILHJOWJH&W
(M, M; (M, M;
= eli{goz #ép))AR(L ®R M) — ehm Z #ép)e))\R(Ll ®R M’L)

ell’nc}ozﬁée]pw)‘l\l)(AR(L@RM) )\R(L/ QR Ml))

= lim Z #M)M)(AR(L @r M;) — Ap(L' @R M;)),
which implies that eHK(L,M):eHK(L’,M) < )\R(L(X)R )—)\R(L/®R )
foralli =1,2,...,r < )\R(L®RN) = AR(L/(@RN) ~— D C {l‘ S L|0 =
r®y € L®r N,Vy € N} =ker(L — Homg(N,L®g N)).

(i): Since eyx (L, M) = e (L/0}, M) by Theorem [1.11] we have, by the above
argument, 05 C ker(L — Homp(N,L ®r N)).

(ii): Let D' = ker(L — Hompg(N,L ®r N)) and L” = L/D’. Then, by the above
argument again, egx (L, M) = egg(L”,M). This implies that eyx (L, R/P) =
ek (L",R/P) for every P € min(M) = min(R) by the associativity formula,
the fact that R is equidimensional and the fact that, a priori, egx (L, R/P) >
enx(L", R/P) for each minimal prime P. Hence ey (L, R) = ey (L", R), by the
associativity formula again, which implies D’ C 0% by Theorem Combined
with the result in (i), this gives 07 = ker(L — Hompg(N,L Qg N)). O

The next theorem is a global version of the above Proposition [2.4 Notice that
Theorem [2.5(iii) is just a special case of Theorem [2.3(ii) but is proved differently.
Recall that persistence of tight closure holds if R is essentially of finite type over
an excellent local ring or if R/+/(0) is F-finite by [HHS, Theorem 6.24].

THEOREM 2.5. Let R be a Noetherian ring of characteristic p and M a finitely
generated R-module with FFRT by {My, Ma, ..., Ms}. Consider the following con-
ditions:

(1) [k(m) : k(m)P]pdimMn) js constant for all mazimal ideals m of R. Under this
condition, we set N = @._, M; be a direct sum of all the F-contributors at all
mazimal ideals m of R (see Remark[1.4(iii)).
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(2) Either (a) persistence of tight closure holds; or (b) dim(My,) = dim(Ry,) for all
mazimal ideals m of R.

(3) M is faithful, R has a test element, and, for every mazimal ideal m of R, Ry,
is an analytically unramified, quasi-unmized and with a completely stable test
element.

Then:

(i) Assume (1) and (2). Then K; C ker(L — L/K — Hompg(N,L/K ®g N)) for
any finitely generated R-modules K C L.

(ii) Assume (1) and (3). Then K = ker(L — L/K — Hompg(N,L/K ®g N)) for
any finitely generated R-modules K C L.

(ill) Assume (3). Then tight closure commutes with localization over R, that is,
(U'K)g o, = U YN(K}) for any finitely generated R-modules K C L and for
any multiplicatively closed set U C R.

Proof. Without loss of generality, we assume K = 0. Notice that condition (3)
implies condition (2)(b).

(i): If condition (2)(a) is satisfied, then it is enough to prove the desired result
over R/ Ann(M) via the natural map R — R/Ann(M). But notice that M is
faithful over R/ Ann(M) hence (2)(b) is satisfied. So we assume (2)(b) without loss
of generality. For every maximal ideal m of R, we have (07 )m C 07, - We then apply
Proposition (1) to local ring Ry, and get 07 C (ker(L — Homg(N,L®g N)))m-
Hence 03 C ker(L — Hompg(N,L @g N)).

(ii): We have 07 =, N,>o(m™L); (by [HH1], Proposition 8.13(b)), where m
runs over all maximal ideals of R. For each maximal ideal m of R, let ¢, denote
the natural ring homomorphism R — Ry,. By [HH1| Proposition 8.9], we have

(m"L), = dn' (M"L)m)7,,)
= ¢ (ker(Lm — (m{;L)m — Hom (N (miL)m ® n)

L L
= o' (er(L = 7 = Hom(N, 7@ N))

L L

Therefore we have

07 =) (m L)L—ﬂmker(LemaHom(N,W@)N))

m n>0 m n>0
= ker (L — Hom(N, L ® N)).

(iii): If Spec(R) is disconnected, i.e. R = Ry X Rs, then both Ry and Ry satisfy
the conditions of the theorem. Also to show that tight closure commutes with
localization for R, it is enough to show the same results for both R; and Rs.

Hence we may assume that Spec(R) is connected so that [k(P) : k(P)P]pdim fir =
[k(Q) : k(Q)P]p?™ Ee for any two prime ideals P and Q of R. Therefore condition
(1) is satisfied by any localization of R and hence result in part (i) applies.

To prove tight closure commutes with localization, it is enough to show, for any
multiplicatively closed set U C R, U~(0}) = 0j,_.,. Applying result in part
(i) to UT'R, we have 0j,_,; C ker(U'L — Hom(U 'N,U'L® U'N)) =
U~ (ker(L — Hom(N,L ® N))). But we have 05 = ker(L — Hom(N,L ® N))
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by (ii) above. Hence 0f,_,, € U~'(07). And we conclude that U~1(0%) = 0},_,,
as U71(03) C 07—, is automatic. O

REMARK 2.6. We might be interested in the ideals cases of Theorem and
Theorem It is straightforward to get the results by letting L = R/I.
(i) Theorem [2.3(i) says the set Ueen Ass(& ®p °M) = Ueen Ass(%) is finite and

J*¥-HY(125) = 0, for all J C R and for all ¢ = p°, which implies

M

(k+u(Narla g - 00 [a] ; (k+p()g g0 22
J (I'UM :pp J*°) C IMM, e, J HJ(I[q]M

) =0,
where p(J) is the least number of generators of the ideal J.
(ii) Theorem [.5(ii) simply says I* = (IN :g N) = Anng(N/IN).

REMARK 2.7. Let R be a Noetherian ring of characteristic p that has FFRT by
{My, M, ..., M}. Say that {M;, Ms, ..., M;} is the set of all modules that appear
in the decompositions of °R non-trivially for infinitely many e. Let N’ = @5:1 M;.
Then the Frobenius closure of 0 in an R-module L, denoted by 0, is determined
by 0F = ker(L — Homp(N’, L ®g N’)). In particular, the Frobenius closure of an
ideal I in R, denoted by I, is characterized by I = (IN’ :g N’). The proof is
similar to the one of Proposition but more direct.

DiscussioN 2.8.  Let R be as in Theorem ii) and adopt the notations there.
We furthermore assume #(°R, M;) > 0 for some ¢y and for all i = 1,2,...,r.
Let go = p®. Then N = @;_, M; may be realized as a direct summand of R'/%
since ‘R = RY?" as R-modules for every e. Say that N = €P._, M, is generated by

c}/qo,cé/qo, . 7ctl/q" as an R-submodule of RY/%. Let 79 = (c1,¢o,...,¢.) be the
ideal of R generated by ci1,ca,...,¢;. Then for any ideal I of R and an element
x € R, we have x € I* if and only if roz% C Il%l Indeed, x € I* if and only
if ztN C IN, i.e. x(ci/qo,c;/qo, . ,ci/qo) C [(c}/qo,cé/qo, . ,ctl/qo) if and only if
a(e/® cd/® . ¢}/®) C IRY® if and only if roz% C I, Here the second ‘if

and only if’ follows from the fact that N is a direct summand of R'/% while the
third ‘if and only if’ follows by taking the go-th Frobenius power or the gp-th root.
More generally, we mention that, for any finitely generated R-modules K C L and
any element z € L, we have z € Kj if and only if 7oz% C K?O]. (See [HH1,
Discussion 8.1] for the meaning of % and KEJO].) The proof, which we omit, is
similar to the one for the ideal case above. Once again, we deduce that tight closure

commutes with localization in this case.

REMARK 2.9. Of course we can talk about F-contributors for any F-finite R-
module M without the assumption of FFRT. If [k(m) : k(m)P]pdi™(Mn) is constant
for all maximal ideals m of R and N is a non-zero F-contributor of M at all maximal
ideals m of R, then we always have:

(i) Suppose that dim M = dim R. Then for any finitely generated R-module L, we
have 03 C ker(L — Hompg(N,L ®g N)).

(ii) N is necessarily a Cohen-Macaulay module if R is local. More generally, results
similar to Lemma [2.2| can be proved.
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3. The sequence {7#((2%’)]\5” }e:o

In this section we study the growth of #( M, M;) as e — co. We restrict ourselves
to the case where (R, m) is local and M # 0 is a finitely generated R-module
with FFRT by a FFRT system My, Ms, ..., M. Without loss of generality, we
may simply assume that M = XY and ¥V = A°Y for all e > 0, where X =
(n1,n2,...,ns) is a 1 x s matrix, A := (a;j) is an s x s matrix with non-negative
integer entries and Y = (My, My, ..., M,)T. Consequently *M = X A°Y for all
e > 0. For each i = 1,2,...,s, let E; = (0,...,0,1,0,...,0)T. Then we can easily
see that #(°M, M;) = X A°E;. Then % = XB°FE;, where B = ﬁA. We use
E to denote the identity matrix of various sizes and use Z = (21, 22, . . . ,ZS)T e Cs
to denote an arbitrarily chosen and then fixed s x 1 matrix with entries in C.
Similarly X = (nj,ns,...,ns) is used to denote an arbitrarily chosen and then
fixed vector. But we may insist that the entries of X be non-negative integers in
order to maintain the realization that X B¢F; = % where M = @5:1 n; M;.

We also assume that {My, Mo, ..., M, } is the set of all F-contributors of &5_, M;
so that, for any R-module M = XY, the set of F-contributors of M is contained
in {My,Ms,...,M,.}. We call My, Ms,..., M, the general F-contributors of the
FFRT system {Mj, Ms,...,M,}. Also we set Y' = (My, Ms,...,M,,0,...,0)T,
a = [k(m): k(m)?] and d = dim M.

We will keep these notations throughout this section.

Therefore Question [1.5] can be restated as: Does lim,_.., X B¢E; exist for every
i=1,2,...,57 Or equivalently, does lim,_, ., X B¢ exist? Or, still equivalently, does
lime_. oo XB¢Z exist for every Z € C*?

A slightly stronger question would be:

QUESTION 3.1.  Does the limit lim,_, o, X B¢FE; exist for every X € N¥ and every
i =1,2,...,s?7 Or equivalently, does lim,_.., B¢ exist? Or, still equivalently, does
lime ., XB¢Z exist for every X € N® and every Z € C*?

EXAMPLE 3.2. Actually we should not expect a positive answer to the above
question in general. There might be relations among My, Ms, ..., M, in terms of
direct sums. Indeed, let R = k be a field of characteristic p = 2 such that [k : k?] = 2
and let M = My, = Ms = k. Then M has FFRT by a FFRT system M, M and we
may pre-fix the direct sum decompositions of °M so that X = (1,0) and A = (9 32).
But it is easy to see that lim._ w do not exist for ¢ = 1,2. Or even
simpler, let R =k = M = M; = M, where k is a perfect field and X = (1,0) so
that A= (94).

By a result of K. Smith and Van den Bergh, quoted as Theorem the limit
always exists and is always positive for M = R where R is strongly F-regular ring
with FFRT by finitely many indecomposable modules which satisfies the Krull-
Schmidt condition. Notice that in this case R does have FFRT by a FFRT system.

In this section, we first study the properties of the matrix B in the general
situations of FFRT by a FFRT system. Then, in Theorem [3.11] we will give a
positive answer to Question under the assumption that R satisfies the Krull-
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Schmidt condition and that My, Ms, ..., M, are all indecomposable, non-zero and
belong to different isomorphism classes.

LEMMA 3.3.  All of the eigenvalues of B have absolute values < 1.

Proof. Tt follows from Lemma [2.1f Suppose, on the contrary, that there exist
an A € C and a complex vector V (v1,v9,...,v5)T # 0 such that [A| > 1 and
BV = AV. Then B¢V = A\°V. By choosing a proper X € N? such that XV # 0,
we have that | XB°V| = |A\*XV| = |A\|¢|XV]| — o0 as e — oo. But by Lemma
applied to M = X (M, Ma,...,Ms)T, | XBV| <>, |vl\#aLd)]\f) defines a
bounded sequence. Contradiction. ]

Let A1, Ag,..., N be the distinct eigenvalues of B such that |[X\;] = 1 for ¢ =
1,2,...,k and |N| < 1 foré = k+ 1,k + 2,...,l. We can think of B as a C-
linear transformation of C*. Now, by the primary decomposition theorem (or Jor-
dan Canonical Form theorem), we can write C* as C° = @é 1 Zj, where Z; =
ker((A\;E — B)®) = ker((\;E — B)") for sufficiently large n. Then every Z € C*®
can be written as Z = Zi:l Z; where Z; € Z; for every i = 1,2,...,l. In particu-
lar, N7Z; = 0 for every 1 = 1,2,...,l, where B; is the restriction of B to Z; and
Ni.:B—)\Eforeachzf12 ,.

Then we have XB¢Z = Z 1 XBeZ For all e > s, we have XB¢Z; = X (M E +
Ni)Zi =X (35 (A JNJ)Z =350 ))\e JXNJZl7 which can be realized as
NS 1cm( ) = )\EP( ), where ¢;; = X (3 " N;)'Z; and P;(e) is the value of the
polynomial P;(W) = >7_ 10”( ) € C[W] at W = e for each 1 < i < [. (Here we
assume that all the eigenvalues of B are non-zero. If 0 is an eigenvalue of B, we can
treat the part corresponding to 0 separately to get a similar result.) Therefore we
have XB¢Z = Y\ A¢Pi(e).

Alternatively we can derive the above result in the following (essentially the same)
way by means of matrices: By the primary decomposition theorem, there exists an
invertible s X s matrix T with complex entries such that

B, 0 ... 0 where, for each i = 1,2,...,1, B; is an
0 B 0 $; X 8; matrix such that N/ = B, — \,FE
—1 2 ...
rsr={(_ " ) is nilpotent for each i = 1,2,...,[. In
0 0 B particular, (N/)® = 0.

Let U=XTandV =T"1Z. Corresponding to the partition of T~ BT, we write
U= U,Us,...,U0) and VT = (VT VI, .. Vz ) so that U; and VT are both 1 x s;
complex matrices. Then we have XB¢Z = Z i—1 Ui BiV;. For all e > s, we have
UiBgVi = Ui(NE + NV = Uy (35 (5) A7 I(NIYI )V Yoo (A JU(N')Jm,
which can be realized as A§ Zj 1 Czy( ) = A\¢Pi(e), where ¢;; = U( iNZ')sz’ and
P;(e) is the value of the polynomial P;(W) = ZJ 1c”( ) € C[W] at W = e for
each 1 <4 < [. (Here we assume that all the eigenvalues of B are non-zero. If 0 is

an eigenvalue of B, we can treat the part corresponding to 0 separately to get a
similar result.) Therefore we have X B¢Z = Zi’:l ASP;(e).

LEMMA 3.4. Keep the notations as above. Then:
(i) The value 1 is an eigenvalue of B.
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(ii) P;(W) = cio = X Z; are constant polynomials for alli=1,2,... k.

(iii) For some fixed X and Z = Zézl Z; where Z; € Z; for every i = 1,2,...,1,
we have lime_,oo XB¢Z exists if and only if P;(W) = c¢io = XZ; = 0 for every
1=1,2,...,k such that \; # 1.

The proof follows from a lemma in [Se2|, either directly or indirectly. Also we
need to use the fact that the set {(VJV) |j =1,2,...,s}, considered as a subset of
the C-vector space C[WW], is linearly independent over C. First we state the lemma.

LEMMA 3.5 (|Se2|, Lemma 2.3). Given yi,...,7 € C\{0} and P (W), P2(W),
L P(W) e CIW] \ {0} for some t € N. Assume that v1,72,..., v are distinct.
Set f(e) :==S'_, V¢ Pi(e) for all e € N. Then we have:
(i) The following are equivalent:
(a) lime_o f(e) =0;
(b) |yl <1 foralli=1,2,...,t.
(ii) For any c € C\ {0}, the following are equivalent:
(a) lime_ f(€) =¢;
(b) There is an ig € N with 1 < ig <t such that v, =1, P, = ¢ and |y;| < 1
for all 1 < i <t with i # iy

Proof of Lemma[3.4  (i): This is basically proved in [Se2]. We include a proof
for completeness.
Let Z = ()\R(Ml/li) )\}:&]\42/11’1]\42)7 AP /\R(Ms/mMs))T. Then

e .e [p°]
lim Z/\e lim Ar(“M/m- M) lim Ar(M/m!P 1M

- e—>oo (apd)e e—00 pde CHK (m7 M)

and the fact that eyx(m, M) > 0 implies that A\;, = 1 for some 1 < i5 < [ by
Lemma (ii).

(ii): For each i = 1,2,...,1, set P/(W) = BWIZPO) ¢ ¢[w). Since {XB°Z =
2221 AEP;(e)}o2, is bounded, we have

0 - eli>rlgo XBe €—>OO Z Ae €—>OO Z AEP,

which forces P/(W) = 0 for all ¢ = 1,2,..., k, which implies that P;(W) = ¢;o =
X 7,; are constant polynomials for all i =1,2,... k.
(iii): Follows directly from part (ii) and Lemma (ii). O

LEMMA 3.6. Keep the above notations. Then

(i) Z; = ker(B — \;E) = ker(V;) is the eigen-space of A; (or, in terms of matriz,
B;i=MNE, i.e. N/ =0) foralli=1,2,... k.

(ii) Let M = XY be a fired R-module. Also we assume that A\, = 1 without loss of
generality. Then lim,_, % ezists for every i =1,2,...,s if and only if
XZ =0 for every Z € @

(iii) We assume that Ay = 1 wzthout loss of generality. Let Z = ZZ 1 Z; where
Z; € Z; for everyi=1,2,...,1. Then lim._.., XB¢Z exists for every X if and
only if Z; :Ofori:(el,2,...,k— 1.

(iv) The limit lime_, (aT’)Afi) ezists for every module M = XY and for every
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1=1,2,...,sif and only if k =1, i.e. \y =1 is the only eigenvalue of B with
absolute value equal to 1.

Proof. (i). By the above Lemma, we know that Z;Zl Cij (V]V) = P(W) = ¢.
Since the set {(VJV) |j =1,2,...,r}, considered as a subset of the C-vector space
C[W], is linearly independent over C, we have ¢;; = 0 for all j = 1,2,...,s. In
particular ¢;; = 0. But ¢;1 = )\%XNiZi. Therefore X N;Z; = 0. By running X over
all possible choices and running Z over all vectors in C* (actually it is enough to
run Z over all vectors in Z7), we deduce that N;Z; = 0 for all Z; € Z;, which
proves (i).

(ii) and (iii) immediately follow from the above lemma.

(4) immediately follows from (ii) or (iii). Alternatively it can be proved directly.

]

DiscussioN 3.7. For any X € N° let Vx to be the set of all s x 1 matrices
V' € C? with complex entries such that lim,_, ., X B¢V exists. It is easy to show that
Vx is a B-subspace of C® and that lim. .., X B¢ exists if and only if Vx = C*. By
the definition of F-contributors, we know that F; € Vx, foralli=r+1,r+2,...,s
if My, My, ..., M, are all the F-contributors of M = XY

Similarly, we define V to be the set of all s x 1 matrices V' € C* with complex
entries such that lim._ ., B¢V exists. It is easy to show that V is a B-subspace
of Vx C C* for any X € N*® and that lim._ .., B¢ exists if and only if V = C*.
By the definition of the general F-contributors, we know that E; € V, for all
i=r+1,r+2,...,s since {My, Ms,..., M,} contains all the F-contributors of
M = XY for all possible X.

Let L be an R-module such that Ag(L) < oo and M = XY so that M has FFRT
by My, Ms, ..., M. By [Sel|, we know that

lim X B°Ag(Hompg(Y’, L)) = lim XB°Ar(Hompg(Y, L))
— lim )\R(HomR(eM, L))
e— 00 (apd)e
exists. Hence {Ar(Homp(Y’,L))|Ar(L) < oo} and {Agr(Hompg(Y,L))|Ar(L) <
oo} are all contained in V. Hence a sufficient condition for a positive answer to

Question would be that the {A\g(Hompg(Y, L)) | Ar(L) < oo} spans Q° or that
{Ar(Hompg(Y’,L)) | Ar(L) < oo} spans Q".

In the remaining part of this section we assume the R-modules My, Ms, ..., M,
satisfy the following unique condition:
T T
ZniMi = ZmiMi if and only if m; =n; forall 1 <i <. (3.1)
i=1 i=1
This condition is satisfied if, for example, R satisfies the Krull-Schmidt condi-
tion and My, Mo, ..., M, are all indecomposable, non-zero and belong to different
isomorphism classes. Indeed, under the uniqueness condition , we can show

that lim._, o % = lim,._,.c X BE; exists for every ¢ = 1,2,...,s and every

X € N°. Its proof uses the following theorems of Robert M. Guralnick [Gu] and
M. Auslander |Au]. We only quote a special version of each of the theorems. See
the original papers for their general versions and proofs.
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THEOREM 3.8 (|Gu], Corollary 1). Let (R,m) be a Noetherian local ring, not
necessarily of characteristic p and M and N are finite R-modules. If M /m™M =
N/m™N for a sufficiently large n € N, then M = N.

The next theorem of Auslander can be found in [Au] and |[AR]. A simple and
direct proof of the result is provided in [Bo] by Klaus Bongartz.

THEOREM 3.9 ([Aul, [AR] and [Bo|). Let R be a Artinian ring, not necessarily
of characteristic p and M and N are finite R-modules. Then M = N if and only
if Ag(Hompg(M, L)) = Ag(Hompg(N, L)) for all finite R-modules L, which is also
equivalent to that A\g(M ® L) = Agr(N ® L) for all finite R-modules L.

Actually it is the following corollary of the above two theorems that is used in
the proof of Theorem [3.11}

COROLLARY 3.10. Let (R,m) be a Noetherian local ring, not necessarily of
characteristic p and M and N are finite R-modules. Then M = N if and only if
Ar(Homp(M, L)) = Ag(Hompg(N, L)) for all finite R-modules L such that Agr(L) <
oo if and only if Ag(M ® L) = Agr(N ® L) for all finite R-modules L such that
)\R(L) < 0.

Proof. For any n € N and for any finitely generated R/m™-module L, we
have Ag(Homp(M, L)) = Ag(Hompg (N, L)) by assumption. That is the same as to
say that Ap/mn»(Homp/mn (M/m"M,L)) = Ag/mr(Hompg/m=(N/m"N, L)) for any
finitely generated R/m™-module L. Hence by Theorem M/m"M = N/m"N as
R/m™modules (and as R-modules) for any n € N. Then Theorem gives the
desired result that M = N as R-modules. O

THEOREM 3.11. Let (R, m) be a local Noetherian ring of characteristic p and M
a finitely generated R-module with FFRT by a FFRT system {My, Ms, ..., M}, of
which My, Mo, ..., M, are the general F-contributors which satisfy the uniqueness
condition 1] Then lime_, o w = lim._. oo XB°E; exists and is rational
for every i =1,2,...,s and every X € N*, where M = XY . Or equivalently, the
matrix B has exactly one eigenvalue, i.e. 1, with absolute value equal to 1.

Proof. We first arbitrarily choose and then fix an X € N° and set M = XY.
By discussion it suffices to show that the set of vectors {Ar(Hompg(Y’,L)) =
(Ar(Homp(My, L)), Ar(Homp(Mz, L)), ..., Ar(Hompg (M, L))) € Q"|A(L) < oo}
spans Q. Suppose not. Then there are integers ¢y, ¢a, . . ., ¢, not all zero, such that
(c1,c2,...,¢)Ag(Hompg(Y', L)) =0, i.e.

cl)\R(HomR(Ml,L)) + CQ)\R(HOHIR(MQ, L)) + -+ CT)\R(HOIIIR(MT,L)) =0

for all R-modules L such that Ag(L) < oco. Without loss of generality, we may

assume that ¢; > 0fori=1,2,...,tand ¢; = —b; <Ofor j =t+1,t+2,...,7. Let

N’ =@;_; ciM; and N = @’_,,, b;M;. Then (c1,ca, ..., ¢)A\g(Homp (Y, L)) =

0 means that Ag(Homp(N’, L)) = Ag(Hompg(N", L)) for all R-modules L such that

Ar(L) < oo, which implies that N’ =2 N” from the above Corolla But this
5.0,

is impossible as M7, My, ..., M, satisfy the uniqueness condition (|
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It remains to show that lim._, w = lim,._,», X BE; is rational for every

i =1,2,...,s and every X € N*. This follows directly from a lemma of Seibert
[Se2], Lemma 2.4. We include a proof for completeness. Indeed, since we know
that the only uni-modular eigenvalue of B is 1 and the zero space of B — FE is the
same as the zero space of (B — E)™ for all n € N, there exists an invertible matrix
T € My«s(Q) such that

E 0
T—lBT: S1XS1 ) ,
< O BSQXSQ

where E, « 5, is the s; X s; identity matrix and By, x s, is an s X sg matrix with all its
eigenvalues having absolute values strictly less than 1. In particular, lim,, .., B
=0.
Write XT-! = (X', X") and TE; = (E/,E/)T, where X', X" E! and E! are
1 X s1,1 X 59,51 X 1 and s X 1 matrices respectively with rational entries. Then
lim XB"E; = lim (X'E!+ X"BY .. E!') = X'E],

SS9 X821
n—oo n—0o0

n
S2 X 8o

which is rational. O

COROLLARY 3.12.  Let (R, m) be a local Noetherian ring of characteristic p (not
necessarily satisfying the Krull-Schmidt condition) and M be a finitely generated
R-module with FFRT. If we use #( M, R) to denote the mazimal number of copies

of R appearing as a direct summand of M, then lim,_, #((az\;[)’f) exists.

Proof. 'We may assume that R is complete since #(°M, R) = #( M, }A{) Then
the existence of the limit follows immediately from Theorem [3.11]as complete rings
satisfy the Krull-Schmidt condition. |

apd)e

REMARK 3.13. The limit lime_, o #(( R.R) ig studied in [HL] by C. Huneke and
G. Leuschke and is called “the F-signature of R” there.

QUESTION 3.14. Now let us return to the general situation as at the beginning
of the section, i.e. we do not assume that R satisfies the Krull-Schmidt condition
or that My, Ms, ..., My are all indecomposable belonging to distinct isomorphism
classes. Let P(W) € Q[W] be the characteristic polynomial of B. Suppose A € C is
a root of P(W) and |A| = 1. Then is A an n-th root of 1?7

Does Theorem help with anything in this direction as we can complete the
ring R without loss of generality? If thee answer to the above question is positive,
then we can show that the sequence {M o2 is ‘periodically convergent’, i.e.

(apd)e
nk+i )
there exists an integer k£ > 0 such that for every i = 1,2,...,k, lim, . W

exists.

4. About (), Anng(ker(L — Homp(N,L ® N)))

Let us return to the situation of Proposition ii) and Theorem [2.5(ii) and keep
the notations. Both results claim Kj = ker(L — L/K — Hompg(N,L/K ® N))
for any finitely generated R-modules K C L, in which N is the direct sum of all
F-contributors. Thus the test ideal of R is 7 = (g (K g (ker(L — L/K —
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Homp(N,L/K®N)))), where K C L run over all finitely generated R-modules. As
K} /K =07 ;, we may always assume that K = 0 to get 7 = (], Annp(ker(L —
Hompg(N,L ® N))) and it is easy to see that ker(L — Hompg(N,L ® N)) consists
of x € L such that x ® N is zero in L ® g N. In the case of R being approximately
Gorenstein, the test ideal can be simplified as 7 = (\;cg(I :r I*) = ;cr( :r

(IN :g N)). Our next definition is inspired by this observation.

DEFINITION 4.1. Let R be a Noetherian ring, not necessarily of characteristic
p. For any R-module N, we define 7(N) = (), Anng(ker(L — Homg(N,L ® N)))
with L running over all finitely generated R-modules.

LEMMA 4.2. Let R be a Noetherian ring, not necessarily of characteristic p, N
be a finitely generated R-module and U a multiplicatively closed subset of R. Then
T(N)NU # 0 if and only if there exists n € N such that nNy = Ny & --- @ Ny has
a direct summand isomorphic to Ry (n =1 if Ry = U™'R is local).

Proof. First, we assume that n/Ny has a direct summand isomorphic to Ry for
some positive integer n. Since 7(nN) = 7(N), we may assume n = 1. Therefore
there exists an element ¢ € U such that R, is a homomorphic image of N.. That is
the same as to say that there is R-homomorphism f : N — R such that ¢! € f(N)
for some i. We may as well assume that ¢ = 1. Then for any finitely generated
R-module L and for any x € ker(L — Hompg(N,L ® N)), we have z @ N = 0 in
L®r N. Applying 1, ® f on L g N, we get cx =0 € L = L ® R, which in turn
implies that ¢ € Anng(ker(L — Homp(N,L ® N))). Hence ¢ € 7(N), which gives
T(N)NU # 0, the desired result.

For the converse implication, we assume that 7(N)NU # (). By relabeling Ry and
Ny with R and N respectively, we may simply assume that 7(N) = R and prove
nN has a direct summand isomorphic to R for some n € N. Say N is generated by
Z1,%2, ..., %y. Define an R-linear map ¢ : R — nN by r — (ray,rxe,...,7x,). The
assumption that 7(IN) = R says exactly that the induced map 1, ® ¢ : L®r R —
L ®p nN is injective for any finitely generated (hence any) R-module L, i.e. ¢ is
pure. Since nN is Noetherian, we get that ¢ : R — nN is a split injection and
hence nN has a direct summand isomorphic to R. ]

REMARK 4.3. Let us again return to Proposition ii) and Theorem [2.5[(ii)
with M being a FFRT faithful R-module. Then R is weakly F-regular if and only
if 7(N) = R if and only if R is an F-contributor of M (by the above Lemma
if and only if R is strongly F-regular (by a recent result of [AL]).
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