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UNIFORM TEST EXPONENTS FOR RINGS OF FINITE
F-REPRESENTATION TYPE

YONGWEI YAO

Abstract. Let R be a commutative Noetherian ring of prime characteristic p.
Assume R (or, more generally, a finitely generated R-module N with SuppR(N) =
Spec(R)) has finite F-representation type (abbreviated FFRT) by finitely generated
R-modules. Then, for every c ∈ R◦, there is a uniform test exponent Q = pE for c
and for all R-modules.

As a consequence, we show the existence of uniform test exponents over binomial
rings (in particular, affine semi-group rings).

The existence of uniform test exponents (for all modules) implies that the tight
closure coincides with the finitistic tight closure, and tight closure commutes with
localization for all R-modules.

0. Introduction

Throughout this paper we assume R is a commutative Noetherian ring with unity
and of prime characteristic p. Then, for every e ∈ N, the reiterated Frobenius map
F e : R→ R defined by r 7→ rp

e
is a ring homomorphism.

Let N be an R-module with the scalar multiplication denoted by rx for all r ∈ R
and x ∈ N . (Thus N is naturally an (R,R)-bimodule with xr = rx.) For every
e ∈ N, we denote by eN the derived (R,R)-bimodule structure on the same abelian
group N with the same right module structure but with the left scalar multiplication
determined by r · x = rp

e
x for all r ∈ R and x ∈ N . (Notice that, if R is reduced,

the left R-module structure of eR is isomorphic to R1/q for all q = pe.) By default,
the structure of eN refers to its left R-module structure. When necessary, we use l to
indicate that the left module structure is being considered. For example, AnnlR(eN)
stands for the annihilator of eN as a left R-module. Then it is routine to verify that
AnnR(N) ⊆ AnnlR(eN) ⊆

√
AnnR(N) and AssR(N) = AsslR(eN) for all e ∈ N.

A very important concept in studying rings of characteristic p is tight closure, which
was first introduced and developed by Hochster and Huneke; see [HH1].

Definition 0.1 ([HH1]). Let M be an R-module. Denote R◦ := R \∪P∈min(R)P . For

every e > 0 and x ∈M , denote F e
R(M) := M ⊗R eR and xp

e

M := x⊗ 1 ∈ F e
R(M).

(1) The Frobenius closure of 0 in M , denoted 0FM , consists of x ∈ M such that

xp
e

M = 0 (i.e., 0 = x ⊗ 1 ∈ M ⊗R eR) for some e > 0 (or, equivalently, for all
e� 0).
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(2) The tight closure of 0 in M , denoted 0∗M , is defined as follow: An element
x ∈ M is said to be in 0∗M if there exists an element c ∈ R◦ such that
0 = x⊗ c ∈M ⊗R eR for all e� 0.

(3) The finitistic tight closure of 0 in M , denoted 0∗ fg
M , is defined as follows: For

any x ∈ M , we say x ∈ 0∗ fg
M if there exists a finitely generated R-submodule

M1 of M such that x ∈ 0∗M1
.

It turns out that 0FM , 0∗M and 0∗ fg
M are all R-submodules of M . In general, given

R-modules L ⊆ M , the tight closure of L in M , denoted by L∗M , is the (unique)
R-submodule satisfying L ⊆ L∗M ⊆ M and L∗M/L = 0∗M/L. And one can define LFM
and L∗ fg

M similarly. It is routine to verify that LFM ⊆ L∗ fg
M ⊆ L∗M .

From the definitions of tight closure and Frobenius closure, it is evident that the
left module structure of eR plays an important role in determining the membership
in tight closure or Frobenius closure.

Note that, in Definition 0.1, the choice of c ∈ R◦ depends on the element x ∈ 0∗M .
Because of this, the notion test element was introduced in tight closure theory, see
[HH1]. Given c ∈ R and q0 = pe0 , we say c is a q0-weak test element if c ∈ R◦ and
0 = x⊗ c ∈M ⊗R eR for all R-modules M , x ∈ 0∗M and e > e0. A weak test element
simply means a q0-weak test element for some q0; and a test element simply means a
1-weak test element. If a test element of R remains so in all the localizations of R,
we call it a locally stable test element.

One of the most important open questions in tight closure theory was whether tight
closure commutes with localization, that is, whether (0∗M)P = 0∗(MP ) for all (finitely

generated) R-module M and all P ∈ Spec(R). This was answered recently: In [BM],
H. Brenner and P. Monsky give an example where tight closure does not commute
with localization.

However, there are many special cases where tight closure does commute with
localization. It is straightforward to see that (0∗M)P ⊆ 0∗MP

. However, the other
containment, i.e., (0∗M)P ⊇ 0∗MP

, is not so easy to determine as the definition of tight
closure involves verifying infinitely many equations. In order to study this, the notion
test exponent was introduced in [HH3]. For simplicity (and without loss of generality),
we give the definition of test exponent concerning 0∗M only.

Definition 0.2 ([HH3]). Let R be a ring, c ∈ R, and M an R-module. We say
Q = pE is a test exponent for c and M if, for any x ∈ M , the occurrence of 0 =
x⊗ c ∈M ⊗R eR = F e

R(M) for one single e > E implies x ∈ 0∗M .

If there exists a test exponent for a locally stable test element c ∈ R◦ and an R-
modules M , then the tight closure of 0 in M commutes with localization. This result
was implicit in [McD] and was explicitly stated in [HH3, Proposition 2.3]. Moreover,
Hochster and Huneke showed in [HH3] that the converse is true:

Theorem 0.3 ([HH3]). Let c ∈ R◦ be a locally stable test element and M a finitely
generated R-module. If the tight closure of 0 in M commutes with localization, then
there exists a test exponent for c and M .

In [HH3], Hochster and Huneke also asked, among other questions, whether there
exists a uniform test exponent for a given test element and a set of modules. Over
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equidimensional excellent local rings, R. Y. Sharp showed the existence of such a
uniform test exponent for all modules of the form of R/I with I an ideal generated by
parameters in [Sh]. (This was later also proved in [HoY1] via a different approach.)
Quite generally, Hochster and this author recently have shown the existence of a
uniform test exponent for all finitely generated modules of finite phantom projective
dimension in [HoY2] via the approach of ‘weak embedding’.

In this paper, we study the existence of uniform test exponents for all R-modules
(finitely generated or not) under the ‘finite F-representation type’ assumption. The
notion finite F-representation type (FFRT for short) was first introduced and studied
by K. Smith and M. Van den Bergh in [SVdB] over F-finite rings; also see [Yao1].
(Recall that R is said to be F-finite if 1R is a finitely generated R-module, which then
implies that eN is finitely generated over R for every e ∈ N and for every finitely
generated R-module N . By a result in [Ku], F-finite rings are excellent.) However,
we do not require R to be F-finite in our definition below. (For any R-module T and
any set Λ, we use the notation T⊕Λ to denote ⊕λ∈ΛTλ where Tλ = T for every λ ∈ Λ.
By convention, T⊕Λ = 0 whenever Λ = ∅.)

Definition 0.4 (Compare with [SVdB] and [Yao1]). Let N be an R-module. We
say that N has finite F-representation type (abbreviated FFRT) if there exist finitely
many R-modules N1, N2, . . . , Ns such that, for every e > 0, the derived left R-module
eN is isomorphic to a direct sum of the R-modules N1, N2, . . . , Ns with multiplicities,
i.e., there exist sets Λe1, Λe2, . . . , Λes such that

eN ∼= N⊕Λe1
1 ⊕N⊕Λe2

2 ⊕ · · · ⊕N⊕Λes
s =

s⊕
i=1

N⊕Λei
i .

To be specific, we say N has FFRT by N1, N2, . . . , Ns.

Remark 0.5. (1) In the above definition, the left modules eN are not required to
be finitely generated over R; the R-modules N1, . . . , Ns are not required to
be finitely generated; and the sets Λe1, . . . , Λes are allowed to be infinite. For
example, over a local ring (R, m, k) with residue field k = R/m, the derived
left module e(R/m) is a (possibly infinitely dimensional) vector space over k.
So R/m has FFRT, by k, according to Definition 0.4 above. More generally,
if N is an R-module such that AnnR(N) is m-primary, say m[pn1 ] ⊆ AnnR(N)
for some integer n1 > 0, then N has FFRT by N, 1N, . . . , n1−1N, R/m.

(2) Generally speaking, for each e ∈ N, the decomposition of eN as a direct sum
of Ni is not necessarily unique. However, for each e, we may fix a direct
sum decomposition of eN and, from now on, refer to it as the direct sum
decomposition of eN . We say that Ni appears non-trivially in the direct sum
decomposition of eN if Λei 6= ∅.

(3) Assume R is F-finite and N is a finitely generated R-module. Then N having
FFRT implies N having FFRT by finitely generated R-modules. In this case,
the definition of FFRT agrees with [Yao1, Definition 1.1].

Example 0.6. Assume (R, m) is an F-finite ring. We have the following examples
of rings or modules with FFRT by finitely generated R-modules.
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(1) If (R, m, k) is regular, then eR ∼= R1/q ∼= R⊕q
α+dim(R)

is a free R-module of
rank qα+dim(R), where α = logp[k : kp] <∞.

(2) If (R, m) has finite Cohen-Macaulay type and N is a finitely generated max-
imal Cohen-Macaulay module, then N has FFRT (since eN is a maximal
Cohen-Macaulay left R-module for every e ∈ N).

(3) Let R → S be a ring homomorphism such that S is module-finite over R,
W a finitely generated S-module with FFRT and N an R-submodule of W
such that W = N ⊕N ′ as R-modules. Then N has FFRT as an R-module by
[SVdB, Proposition 3.1.4] essentially. However, the Krull-Schmidt condition
is not needed by the virtue of [Wi, Theorem 1.1]. In particular, if S is an
F-finite regular local ring of characteristic p and G is a finite group acting on
S such that p - |G|, then the invariant ring R = SG has FFRT.

(4) Also, normal (affine) semi-group rings and rings of invariants of linearly re-
ductive groups (over a F-finite field) have FFRT by [SVdB, Proposition 3.1.6].

(5) Every one-dimensional complete local or graded domain with algebraically
closed or finite residue field has FFRT, see [Shi] by Shibuta.

(6) For a nice summary of examples of rings with FFRT, see [TT, Example 1.3]
by Takagi and Takahashi.

Generally speaking, for any R-module N , the “size” of eN (as a left R-module)
increases as e increases. However, when N has FFRT (say by N1, N2, . . . , Ns), the
left module structures of eN for all e > 0 are ‘captured’ in these of N1, N2, . . . , Ns.

Theorem 0.7. Assume R is F-finite and assume there exists a finitely generated
R-module N with SuppR(N) = Spec(R) (e.g., N = R) that has FFRT. Then

(1) Tight closure commutes with localization for all finitely generated R-modules;
see [Yao1, Theorem 2.3]. (Also see Corollary 3.5.)

(2) R is F-regular if and only if R is strongly F-regular (cf. [Yao1, Remark 4.3]).
(3) The F-signature of N exists and is a rational number; see [Yao2, Theorem 4.6]

and also [Yao1, Theorem 3.11 and Corollary 3.12]. 1

In light of Theorem 0.3 and Theorem 0.7 (1), one could ask whether there exists a
uniform test exponent for a given c ∈ R◦ and for all (finitely generated) R-modules.
This is answered positively in the main theorem of the paper:

Theorem (See Theorem 3.1). If there exists a finitely generated R-module N with
AnnR(N) ⊆

√
0 such that N has FFRT by finitely generated R-modules, then, for

every c ∈ R◦, there is a (uniform) test exponent for c and for all modules over R and
over all its localizations.

As a corollary, we show the existence of uniform test exponents over binomial rings
(in particular, affine semi-group rings). Moreover, the existence of test exponents
implies the tight closure is the same as the finitistic tight closure, and, as mentioned
above, tight closure commutes with localization for all R-modules.

1In fact, the F-signature of N exists as long as N is a finitely generated R-module that has FFRT
as defined in this paper (without assuming R is F-finite). This could be proved via an approach
similar to that in the proof of [Yao2, Theorem 4.6], for example.
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1. Defining the Frobenius closure and tight closure via a module

First, we make some definitions that are closely related to the Frobenius closure and
tight closure. They will be used in the sequel. (For any R-modules M , L ⊆ N and
x ∈M , we use 0 = x⊗L ⊆M⊗RN to express the meaning that 0 = x⊗y ∈M⊗RN
for all y ∈ L.)

Definition 1.1. Let R be a ring of characteristic p and M,N be R-modules.

(1) Define 0F,NM , which may be called the N -Frobenius closure of 0 in M , as

0F,NM := {x ∈M | 0 = x⊗ eN ⊆M ⊗R eN for all e� 0}.

(2) Define 0∗NM , which may be called the N -tight closure of 0 in M , as follows: An
element x ∈M is in 0∗NM if there exists c ∈ R \ ∪P∈min(R/AnnR(N))P such that

0 = x⊗ e(cN) ⊆M ⊗R eN for all e� 0.

For all R-modules M and N , it is routine to verify that 0F,NM and 0∗NM are both
R-submodules of M . Moreover, it is straightforward to see

0F,NM ⊆ 0∗NM , 0FM = 0F,RM ⊆ 0F,NM and 0∗M = 0∗RM ,

because of the natural isomorphisms eN ∼= eR ⊗R N for all e > 0. Moreover, when
persistence of tight closure holds (e.g., when R is excellent), the inclusion 0∗RM ⊆ 0∗NM
holds; see Lemma 1.3 below. It turns out that 0∗NM is closely related to the ordinary
tight closure, as shown in the following Lemma 1.3.

Remark 1.2. We want to clarify some notations, which will be used throughout the
paper: Let M and N be R-modules. Then, for every e ∈ N, there is a canonical
isomorphism F e

R(M) ⊗R N = M ⊗R eR ⊗R N ∼= M ⊗R eN . Under this isomorphism,
(x ⊗ c) ⊗ N ⊆ F e

R(M) ⊗R N corresponds to x ⊗ e(cN) ⊆ M ⊗R eN for all x ∈ M
and c ∈ R. Also note that e(cN) is not equal to c(eN) in general, as c(eN) = e(cp

e
N).

However, we do have e(cN) = e(Nc) = (eN)c (or simply eNc) in light of the (R,R)-
bimodule structure of eN (and of N).

Lemma 1.3. Let M and N be R-modules. Assume N 6= 0 and N is finitely generated
over R.

(1) If AnnR(N) ⊆
√

0 (i.e., SuppR(N) = Spec(R)), then 0∗NM = 0∗M .
(2) In general, 0∗NM is the preimage of 0∗(M/AnnR(N)M) (computed over the ring

R/AnnR(N)) under the natural homomorphism M →M/AnnR(N)M .

Proof. (1) It suffices to show 0∗NM ⊆ 0∗M . Let x ∈ 0∗NM . Denote x := x+
√

0M ∈M =

M/
√

0M and N := N/
√

0N . It is clear that x ∈ 0∗N
M

over R/
√

0. On the other hand,

we have that x ∈ 0∗M over R if and only if x ∈ 0∗
M

over R/
√

0 (cf. [HH1]). Thus
we may assume R is reduced and, hence, AnnR(N) = 0 without loss of generality.
Consequently, there exists h ∈ HomR(N,R) such that h(N) ∩ R◦ 6= ∅. (To see this,
just invert all elements in R◦.) Say h(z) = d ∈ R◦ for some z ∈ N . Then h(cz) =
cd ∈ R◦. Then, as h ∈ HomR(N,R) ⊆ Homl

R(eN, eR), we apply the homomorphism
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idM ⊗h to 0 = x⊗ e(cN) ⊆M ⊗R eN , for all e� 0, to see that

0 = x⊗ h(e(cN)) ⊆M ⊗R eR,

which implies 0 = x⊗ h(cz) ∈M ⊗R eR for all e� 0,

in other words, 0 = x⊗ cd ∈M ⊗R eR for all e� 0,

which implies x ∈ 0∗M . Thus 0∗NM ⊆ 0∗M , the desired inclusion. (This was also shown
implicitly in the proof of [Yao1, Theorem 2.3] with a slightly different argument.)

(2) This follows from (1) above and Definition 1.1, in light of the natural isomor-
phism M ⊗R eN ∼= (M/AnnR(N)M)⊗R/AnnR(N)

eN . �

The reader might want to compare the following result with the proof of [HH3,
Proposition 2.6]. This will be used in the proof of the main theorem.

Proposition 1.4. Let c ∈ R and N an R-module. For every R-module M and every
integer e > 0, define

Me := {x ∈M |x⊗ c ∈ 0F,NF e(M) ⊆ F e
R(M) = M ⊗R eR}.

Then M0 ⊇M1 ⊇ · · · ⊇Me ⊇Me+1 ⊇ · · · , that is, {Me}∞e=0 is a descending chain of
R-submodules of M .

Proof. For any e > 0 and any x ∈M , we see that

x ∈Me+1 ⇐⇒ x⊗ c ∈ 0F,N
F e+1
R (M)

⊆ F e+1
R (M) = M ⊗R e+1R

⇐⇒ 0 = x⊗ c⊗ nN ⊆M ⊗R e+1R⊗R nN for all n� 0

=⇒ 0 = x⊗ cp ⊗ nN ⊆M ⊗R e+1R⊗R nN for all n� 0

⇐⇒ 0 = x⊗ c⊗ n+1N ⊆M ⊗R eR⊗R n+1N for all n� 0

⇐⇒ x⊗ c ∈ 0F,NF eR(M) ⊆ F e
R(M) = M ⊗R eR ⇐⇒ x ∈Me,

which proves Me ⊇ Me+1. As it is routine to verify that all Me are R-submodules of
M , the proof is complete. �

Given an R-module N that has FFRT, we agree to use the following notations
throughout the remainder of the paper:

Notation 1.5. Let N be an R-module that has FFRT. Then we agree that N has
FFRT by R-modules N1, . . . , Nr, Nr+1, . . . , Ns, in which N1, . . . , Nr are exactly the
ones appearing in the direct sum decompositions of eN non-trivially for infinitely
many e. Thus there is an integer n1 > 0 such that N1, . . . , Nr are the only ones
that could appear non-trivially in the direct sum decompositions of eN for all e > n1.
Then there is another integer n2 > n1 such that each of N1, . . . , Nr appears non-
trivially in at least one of the direct sum decompositions of n1N, n1+1N, . . . , n2N . Let
T := ⊕ri=1Ni. Also denote by K the R-module determined by the left R-module
structure of ⊕n2

e=n1

eN .

Observation 1.6. Let N , r and K be as in Notation 1.5. Then

(1) As an R-module, K has FFRT by N1, . . . , Nr.



UNIFORM TEST EXPONENTS FOR RINGS OF FINITE F-REPRESENTATION TYPE 7

(2) Each of N1, . . . , Nr appears non-trivially in the direct sum decomposition of
K = 0K.

(3) Each of N1, . . . , Nr appears non-trivially in the direct sum decompositions of
eK for infinitely many e.

(4) AnnR(K) =
√

AnnR(K) =
√

AnnR(N). See Lemma 1.7 (3).

(5) For any R-module M , we have 0F,KM = 0F,NM . (This follows from the fact that
nK = ⊕n2

e=n1

n+eN as left R-modules for all integers n > 0.)
(6) If R is F-finite and N is finitely generated over R, then so is K.

Lemma 1.7. Let R be a ring, c ∈ R, and N an R-module with FFRT. Adopt the
notations in Notation 1.5. Then

(1) For any R-module M , 0F,NM can be characterized as

0F,NM = 0F,KM = {x ∈M | 0 = x⊗ T ⊆M ⊗R T}
= {x ∈M | 0 = x⊗ nK ⊆M ⊗R nK for all n > 0}
= {x ∈M | 0 = x⊗K ⊆M ⊗R K}
= {x ∈M | 0 = x⊗ nN ⊆M ⊗R nN for all n = n1, . . . , n2}
= {x ∈M | 0 = x⊗ nN ⊆M ⊗R nN for all n > n1}
⊆ {x ∈M | 0 = x⊗ n1N ⊆M ⊗R n1N}.

(2) In particular, for every e > 0, Me (as defined in Proposition 1.4) satisfies

Me ⊆ {x ∈M | 0 = x⊗ e+n1(cp
n1N) ⊆M ⊗R e+n1N}.

(3) AnnR(T ) = AnnR(K) =
√

AnnR(K) =
√

AnnR(N).

Proof. (1) This simply follows from the definition of 0F,NM and of 0F,KM as well as the
direct sum decompositions of T , nK and of nN .

(2) This simply follows from part (1) above applied to F e
R(M) = M ⊗R eR. Also

see Remark 1.2.
(3) Since both T and K are direct sums of N1, . . . , Nr with each Ni (i = 1, . . . , r)

involved non-trivially, we see AnnR(K) = AnnR(T ).

Next, as AnnlR(eN) ⊆
√

AnnR(N) for all e > 0, we see AnnR(K) ⊆ AnnlR(n1N) ⊆√
AnnR(N). (Recall that AnnlR(eN) stands for the annihilator of eN as a left R-

module.) Also, for every 1 6 i 6 r, there exists an integer ei such that Ni appears
non-trivially in the direct sum decomposition of eiN ; and by taking ei large enough,

we may further assume
√

AnnR(N)
[pei ] ⊆ AnnR(N). Thus

AnnR(Ni) ⊇ AnnlR(eiN) =
√

AnnR(N).

Consequently, we have

AnnR(K) = AnnR(T ) = ∩ri=1 AnnR(Ni) ⊇
√

AnnR(N).

Thus AnnR(K) =
√

AnnR(N). Now it is clear that AnnR(K) =
√

AnnR(K). �
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Remark 1.8. Suppose N = R has FFRT and adopt the notations in Notation 1.5.
For any R-module M , we see that (compare with Lemma 1.7 (1))

0FM = {x ∈M | 0 = x⊗ nR ⊆M ⊗R nR for all n > n1} (by Lemma 1.7 (1))

= {x ∈M | 0 = x⊗ n1R ⊆M ⊗R n1R} = {x ∈M | 0 = x⊗ 1 ∈M ⊗R n1R}.
In other words, pn1 is a uniform Frobenius exponent for all R-modules. This was
noted in a discussion with Mel Hochster, and was also implicit in [Yao1, Remark 2.7].

2. Some preliminaries on test exponents

In this section, we list some properties and implications related to the existence of
uniform test exponents. The first two lemmas, Lemma 2.1 and Lemma 2.2, are from
[HoY2]. We include their proofs for completeness only.

Lemma 2.1 ([HoY2]). Let R be a Noetherian ring of characteristic p. Say the set
of minimal primes of R is min(R) = {P1, P2, . . . , Pt} so that

√
0 = ∩ti=1Pi. For any

c ∈ R and any R-module M , the following statements hold.

(1) If Q = pE is a test exponent for c+ Pi ∈ R/Pi and M/PiM over R/Pi for all
i = 1, 2, . . . , t, then Q is a test exponent for c and M over R.

(2) If Q is a test exponent for c+
√

0 ∈ R/
√

0 and M/
√

0M over R/
√

0, then Q
is a test exponent for c and M over R.

Proof. (1) For any x ∈ M , suppose 0 = x ⊗ c ∈ F e
R(M) for some e > E. Then,

0 = (x + PiM) ⊗ (c + Pi) ∈ F e
R/Pi

(M/PiM), which implies x + PiM ∈ 0∗M/PiM
over

R/Pi for all i = 1, 2, . . . , t. This forces x ∈ 0∗M (see [HH1]).
(2) This follows similarly. �

The next lemma deals with integral and pure ring extensions. In particular, the
lemma applies to any reduced excellent ring with its integral closure in its total
quotient ring, and to any complete local ring (with any of its Γ-constructions, see
[HH2]). Some parts of the following lemma can also be found in [HoY1].

Lemma 2.2. Let R ⊆ S be an extension of rings such that at least one of the following
holds: (A) S is module-finite over R, or (B) S is integral over R and they share a
common weak test element d ∈ R◦, or (C) S is a pure extension of R and they share
a common weak test element d ∈ R◦.

For any c ∈ R and any R-module M , if Q = pE is a test exponent for c and M⊗RS
over S, then Q is a test exponent for c and M over R.

Proof. Suppose 0 = x ⊗ c ∈ M ⊗R eR = F e
R(M) for some x ∈ M and pe > Q. Then

0 = (x⊗ 1)⊗ c ∈ (M ⊗R S)⊗S eS = F e
S(M ⊗R S) and hence x⊗ 1 ∈ 0∗(M⊗RS) over S.

In case of (A) or (C), it is immediate that x ∈ 0∗M . (Case (A) reduces to the domain
case and then [HH2, Lemma 6.25] (or Lemma 1.3) applies.)

Case (B): Say d ∈ R◦ is a common q0-weak test element of R and S where q0 = pe0 .
Then 0 = x⊗d ∈M⊗ReS for all e > e0. Thus, for each e > e0, there is a module-finite
ring extension Se such that R ⊆ Se ⊆ S and satisfying

0 = x⊗ d ∈M ⊗R e(Se), which implies x⊗ d ∈ 0∗M⊗ReR ⊆M ⊗R eR
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for the same reason as in the last paragraph ([HH2, Lemma 6.25] or Lemma 1.3).
Then, as d is a q0-weak test element, we see

0 = x⊗ d⊗ d ∈M ⊗R eR⊗R e0R, that is, 0 = x⊗ dq0+1 ∈M ⊗R e+e0R

for all e > e0. Now, as dq0+1 ∈ R◦, this shows x ∈ 0∗M . �

As an easy corollary, we show that uniform test exponents exist if dim(R) 6 1.

Corollary 2.3. Let R be an excellent ring of prime characteristic p that is either
F-finite or semi-local. Assume dim(R) 6 1.

Then, for every c ∈ R◦, there is a test exponent for c and all R-modules.

Proof. In case R is semi-local, then we may assume R is F-finite by passing to its
completion and then a proper Γ-construction (see [HH2] and Lemma 2.2).

So we may simply assume R is F-finite. By Lemma 2.1, we may further assume R
is a domain. Then R, the integral closure of R in its fraction field, is regular. Thus,
we may as well assume R is F-finite and regular by Lemma 2.2. In particular, R is
strongly F-regular. Therefore, for every c ∈ R◦, there exists Q = pE such that the
left R-submodule of eR spanned by c is a free direct summand of eR for all e > E.
Thus, for every R-module M , x ∈ M and e > E, the equation 0 = x⊗ c ∈ M ⊗R eR
implies x = 0, which is in 0∗M . 2 �

Quite generally, the existence of a uniform test exponent implies that tight closure
agrees with finitistic tight closure.

Lemma 2.4. Let R be a ring such that at least one of the following holds:

(1) For every c ∈ R◦, there is a test exponent for c and all R-modules.
(2) For some weak test element c ∈ R◦ (for all R-modules), there is a test exponent

for c and all R-modules.

Then tight closure coincides with the finitistic tight closure (cf. Definition 0.1 (2–3)).

Proof. Without loss of generality, we show 0∗ fg
M = 0∗M for an arbitrary R-module M .

Let x ∈ 0∗M , so that there exists c ∈ R◦ such that 0 = x ⊗ c ∈ M ⊗R eR for all
e � 0. (In case (2) holds, let c be the weak test element.) Let Q = pE be a test
exponent for c and all R-modules. Then, obviously, there exists e0 > E such that
0 = x ⊗ c ∈ M ⊗R e0R. By a property of tensor product, there exists a finitely
generated R-submodule M1 ⊆M such that x ∈M1 and

0 = x⊗ c ∈M1 ⊗R e0R for the same e0 > E.

Thus x ∈ 0∗M1
, since Q = pE is a uniform test exponent. This shows x ∈ 0∗ fg

M by the

definition of 0∗ fg
M . Hence 0∗M ⊆ 0∗ fg

M , which is enough to complete the proof. �

Lemma 2.5. Let R be a ring and c ∈ R. If Q = pE is a test exponent for c and all
finitely generated R-modules, then Q is a test exponent for c and all R-modules.

2As a by-product, we see that if R is strongly F-regular and c ∈ R◦, there is a uniform test
exponent for c and all R-modules M .
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Proof. Let M be an arbitrary R-module. For any x ∈M , suppose 0 = x⊗c ∈ F e
R(M)

for some e > E. By a property of tensor product, there exists a finitely generated
R-submodule M1 ⊆ M such that x ∈ M1 and 0 = x ⊗ c ∈ M1 ⊗R eR, which implies
x ∈ 0∗M1

. Thus x ∈ 0∗M . �

Lemma 2.6 (Compare with [HH3, Proposition 2.3]). Let R be a ring and M an
R-module such that at least one of the following holds:

(1) For every c ∈ R◦, there is a test exponent pE for c and M .
(2) For some locally stable weak test element c ∈ R◦ (for M), there is a test

exponent pE for c and M . (This case was covered in [HH3, Proposition 2.3].)

Then the tight closure of 0 in M commutes with localization.

Proof. The proof is the same as that of [HH3, Proposition 2.3], in spirit. It suffices
to prove 0∗U−1M ⊆ U−1(0∗M) for any multiplicatively closed subset U of R. For x ∈M
and u ∈ U , suppose x

u
∈ 0∗U−1M over U−1R. Then there exists c ∈ R◦ such that

0 = x
u
⊗ c

1
∈ U−1M ⊗U−1R

e(U−1R) for all e � 0 (see [AHH, Lemma 3.3]). (In case
(2) holds, let c be the locally stable weak test element.) Thus, there exist e > E and
v = ve ∈ U such that 0 = vx⊗ c ∈M ⊗R eR. This implies vx ∈ 0∗M , which shows that
x
u

= vx
vu
∈ U−1(0∗M). �

3. The existence of uniform test exponents

In this section, we show the existence of uniform test exponents under a FFRT
assumption. When an R-module N has FFRT, we adopt the notations in Notation 1.5
(in particular, the meaning of Ni, r, s, T , n1, n2, and K) without further comments.
Note that T is finitely generated exactly when N1, . . . , Nr are all finitely generated.

Theorem 3.1. Let R be a ring (Noetherian, of prime characteristic p). Assume there
exists a finitely generated R-module N with SuppR(N) = Spec(R) (i.e., AnnR(N) ⊆√

0) such that N has FFRT by N1, . . . , Nr, . . . , Ns. Further assume that T = ⊕ri=1Ni

is finitely generated over R (which is automatic if R is F-finite).
Then, for every c ∈ R◦, there is a (uniform) test exponent Q = pE for c and for

all R-modules. Moreover, this very same Q is a (uniform) test element for c/1 ∈
U−1R and for all U−1R-modules over every localization U−1R of R, in which U is a
multiplicatively closed subset of R.

Proof. Fix an arbitrary c ∈ R◦. For all integers n > 0 and e > 0, denote

Homl
R(n+n1N, T )(n+n1(cp

n1N)) : =
〈
{h(cp

n1z) |h ∈ Homl
R(n+n1N, T ), z ∈ N}

〉
=
〈
∪h∈Homl

R(n+n1N,T ) h(n+n1(cp
n1N))

〉
⊆ T,

Te : =
e∑

n=0

[
Homl

R(n+n1N, T )(n+n1(cp
n1N))

]
⊆ T.

(Here Homl
R(n+n1N, T ) stands for the set of left R-module homomorphisms from

n+n1N to T . For any subset S of T , we use 〈S〉 to denote the R-submodule of T
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generated by S.) From the construction of Te, we clearly get an ascending chain of
R-submodules of T as follows

T0 ⊆ T1 ⊆ · · · ⊆ Te ⊆ Te+1 ⊆ · · · .
As T is Noetherian (by assumption), there exists a non-negative integer E such that
Te = TE for all e > E. Let Q := pE.

We are going to show that Q = pE is a uniform test exponent for c and for all
R-modules. To this end, let M be a (not necessarily finitely generated) R-module
and let x ∈M such that 0 = x⊗ c ∈M ⊗R e0R for some e0 > E. It remains to show
x ∈ 0∗M in order to finish the proof.

Since 0 = x ⊗ c ∈ M ⊗R e0R = F e0
R (M), it is obvious that x ⊗ c ∈ 0F,N

F
e0
R (M)

⊆
F e0
R (M) (cf. Definition 1.1 (1)). This means x ∈ Me0 . (Note that Me is defined in

Proposition 1.4.) As {Me}∞e=0 is a descending chain by Proposition 1.4, we see

x ∈Me0 ⊆ · · · ⊆M0.

That is, x ∈Mn for all n = 0, . . . , e0. By Lemma 1.7 (2), this implies

0 = x⊗ n+n1(cp
n1N) ⊆M ⊗R n+n1N for all n = 0, . . . , e0.

Therefore 0 = x ⊗ h(n+n1(cp
n1N)) ⊆ M ⊗R T for all n ∈ {0, . . . , e0} and all h ∈

Homl
R(n+n1N, T ). Denote

AnnT (x ∈M) := {t ∈ T | 0 = x⊗ t ∈M ⊗R T},
which is an R-submodule of T . Then the last statement simply says h(n+n1(cp

n1N)) ⊆
AnnT (x ∈M) for all n ∈ {0, . . . , e0} and all h ∈ Homl

R(n+n1N, T ). Consequently, by
the construction of Te, we see Te0 ⊆ AnnT (x ∈M); and hence

Te ⊆ AnnT (x ∈M) for all e > E

by our choice of E and the assumption that e0 > E.
We are to prove that 0 = x ⊗ e+n1(cp

n1N) ⊆ M ⊗R e+n1N for all e > E. Indeed,
as e+n1N is (isomorphic to) a direct sum of N1, . . . , Nr and T = ⊕ri=1Ni, we see
that e+n1N (as a left R-module) is a direct summand of T⊕Λ for some index set Λ.
(Recall that T⊕Λ = ⊕λ∈ΛTλ in which Tλ = T for every λ ∈ Λ.) Therefore, there exist
φn ∈ Homl

R(e+n1N, T⊕Λ) and ψn ∈ Homl
R(T⊕Λ, e+n1N) such that ψn ◦ φn = id(e+n1N),

the identity map on e+n1N . For each λ ∈ Λ, let πλ : T⊕Λ → T be the projection to
Tλ = T . Now, since Te ⊆ AnnT (x ∈M) for all e > E (cf. the end of last paragraph),
we see (for all e > E)

0 = x⊗ Te ⊆M ⊗R T, which implies

0 = x⊗ [πλ ◦ φn(e+n1(cp
n1N))] ⊆M ⊗R T for all λ ∈ Λ, which implies

0 = x⊗ φn(e+n1(cp
n1N)) ⊆M ⊗R T⊕Λ, which implies

0 = x⊗ [ψn ◦ φn(e+n1(cp
n1N))] ⊆M ⊗R e+n1N, that is

0 = x⊗ e+n1(cp
n1N) ⊆M ⊗R e+n1N for all e > E.

Thus x ∈ 0∗NM (cf. Definition 1.1 (2)), as cp
n1 ∈ R◦ and min(R/AnnR(N)) = min(R).

So we conclude x ∈ 0∗NM = 0∗M by Lemma 1.3, as N is a finitely generated R-module
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with AnnR(N) ⊆
√

0. Thus Q = pE is a (uniform) test exponent for c and for the
arbitrary R-module M .

Finally, let U−1R be any localization of R, in which U is a multiplicatively closed
subset of R. For every (U−1R)-module (and hence an R-module) M and x ∈ M ,
suppose 0 = x⊗ c

1
∈M ⊗U−1R

e(U−1R) for some e > E. Then, as e(U−1R) = U−1(eR),
the above can actually be rewritten as 0 = x⊗ c ∈ M ⊗R eR. Since Q = pE is a test
exponent for c and M (as an R-module), we see that x ∈ 0∗M over R, which implies
x ∈ 0∗M over U−1R.

Now the proof of Theorem 3.1 is complete. �

Remark 3.2. Suppose R is F-finite in the context of Theorem 3.1. Then, as noted in
Observation 1.6, K is a finitely generated R-module having FFRT with AnnR(K) =√

0. Consequently, by replacing N with K, we may further assume that N has FFRT
such that n1 = 0 (cf. Notation 1.5). This should make the proof of Theorem 3.1 a bit
simpler in appearance.

Now we list some corollaries resulted from the existence of uniform test exponents
over rings of FFRT. The first corollary covers the case of binomial rings, which, in
particular, include affine semi-group rings.

Corollary 3.3. Let R be a binomial ring over a field k (i.e., R is a quotient ring of
a polynomial ring over k modulo an ideal generated by binomials). Then, for every
c ∈ R◦, there exists a uniform test exponent for c and all R-modules.

Proof. The proof goes very much like [Sm, proof of the last corollary]. Without loss
of generality, we assume k is algebraically closed (cf. Lemma 2.2). Then, modulo each
of its minimal primes and taking the integral closure, we may assume R is a normal
affine semi-group ring. Now the claim follows as R has FFRT (see Example 0.6 (4)).
For more details, see [Sm, proof of the last corollary]. �

Corollary 3.4. Let R be as in Corollary 2.3, Theorem 3.1, or Corollary 3.3. Then
the finitistic tight closure coincides with the tight closure for all R-modules.

Proof. This follows from the existence of a uniform test exponent, see Lemma 2.4. �

The existence of test exponents implies tight closure commuting with localizations.

Corollary 3.5. Let R be as in Corollary 2.3, Theorem 3.1, or Corollary 3.3. Then
tight closure commutes with localization for all (not necessarily finitely generated)
R-modules.

Proof. This follows from the existence of a uniform test exponent, see Lemma 2.6.
(This was already well-known when dim(R) 6 1.) �

The last corollary generalizes the result in [Yao1, Theorem 2.3] to all R-modules,
and provides an alternative proof of K. Smith’s result in [Sm] that tight closure
commutes with localization over binomial rings.
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