OBSERVATIONS ON THE F-SIGNATURE OF LOCAL RINGS OF CHARACTERISTIC p

YONGWEI YAO

ABSTRACT. Let (R, \mathfrak{m}, k) be a d-dimensional Noetherian reduced local ring of prime characteristic p such that R^{1/p^e} are finite over R for all $e \in \mathbb{N}$ (i.e. R is F-finite). Consider the sequence $\{\frac{a_e}{q^{\alpha(R)+d}}\}_{e=0}^{\infty}$, in which $\alpha(R) = \log_p[k:k^p]$, $q = p^e$, and a_e is the maximal rank of free R-modules appearing as direct summands of R-module $R^{1/q}$. Denote by $s^-(R)$ and $s^+(R)$ the liminf and limsup respectively of the above sequence as $e \rightarrow \infty$. If $s^-(R) = s^+(R)$, then the limit, denoted by $s(R)$, is called the F-signature of R. It turns out that the F-signature can be defined in a way that is independent of the module finite property of $R^{1/q}$ over R. We show that: (1) If $s^+(R) \geq 1 - \frac{1}{d!p^d}$, then R is regular; (2) If R is excellent such that R_P is Gorenstein for every $P \in \text{Spec}(R) \setminus \{\mathfrak{m}\}\text{, then } s(R) \text{ exists; (3) If } (R, \mathfrak{m}) \to (S, \mathfrak{n}) \text{ is a local flat ring.}$ homomorphism, then $s^{\pm}(R) \geq s^{\pm}(S)$ and, if furthermore $S/\mathfrak{m}S$ is Gorenstein, $s^{\pm}(S) \geq s^{\pm}(R)s(S/\mathfrak{m}S).$

0. INTRODUCTION

Throughout this paper we assume that (R, \mathfrak{m}, k) is a Noetherian local ring of prime characteristic p, where $\mathfrak m$ is the maximal ideal and $k = R/\mathfrak m$ is the residue field of R. Then there is the Frobenius homomorphism $F: R \to R$ defined by $r \mapsto r^p$ for any $r \in R$. Therefore, for any $e \in \mathbb{N}$, we have the iterated Frobenius homomorphism $F^e: R \to R$ defined by $r \mapsto r^q$ for any $r \in R$, where $q = p^e$. From now on, q will be used to denote the value p^e for various $e \in \mathbb{N}$ in the context.

Let M be an R-module. Then for any $e \geq 0$, we can derive a left R-module structure on the set M by $r \cdot m := r^{p^e} m$ for any $r \in R$ and $m \in M$. For technical reasons, we keep the original right R -module structure on M by default. We denote the derived R-R-bimodule by ϵM . Thus, in ϵM , we have $r \cdot m = m \cdot r^{p^e}$, which is equal to $r^q m$ in the original M. If R is reduced, then eR , as a left R-module, is isomorphic to $R^{1/q}$. We use $\lambda^{l}(-)$, $\lambda^{r}(-)$ to denote the left and right lengths of a bimodule. It is easy to see that $\lambda^{l}({}^{e}M) = q^{\alpha(R)}\lambda^{r}({}^{e}M) = q^{\alpha(R)}\lambda(M)$ for any finite length R-module M, in which $\alpha(R) = \log_p[k : k^p]$.

We say R is F-finite if ${}^{1}R$ is a finitely generated left R-module. If this is the case, it is easy to see that eM is a finitely generated left R-module for every $e \in \mathbb{N}$ and for every finitely generated R-modules M.

For an ideal I of R, we denote by $I^{[q]}$ the ideal generated by $\{r^q | r \in I\}$. Then $R/I \otimes_R e^M \cong {}^e(M/I^{[q]}M) \cong {}^eM \otimes_R R/I^{[q]}$ for every R-module M and every $e \in \mathbb{N}$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 13A35; Secondary 13C13, 13H10.

Key words and phrases. F-signature, regular rings, Gorenstein rings, flat extension.

Most of the research reported in this paper was conducted while the author was a postdoctoral fellow at Mathematical Sciences Research Institute (MSRI) during the Commutative Algebra program in 2002–2003.

In this paper, we are going to study an invariant called 'the F -signature' of R . The notion of F-signature is first introduced and studied in [\[HL](#page-16-0)] by C. Huneke and G. Leuschke for F-finite rings.

Definition 0.1. Let (R, \mathfrak{m}, k) be an F-finite local ring and M a finitely generated R-module. For each $e \in \mathbb{N}$, write $^eM \cong R^{a_e} \oplus M_e$ as left R-modules such that M_e has no non-zero free direct summand. In other words, the number a_e is the maximal rank of free direct summand of the left R -module ${}^{\epsilon}M$, which is independent of the particular direct sum decomposition of ${}^e\!M$ (since the completion R satisfies the Krull-Schmidt condition). Denote $d := \dim R$.

- (1) We may denote a_e by $\#({}^e M, R)$ and $\alpha(R) = \log_p[k : k^p] < \infty$.
- (2) We denote $s^+(M) := \limsup_{e \to \infty} \frac{\#({}^e M,R)}{g^{\alpha}(R)+d}$ $\frac{\#({\,}^e M,R)}{q^{\alpha(R)+d}}, \ s^-(M):=\liminf_{e\to\infty} \frac{\#({\,}^e M,R)}{q^{\alpha(R)+d}}$ $q^{\alpha(R)+d}$ and $s(M) := \lim_{e \to \infty} \frac{\#({}^e M, R)}{q^{\alpha(R)+d}}$ provided the last limit exists. In case confusion may arise, we use $s_R^+(M)$ etc. to specify the underlying ring structure.
- (3) If $M = R$, we call $s(R) = \lim_{e \to \infty} \frac{\#({}^e R, R)}{q^{\alpha(R)+d}}$ the F-signature of R (see [\[HL\]](#page-16-0)). In case $s(R)$ does not exist, we may call $s^{-}(R)$ and $s^{+}(R)$ the lower and upper F -signature of R respectively.

Remark 0.2. In the context of Definition [0.1.](#page-1-0)

- (1) If R is not reduced or if M is not faithful, then $\#({}^{\epsilon}M,R) = 0$ for all $e > 0$.
- (2) It is easy to see that $\widehat{M} \cong e(\widehat{M})$ as (left and right) \widehat{R} -modules for every $e \geq 0$. As a result, we may assume that R is complete without affecting the numbers a_e .

In Section [2,](#page-4-0) we observe that the definition of F -signature can be realized as

$$
s^+(M) = \limsup_{e \to \infty} \frac{\lambda^r(\ker(E \otimes_R {}^e R \to E/k \otimes {}^e R))}{q^d} \quad \text{etc.},
$$

where $E := E_R(k)$ is the injective hull of the residue field k and hence k is the socle of E. As it does not rely on the numbers $\#(^{e}M,R)$ or the F-finite property, the notion of F-signature may be defined for any local Noetherian ring of characteristic $p.$ Moreover, all the known results about F -signature seem to hold true in this more general setting via either direct proof or reduction to the F -finite case. Indeed, some of these results will be reviewed in Section [1](#page-2-0) without the restriction of F-finiteness.

Like the multiplicity $e(R) = e(\mathfrak{m}, R)$ as well as the Hilbert-Kunz multiplicity $e_{HK}(R) = e_{HK}(\mathfrak{m}, R)$ of R, the F-signature $s(R)$ is an important invariant of R. But unlike $e(R)$ and $e_{HK}(R)$, the F-signature $s(R)$ and $S^{\pm}(R)$ assume their values between 0 and 1. (This follows from a simple counting of the rank of $R^{1/q}$ over R in the F-finite case.) Moreover $s^+(R) = 1 \iff R$ is regular $\iff s(R) = 1$ ([[HL\]](#page-16-0)) and, if R is excellent, $s^+(R) > 0 \iff R$ is strongly F-regular $\iff s^-(R) > 0$ $([AL]).$ $([AL]).$ $([AL]).$

In Section [3,](#page-7-0) we prove that if $s^+(R)$ is close enough to 1 (i.e. big enough), then R is already regular.

Theorem [3.1](#page-7-1). Let (R, m, k) be a Noetherian local ring of characteristic p with $\dim R = d.$ Assume $s^+(R) > 0$ in case $\dim(R) \leq 1$, or

$$
s^+(R) \ge 1 - \frac{1}{d!p^d} \quad \text{in case } \dim(R) \ge 2.
$$

Then R is regular, which actually implies $s(R) = 1$.

Since $s^+(R)$, $s^-(R)$ and $s(R)$ are defined to be the limsup, liminf and limit of the sequence $\frac{\lambda^r(\ker(E\otimes_R{}^e R\to E/k\otimes {}^e R))}{\lambda^d}$ $\left\{\frac{e_{R\to E/k\otimes^{e}R)}{q^d}\right\}$ as $e \to \infty$, one would naturally ask whether $s^+(R) = s^-(R)$, or equivalently the following question:

Question 0.3. Does $s(R) = \lim_{\epsilon \to \infty} \frac{\lambda^r(\ker(E \otimes_R e^R \to E/k \otimes^{\epsilon} R))}{a^d}$ $\frac{(R \rightarrow E/K \otimes R))}{q^d}$ exist?

A positive answer has been given in [\[HL](#page-16-0)] when (R, \mathfrak{m}) is Gorenstein. Another case ofpositive answer is proved in $[SVdB]$ $[SVdB]$ $[SVdB]$ and $[Ya]$ when R has finite F-representation type (FFRT for short, see Definition [4.5\)](#page-10-0). If R is regular, then $s(M)$ exists for every finitely generated R -module M (see Corollary [2.6\)](#page-7-2).

In Section [4](#page-8-0), we show that Question [0.3](#page-2-1) has an affirmative answer when R is Gorenstein at the punctured spectrum:

Theorem [4.3](#page-9-0). Let (R, \mathfrak{m}, k) be a Noetherian excellent local ring of prime characteristic p such that R_P is Gorenstein for every $P \in \text{Spec}(R) \setminus \{\mathfrak{m}\}\$. Then for any maximal Cohen-Macaulay module M, $s(M)$ exists. In particular, $s(R)$ exists.

Wealso recover the result of [[SVdB](#page-16-1)] and [[Yao](#page-16-2)] that states: If a finitely generated R-module M has FFRT, then $s(M)$ exists (see Theorem [4.6\)](#page-10-1).

Finally, we study the behavior of F-signature under localization and faithfully flat ring extension in Section [5](#page-11-0).

Theorem (Proposition [5.2](#page-12-0), Theorem [5.4](#page-12-1), [5.6\)](#page-13-0). Let $(R, \mathfrak{m}) \rightarrow (S, \mathfrak{n})$ be a local flat ring homomorphism. We have

- (1) $s^+(R) \leq s^+(R_P)$ and $s^-(R) \leq s^-(R_P)$ for any $P \in \text{Spec}(R)$;
- $\overline{(2)}$ $s^{+}(R) \geq s^{+}(S)$ and $s^{-}(R) \geq s^{-}(S);$
- (3) If we furthermore assume that the closed fiber ring S/mS is Gorenstein, then $s^+(R)s(S/mS) \leq s^+(S)$ and $s^-(R)s(S/mS) \leq s^-(S)$. Equalities hold if S/mS is regular.

1. Review and preliminary results

This section is allocated for reviewing. Some of the displayed results will be used in the coming sections. A very important concept in studying rings of characteristic p is tight closure. Tight closure was first studied and developed by Hochster and Huneke in the 1980's. Without loss of generality, we only state the definition of the tight closure of 0 in a given R-module M.

Definition 1.1 ([[HH1\]](#page-15-1)). Let R be a Noetherian ring of characteristic p and M an R-module. The tight closure of 0 in M, denoted by 0^*_{M} , is defined as follow: An element $x \in M$ is said to be in 0^*_M if there exists an element $c \in R^{\circ}$ such that $0 = x \otimes c \in M \otimes_R {}^eR$ for all $e \gg 0$, where R° is the complement of the union of all minimal primes of the ring R. The element $x \otimes 1 \in M \otimes_R {}^e R$ is denoted by $x_M^{p^e}$ M

In general, given R -modules $N \subseteq M$, the tight closure of N in M, denoted by N_M^* , is the (unique) R-module satisfying $N \subseteq N_M^* \subseteq M$ and $N_M^*/N = 0^*_{M/N}$. If R is a ring such that all of its ideals are tightly closed (in R), we say R is weakly F-regular. Moreover, if R is a ring such that every localization of R is weakly F -regular, we say R is F -regular.

Another important notion is strong F-regularity. The notion of strong Fregularitywas first defined for F -finite rings in [[HH2,](#page-15-2) Definition 5.1]. Then, in the following Remark 5.3 of[[HH2\]](#page-15-2), a more general definition of strong F-regularity

for not necessarily F-finite rings is suggested. We adopt this general definition in this paper as we are concerned with rings that do not necessarily satisfy F -finite property.

Definition 1.2 ([[HH2\]](#page-15-2)). Given a local ring (R, m, k) of characteristic p. We say R is strongly F-regular if for any $c \in R^{\circ}$, the left R-linear maps $R \to {^eR}$ defined by $1 \mapsto c$ are pure for all $e \gg 0$ (or equivalently, for some $e > 0$).

As the name suggests, strong F -regularity implies F -regularity. It is shown in [\[Sm](#page-16-3), 7.1.2] that R is strongly F-regular $\iff \hat{0}_E^* = 0$, where $E := E(k)$ is the injectivehull of the residue field $k = R/\mathfrak{m}$ (see also [[LS2,](#page-16-4) Proposition 2.9]).

Next, let us list some properties of the F-signature $s(R)$. Since F-signature is going to be defined without the F -finiteness assumption, we do not assume the F-finiteness property unless stated explicitly.

Theorem 1.3 ([\[HL](#page-16-0)], [\[AL](#page-15-0)]). Let (R, \mathfrak{m}, k) be a Noetherian local ring of prime characteristic p. Then the following are true $(c.f.$ Remark 2.4):

- (1) If $s^+(R) > 0$, then R is an F-regular, Cohen-Macaulay domain. See [\[HL\]](#page-16-0).
- (2) Actually, if R is excellent (e.g. F-finite), it is proved that $s^+(R) > 0 \iff$ R is strongly F-regular $\iff s^{-}(R) > 0$ in [\[AL\]](#page-15-0).
- (3) For any two m-primary ideals $I \subseteq J$ of R, $e_{HK}(I, R) e_{HK}(J, R) \ge$ $\lambda_R(J/I)s^+(R)$. See [\[HL](#page-16-0)]. Therefore
	- $s^+(R) \leq \inf\{e_{HK}(I_1, R) e_{HK}(I_2, R) | I_1 \subset I_2, \sqrt{I_1} = \mathfrak{m}, I_2/I_1 \cong k\}.$
- (4) Also, the inequality $(e(R) 1)(1 s^{+}(R)) \ge e_{HK}(R) 1$ is proved in [[HL\]](#page-16-0). Hence $s^+(R) \geq 1 \implies R$ is regular $\implies s(R) = 1$.

Remark 1.4. The value inf $\{e_{HK}(I_1, R) - e_{HK}(I_2, R) | I_1 \subset I_2, \sqrt{\}$ $\overline{I_1} = \mathfrak{m}, I_2/I_1 \cong k$ is closely related to the minimal relative Hilbert-Kunz multiplicity for cyclic modules of R that is defined in [\[WY2\]](#page-16-5) by K. -i. Watanabe and K. Yoshida.

Theorem 1.5 (Kunz). Let (R, \mathfrak{m}) be a Noetherian local ring of prime characteristic p (not necessarily F-finite) with $\dim(R) = d$. Then:

- (1) It always holds that $\lambda_R(R/\mathfrak{m}^{[p]}) \geq p^d$ while equality holds if and only if R is regular $(c.f. \text{Ku1}).$
- (2) If R is F-finite, then R is excellent and $\alpha(R_P) = \alpha(R_O) + \dim(R_O/P_O)$ for any two prime ideals $P \subseteq Q$ of R (c.f. [[Ku2\]](#page-16-7)).

Theorem 1.6. Let (R, \mathfrak{m}, k) be a Noetherian local ring of prime characteristic p (not necessarily F-finite) and M a finitely generated R-module with $\dim(R) = d$. Then (with $q = p^e$)

(1) The limit

$$
\lim_{e \to \infty} \frac{\lambda_R(M/I^{[q]}M)}{q^d} = \lim_{e \to \infty} \frac{\lambda_R^r(R/I \otimes_R {}^e M)}{q^d}
$$

exists (and is positive exactly when $\dim(M) = d$) for every m-primary ideal I of R [[Mo\]](#page-16-8). The limit, denoted by $e_{HK}(I, M)$, is called the Hilbert-Kunz multiplicity of M with respect to I. We often write $e_{HK}(\mathfrak{m}, M)$ as $e_{HK}(M)$.

(2) More generally, suppose that N is an R-module with $\lambda_R(N) < \infty$. Then the limit

$$
\lim_{e \to \infty} \frac{\lambda^r (N \otimes_R {}^e M)}{q^d}
$$

exists [\[Se](#page-16-9)]. (The statement of [\[Se,](#page-16-9) Page 278, Theorem] is more general and its proof requires F-finiteness. The particular result quoted here does not need F-finiteness as one can always reduces it to the F-finite case.)

All the remaining results in this section do not rely on characteristic p . The first is a result of S. Ding, which is used in the proof of Theorem [4.3.](#page-9-0)

Theorem 1.7 ([[Di](#page-15-3), Theorem 1.1]). Let (R, \mathfrak{m}) be a Cohen-Macaulay Noetherian local ring with a canonical module. Then the following are equivalent:

- (1) For every $P \in \text{Spec}(R) \setminus \{\mathfrak{m}\}, R_P$ is Gorenstein.
- (2) There exists a positive integer n such that R/\mathfrak{m}^n is not an R-linear homomorphic image of any maximal Cohen-Macaulay module without non-zero free direct summand.

A result of R. M. Guralnick is used in the proof of Theorem [4.6.](#page-10-1)

Theorem 1.8 ([[Gu,](#page-15-4) Corollary 2]). Let (R, \mathfrak{m}) be a Cohen-Macaulay Noetherian local ring and M, N finitely generated R-modules. Then there exists an integer n, depending on N and M, such that M is isomorphic to a direct summand of N if and only if M/\mathfrak{m}^nM is isomorphic to a direct summand of N/\mathfrak{m}^nN .

The next result is used in Section [5.](#page-11-0) The exact statement of the following theorem can be found in [\[HH2](#page-15-2), Theorem 7.10], which refers the readers to a more general result in [\[Mat](#page-16-10), 20.F].

Theorem 1.9. Let $(R, \mathfrak{m}, k) \rightarrow (S, \mathfrak{n}, l)$ be a local flat ring homomorphism. If x_1, x_2, \ldots, x_t form a regular sequence on S/mS , then they form a regular sequence on S and $R \to S/(x_1, x_2, \ldots, x_t)$ S is again a (faithfully) flat local homomorphism.

2. AN EQUIVALENT DEFINITION OF THE F -SIGNATURE

Let $E := E_R(k)$ be the injective hull of $k = R/\mathfrak{m}, \phi : E \to E/k$ be the natural homomorphism, and $\psi : k \to E$ be an injective R-linear map (e.g. the inclusion map) so that $0 \to k \stackrel{\psi}{\to} E \stackrel{\phi}{\to} E/k \to 0$ is exact. Then there are induced bimodule homomorphisms $\phi \otimes_R {}^eM = \phi \otimes_R 1 {}_{eM} : E \otimes_R {}^eM \to E/k \otimes_R {}^eM$ and $\psi \otimes_R {}^eM =$ $\psi \otimes_R 1_{\leq M} : k \otimes_R {}^e M \to E \otimes_R {}^e M$ for any R-module M and every $e \in \mathbb{N}$.

The next lemma enables us to describe $\#(^{e}M,R)$ in terms of the maps $k \stackrel{\psi}{\to} E \stackrel{\phi}{\to}$ E/k . A similar formula with essentially the same effect can be found in [\[AE1\]](#page-15-5).

Lemma 2.1. Let (R, \mathfrak{m}, k) be F-finite, M an finitely generated R-module, and let the notations be as in the context of Definition [0.1.](#page-1-0) Then, for every $e \geq 0, q = p^e$,

$$
\#({}^e M, R) = q^{\alpha(R)} \lambda^r (\ker(\phi \otimes_R 1_{eM})) = q^{\alpha(R)} \lambda^r (\text{image}(\psi \otimes_R 1_{eM})).
$$

Proof. It is enough to prove $a_e = \lambda^l(\ker(\phi \otimes_R 1_{\epsilon_M}))$ for any $e \in \mathbb{N}$, where ${}^eM \cong$ $R^{a_e} \oplus M_e$ as left R-modules such that M_e has no non-zero free direct summand. Also, we may assume R is complete without loss of generality.

Therefore, for the rest of this proof, we simply regard $\mathscr{C}M$ as a module over commutative ring R determined by $r \cdot m = m \cdot r = r^{p^e} m$ where $r \in R$ and $m \in M$ and prove $a_e = \lambda(\ker(\phi \otimes_R 1_{eM}))$. Let $-\vee := \text{Hom}_R(-, E)$ denote the Matlis duality of any R-module. Then we have isomorphisms $E^{\vee} \cong R$ and $(E/k)^{\vee} \cong \mathfrak{m}$, under which $\phi^{\vee} : (E/k)^{\vee} \to E^{\vee}$ corresponds to the inclusion map $m \to R$. Since M_e has no non-trivial free direct summand, every R-linear

map $h \in \text{Hom}_R(M_e, R)$ satisfies $h(M_e) \subseteq \mathfrak{m}$. In other words, the induced map $\text{Hom}_R(M_e, \phi^{\vee}) : \text{Hom}_R(M_e, (E/k)^{\vee}) \to \text{Hom}_R(M_e, E^{\vee})$ is an isomorphism. Thus,

$$
\lambda\left(\ker(\phi\otimes_R{}^e M)\right) = \lambda\left(\text{coker}\left((\phi\otimes_R{}^e M)^{\vee}\right)\right) = \lambda\left(\text{coker}\left(\text{Hom}_R\left({}^e M,\phi^{\vee}\right)\right)\right)
$$

= $\lambda\left(\text{coker}\left(\text{Hom}_R\left(R^{a_e},\phi^{\vee}\right)\right)\right) + \lambda\left(\text{coker}\left(\text{Hom}_R\left(M_e,\phi^{\vee}\right)\right)\right)$
= $a_e + 0 = a_e$,

which is what we want. \Box

As the expression $\frac{\lambda^r(\ker(\phi \otimes_R 1 e_M))}{q^{\dim(R)}}$ does not rely on the F-finiteness of R, the notion of the F-signature may be defined for all Noetherian local rings of prime characteristic p which is equivalent to Definition [0.1](#page-1-0) when R is F -finite.

Definition 2.2. Let (R, \mathfrak{m}, k) be a Noetherian local ring of characteristic p with $\dim(R) = d$ and M a finitely generated R-module. Keep E, ψ and ϕ as above.

- (1) Denote $\#({^eM}) := \lambda^r(\ker(\phi \otimes_R 1_{^eM})) = \lambda^r(\text{image}(\psi \otimes_R 1_{^eM}))$ for all $e \in \mathbb{N}$. In case confusion may arise, we use $\#_R({}^eM)$ to specify the underlying ring structure.
- (2) We define $s^-(M)$ and $s^+(M)$ to be, respectively, the liminf and limsup of the sequence $\frac{\#({}^eM)}{a^d}$ $\left(\frac{e_{M}}{q^{d}}\right)$ as $e \to \infty$. If $s^-(M) = s^+(M)$, the limit is denoted by $s(M)$. Once again, we may use $s_R^-(M)$, $s_R^+(M)$ and $s_R(M)$ to clarify the underlying ring structure.
- (3) In the case of $M = R$, we call $s^-(R)$, $s^+(R)$ and $s(R)$ the lower F-signature, upper F -signature and F -signature of R respectively.

Remark 2.3. Keep the notations as in Definition [2.2.](#page-5-0)

- (1) As a right R-submodule of $E \otimes_R {}^e M$, image $(\psi \otimes_R 1 \cdot_M)$ has length no larger than $\lambda_R(M/\mathfrak{m}^{[q]}M)$. Hence the sequence $\begin{cases} \frac{\#({}^{e}M)}{q^d} \end{cases}$ $\left(\frac{e_{M}}{q^{d}}\right)$ $e=0$ is bounded. In case $M = R$, the right R-submodule image $(\psi \otimes_R 1_{R}) \subseteq E \otimes_R {}^e R =: F^e(E)$ is generated by the element $u \otimes 1 \in E \otimes_R^e R$ for any $0 \neq u \in k \subseteq E$. Recall that the element $u \otimes 1 \in E \otimes_R {}^e R$ is denoted by $u_E^{p^e}$ in the context of defining tight closure of submodules (c.f.[[HH1\]](#page-15-1) or Definition [1.1](#page-2-2)). Therefore, we have $\#({}^eR) = \lambda_R(R/\operatorname{Ann}_R^r(u^{p^e}))$ for every $e \in \mathbb{N}$.
- (2) Let e be any fixed integer. Then there exists a finite length R -submodule of $E' \subseteq E$ such that $\#({}^eM) = \lambda^r(\ker(\phi \otimes_R 1_{}e_M)) = \lambda^r(\ker(\phi' \otimes_R 1_{}e_M))$ with $\phi' : E' \to E'/k$ being the natural R-homomorphism. Alternatively, let { $\{\mathfrak{a}_n\}_{n=1}^{\infty}$ be a sequence of m-primary ideals cofinal with $\{\mathfrak{m}^n\}_{n=1}^{\infty}$ and denote $E_n := (0 :_E \mathfrak{a}_n)$ for every $n \in \mathbb{N}$. Then $\#({}^eM) = \lambda^r(\ker(\phi \otimes_R 1_{}e_M)) =$ $\lambda^r(\ker(\phi_n \otimes_R 1_{\epsilon M}))$ for all $n \gg 0$, where $\phi_n : E_n \to E_n/k$ are the natural homomorphisms.This fact has been observed and used in [[AL](#page-15-0)].
- (3) Suppose that $(R, \mathfrak{m}, k) \rightarrow (S, \mathfrak{n}, l)$ be a flat local homomorphism of rings of characteristic p such that $mS = n$. Let a_n, E_n be as in the above part (2). Then $E_n \otimes_R S \cong (0 :_{E_S(l)} \mathfrak{a}_n S)$ for every n as they both have one-dimensional socle with the same annihilator as S-modules. Hence by the remark made in part (2) above, it is straightforward to see that $\#(^{e}M) = \#(^{e}(M \otimes_{R} S))$. (For a more general statement, see Theorem [5.6.](#page-13-0)) Thus, as far as the F -signature over R is concerned, we may assume that R is complete (by $R \to \hat{R}$), R has a infinite residue field (by $R \to$ $R[T]_{\mathfrak{m}[T]}$ or R is F-finite (by $R \to \widehat{R} \to \widehat{R} \otimes_{k[[X_1,\ldots,X_n]]} k^{\infty}[[X_1,\ldots,X_n]],$

in which $k[[X_1,\ldots,X_n]]$ is such that there is a ring homomorphism from $k[[X_1,\ldots,X_n]]$ onto \widehat{R} and k^{∞} is the perfect closure of $k = R/\mathfrak{m}$).

(4) The value $s^{-}(R)$ is the same as the invariant called the *minimal relative* Hilbert-Kunzmultiplicity of R in [[WY2](#page-16-5)] by K. -i. Watanabe and K. Yoshida.

Remark 2.4. The known results (as well as the main themes of their original proofs) about the F -signature seem to hold true without the assumption of F -finiteness, although sometimes R needs to be excellent. We remark on some of the results of [\[HL](#page-16-0)] and [\[AL](#page-15-0)] that are quoted in Theorem [1.3.](#page-3-0)

- (1) It is easy to see that $s^+(R) > 0$ implies the weakly F-regularity of R (for example, by part (3) below). Then, it follows from Proposition [5.2](#page-12-0) that every localization of R remains weakly F -regular. Hence Theorem [1.3](#page-3-0)(1).
- (2)The proof in [[AL](#page-15-0)] for the implications that $s^+(R) > 0 \iff R$ is strongly F-regular \Leftrightarrow $s^{-}(R) > 0$ is valid for all excellent rings R. Actually, with the new formulation of $s^+(M)$, a standard argument as in the proof of [\[HH1](#page-15-1), Theorem 8.17] readily shows that $s^+(M) > 0 \implies 0^*_{\mathcal{E}} = 0$, the latter of which is equivalent to the strongly F-regularity of R. Indeed, if $0^{\ast}_{E} \neq 0$ on the contrary, then $u \in 0^*$ for any nonzero $u \in k \subseteq E$. That is, there exists an element $c \in R \setminus \cup_{P \in min(R)} P$ such that $0 = u_E^q \cdot c = u \otimes c \in E \otimes_R {}^e R$ for all $e \gg 0$. Hence $\lambda^r(\ker(\phi \otimes_R 1_{\epsilon M})) \leq \lambda(M/(\mathfrak{m}^{[q]}, c)M) = o(q^d)$ as $e \to \infty$ since $\dim(M/cM) < d = \dim(R)$, which contradicts the assumption $s^+(M) > 0$. (This explains Theorem [1.3\(](#page-3-0)2).)
- (3) Theorem [1.3](#page-3-0)(3) reduces itself to the F -finite case (c.f. Remark [2.3\(](#page-5-1)3)), which is verified in[[HL](#page-16-0)]. It is also a special case of the next Lemma [2.5\(](#page-6-1)2).
- (4) The proof for the inequality $(e(R)-1)(1-s^+(R)) \ge e_{HK}(R) 1$ in [\[HL](#page-16-0)] can be used verbatim to prove the general case. Alternatively, we may argue that it reduces to the F-finite case.

Lemma 2.5. Let (R, \mathfrak{m}, k) be a Noetherian local ring of characteristic p with $\dim(R) = d$ and M a finitely generated R-module. Given (not necessarily finitely generated) R-modules L and D and an R-homomorphism $\psi' : L \to D$ such that $\lambda_R(\text{image}(\psi')) = \lambda_R(\psi'(L)) < \infty$. Then (recall that $q = p^e$)

- (1) $\lambda(\psi'(L)) \# (^{\epsilon}M) \leq \lambda^{r}(\text{image}(\psi' \otimes \epsilon M)) \leq \lambda(\psi'(L)) \lambda(M/\mathfrak{m}^{[q]}M)$ for every $e \in \mathbb{N}$, and hence,
- (2) $\lambda(\psi'(L))s^+(M) \leq \limsup_{e \to \infty} \frac{\lambda^r(\text{image}(\psi' \otimes^e M))}{q^d}$ $\frac{\partial e(\psi' \otimes^e M))}{q^d} \leq \lambda(\psi'(L))e_{HK}(M)$ and $\lambda(\psi'(L))s^{-}(M) \leq \liminf_{\epsilon \to \infty} \frac{\lambda^{r}(\text{image}(\psi' \otimes^{\epsilon} M))}{a^d}$ $\frac{\partial e(\psi' \otimes^e M))}{q^d} \leq \lambda(\psi'(L))e_{HK}(M).$

(3) $\#({}^eR)\#({}^{e'}M) \leq \#({}^{e+e'}M)$ for every $e, e' \in \mathbb{N}$. As a result, (a) R is regular \iff $\#(^eR) = q^d$ for some (or for all) $e > 0$; and (b) R is not regular \iff $\#({}^eR) \leq q^d-1$ for some (or for all) $e > 0$.

Proof. (1): We may simply assume that $\psi' : L \to D$ is a monomorphism (hence $\lambda(L) = \lambda(\psi'(L)) < \infty$. Then, by induction on $\lambda(L)$, it is enough to prove the case where $L = k$. Since E is an injective R-module, the map $\psi : k \to E$ (as in Definition [2.2](#page-5-0)) factors through the injective map ψ' . Consequently $\#(^{e}M)$ = $\lambda^r(\text{image}(\psi \otimes 1_{\epsilon M})) \leq \lambda^r(\text{image}(\psi' \otimes 1_{\epsilon M}))$ for every $e \in \mathbb{N}$, the desired result. The inequality $\lambda^r(\text{image}(\psi' \otimes \epsilon M)) \leq \lambda(\psi'(L))\lambda(M/\mathfrak{m}^{[q]}M)$ is well-known and also obvious in this context.

(2): Divide the inequalities in (1) by $q^d = p^{ed}$ and then take the limit as $e \to \infty$.

(3): Let $\psi : k \to E$ be as in Definition [2.2.](#page-5-0) Then, by part (1), $\#({}^e R)\#({}^{e'} M) \leq$ $\lambda^r(\text{image}((\psi \otimes_R {}^e R) \otimes_R {}^e M)) = \#({}^{e+e'}M)$ for every $e, e' \in \mathbb{N}$. To finish the rest of the proof for (3), we simply observe that $\#({}^eR) \geq p^{ed}$ for some $e > 0 \implies$ $\#({}^{ne}R) \geq p^{ned}$ for all $n \in \mathbb{N} \implies s^+(R) \geq 1 \implies R$ is regular $\implies \#({}^eR) = (p^e)^d$ for all $e \in \mathbb{N}$.

Corollary 2.6. If (R, \mathfrak{m}, k) is regular and M is a finitely generated R-module, then $s(M)$ exists.

Proof. Say dim(R) = d. By Lemma [2.5\(](#page-6-1)3), we have $p^d \# ({}^e M) = \#({}^1R) \# ({}^e M) \leq$ $\#({}^{e+1}M)$ for every $e \in \mathbb{N}$. Thus the sequence $\left\{\frac{\#({}^{e}M)}{p^{ed}}\right\}_{e=0}^{\infty}$ is non-decreasing and hence has a limit. \Box

3. RINGS WITH BIG ENOUGH F -SIGNATURE ARE REGULAR

If R is not regular, then $s^+(R) < 1$. We show that, for non-regular rings R of fixed dimension, the F-signature $s^+(R)$ can not be arbitrarily close to 1.

Theorem 3.1. Let (R, m, k) be a Noetherian local ring of characteristic p with $\dim R = d$. Assume $s^+(R) > 0$ in case $\dim(R) \leq 1$, or

$$
s^+(R) \ge 1 - \frac{1}{d!p^d} \quad in case \dim(R) \ge 2.
$$

Then R is regular, which actually implies $s(R) = 1$.

Proof. If dim $R \leq 1$ and $s^+(R) > 0$, then R is normal and hence regular. So we assume dim $R \ge 2$. Suppose, on the contrary, that R is not regular. Then $e(R) > 1$, $e_{HK}(R) > 1$ $e_{HK}(R) > 1$ $e_{HK}(R) > 1$ (c.f. [\[WY1\]](#page-16-11) or [[HY\]](#page-16-12)) and $\#(^{1}R) \leq p^{d} - 1$ (c.f. Lemma [2.5\(](#page-6-1)3)).

Firstly, we have $(e(R) - 1)(1 - s^{+}(R)) \ge e_{HK}(R) - 1$ by [\[HL\]](#page-16-0), which implies

$$
(*) \qquad s^+(R) \le 1 - \frac{e_{HK}(R) - 1}{e(R) - 1} < 1 - \frac{e_{HK}(R) - 1}{d!e_{HK}(R) - 1} = \frac{d!e_{HK}(R) - e_{HK}(R)}{d!e_{HK}(R) - 1}
$$

as we have $1 \le e_{HK}(R) \le e(R) < d!e_{HK}(R)$. (Note that the strict inequality $e(R) < d!e_{HK}(R)$ when $\dim(R) \geq 2$ is a recent result of D. Hanes in [\[Ha\]](#page-15-6).)

,

Secondly, let $\psi : k \to E$ be an injective R-linear map as in Definition [2.2](#page-5-0) and hence an induced bimodule map $\psi' := \psi \otimes_R {}^1R : k \otimes_R {}^1R \to E \otimes_R {}^1R$. For every $e \in \mathbb{N}$, it is easy to see that $\lambda^r(\text{image}(\psi' \otimes_R {}^e R)) = \lambda^r(\text{image}(\psi \otimes_R {}^{e+1} R)) =$ $\#({}^{e+1}R)$ and hence $\limsup_{e\to\infty} \frac{\lambda^{\dot{r}}(\text{image}(\psi' \otimes^e R))}{p^{ed}} = \limsup_{e\to\infty} \frac{\#({}^{e+1}R)}{p^{ed}} = p^d s^+(R)$ by the definition of the F-signature. We also have $\limsup_{e\to\infty} \frac{\lambda^{\hat{r}}(\text{image}(\psi'\otimes^e R))}{p^{ed}} \leq$ $\lambda^r(\text{image}(\psi'))e_{HK}(R) = \#(^1R)e_{HK}(R) \leq (p^d-1)e_{HK}(R)$ by Lemma [2.5\(](#page-6-1)2-3). Hence

(**)
$$
p^d s^+(R) \le (p^d - 1)e_{HK}(R) \implies s^+(R) \le \frac{(p^d - 1)e_{HK}(R)}{p^d}.
$$

Define functions $f(x) = \frac{d!x - x}{d!x - 1} = \frac{d!-1}{d!} + \frac{d!-1}{d!(d!x-1)}$ and $g(x) = \frac{(p^d-1)x}{p^d}$ over the open interval $(1,\infty)$. It is easy to see that $f(x)$ is a strictly decreasing function and $g(x)$ is strictly increasing over $(1, \infty)$.

If $e_{HK}(R) \ge \frac{d!p^d-1}{d!(p^d-1)}$, then $s^+(R) < \frac{d!e_{HK}(R)-e_{HK}(R)}{d!e_{HK}(R)-1} \le f\left(\frac{d!p^d-1}{d!(p^d-1)}\right) = 1 - \frac{1}{d!p^d}$ by (*), a contradiction. If, otherwise, $1 < e_{HK}(R) < \frac{d!p^d-1}{d!(p^d-1)}$, then we get $s^+(R) \le$ $\frac{(p^d-1)e_{HK}(R)}{p^d} < g\left(\frac{d!p^d-1}{d!(p^d-1)}\right) = 1 - \frac{1}{d!p^d}$ by (**), still a contradiction.

Therefore the assumption $s^+(R) \geq 1 - \frac{1}{d!p^d}$ implies that R is regular.

Remark 3.2. M. Blickle and F. Enescu showed the following result in[[BE\]](#page-15-7): Let (R, \mathfrak{m}) be a Noetherian unmixed local ring of characteristic p with $dim(R) = d$. If $e_{HK}(R) \leq 1 + \max\{\frac{1}{d!p^d}, \frac{1}{p^de(R)}\},\$ then R is regular. Theorem [3.1](#page-7-1) is inspired by the result of[[BE](#page-15-7)] and has a similar effect.

4. SOME CASES WHERE $s(M) = \lim_{e \to \infty} \frac{\#({}^{e}M)}{a^{\dim(R)}}$ $\frac{\#(^{M})}{q^{\dim(R)}}$ EXISTS

Proposition 4.1. Let (R, \mathfrak{m}, k) be a Noetherian local ring of characteristic p and M a finitely generated R-module. Keep the notations as in Definition [2.2](#page-5-0). Suppose that there exists a finitely generated R-submodule $E' \subseteq E$ such that $\#({}^eM) =$ $\lambda^r(\ker(\phi' \otimes_R 1_{eM}))$ for all (sufficiently large) $e \in \mathbb{N}$, where $\phi' : E' \to E'/k$ is the naturally induced R-homomorphism. Then (with $q = p^e$)

- (1) $s(M) = \lim_{e \to \infty} \frac{\#({}^e M)}{e^d}$ $\frac{M}{q^d}$ exists.
- (1) $s(M) = \lim_{e \to \infty} \frac{q^d}{q^d}$ exists.

(2) $s(M) = \inf\{e_{HK}(I_1, M) e_{HK}(I_2, M) | I_1 \subset I_2, \sqrt{2}\}$ $\overline{I_1} = \mathfrak{m}, I_2/I_1 \cong k$ and the value is attained at certain such ideals of R.
- (3) Suppose R is excellent and M is faithful over R . Then

R is weakly F-regular \iff $s(M) > 0 \iff$ R is strongly F-regular.

Proof. (1): Indeed, as $\lambda(E') < \infty$, the limit

$$
s(M) = \lim_{e \to \infty} \frac{\#({}^e M)}{q^d} = \lim_{e \to \infty} \frac{\lambda^r (\ker(\phi' \otimes_R 1 \cdot_M))}{q^d}
$$

$$
= \lim_{e \to \infty} \frac{\lambda^r (E' \otimes_R {}^e M)}{q^d} - \lim_{e \to \infty} \frac{\lambda^r ((E'/k) \otimes_R {}^e M)}{q^d}
$$

exists by a result of G. Seibert (c.f. Theorem [1.6\)](#page-3-1).

(2): To prove this, we may assume that R is complete without loss of generality. If R is weakly F -regular, then R is reduced and hence approximately Gorenstein. Therefore there exists a m-primary ideal I of R such that $E' \subseteq (0 :_E I) \cong R/I$. Choose $I_2 = (I_1 :_R \mathfrak{m})$ to get $\lambda(I_1/I_2) = 1$ and $s(M) = e_{HK}(I_1, M) - e_{HK}(I_2, M)$. If R is not weakly F-regular, then choose $I_1 \subset I_2$ to be any m-primary ideals such that $I_2 \subseteq I_1^*$ and $\lambda(I_1/I_2) = 1$ to get $e_{HK}(I_1, M) - e_{HK}(I_2, M) = 0 = s(M)$.

(3): We have $s(M) = e_{HK}(I_1, M) - e_{HK}(I_2, M)$ for m-primary ideals $I_1 \subset I_2$ such that $\lambda(I_1/I_2) = 1$ by (2) above. Suppose R is weakly F-regular. Then, since R is excellent, \hat{R} is also weakly F-regular, which in turn implies that R is a domain. Therefore we can apply [\[HH1,](#page-15-1) Theorem 8.17] to get $e_{HK}(I_1, R) - e_{HK}(I_2, R) > 0$, which, as M is faithful, forces $s(M) = e_{HK}(I_1, M) - e_{HK}(I_2, M) > 0$. Hence R is strongly F-regular. The rest implications are clear. \square

Lemma 4.2. Let (R, \mathfrak{m}, k) be an F-finite Noetherian local ring of characteristic p and keep the notations as in Definition [0.1](#page-1-0). Then the following are equivalent:

- (1) There exists a finite-length R-submodule $E_1 \subseteq E$ such that $\#({}^eM) =$ $\lambda_R^r(\ker(\phi_1 \otimes_R 1_{\leq M}))$ for all (sufficiently large) $e \in \mathbb{N}$, where $\phi_1 : E_1 \to E_1/k$ is the natural R-homomorphism.
- (2) There exists an m-primary ideal α of R such that R/α is not an R-linear homomorphic image of left R-module M_e for any (sufficiently large) $e \in \mathbb{N}$.

Proof. By Matlis duality functor $-\vee := \text{Hom}_R(-, E)$, there is a one-one correspondence from the family of all finite-length R-modules to itself. In particular, we have $E_1 \leftrightarrow R/\operatorname{Ann}_R(E_1), E_1/k \leftrightarrow \mathfrak{m}/\operatorname{Ann}_R(E_1)$ and $\phi_1 \leftrightarrow i$ where $\phi_1 : E_1 \to E_1/k$ and $i : \mathfrak{m}/\text{Ann}_R(E_1) \to R/\text{Ann}_R(E_1)$ are the natural surjection and inclusion maps respectively.

As in the proof of Lemma [2.1](#page-4-1), we regard ^{e}M as an R-module with its scalar multiplication defined by $r \cdot m = r^{p^e} m = m \cdot r$ for any $r \in R, m \in M$. Then

$$
(1) \iff \lambda_R(\ker(\phi_1 \otimes_R ^{e}M)) = a_e \text{ for all } e \gg 0
$$

\n
$$
\iff \lambda_R(\text{coker }((\phi_1 \otimes_R ^{e}M)^{\vee})) = a_e \text{ for all } e \gg 0
$$

\n
$$
\iff \lambda_R(\text{coker }(\text{Hom}_R(^{e}M, \phi_1^{\vee}))) = a_e \text{ for all } e \gg 0
$$

\n
$$
\iff \lambda_R(\text{coker }(\text{Hom}_R(R^{a_e} \oplus M_e, \phi_1^{\vee}))) = a_e \text{ for all } e \gg 0
$$

\n
$$
\iff a_e + \lambda(\text{coker }(\text{Hom}_R(M_e, \phi_1^{\vee}))) = a_e \text{ for all } e \gg 0
$$

\n
$$
\iff \lambda(\text{coker }(\text{Hom}_R(M_e, \phi_1^{\vee}))) = 0 \text{ for all } e \gg 0
$$

\n
$$
\iff (2),
$$

which finishes the proof. \Box

Theorem 4.3. Let (R, \mathfrak{m}, k) be a Noetherian local ring of prime characteristic p such that \widehat{R}_P is Gorenstein for every $P \in \text{Spec}(\widehat{R}) \setminus \{\mathfrak{m}\widehat{R}\}\$ (e.g. R is an excellent local ring such that R_P is Gorenstein for every $P \in \text{Spec}(R) \setminus \{\mathfrak{m}\}\)$. Then for any maximal Cohen-Macaulay module M , the results (1) , (2) and (3) listed in Proposition [4.1](#page-8-1) hold. In particular, $(A) s(R) = \lim_{\epsilon \to \infty} \frac{\#({}^e R)}{q^d}$ $\sum_{n=1}^{\infty} \frac{d}{dt} \left(\frac{d}{dt} \right)$ exists; (B) the value $\inf\{e_{HK}(I_1, R) - e_{HK}(I_2, R) | I_1 \subset I_2, \sqrt{I_1} = \mathfrak{m}, I_2/I_1 \cong k\}$ is attained and is equal to $s(R)$; and (C) Assuming R is excellent, we have R is weakly F-regular if and only if R is strongly F -regular.

Proof. It is enough to prove the case where R is complete, weakly F -regular and hence Cohen-Macaulay (otherwise the statements are all trivially true), and also F-finite (by extending its coefficient field to its perfect closure as described in Remark [2.3\(](#page-5-1)3) and the fact that the extension ring remains Gorenstein at the punctured spectrum). Hence canonical module exists over R . Since M is maximal Cohen-Macaulay, so are eM and hence M_e for every $e \geq 0$. By the result of Ding in [\[Di\]](#page-15-3) quoted as Theorem [1.7,](#page-4-2) there exists an integer $n \in \mathbb{N}$ such that R/\mathfrak{m}^n is not an R-linear homomorphic image of any maximal Cohen-Macaulay module without non-zero free direct summand. Hence, because of Lemma [4.2,](#page-8-2) Proposition [4.1](#page-8-1) applies to M and the proof is complete.

- Remark 4.4. (1) Aberbach and Enescu recently proved the existence of $s(R)$ under a weaker condition that R_P is Q-Gorenstein for every $P \in \text{Spec}(R) \setminus$ $\{\mathfrak{m}\}\$, or R is N-graded (see [\[AE2](#page-15-8)]). Their proof also shows that these rings satisfy the assumption of Proposition [4.1](#page-8-1). Also, Singh has recently proved that the F-signature of an affine semigroup ring always exists in [\[Si](#page-16-13)].
	- (2) Whether or when weak F-regularity, F-regularity and strong F-regularity are equivalent is an open question. B. MacCrimmon proved in [\[Mac\]](#page-16-14) that weak F-regularity is equivalent to strong F-regularity if R_P is Q-Gorenstein for every $P \in \text{Spec}(R) \setminus \{\mathfrak{m}\}.$ There is also a proof of the above statement provided by I. Aberbach in $[Ab2]$. The equivalence also holds in case R is N-graded, which is proved by Lyubeznik and Smith [\[LS1\]](#page-16-15).

Before proving the next result, let us recall the definition of R-modules with finite F-representation type (FFRT for short).

Definition 4.5. Given a finitely generated R-module M . We say that M has finite F -representation type (FFRT) if there exist finitely generated R -modules M_1, M_2, \ldots, M_s such that for every $e \geq 0$, the R-module ${}^e\!M$ is isomorphic to a finite direct sum of the R-modules M_1, M_2, \ldots, M_s , i.e. there exist non-negative integers $n_{e1}, n_{e2}, \ldots, n_{es}$ such that

$$
{}^e\!M \cong M_1^{n_{e1}} \oplus M_2^{n_{e2}} \oplus \cdots \oplus M_s^{n_{es}}.
$$

Examples of FFRT include: (1) If R has finite (maximal) Cohen-Macaulay type, then every maximal Cohen-Macaulay module has FFRT. (2) Let $R \to S$ be a ring homomorphism such that S is module-finite over R , W a finite S -module with FFRT and M an R-submodule of W such that $W = M \oplus N$ as R-modules. Then M has FFRT as an R-module by [\[SVdB,](#page-16-1) Proposition 3.1.4], in which the Krull-Schmidt condition is not needed by virtue of [\[Wi](#page-16-16), Theorem 1.1].

If R has FFRT, K. Smith and M. Van den Bergh proved that $\lim_{e\to\infty} \frac{\#({}^eR,R)}{e^{a(R)+d}}$ $q^{\alpha(R)+d}$ exists in [\[SVdB\]](#page-16-1). In general, if a finitely generated R -module M has FFRT, then $\lim_{e\to\infty}\frac{\hat{\#}(^eM,R)}{q^{\alpha(R)+d}}$ exists and is rational (see [[Yao](#page-16-2)]). The result (about the existence of the limit $s(R)$ is recovered in the next theorem.

Theorem 4.6. Let (R, \mathfrak{m}, k) be a F-finite Noetherian local ring of prime characteristic p and M a finitely generated R-module. If M has FFRT, the results (1) , (2) and (3) listed in Proposition [4.1](#page-8-1) hold. In particular, $s(M)$ exists.

Proof. Without loss of generality of the definition of FFRT, there are finitely generated R-modules N_1, N_2, \ldots, N_s , none of which has non-zero free direct summand, such that for every $e \geq 0$, $e^{\theta} M \cong R^{a_e} \oplus N_1^{n_{e1}} \oplus N_2^{n_{e2}} \oplus \cdots \oplus N_s^{n_{es}}$ for some nonnegative integers $a_e, n_{e1}, n_{e2}, \ldots, n_{es}$. By the result in [\[Gu\]](#page-15-4) quoted in Theorem [1.8,](#page-4-3) there exists an integer $n \in \mathbb{N}$ such that R/\mathfrak{m}^n is not a homomorphic image of N_i for any $i = 1, 2, ..., s$. Hence R/m^n is not a homomorphic image of $M_e \cong \bigoplus_{i=1}^{s} N_i^{n_{ei}}$ for any $e\geq 0$ and the desired results follow from Proposition [4.1.](#page-8-1)

Remark 4.7. Let R be a subring of an F-finite regular local ring S of characteristic p such that S is module finite over R and the inclusion $R \to S$ splits over R. Denote the rank of S over R by $\text{rank}_R(S)$. (This is the case if R is the ring of invariants of S under a finite group G of order prime to the characteristic, i.e. $p \nmid |G|$. See [\[HL,](#page-16-0) Corollary 20] and notice that $\text{rank}_R(S) = |G|$. Hence eR is direct summand of eS as an R-module. On the other hand, ${}^eS \cong S^{\alpha(S)+\dim(S)}$ as S-modules (hence as R-modules), which implies that S has FFRT as an R-module. Say $S \cong R^f \oplus M$ such that R is not a direct summand of M. Then, considered as R-modules, ${}^eS \cong R^{f(\alpha(S) + \dim(S))} \oplus M^{\alpha(S) + \dim(S)}$ for all $e \geq 0$, which implies that $s_R(S) = f$ (as $\alpha(R) = \alpha(S)$ and $\dim(R) = \dim(S)$). Moreover, as eR is a direct summand of eS for every $e \geq 0$, R has FFRT by [\[Wi](#page-16-16), Theorem 1.1] or, under the Krull-Schmidt assumption, by[[SVdB](#page-16-1), Proposition 3.1.4]. In [\[HL](#page-16-0), Corollary 20] (where R is an invariant subring of S), it is proved that

$$
s(R) = \frac{f}{\text{rank}_R(S)},
$$

under the assumption that R is Gorenstein. Now that we have Theorem [4.6,](#page-10-1) the Gorenstein assumption turns out to be superfluous. Indeed, since both S and R

have FFRT as R-modules, we can choose m-primary ideals $I_1 \subset I_2$ of R such that $\lambda_R(I_2/I_1) = 1, s(R) = e_{HK}(I_1) - e_{HK}(I_2)$ and $s_R(S) = e_{HK}(I_1, S) - e_{HK}(I_2, S)$ as in Proposition [4.1](#page-8-1). Therefore $s_R(S) = \text{rank}_R(S)s(R)$, which gives $s(R) = \frac{f}{\text{rank}_R(S)}$.

5. The F-signature under local flat extensions

Given a local ring homomorphism $(R, \mathfrak{m}, k) \rightarrow (S, \mathfrak{n}, l)$, a finitely generated module M over R and $P \in \text{Spec}(R)$, we get an S-module $N := M \otimes_R S$ by scalar extension and an R_P -module M_P by localization. To avoid the cumbersome subscripts, we sometimes simply write $s(M \otimes_R S)$, $s(S/mS)$ and $s(M_P)$ etc. instead of $s_S(M\otimes_R S)$, $s_{S/\mathfrak{m}S}(S/\mathfrak{m}S)$ and $s_{S_P}(M_P)$ etc. respectively. As always, ψ is a fixed injective map (e.g. the inclusion map) from k to $E = E_R(k)$ and hence the induced S-linear map $\psi \otimes_R S : k \otimes_R S \to E \otimes_R S$. Finally, we denote by \overline{S} the closed fiber ring S/mS .

We are to study the behavior of the F-signature under local flat (i.e. faithfully flat) homomorphisms. Sometimes we make our statements more general so that they apply to some cases of local pure homomorphisms. A homomorphism $(R, \mathfrak{m}) \rightarrow$ (S, \mathfrak{n}) (S, \mathfrak{n}) (S, \mathfrak{n}) is pure $\iff 0 \neq \text{image}(\psi \otimes_R S) \subseteq E \otimes_R S$ (see [[HR,](#page-15-10) Proposition 6.11]). We start with a special case of pure local extension where $0 \neq \lambda_S(\text{image}(\psi \otimes_R S)) < \infty$ (e.g. \bar{S} is 0-dimensional).

Lemma 5.1. Let $(R, \mathfrak{m}, k) \rightarrow (S, \mathfrak{n}, l)$ be a pure local ring homomorphism such that $\lambda_S(\text{image}(\psi \otimes_R S)) < \infty$, and M a finitely generated R-module. We have

- (1) Set $I := \text{Ann}_{\bar{S}}(\text{image}(\psi \otimes_R S)) \subset \bar{S}$. Then (with $q = p^e$) (a) $\#({}^eM) \geq \frac{\lambda_S(\text{image}(\psi \otimes_R S))}{\lambda_S(S/I^{[q]})} \#({}^e(M \otimes_R S))$ for every $e \in \mathbb{N}$; and (b) $s^{\pm}(M) \geq \frac{\lambda_S(\text{image}(\psi \otimes_R S))}{\text{degree}(\overline{LS})}$ $\frac{\text{mag}(\psi \otimes_R S))}{e_{HK}(I,\bar{S})} s^{\pm}(M \otimes_R S), \text{ if } \dim(S) = \dim(R) + \dim(\bar{S}).$
- (2) In particular, if $\overline{S} = S/\mathfrak{m}S$ is 0-dimensional, then (a) $\#({}^eM) \geq \frac{\lambda_S(\text{image}(\psi \otimes_R S))}{\lambda_S(S/\mathfrak{m}S)} \#({}^e(M \otimes_R S))$ for every $e \in \mathbb{N}$; and (b) $s^{\pm}(M) \geq \frac{\lambda_S(\text{image}(\psi \otimes_R S))}{\lambda_S(S/mS)}$ $\frac{\text{image}(\psi \otimes_R S))}{\lambda_S(S/\mathfrak{m}S)} s^{\pm}(M \otimes_R S).$
- (3) If the ring homomorphism $(R, \mathfrak{m}, k) \rightarrow (S, \mathfrak{n}, l)$ is flat, then (a) $\#({}^e M) \geq \#({}^e (M \otimes_R S))$ for every $e \in \mathbb{N}$; and therefore (b) $s^+(M) \geq s^+(M \otimes_R S)$ and $s^-(M) \geq s^-(M \otimes_R S)$.

Proof. (1)(a): For every $e \in \mathbb{N}$, we have a composition of natural isomorphisms

$$
(E \otimes_R S) \otimes_S {}^e(M \otimes_R S) \cong E \otimes_R (S \otimes_S {}^e(M \otimes_R S))
$$

$$
\cong E \otimes_R {}^e(M \otimes_R S) \cong (E \otimes_R {}^eM) \otimes_R S,
$$

under which image $((\psi \otimes_R S) \otimes_S {}^e(M \otimes_R S)) \cong \text{image}((\psi \otimes_R {}^eM) \otimes_R S)$. Hence we get $\text{Ann}_S(\text{image}((\psi \otimes_R \text{eM}) \otimes_R S)) = \text{Ann}_S^r(\text{image}((\psi \otimes_R S) \otimes_S \text{e}(M \otimes_R S))) \supseteq$ $(\text{Ann}_S(\text{image}(\psi \otimes_R S)))^{[q]}$ for every $e \in \mathbb{N}$ and $q = p^e$, which implies that

 $\lambda_S^r(\text{image}((\psi \otimes_R S) \otimes_S \ ^e(M \otimes_R S))) = \lambda_S(\text{image}((\psi \otimes_R \ ^eM) \otimes_R S))$

$$
\leq \lambda_R(\text{image}(\psi\otimes_R \ ^e\!M))\lambda_{\bar{S}}(\bar{S}/I^{[q]})=\#({}^e\!M)\lambda_{\bar{S}}(\bar{S}/I^{[q]})
$$

for every $e \in \mathbb{N}$. On the other hand, we have

$$
\lambda_S(\text{image}(\psi \otimes_R S) \#({}^e(M \otimes_R S)) \leq \lambda_S^r(\text{image}((\psi \otimes_R S) \otimes_S {}^e(M \otimes_R S)))
$$

by Lemma [2.5\(](#page-6-1)1). Combining the two inequalities together, we get

 $\lambda_{\bar{S}}(\bar{S}/I^{[q]}) \#({}^e M) \geq \lambda_S(\text{image}(\psi \otimes_R S) \#({}^e (M \otimes_R S))$

for every $e \in \mathbb{N}$, which gives the desired result of (1)(a).

(1)(b): Divide (1)(a) by $q^{\dim(R)}$ and take the limits as $e \to \infty$.

(2): This follows from (1) since $\lambda(S/\mathfrak{m}S) \geq \lambda(\bar{S}/I^{[q]})$ and $\dim(S) = \dim(R)$. Indeed, $(R, \mathfrak{m}) \to (S, \mathfrak{n})$ is pure $\implies H_{\mathfrak{n}}^{\dim(R)}(S) \cong H_{\mathfrak{m}}^{\dim(R)}(R) \otimes_R S \neq 0 \implies$ $\dim(S) \geq \dim(R) \implies \dim(S) = \dim(R).$

To prove (3) , we observe that the extra assumption on the flatness of S over R implies image($\psi \otimes_R S$) ≅ $S/\mathfrak{m}S$. Hence (3) is a special case of (2). \Box

Next we prove that the F -signature is non-decreasing upon further localization, which, in the F -finite case, is obvious from Definition [0.1.](#page-1-0)

Proposition 5.2. Let R be a Noetherian ring of characteristic p, M a finitely generated R-module and $P_1 \supseteq P_2$ two prime ideals of R. Then (with $q = p^e$)

(1) $\#({}^eM_{P_1}) \leq q^{\dim((R/P_2)_{P_1})} \#({}^eM_{P_2})$ for every $e \in \mathbb{N}$, and therefore, (2) $s^+(M_{P_1}) \leq s^+(M_{P_2})$ and $s^-(M_{P_1}) \leq s^-(M_{P_2})$.

Proof. Without loss of generality, we may simply assume (R, \mathfrak{m}) is local with $P_1 = \mathfrak{m}$ and $P_2 = P \in \text{Spec}(R)$. Fix a flat local ring homomorphism $R \to \widehat{R} \to$ $R\otimes_{k[[X_1,\ldots,X_n]]} k^{\infty}[[X_1,\ldots,X_n]] =: S$, in which $k[[X_1,\ldots,X_n]]$ is such that there is a ring homomorphism from $k[[X_1, \ldots, X_n]]$ onto \widehat{R} and k^{∞} is the perfect closure of $k = R/\mathfrak{m}$ (c.f. Remark [2.3](#page-5-1)(3)). Denote by N the right and left S-module $M \otimes_R S$. Choose $Q \in \text{Spec}(S)$ such that $PS \subseteq Q$ and $\dim(S/Q) = \dim(R/P)$. Hence dim(R_P) = dim(S_Q) and $\#({}^e M_P) \geq \#({}^e N_Q)$ by Lemma [5.1](#page-11-1)(2). Since S is F-finite, we have $\#({}^eN) = \#({}^eN, S) \leq \#({}^eN_Q, S_Q) = q^{\dim(S/Q)} \#({}^eN_Q)$ by the meaning of $\#({}^{\epsilon}N, S)$ and $\#({}^{\epsilon}N_Q, S_Q)$ in Definition [0.1](#page-1-0). Therefore, we have $\#({}^e M) = \#({}^e N) \leq q^{\dim(S/Q)} \#({}^e N_Q) \leq q^{\dim(R/P)} \#({}^e M_P),$ the result of (1).

To see that (2) follows from (1), we notice the non-trivial case is when $s^+(M) > 0$, which implies \widehat{R} is Cohen-Macaulay $\implies \dim(R/P) + \dim(R_P) = \dim(R)$. \Box

Remark 5.3. $\#({}^eR) > q^{\dim(R)} - q$ for some $e > 0 \implies \#({}^eR_P) \geq \frac{\#({}^eR)}{q^{\dim(R/I)}}$ $\frac{\#({R})}{q^{\dim(R/P)}} >$ $q^{\dim(R) - \dim(R/P)} - q^{1-\dim(R/P)} \geq q^{\dim(R_P)} - 1$ for every $P \in \text{Spec}(R) \setminus \{\mathfrak{m}\} \implies$ $\#({}^eR_P) \geq q^{\dim(R_P)}$ for every $P \in \text{Spec}(R) \setminus \{\mathfrak{m}\} \implies R_P$ is regular for every $P \in \text{Spec}(R) \setminus \{\mathfrak{m}\} \implies s(R)$ exists by Theorem [4.3.](#page-9-0)

Theorem 5.4. Let $(R, \mathfrak{m}, k) \rightarrow (S, \mathfrak{n}, l)$ be a pure local ring homomorphism and M a finitely generated R-module. Then there exists $Q \in \text{Spec}(S)$ such that $0 \neq$ $\lambda_S(\text{image}(\psi \otimes_R S_Q)) < \infty$. For every such Q, we have (with $q = p^e$)

(1) Set $I := \text{Ann}_{\bar{S}}(\text{image}(\psi \otimes_R S)) \subset \bar{S} = S/\mathfrak{m}S$. Then (a) $q^{\dim(S/Q)} \#(^eM) \geq \frac{\lambda_{S_Q}(\text{image}(\psi \otimes_R S_Q))}{\lambda_{S_Q}(\bar{S} - \mathcal{L}^{[g]})}$ $\frac{\text{ (image}(\psi \otimes_R S_Q))}{\lambda_{\bar{S}_Q}(\bar{S}_Q/I_Q^{[q]})}$ # $(\mathcal{C}(M \otimes_R S))$ for every $e \in \mathbb{N}$; (b) $s^{\pm}(M) \geq \frac{\lambda_{S_Q}(\text{image}(\psi \otimes_R S_Q))}{\text{gus}(I_Q, \bar{S}_Q)}$ $\frac{\text{(\text{image}(\psi \otimes_R S_Q))}}{\text{(\text{erg}(I_Q, \overline{S}_Q))}} s^{\pm}(M \otimes_R S) \text{ if } \dim(S) = \dim(R) + \dim(\overline{S}).$

- (2) In particular, if $\bar{S}_Q = S_Q / \mathfrak{m} S_Q$ is 0-dimensional, then
	- (a) $q^{\dim(S/Q)} \#({}^e M) \geq \frac{\lambda_{S_Q}(\text{image}(\psi \otimes_R S_Q))}{\lambda_{S_Q}(S_Q/\mathfrak{m} S_Q)} \#({}^e (M \otimes_R S))$ for every $e \in \mathbb{N}$; (b) $s^{\pm}(M) \geq \frac{\lambda_{S_Q}(\text{image}(\psi \otimes_R \tilde{S_Q}))}{\lambda_{S_Q}(\tilde{S_Q}/m\tilde{S_Q})}$

(b)
$$
s^{\pm}(M) \ge \frac{\lambda_{S_Q}(\text{image}(\psi \otimes_R S_Q))}{\lambda_{S_Q}(S_Q/\mathfrak{m}S_Q)} s^{\pm}(M \otimes_R S).
$$

(3) If the local ring homomorphism $(R, \mathfrak{m}) \rightarrow (S, \mathfrak{n})$ is flat, then (a) $q^{\dim(S/Q)} \#({}^e M) \geq \#({}^e (M \otimes_R S))$ for every $e \in \mathbb{N}$; hence, (b) $s^+(M) \geq s^+(M \otimes_R S)$ and $s^-(M) \geq s^-(M \otimes_R S)$.

Proof. Indeed, Q may be any minimal prime over $\text{Ann}_S(\text{image}(\psi \otimes_R S)) \subsetneq S$. For every such $Q \in \text{Spec}(S)$, Lemma [5.1](#page-11-1) and Proposition [5.2](#page-12-0) may be applied to the pure local ring homomorphism $R \to S_Q$ and the localization of S at Q respectively. (In proving (1)(b), notice that the non-trivial case is when $s^{\pm}(S) > 0$, which implies that $\dim(S_Q) = \dim(R) + \dim(S_Q)$ under the assumption.)

Remark 5.5. If a local ring homomorphism $(R, \mathfrak{m}) \to (S, \mathfrak{n})$ is a pure, then, by definition(see [[HH2,](#page-15-2) Theorem 5.5]), the strong F -regularity of S implies the strong F-regularity of R, which amounts to $s^{\pm}(S) > 0 \implies s^{\pm}(R) > 0$ " in terms of F-signature. Theorem [5.4](#page-12-1)(1)(b) above reveals a relation between $s^{\pm}(S)$ and $s^{\pm}(R)$, which refines the implication " $s^{\pm}(S) > 0 \implies s^{\pm}(R) > 0$ " provided that the condition $\dim(S) = \dim(R) + \dim(S/mS)$ holds (e.g. the homomorphism is flat).

Theorem 5.6. Let $(R, \mathfrak{m}, k) \rightarrow (S, \mathfrak{n}, l)$ be a local flat ring homomorphism with the closed fiber $S := S/mS$ being Gorenstein and M a finitely generated R-module. Then

(1) $\#_R({}^eM)\#_{\bar{S}}({}^e\bar{S}) \leq \#_S({}^e(M \otimes_R S)),$ for every $e \in \mathbb{N}$, and therefore,

 (2) $s^+(M)s(S/mS) \leq s^+(M \otimes_R S)$ and $s^-(M)s(S/mS) \leq s^-(M \otimes_R S)$.

Equalities hold in (1) and (2) if S/mS is regular.

Proof. It is enough to prove the inequalities as the equalities would then be forced by the above Theorem [5.4](#page-12-1) in case of regular closed fiber. Nevertheless, everything (including the case of regular closed fiber) is proved from scratch.

We may assume both R and S to be complete (c.f. Remark [2.3](#page-5-1) (3)) and hence excellent. As the only interesting case is when R is reduced (otherwise $\#({}^eM) = 0$) for all $e > 0$, we may assume that R is approximately Gorenstein. For notational convenience, we denote the resulted left and right S-module $M \otimes_R S$ by N and $S/\mathfrak{m}S$ by \overline{S} . For the same reason, we treat R as a subring of S.

Let $E_R(k)$, $E_{\bar{S}}(l)$ and $E_S(l)$ be the injective hulls of the residue fields over the respective rings. Recall that (see Definition [2.2\)](#page-5-0)

$$
\#_{R}(^{e}M) = \lambda_{R}^{r} \left(\ker \left(E_{R}(k) \otimes_{R}^{e}M \to \frac{E_{R}(k)}{k} \otimes_{R}^{e}M \right) \right),
$$

$$
\#_{\bar{S}}(^{e}\bar{S}) = \lambda_{S}^{r} \left(\ker \left(E_{\bar{S}}(l) \otimes_{\bar{S}}^{e}\bar{S} \to \frac{E_{\bar{S}}(l)}{l} \otimes_{\bar{S}}^{e}\bar{S} \right) \right) \text{ and}
$$

$$
\#_{S}(^{e}N) = \lambda_{S}^{r} \left(\ker \left(E_{S}(l) \otimes_{S}^{e}N \to \frac{E_{S}(l)}{l} \otimes_{S}^{e}N \right) \right)
$$

for every $e \in \mathbb{N}$.

It is enough to prove (1), i.e.

$$
\#_R(^eM)\#_{\bar{S}}(^{e\bar{S}}) \leq \#_S(^{e}N)
$$

(equality in case of S being regular), which will give the desired result of (2) since $\dim(S) = \dim(R) + \dim(\overline{S})$ and $s(\overline{S})$ exists (c.f. Definition [2.2](#page-5-0)).

Choose a sequence of irreducible m-primary ideals $\{\mathfrak{a}_n\}$ (so that $R/\mathfrak{a}_n \cong (0:_{E_R(k)})$ \mathfrak{a}_n) for all $n > 0$) satisfying $\mathfrak{a}_n \subseteq \mathfrak{m}^n$. Choose elements $x_1, x_2, \ldots, x_t \in S$ such that their images form a full system of parameters for \overline{S} and denote $I_n =$ $(x_1^n, x_2^n, \ldots, x_t^n)$ S for all $n > 0$. (In case \overline{S} is regular, make sure that the images of $x_1, x_2, \ldots, x_t \in S$ form a regular system of parameters for \overline{S} .) For each

n, choose $u_n \in R$, $v_n \in S$ such that $u_n + \mathfrak{a}_n$ generates $(0 :_{R/\mathfrak{a}_n} \mathfrak{m})$, the socle of R/\mathfrak{a}_n , and $v_n + I_n\overline{S}$ generates the socle of $\overline{S}/I_n\overline{S}$. (In case \overline{S} is regular, choose $v_n = (x_1 x_2 \cdots x_t)^{n-1}$. Recall that $S/I_n^{[q]}$ is flat over R for every *n* and every $q = p^e$ by Theorem [1.9](#page-4-4). (In case \dot{S} is regular, $S/(I_n, v_n)^{[q]}S =$ $S/(x_1^{nq}, x_2^{nq}, \ldots, x_t^{nq}, (x_1x_2\cdots x_t)^{(n-1)q})S$ is also flat over R for every n and every q since it has a filtration by modules of the form $S/(x_1, x_2, \ldots, x_t)S$.) Then the element $u_n v_n + \mathfrak{a}_n S + I_n$ generates the socle of $S/(\mathfrak{a}_n S + I_n)$ for every n and hence $S/(\mathfrak{a}_nS + I_n)$ is a 0-dimensional Gorenstein ring for every $n > 0$. Notice that $\mathfrak{a}_n S + I_n \subseteq \mathfrak{n}^n$ for all n.

Let $e \in \mathbb{N}$ be any fixed integer. Then by Remark [2.3\(](#page-5-1)2) and our choice of a_n, u_n, I_n and v_n , we have (with $q = p^e$)

$$
\lambda_R^r \left(\ker \left(E_R(k) \otimes_R ^e M \to \frac{E_R(k)}{k} \otimes_R ^e M \right) \right) = \lambda_R \left(\frac{(\mathfrak{a}_n, u_n)^{[q]} M}{\mathfrak{a}_n^{[q]} M} \right),
$$

$$
\lambda_{\bar{S}}^r \left(\ker \left(E_{\bar{S}}(l) \otimes_{\bar{S}} ^e \bar{S} \to \frac{E_{\bar{S}}(l)}{l} \otimes_{\bar{S}} ^e \bar{S} \right) \right) = \lambda_{\bar{S}} \left(\frac{(I_n, v_n)^{[q]} \bar{S}}{I_n^{[q]} \bar{S}} \right) \text{ and }
$$

$$
\lambda_S^r \left(\ker \left(E_S(l) \otimes_S ^e N \to \frac{E_S(l)}{l} \otimes_S ^e N \right) \right) = \lambda_S \left(\frac{(\mathfrak{a}_n, I_n, u_n v_n)^{[q]} N}{(\mathfrak{a}_n, I_n)^{[q]} N} \right)
$$

for all $n \gg 0$, while the second equality holds for all $n > 0$. But we have

$$
\lambda_{S}\left(\frac{(\mathfrak{a}_{n}S,I_{n},u_{n}v_{n})^{[q]}N}{(\mathfrak{a}_{n}S,I_{n})^{[q]}N}\right) = \lambda_{S}\left(\frac{(\mathfrak{a}_{n}S,I_{n},u_{n})^{[q]}N}{(\mathfrak{a}_{n}S,I_{n})^{[q]}N}\right) - \lambda_{S}\left(\frac{(\mathfrak{a}_{n}S,I_{n},u_{n})^{[q]}N}{(\mathfrak{a}_{n}S,I_{n},u_{n}v_{n})^{[q]}N}\right)
$$
\n
$$
= \lambda_{S}\left(\frac{(\mathfrak{a}_{n},u_{n})^{[q]}M}{\mathfrak{a}_{n}^{[q]}M}\otimes_{R}\frac{S}{I_{n}^{[q]}}\right) - \lambda_{S}\left(\frac{N}{((\mathfrak{a}_{n}S,I_{n},u_{n}v_{n})^{[q]}N:y,u_{n}^{q}]}\right)
$$
\n
$$
= \lambda_{R}\left(\frac{(\mathfrak{a}_{n},u_{n})^{[q]}M}{\mathfrak{a}_{n}^{[q]}M}\right)\lambda_{\bar{S}}\left(\frac{\bar{S}}{I_{n}^{[q]}\bar{S}}\right) - \lambda_{S}\left(\frac{N}{((\mathfrak{a}_{n}S,I_{n})^{[q]}N:y,u_{n}^{q})+v_{n}^{q}N}\right)
$$
\n
$$
= \lambda_{R}\left(\frac{(\mathfrak{a}_{n},u_{n})^{[q]}M}{\mathfrak{a}_{n}^{[q]}M}\right)\lambda_{\bar{S}}\left(\frac{\bar{S}}{I_{n}^{[q]}\bar{S}}\right) - \lambda_{S}\left(\frac{N}{(\mathfrak{a}_{n}^{[q]}N:y,u_{n}^{q})+I_{n}^{[q]}N+v_{n}^{q}N}\right)
$$
\n
$$
= \lambda_{R}\left(\frac{(\mathfrak{a}_{n},u_{n})^{[q]}M}{\mathfrak{a}_{n}^{[q]}M}\right)\lambda_{\bar{S}}\left(\frac{\bar{S}}{I_{n}^{[q]}\bar{S}}\right) - \lambda_{S}\left(\frac{N}{(\mathfrak{a}_{n}^{[q]}N:y,u_{n}^{q})+I_{n}^{[q]}N+v_{n}^{q}N}\right)
$$
\n
$$
= \lambda_{R}\left(\frac{(\mathfrak{a}_{n},u_{
$$

for every $n \in \mathbb{N}$. (In case $\overline{S} = S/\mathfrak{m}S$ is regular, equality holds throughout because of the flatness of $\frac{S}{(I_n,v_n)^{[q]}S}$ over R and $\lambda_{\bar{S}}\left(\frac{(I_n,v_n)^{[q]}S}{I_n^{[q]}S}\right)$ $I_n^{[q]} \bar{S}$ $= q^{\dim(\bar{S})}$. Hence the proof is complete. \Box

As a corollary, we state a result of Ian Aberbach in[[Ab1\]](#page-15-11), which may now be easily understood in terms of F-signature in light of Theorem [5.6](#page-13-0) together with the main result of [\[AL](#page-15-0)] applied to excellent rings.

Theorem 5.7 ([[Ab1,](#page-15-11) Theorem 3.6]). Let $(R, \mathfrak{m}, k) \rightarrow (S, \mathfrak{n}, l)$ be a local flat ring homomorphism with S/mS being Gorenstein. Assume that R and S/mS are both excellent. Then the strong F -regularity of R and of $S/\mathfrak{m}S$ implies the strong F regularity of S.

Proof. The strong F-regularity of R and $S/mS \implies s^+(R)s(S/mS) > 0 \implies$ $s^+(S) > 0 \implies$ the strong F-regularity of S.

Remark 5.8. In [\[AL\]](#page-15-0), I. Aberbach and G. Leuschke define the s-dimension of (R, \mathfrak{m}) , denoted by sdim(R), to be the largest integer i such that $\limsup_{e\to\infty} \frac{\#(^{e}R,R)}{q^{\alpha(R)+i}} > 0$ in case R is F -finite. Recently, I. Aberbach and F . Enescu showed results concerning $sdim(R)$ in [[AE1\]](#page-15-5). We would like to remark that the notion may just as well be defined as the largest integer i such that $\limsup_{e \to \infty} \frac{\#({}^e R)}{q^i}$ $\frac{P(R)}{q^i} > 0$ for any Noetherian local ring of characteristic p. The results in this section may be used to analyze the behavior of s-dimension under localization and flat local extension. In particular, we have $\text{sdim}(R) \leq \text{sdim}(R_P) + \text{dim}(R/P)$ by Proposition [5.2](#page-12-0). Similarly, if $(R, \mathfrak{m}) \to$ (S, \mathfrak{n}) is a local flat ring homomorphism, then $\text{sdim}(S) \leq \text{sdim}(R) + \text{dim}(S/\mathfrak{m}S)$ by Theorem [5.4](#page-12-1). If we further assume that S/mS is Gorenstein, then Theorem [5.6](#page-13-0) shows that $\text{sdim}(S) \geq \text{sdim}(R) + \text{sdim}(S/\mathfrak{m}S)$ while equality holds if $S/\mathfrak{m}S$ is strongly F-regular.

REFERENCES

- [Ab1] I. Aberbach, *Extension of weakly and strongly F-regular rings by flat maps*, J. Algebra 241 (2001), no. 2, 799–807. MR 2002f:13008
- [Ab2] I. Aberbach, Some conditions for the equivalence of weak and strong F-regularity, Comm. Algebra 30 (2002), no. 4, 1635–1651. MR 1 894 033
- [AE1] I. Aberbach and F. Enescu, The structure of F-pure rings, to appear in Math. Z.
- [AE2] I. Aberbach and F. Enescu, When does the F-signature exist? to appear in Ann. Fac. Sci. Toulouse Math. (6).
- [AL] I. Aberbach and G. Leuschke, The F-signature and strong F-regularity, Math. Res. Letters 10 (2003), no. 1, 51–56. MR 1960123 (2004b:13003)
- [BE] M. Blickle and F. Enescu, On rings with small Hilbert-Kunz multiplicity, Proc. Amer. Math. Soc. 132 (2004), no. 9, 2505–2509. MR 2054773 (2005b:13029)
- [Di] S. Ding, A note on the index of Cohen-Macaulay local rings, Comm. Algebra 21 (1993), no. 1, 53–71. MR 94b:13014
- [Gu] R. M. Guralnick, Lifting homomorphisms of modules, Illinois Jour. of Math. 29 (1985), no 1, 153–156. MR 86g:13006
- [Ha] D. Hanes, *Notes on the Hilbert-Kunz function*, preprint.
- [HH1] M. Hochster and C. Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, Jour. of Amer. Math. Soc. 3 (1990), no. 1, 31-116. MR 91g:13010
- [HH2] M. Hochster and C. Huneke, F-regularity, test elements, and smooth base change, Tans. Amer. Math. Soc. 346 (1994), 1-62. MR 95d:13007
- [HR] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 50 #311
- [HL] C. Huneke and G. Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324 (2002), no. 2, 391–404. MR 1 933 863
- [HY] C. Huneke and Y. Yao, Unmixed local rings with minimal Hilbert-Kunz multiplicity are regular, Proc. Amer. Math. Soc. 130 (2002), no. 3, 661–665. MR 2002h:13026
- [Ku1] E. Kunz, Characterizations of regular local rings of characteristic p, Amer. Jour. of Math. 91 (1969), 772–784. MR 40 #5609
- [Ku2] E. Kunz, On Noetherian rings of characteristic p, Amer. Jour. of Math. 98 (1976), no 4, 999–1013. MR 55 #5612
- [LS1] G. Lyubeznik and K. E. Smith, Weak and Strong F-regularity are equivalent in graded rings, Amer. Jour. Math. 121 (1999), no. 6, 1279–1290. MR 1719806 (2000m:13006)
- [LS2] G. Lyubeznik and K. E. Smith, On the commutation of the test ideal with localization and completion, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3149–3180. MR 2002f:13010
- [Mat] H. Matsumura, Commutative Algebra, Benjamin, 1970. MR 0266911 (42 #1813)
- [Mac] B. MacCrimmon, Weak F-regularity is strong F-regularity for rings with isolated non-Q-Gorenstein points, Trans. Amer. Math. Soc. (to appear).
- [Mo] P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), no. 1, 43–49. MR 84k:13012
- [Se] G. Seibert, Complexes with homology of finite length and Frobenius functors, J. Algebra 125 (1989), no. 2, 278–287. MR 90j:13012
- [Si] A. Singh, The F-signature of an affine semigroup ring, J. Pure Appl. Algebra 196 (2005) 313-321. MR 2110527
- [Sm] K. Smith, Tight closure of parameter ideals and F-rationality, University of Michigan, thesis (1993).
- [SVdB] K. Smith and M. Van den Bergh, Simplicity of rings of differential operators in prime characteristic, Proc. London Math. Soc. (3) 75 (1997), no. 1, 32-62. MR 98d:16039
- [WY1] K. -i. Watanabe and K. Yoshida, *Hilbert-Kunz multiplicity and an inequality between* multiplicity and colength, J. Algebra 230 (2000), no. 1, 295-317. MR 2001h:13032
- [WY2] K. -i. Watanabe and K. Yoshida, Minimal relative Hilbert-Kunz multiplicity, Illinois J. Math. 48 (2004), no. 1, 273–294. MR 2048225 (2005b:13033)
- [Wi] R. Wiegand, Local rings of finite Cohen-Macaulay type, J. Algebra 203 (1998), no. 1, 156–168. MR 99c:13025
- [Yao] Y. Yao, Modules with finite F-representation type, J. London Math. Soc. (2) 72 (2005), no. 1, 53–72. MR 2145728

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 E-mail address: ywyao@umich.edu