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Abstract. Let (R, m) be a Noetherian local ring of prime characteristic p

and M a finitely generated R-module. For every e ∈ N, denote by eM the
derived R-module structure on M with scalar multiplication determined via

r · x := rpe
x for all r ∈ R, x ∈ M . Assuming eM is finite over R for all e ∈ N,

Hochster showed that if dim(M) = 1, then eM can be written as a direct sum
of two non-zero modules for sufficiently large e. In this paper, we study the

direct sum decomposability of eM when dim(M) ≥ 2. In particular, we show

that the same splitting result holds in the case of dim(M) = 2 provided that,
for some P ∈ minR(M) such that dim(R/P ) = 2, there is a module-finite

extension of R/P that is strongly F -regular.

0. Introduction

Throughout this paper we assume R is a Noetherian ring of prime characteristic
p and M a finitely generated R-module unless specified otherwise explicitly. By
(R,m, k), we indicate that R is local with its maximal ideal m and its residue field
k = R/m. We always denote q := pe for varying e ∈ N.

Then, for every e ∈ N, there is the Frobenius map (which is a ring homomor-
phism) F e : R → R defined by F e(r) = rq = rpe

for any r ∈ R. Thus, given
M , there is a derived R-module structure, denoted by eM , on the same abelian
group M but with its scalar multiplication determined by r · x = rqx = rpe

x for
r ∈ R, x ∈ M . It is routine to verify that Ann(M) ⊆ Ann(eM) ⊆

√
Ann(M) and

Ass(M) = Ass(eM) for all e ∈ N.
In case R is reduced, it is clear that eR and R1/q := {r1/pe | r ∈ R} are isomorphic

as R-modules for every e. Using this terminology, a result of E. Kunz states that
R is regular if and only if eR is flat over R for some e ≥ 1, or equivalently, for all
e ∈ N ([Ku1, Theorem 2.1]).

We say that R is F -finite if 1R is finitely generated over R, or equivalently, eR
is finitely generated over R for all e ∈ N. By a result of E. Kunz in [Ku2], every
F -finite ring is excellent. If R is F -finite and M is a finitely generated R-module,
then it is easy to see that eM remains finitely generated over R for every e ∈ N.

Similarly, if 1M is finitely generated over R, then so is 1(R/Ann(M)). This means
that R/Ann(M) is an F -finite ring, i.e., e(R/Ann(M)) is finite over R/Ann(M)
(or, equivalently, over R) for all e, which forces eM to be finitely generated over R
for all e ∈ N.
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For any e ∈ N, the derived R-module eM can be roughly identified as the module
structure of M over the subring Rq := {rq = rpe | r ∈ R}. Thus, in general, the
“size” of eM should increase as e → ∞. Assuming eM is finite over R for all
e ∈ N, we are interested in whether it is possible that the derived R-modules eM
remain indecomposable (i.e., can not be written as a direct sum of two non-trivial
submodules) for all e ∈ N. Since we can always replace R by R/Ann(M), we may
simply assume that R is F -finite.

Here is a case where eM remain indecomposable for all e ∈ N: Suppose R has a
maximal ideal m such that k = R/m is a perfect field and let M = k. Then it is
easy to see that eM ∼= M = k and hence is indecomposable for all e ∈ N. Another
trivial case of non-splitting is when M = 0.

Hochster showed the eventual splitting of eM for e� 0 in many cases in [Ho]. In
particular, he proved that eM decomposes for all e� 0 if dim(M) ≤ 1 (except for
the cases just mentioned in the last paragraph). Indeed, in case dim(M) = 0, then
it reduces to local case, in which we see that AnnR(M) is an m-primary ideal of
(R,m, k). Then m[pe0 ] ⊆ Ann(M) for some e0 ∈ N, in which m[pe0 ] denotes the ideal
of R generated by {rpe0 | r ∈ m}. Thus the derived R-modules eM become vector
spaces over k = R/m for all e ≥ e0 since m ·eM = m[pe]M = 0. As for the one-
dimensional case, we quote what was essentially proved in [Ho, Theorem 5.16(2)].

Theorem 0.1 ([Ho, Theorem 5.16(2)]). Let (R,m, k) be an F -finite local Noether-
ian ring of characteristic p and M a finitely generated R-module with dim(M) = 1.
Fix any P ∈ Ass(M) with dim(R/P ) = 1 and let A = R/P be the integral closure
of R/P in its fraction field (R/P )P . Then, for any n ∈ N, there exists e0 ∈ N such
that eM has a direct summand isomorphic to An for all e ≥ e0.

One of the main ideas in the proof of [Ho, Theorem 5.16(2)] is [Ho, Lemma 5.17],
which also plays an important role in this paper. As we will need a stronger result
than the the original version of [Ho, Lemma 5.17], we state the following lemma.

Lemma 0.2 (Compare with [Ho, Lemma 5.17]). Consider the short exact sequence

0 −→ Dr+1 ⊕B −→M −→ N −→ 0

of finitely generated modules over a Noetherian ring R (not necessarily of char-
acteristic p). Assume that µ(E) ≤ r for all submodules E ⊆ Ext1R(N,D), where
µ(E) denotes the least number of generators of E. Then M has a direct summand
isomorphic to D.

Proof. This can be derived from the proof of [Ho, Lemma 5.17]. Details omitted.
�

In [Ho, Fact 5.14], it was also observed that if M is a graded module over
an F -finite N-graded Noetherian ring R with R0 a field of characteristic p and
dim(M) ≥ 1, then for any n ∈ N, there exists e such that eM splits as a direct sum
of more than n non-zero R-modules. This splitting property was then used to prove
a case of existence of small Cohen-Macaulay modules (see [Ho, Proposition 5.11]).

In this note, we study the direct sum decomposability of eM when dim(M) ≥ 2.
The approach is somewhat similar to that of [Ho, Theorem 5.16(2)]. Let us state
the main result, which is proved in Section 1.

Main Theorem (See Theorem 1.8). Let (R,m, k) be an F -finite Noetherian local
ring of characteristic p and M a finitely generated R-module with dim(M) = 2. Let
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A be the integral closure of R/P in some finite algebraic extension field of (R/P )P

for some P ∈ Ass(M) with dim(R/P ) = 2. If A is strongly F -regular, then, given
any n ∈ N, An is isomorphic to a direct summand of eM for every e� 0.

Recall that an F -finite ring R is said to be strongly F -regular (cf. [HH2, Defini-
tion 5.1]) if, for any c ∈ R◦ := R\∪P∈min(R)P , the R-linear map R→ eR defined by
1 7→ c splits for some e > 0 (or equivalently, for all e� 0). Strong F -regularity can
be equivalently defined in terms of tight closure (cf. [HH1]): (R,m, k) is strongly
F -regular if and only if 0 is tightly closed in the injective hull of k. For example, if
(R,m, k) is an F -finite regular local ring, then eR is free over R for all e by [Ku1,
Theorem 2.1]. Thus, for any c 6= 0 ∈ R, the R-linear map R → eR sending 1 to c
splits as long as e is large enough that c /∈ m[pe] = m · eR. This shows that every
F -finite regular ring is strongly F -regular.

In Hochster’s result (i.e., Theorem 0.1), as R/P is a domain with dim(R/P ) ≤ 1,
its integral closure A = R/P is regular (and hence strongly F -regular) automat-
ically. However, when dim(R/P ) = 2, its integral closure may not be regular.
Nevertheless, Theorem 1.8(1) states that if there is a module-finite domain ex-
tension of R/P that is strongly F -regular, then the same splitting result for eM
still holds. In this sense, Theorem 1.8(1) may be regarded as a generalization of
Theorem 0.1.

1. The eventual splitting of eM in dimension two

We would like to begin this section with an easy remark.

Remark 1.1. Let R be a ring and M1 →M →M2 be an exact sequence. Then

sup{µ(E) |E ⊆M} ≤ sup{µ(E1) |E1 ⊆M1}+ sup{µ(E2) |E2 ⊆M2}.
Throughout this paper, µ(E) denotes the minimal number of generators for any
R-module E.

Let us next recall a familiar and useful fact about 1-dimensional R-modules. We
use λR(−) to denote the length of an R-module.

Lemma 1.2. Let M be a finitely generated module over a local ring (R,m, k) (not
necessarily of characteristic p) with dim(M) ≤ 1. Then

sup{µ(E) |E ⊆M} ≤ λ(H0
m(M)) + e(M) <∞,

in which H0
m(M) := ∪n∈N(0 :M mn) and e(M) := limn→∞

λ(M/mnM)
n , the Hilbert

multiplicity of M (as a module of dimension one).

Proof. We sketch a proof. Let E be an arbitrary submodule of M . Then H0
m(E) =

H0
m(M)∩E and hence there exists an exact sequence 0 → E/H0

m(E) →M/H0
m(M).

Notice that E/H0
m(E) is either 0 or Cohen-Macaulay of dimension 1. Thus, by

Remark 1.1, etc., we have

µ(E) ≤ µ(H0
m(E)) + µ(E/H0

m(E)) ≤ λ(H0
m(E)) + e(E/H0

m(E))

≤ λ(H0
m(M)) + e(M/H0

m(M)) = λ(H0
m(M)) + e(M).

(In the above, we used the fact that µ(E/H0
m(E)) ≤ e(E/H0

m(E)), which holds
since N := E/H0

m(E) is a one-dimensional Cohen-Macaulay R-module. To prove
this, we assume dim(R) = 1 and |k| = ∞ without loss of generality. Then there
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exists x ∈ m such that x is N -regular and xR is a reduction of m. Consequently, we
have e(N) = limn→∞

λ(N/mnN)
n = limn→∞

λ(N/xnN)
n = λR(N/xN) ≥ µ(N).) �

The next result plays an important role in the proof of the main theorem of
this paper. Before stating the result, we first explain some more notations and
terminologies that we are going to use.

Notation 1.3. Let L,D 6= 0 be finitely generated modules over an F -finite ring R.
(1) We denote by #R(L,D), or #(L,D) if the ring R is clearly understood,

the maximal integer n such that L ∼= Dn ⊕N for some R-module N .
(2) When (R,m, k) is local, we denote α(R) = logp[k : kp] (i.e., pα(R) is the

rank of 1k as a k-vector space).
(3) Assuming (R,m, k) is local, we say that D is an F -contributor of L if

lim supe→∞
#(eL,D)

qα(R)+dim(L) > 0, in which q = pe. (See [Yao1] for some of the
properties of F -contributors.)

(4) Also, given functions f, g : N → N, we say f(e) = O(g(e)) if there exists
a ∈ N such that f(e) ≤ ag(e) for all e ∈ N.

Recall that, for any P ∈ Spec(R) and e ∈ N, the derived module e(R/P ) has
torsion-free rank qα(R)+dim(R/P ) over R/P ([Ku2, Proposition 2.3]). The next
lemma gives a criterion as to when the eventual splitting of eM occurs.

Lemma 1.4. Let (R,m, k) be an F -finite local Noetherian ring of prime charac-
teristic p and M a finitely generated R-module. Suppose, for some e0 ≥ 0, there
exists a short exact sequence

0 −→ L −→ e0M −→ N −→ 0,

such that dim(N) = d ≤ 1 and lim supe→∞
#(eL,D)
qα(R)+d = ∞ for some finitely generated

R-module D 6= 0 (e.g., dim(L) > d and D is a F -contributor of L). Then, for any
n ∈ N, there exists e ∈ N such that eM has a direct summand isomorphic to Dn.

Proof. As the assumption also implies that lim supe→∞
#(eL,Dn)
qα(R)+d = ∞ for any n ∈

N, we may simply prove the lemma in the case of n = 1. Also, as e(e0M) = e+e0M
for all e ∈ N, we may relabel e0M with M and, thus, assume e0 = 0 without loss of
generality.

We can filter N by finitely many submodules such that successive quotients are
isomorphic to either k = R/m or R/P with P ∈ Spec(R) and dim(R/P ) = 1.
For each such P , denote by R/P the integral closure of R/P in its fraction field.
Then R/P is regular and finitely generated over R/P since R is excellent. Hence
there exists an exact sequence 0 → R/P → R/P → U → 0 with λR(U) <∞. This
shows that N may be filtered by finitely many submodules with successive quotients
isomorphic to either k = R/m or R/P with P ∈ Spec(R) and dim(R/P ) = 1. Fix
such a filtration, say

0 = N0 ( N1 ( · · · ( Nr = N,

together with Λ0 ⊆ {1, 2, . . . , r} and Λ1 = {1, 2, . . . , r} \ Λ0 such that Ni/Ni−1
∼=

k = R/m when i ∈ Λ0 and Ni/Ni−1
∼= R/Pi with Pi ∈ Spec(R) and dim(R/Pi) = 1

when i ∈ Λ1. As the integral closure R/Pi is a 1-dimensional regular semi-local

domain for each i ∈ Λ1, we have e
(
R/Pi

) ∼= R/Pi
qα(R)+1

(cf. [Ku2, Proposition 2.3]
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and Lemma 1.10). Therefore, for any e ∈ N, the derived R-module eN may be
filtered correspondingly as follows

0 = eN0 ( eN1 ( · · · ( eNr = eN,

in which eNi/
eNi−1

∼= ek ∼= kqα(R)
if i ∈ Λ0 and eNi/

eNi−1
∼= e

(
R/Pi

) ∼= R/Pi
qα(R)+1

if i ∈ Λ1. Thus, by induction on r (details omitted) and by Remark 1.1 repeatedly,
we have, for all e ∈ N,

sup{µ(E) |E ⊆ Ext1R(eN,D)} ≤
r∑

i=1

sup{µ(E) |E ⊆ Ext1R(eNi/
eNi−1, D)}

= qα(R)
∑
i∈Λ0

sup{µ(E) |E ⊆ Ext1R(k,D)}

+ qα(R)+1
∑
i∈Λ1

sup{µ(E) |E ⊆ Ext1R(R/Pi, D)}.

Therefore, we conclude that sup{µ(E) |E ⊆ Ext1R(eN,D)} = O(qα(R)+d). (Notice
that, in case dim(N) = d = 0, we have Λ1 = ∅.)

Denote µ(e) = sup{µ(E) |E ⊆ Ext1R(eN,D)} for every e ∈ N. As µ(e) =
O(qα(R)+d) and lim supe→∞

#(eL,D)
qα(R)+d = ∞, there exists a large enough e such that

#(eL,D) ≥ µ(e) + 1. That is, eL ∼= Dµ(e)+1 ⊕ B for some R-module B and hence
we have an exact sequence

0 −→ Dµ(e)+1 ⊕B −→ eM −→ eN −→ 0.

By Lemma 0.2, we see that D is isomorphic to a direct summand of eM . �

Remark 1.5. We may sketch another proof of the above Lemma 1.4: Again, it
suffices to prove the case where n = 1. The assumption lim supe→∞

#(eL,D)
qα(R)+d = ∞

implies that D has depth at least d + 1 = dim(N) + 1 (see the proof of [Yao1,
Lemma 2.2]). Thus there exists x ∈ Ann(N) ⊆ Ann(eN) for all e ∈ N such that
x is D-regular. Let R = R/AnnR(N) and D = D/xD. Hence, for all e ∈ N,
Ext1R(eN,D) ∼= HomR(eN,D/xD) ⊆ HomR(R

µ(eN)
, D) ∼= HomR(R,D)

µ(eN)
. As

HomR(R,D) has dimension at most one, Remark 1.1 and Lemma 1.2 imply that

sup{µ(E) |E ⊆ Ext1R(eN,D)} ≤ sup
{
µ(E) |E ⊆ HomR(R,D)

µ(eN)}
≤ µ(eN) sup{µ(E) |E ⊆ HomR(R,D)} = O(µ(eN)).

On the other hand, µ(eN) = λ(eN/m ·eN) = qα(R)λ(N/m[q]N) = O(qα(R)+d) by
the existence of Hilbert-Kunz multiplicity (see [Mo]), where d = dim(N). Hence
sup{µ(E) |E ⊆ Ext1R(eN,D)} = O(qα(R)+d) and from here the proof goes just as
in the original proof of Lemma 1.4.

Remark 1.6. From the proof of Lemma 1.4 we see that if lime→∞
#(eL,D)
qα(R)+d = ∞

then, for any given n ∈ N, there exists e1 ∈ N such that eM has a direct summand
isomorphic to Dn for all e ≥ e1.

Next, we use the above criterion (i.e., Lemma 1.4) to produce a situation where
eM splits for e� 0. For any finitely generated R-module M , set

Assh(M) = {P ∈ Ass(M) | dim(R/P ) = dim(M)},
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which is the same as {P ∈ min(M) | dim(R/P ) = dim(M)}. We point out that
some of the arguments in the proof of the next proposition are similar to the ones
outlined in the proof of [Ho, Theorem 5.16(2)].

Proposition 1.7. Let (R,m, k) be an F -finite local Noetherian ring of character-
istic p and M,L,D finitely generated non-zero R-modules such that dim(M) = 2,
Ass(L) ⊆ Assh(M) (so that dim(L) = 2) and lim supe→∞

#(eL,D)
qα(R)+1 = ∞ (e.g., D is

an F -contributor of L). Then, for any n ∈ N, there exists e ∈ N such that Dn is
isomorphic to a direct summand of eM .

Proof. Choose a primary decomposition of 0 in M , say

0 = Q1 ∩Q2 ∩ · · · ∩Qs

such that Ass(M/Qi) = {Pi}. Assume the primary decomposition is minimal so
that Ass(M) = {P1, P2, . . . , Ps}. Say that Assh(M) = {P1, P2, . . . , Pr} for some
1 ≤ r ≤ s. Let S = R \ ∪r

i=1Pi. Then over the localization ring S−1R, we get a
primary decomposition of 0 in S−1M

0 = S−1Q1 ∩ S−1Q2 ∩ · · · ∩ S−1Qr,

which shows that S−1(⊕r
i=1M/Qi) ∼= S−1M by the Chinese Remainder Theorem.

Lifting the isomorphism back to R, we get a short exact sequence

0 −→ ⊕r
i=1M/Qi −→M −→ N −→ 0

for some finitely generated R-module N with dim(N) ≤ 1. Then, for every e ∈ N,
there is a short exact sequence

(1.7.1) 0 −→ ⊕r
i=1

e(M/Qi) −→ eM −→ eN −→ 0

with dim(eN) = dim(N) ≤ 1. Since Ass(M/Qi) = {Pi}, we see that e(M/Qi) 6=
0 are finitely generated torsion-free R/Pi-modules for all e � 0. (Indeed, as√

AnnR(M/Qi) = Pi, there exists e0 ∈ N such that (AnnR(M/Qi))[p
e0 ] ⊆ Pi,

which implies that e(M/Qi) is annihilated by Pi for every e ≥ e0. Moreover, for
any x ∈ R \ Pi, as x is a non-zero-divisor on M/Qi, it remains so on e(M/Qi) for
every e ≥ 0.) For any e ≥ e0 and any i = 1, . . . , r, let n(e, i) denote the torsion-
free rank of e(M/Qi) over R/Pi. Then n(e, i) > 0 and there exists a short exact
sequence

(1.7.2) 0 −→ (R/Pi)n(e,i) −→ e(M/Qi) −→ N(e,i) −→ 0

so that N(e,i) is finitely generated over R/Pi with dim(N(e,i)) < dim(M/Qi) = 2
for every i = 1, . . . , r. Putting (1.7.1) and (1.7.2) together, we get a short exact
sequence

(∗e) 0 −→ ⊕r
i=1(R/Pi)n(e,i) −→ eM −→ Ne −→ 0

for each e ≥ e0, in which Ne is a finitely generated R-module with dim(Ne) ≤ 1.
Notice that n(e + 1, i) = pα(R)+2n(e, i) for each e ≥ e0 and each i ∈ {1, 2, . . . , r}
(cf. [Ku2, Proposition 2.3]). In particular, we see that n(e, i) →∞ as e→∞.

Now we carry out a similar procedure on L: Say Ass(L) = {P1, P2, . . . , Pt} for
some 1 ≤ t ≤ r. Fix a primary decomposition of 0 in L, say 0 = Q′1 ∩Q′2 ∩ · · · ∩Q′t
with Ass(L/Q′i) = {Pi}. Let U = R \∪t

i=1Pi. Then we see that U−1(⊕t
i=1L/Q

′
i) ∼=

U−1L, which gives a short exact sequence

(1.7.3) 0 −→ L −→ ⊕t
i=1L/Q

′
i −→ N ′ −→ 0
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for some finitely generated R-module N ′ with dim(N ′) ≤ 1. Similarly, we can find
a large enough e′ ∈ N such that, for each i = 1, 2, . . . , t, e′

(L/Q′i) is torsion-free
over R/Pi (say with torsion-free rank n(i)) and, hence, there exists a short exact
sequence

(1.7.4) 0 −→ e′
(L/Q′i) −→ (R/Pi)n(i) −→ N ′

i −→ 0

for some finitely generated R/Pi-module N ′
i with dim(N ′

i) ≤ 1. Together, (1.7.3)
and (1.7.4) produce a short exact sequence

(∗∗) 0 −→ e′
L −→ ⊕t

i=1(R/Pi)n(i) −→ N ′′ −→ 0

for some finitely generated R-module N ′′ with dim(N ′′) ≤ 1.
Now fix a sufficiently large e1 ∈ N such that n(e1, i) ≥ n(i) for all i = 1, . . . , t.

Then, the exact sequences (∗e1) and (∗∗) generate a short exact sequence

0 −→ e′
L⊕B −→ e1M −→ N ′′′ −→ 0,

in which B =
(
⊕t

i=1 (R/Pi)n(e1,i)−n(i)
) ⊕ (

⊕r
i=t+1 (R/Pi)n(e1,i)

)
and N ′′′ is a

finitely generated R-module with dim(N ′′′) ≤ 1. Moreover, it is clear that

lim sup
e→∞

#(eL,D)
qα(R)+1

= ∞ implies lim sup
e→∞

#(e(e′
L⊕B), D)
qα(R)+1

= ∞.

Now the desired result follows from Lemma 1.4. �

The above proposition can be applied to the following case, which proves the
main theorem of this paper. First, recall that in [AL], I. Aberbach and G. Leuschke
proved the following result concerning strongly F -regularity: An F -finite local ring
(R,m) is strongly F -regular if and only if lim infe→∞

#(eR,R)
qα(R)+dim(R) > 0. Also, we

refer the readers to [SVdB] and [Yao1] for the definition and properties of modules
of finite F -representation type (abbreviated FFRT ).

Theorem 1.8. Let (R,m, k) be an F -finite local Noetherian ring of characteristic
p and M a finitely generated R-module with dim(M) = 2. Let A be a domain that
is a module-finite extension of R/P for some P ∈ Assh(M).

(1) If A is strongly F -regular, then, for any n ∈ N, there exists e1 ∈ N such
that eM has a direct summand isomorphic to An for all e ≥ e1.

(2) If there is a finitely generated torsion-free A-module L 6= 0 that has FFRT,
then there exists an R-module D 6= 0 such that for any n ∈ N, there is
e1 ∈ N such that e1M has a direct summand isomorphic to Dn.

Proof. (1): Evidently dim(A) = 2, AssR(A) = {P} and A is a semi-local F -
finite ring, say with maximal ideals m1,m2, . . . ,mc. Also notice that dim(Ami) =
dim(A) = 2 and α(Ami

) = α(R) for each i = 1, 2, . . . , c. (Indeed, the equation
α(Ami

) = α(R) holds because A/mi is a finite field extension of R/m. Then
dim(Ami

) = dim(R) follows from [Ku2, Proposition 2.3]. It also follows from
Ratliff’s dimension formula (cf. [Ma, Theorem 15.6]).)

We are to show lim infe→∞
#R(eA,A)

qα(R)+dim(A) > 0 in order to apply Proposition 1.7 and

Remark 1.6. Thus it suffices to show lim infe→∞
#A(eA,A)

qα(R)+dim(A) > 0 by considering A
as an A-module. Since A is strongly F -regular, so is Ami

for each i = 1, 2, . . . , c.



8 YONGWEI YAO

Therefore lim infe→∞
#Ami

(eAmi
,Ami

)

qα(Ami
)+dim(Ami

) > 0 for each i = 1, 2, . . . , c (see [AL]). Finally,
by Lemma 1.10 below, we have

lim inf
e→∞

#A(eA,A)
qα(R)+dim(A)

= min
{

lim inf
e→∞

#Ami
(eAmi , Ami)

qα(R)+dim(A)

∣∣ 1 ≤ i ≤ c
}
> 0,

which finishes the proof.
(2): Clearly, we have AssR(L) = {P} ⊆ AsshR(M) so that dim(L) = 2. Also,

the assumption that L has FFRT as an A-module implies that L has FFRT as an R-
module (from definition). By [Yao1, Lemma 2.1], there is an non-zero F -contributor
D of L over R. Now Proposition 1.7 applies. �

Remark 1.9. As every strongly F -regular ring A is normal, we see that if A is a
module-finite extension of R/P (as in Theorem 1.8), then A is the integral closure
of R/P in some finite field extension of (R/P )P .

In general, for any (F -finite) local ring (R,m, k) of prime characteristic p, the
invariant s(R) = lime→∞

#(eR,R)
qα(R)+dim(R) , if it exists, is called the F -signature of R.

It was first defined and studied in [HL]. For some other related work on the F -
signature, see [AE1], [AE2], [AL], [Si], [SVdB], [Yao1] and [Yao2], etcetera.

Although Lemma 1.10 might be well-known, we state and prove it for the com-
pleteness of the proof of Theorem 1.8. (Lemma 1.10 was also referred to in the proof
of Lemma 1.4.) Before stating the lemma, we observe that for any Noetherian local
ring (R,m) and any finitely generated R-modules N,D 6= 0, we have

(†) #R(N ⊕Dn, D) = #R(N,D) + n

for every n ∈ N, which follows from the fact that #
bR(M̂, D̂) = #R(M,D) and the

Krull-Schmidt property of R̂, the m-adic completion of R.

Lemma 1.10. Let A be a semi-local Noetherian ring (not necessarily with prime
characteristic p) with maximal ideals m1,m2, . . . ,mc exactly and M,D 6= 0 finitely
generated A-modules. Then #A(M,D) = min{#Ami

(Mmi , Dmi) | 1 ≤ i ≤ c}.

Proof. One could prove this lemma by using the fact that #A(M,D) = #
bA(M̂, D̂),

in which ̂ = ̂m denotes the completion with respect to the m-adic topology where
m = ∩c

i=1mi is the Jacobson radical, and the fact that Â =
∏c

i=1 Âmi

mi

, in whicĥmi stands for the (miAmi)-adic completion.
For an alternative proof, let #A(M,D) = n and say M ∼= N ⊕ Dn. Then

#A(N,D) = 0 and, by (†) above, we have the equation

min{#Ami
(Mmi

, Dmi
) | 1 ≤ i ≤ c} = n+ min{#Ami

(Nmi
, Dmi

) | 1 ≤ i ≤ c}.

Now it suffices to prove min{#Ami
(Nmi , Dmi) | 1 ≤ i ≤ c} = 0. Suppose, on the

contrary, that min{#Ami
(Nmi , Dmi) | 1 ≤ i ≤ c} > 0. Then, for each 1 ≤ i ≤ c,

there exist homomorphisms

φi/si ∈ (HomA(N,D))mi
= HomAmi

(Nmi
, Dmi

)

and ψi/si ∈ (HomA(D,N))mi = HomAmi
(Dmi , Nmi)

such that (φi/si) ◦ (ψi/si) = 1Dmi
,
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in which φi ∈ HomA(N,D), ψi ∈ HomA(D,N) and si ∈ A \ mi. Choose ri ∈
∩j 6=imj \mi for each i = 1, 2, . . . , c. Then it is routine to verify that( c∑

i=1

riφi

)
◦

( c∑
i=1

riψi

)
∈ HomA(D,D)

is surjective (by Nakayama’s Lemma) and hence is an isomorphism, which implies
that N has a direct summand isomorphic to D, a contradiction. �

It is noted that Proposition 1.7 and Theorem 1.8 apply to 2-dimensional cases
only. In case the dimension is higher, we have the following result, which was
obtained during a discussion with Melvin Hochster.

Theorem 1.11. Let (R,m, k) be an F -finite local domain of prime characteristic
p with dim(R) ≥ 2 such that RP is integrally closed in its fraction field for all
P ∈ Spec(R) with dim(R/P ) ≥ 2. Let A := R be the integral closure of R in its
fraction field. If A is strongly F -regular, then for any finitely generated faithful
R-module M and any n ∈ N, there exists e1 such that eM has a direct summand
isomorphic to An (as an R-module) for all e ≥ e1.

Proof. Let C = {r ∈ R | rA ⊆ R} be the conductor, which is the largest common
ideal of R and A. Then we see dim(R/C) ≤ 1 by the assumption. Consider the
short exact sequence

0 −→ CM −→M −→M/CM −→ 0,

in which dim(M/CM) ≤ 1 and CM is a finitely generated faithful A-module. Thus
there exist h ∈ HomA(CM,A) and x ∈ CM such that h(x) = c ∈ A◦. Then, as A
is strongly F -regular, there are e0 ∈ N and g ∈ HomA(e0A,A) such that g(c) = 1.
Consequently, we get an A-linear homomorphism g ◦ h : e0(CM) → e0A → A that
maps x to 1, showing that A is a direct summand of e0(CM) as an A-module.

The strong F -regularity of A also implies lim infe→∞
#A(eA,A)

qα(R)+dim(A) > 0 (cf. [AL]
and the proof of Theorem 1.8(1) above). Thus, we have

lim inf
e→∞

#R(e(CM), A)
qα(R)+dim(R)

≥ lim inf
e→∞

#A(e(CM), A)
qα(R)+dim(A)

> 0 (cf. last paragraph).

Now the claim follows from Lemma 1.4 and Remark 1.6. �
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